BVAR: Hierarchical Bayesian Vector Autoregression
Estimation of hierarchical Bayesian vector autoregressive models
    following Kuschnig & Vashold (2021) <doi:10.18637/jss.v100.i14>.
    Implements hierarchical prior selection for conjugate priors in the fashion
    of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>.
    Functions to compute and identify impulse responses, calculate forecasts,
    forecast error variance decompositions and scenarios are available.
    Several methods to print, plot and summarise results facilitate analysis.
| Version: | 
1.0.5 | 
| Depends: | 
R (≥ 3.3.0) | 
| Imports: | 
mvtnorm, stats, graphics, utils, grDevices | 
| Suggests: | 
coda, vars, tinytest | 
| Published: | 
2024-02-16 | 
| DOI: | 
10.32614/CRAN.package.BVAR | 
| Author: | 
Nikolas Kuschnig  
    [aut, cre],
  Lukas Vashold  
    [aut],
  Nirai Tomass [ctb],
  Michael McCracken [dtc],
  Serena Ng [dtc] | 
| Maintainer: | 
Nikolas Kuschnig  <nikolas.kuschnig at wu.ac.at> | 
| BugReports: | 
https://github.com/nk027/bvar/issues | 
| License: | 
GPL-3 | file LICENSE | 
| URL: | 
https://github.com/nk027/bvar | 
| NeedsCompilation: | 
no | 
| Citation: | 
BVAR citation info  | 
| Materials: | 
README, NEWS  | 
| In views: | 
Bayesian, TimeSeries | 
| CRAN checks: | 
BVAR results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BVAR
to link to this page.