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Description

.update_obs is an experimental utility to recycle the information in an inference object to pro-
duce an inference for different data without repeating a simulation workflow. Beyond its experi-
mental nature, its result is not expected to provide the same precision of inference as a standard
iterative Infusion workflow, since the recycled simulations were adapted to the original data only
(.update_obs indeed allows one to investigate the effect of using this non-adapted information).
So the new results should not be used as a equivalent to a full Infusion iterative workflow.

Usage

.update_obs(object, new.obs, CIs = FALSE, eval_RMSEs = FALSE, ...)

Arguments

object an object of class "SLik_j" as createded by infer_SLik_joint (possible up-
dated by MSL and refine).

new.obs A named vector of summary statistics (ideally the projected ones, but raw ones
are handled)

CIs, eval_RMSEs, ...
further arguments passed to MSL.

Value

An object of class "SLik_j" as the input object.

add_reftable Create or augment a list of simulated distributions of summary statis-
tics

Description

add_reftable creates or augments a reference table of simulations, and formats the results appro-
priately for further use. The user does not have to think about this return format. Instead, s-he only
has to think about the very simple return format of the function given as its Simulate argument. The
primary role of his function is to wrap the call(s) of the function specified by Simulate. Depending
on the arguments, parallel or serial computation is performed.

When parallelization is implied, it is performed by by default a “socket” cluster, available on all
operating systems. Special care is then needed to ensure that all required packages are loaded
in the called processes, and that all required variables and functions are passed therein: check the
packages and env arguments. For socket clusters, foreach or pbapply is called depending whether
the doSNOW package is attached (doSNOW allows more efficient load balancing than pbapply).

Alternatively, if the simulation function cannot be called directly by the R code, simulated samples
can be added using the newsimuls argument. Finally, a generic data frame of simulated samples
can be reformatted as a reference table by using only the reftable argument.

add_simulation is a wrapper for add_reftable, suitable when nRealizations>1. It is now dis-
tinctly documented: the distinct features of add_simulation were conceived for the first workflow
implemented in Infusion but are somewhat obsolete now.
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Usage

add_reftable(reftable=NULL, Simulate, parsTable=par.grid, par.grid=NULL,
nRealizations = 1L, newsimuls = NULL,
verbose = interactive(), nb_cores = NULL, packages = NULL,
env = NULL, control.Simulate=NULL, cluster_args=list(),
cl_seed=NULL, constr_crits=NULL, ...)

Arguments

reftable Data frame: a reference table. Each row contains parameters value of a sim-
ulated realization of the data-generating process, and the simulated summary
statistics. As parameters should be told apart from statistics by Infusion func-
tions, information about parameter names should be attached to the reftable
*if* it is not available otherwise. Thus if no parsTable is provided, the reftable
should have an attribute "LOWER" (a named vectors giving lower bounds for the
parameters which will vary in the analysis, as in the return value of the function).

Simulate An *R* function, or the name (as a character string) of an *R* function used to
generate summary statistics for samples form a data-generating process. When
an external simulation program is called, Simulate must therefore be an R func-
tion wrapping the call to the external program. Two function APIs are handled:
* If the function has a parsTable argument, it must return a *data frame* of
summary statistics, each line of which contains the vector of summary statistics
for one realization of the data-generating process. The parsTable argument of
add_reftable will be passed to Simulate and lines of the output data frame
must be ordered, as in the input parsTable as these two data frames will be
bound together.
* Otherwise, the Simulate function must return a *vector* of summary statis-
tics with named vector members, and it must have one argument for each ele-
ment of the parameter vector (i.e. of each column of a matching parsTable).

parsTable, par.grid
A data frame of which each line is the vector of parameters needed by Simulate
for each simulation of the data-generating process. par.grid is an alias for
parsTable; the latter argument may be preferred in order not to suggest that the
parameter values should form a regular grid.

nRealizations The number of simulated samples of summary statistics, for each parameter
vector (each row of parsTable). If not 1, theold wrkflow is assumed and
add_simulation is called.

newsimuls If the function used to generate empirical distributions cannot be called by R,
then newsimuls can be used to provide these distributions. See Details for the
structure of this argument.

nb_cores Number of cores for parallel simulation; NULL or integer value, acting as a short-
cut for cluster_args$spec. This is effective only if the simulation function is
called separately for each row of parsTable. Otherwise, if the simulation func-
tion is called once one the whole parsTable, parallelisation could be controlled
only through that function’s own arguments.

cluster_args A list of arguments, passed to makeCluster. May contain a non-null spec ele-
ment, in which case the distinct nb_cores argument and the global Infusion op-
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tion nb_cores are ignored. A typical usage would thus be control_args=list(spec=<number
of 'children'>). Additional elements outfile="log.txt" may be useful to
collect output from the nodes, and type="FORK" may be used to force a fork
cluster on linux(-alikes) (otherwise a socket cluster is set up as this is the de-
fault effect of parallel::makeCluster). Do *not* use a structured list with
an add_reftable element as is possible for refine (see Details of refine doc-
umentation).

verbose Whether to print some information or not.

... Additional arguments passed to Simulate, beyond the parameter vector. These
arguments should be constant through all the simulation workflow.

control.Simulate

A list, used as an exclusive alternative to “. . . ” to pass additional arguments
to Simulate, beyond the parameter vector. The list must contain the same ele-
ments as would otherwise go in the “. . . ” (if control.Simulate is left NULL,
a default value is constructed from the . . . ).

packages For parallel evaluation: Names of additional libraries to be loaded on the cores,
necessary for Simulate evaluation.

env For parallel evaluation: an environment containing additional objects to be ex-
ported on the cores, necessary for Simulate evaluation.

cl_seed (all parallel contexts:) Integer, or NULL. If an integer, it is used to initialize
"L'Ecuyer-CMRG" random-number generator. If cl_seed is NULL, the default
generator is selected on each node, where its seed is not controlled. Providing
the seed allows repeatable results for given parallelization settings, but may not
allow identical results across different settings.

constr_crits NULL, or quoted expression specifying a constraints on parameters, beyond
the ones defined by the ranges over each parameter: see constr_crits for de-
tails. However, if sampled parameters were generated by init_reftable(.,
constr_crits=...), there is no need to apply the constraints again through
add_reftable; and given the choice, it is better to apply them when calling
init_reftable, as this allows a better control of the size of the reference table.

Details

The newsimuls argument should have the same structure as the return value of the function itself,
except that newsimuls may include only a subset of the attributes returned by the function. It is thus
a data frame; its required attributes are LOWER and UPPER which are named vectors giving bounds
for the parameters which are variable in the whole analysis (note that the names identify these
parameters in the case this information is not available otherwise from the arguments). The values
in these vectors may be incorrect in the sense of failing to bound the parameters in the newsimuls,
as the actual bounds are then corrected using parameter values in newsimuls and attributes from
reftable.

Value

A data.frame (with additional attributes) is returned.

The value has the following attributes: LOWER and UPPER which are each a vector of per-parameter
minima and maxima deduced from any newsimuls argument, and optionally any of the arguments
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Simulate, control.Simulate, packages, env, parsTable and reftable (all corresponding to
input arguments when provided, except that the actual Simulate function is returned even if it was
input as a name).

Examples

## see main documentation page for the package for other typical usage

add_simulation Create or augment a list of simulated distributions of summary statis-
tics

Description

add_simulation is suitable for the primitive Infusion workflow; otherwise, it is cleaer to call
add_reftable directly. add_simulation creates or augments a list of simulated distributions of
summary statistics, and formats the results appropriately for further use. Alternatively, if the simula-
tion function cannot be called directly by the R code, simulated distributions can be added using the
newsimuls argument, using a simple format (see onedistrib in the Examples). Finally, a generic
data frame of simulations can be reformatted as a reference table by using only the simulations
argument.

Depending on the arguments, parallel or serial computation is performed. When parallelization
is implied, by default a “socket” cluster, available on all operating systems. Special care is then
needed to ensure that all required packages are loaded in the called processes, and that all required
variables and functions are passed therein: check the packages and env arguments. For socket
clusters, foreach or pbapply is called depending whether the doSNOW package is attached (doSNOW
allows more efficient load balancing than pbapply).

Usage

add_simulation(simulations=NULL, Simulate, parsTable=par.grid, par.grid=NULL,
nRealizations=Infusion.getOption("nRealizations"),
newsimuls=NULL, verbose=interactive(), nb_cores=NULL,
packages=NULL, env=NULL, control.Simulate=NULL,
cluster_args=list(), cl_seed=NULL, ...)

Arguments

simulations A list of matrices each representing a simulated distribution for given parameters
in a format consistent with the return format of add_simulation.

nRealizations The number of simulated samples of summary statistics, for each empirical dis-
tribution (each row of par.grid).

Simulate An *R* function, or the name (as a character string) of an *R* function used to
generate empirical distributions of summary statistics. When an external simu-
lation program is called, Simulate must therefore be an R function wrapping the
call to the external program. The Simulate function must have one argument
for each element of the parameter vector (i.e. of each row of par.grid). It must
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return a vector of summary statistics with named vector members; or a single
matrix of nRealizations simulations, in which case its rows and row names
must represent the summary statistics, it should have nRealizations columns,
and nRealizations should be named integer of the form “c(as_one=.)” (see
Examples).

parsTable, par.grid
A data frame of which each line is the vector of parameters needed by Simulate
for each simulation of the data-generating process. par.grid is an alias for
parsTable; the latter argument may be preferred in order not to suggest that the
parameter values should form a regular grid.

newsimuls If the function used to generate empirical distributions cannot be called by R,
then newsimuls can be used to provide these distributions. See Details for the
structure of this argument.

nb_cores Number of cores for parallel simulation; NULL or integer value, acting as a short-
cut for cluster_args$spec. The effect is complicated: see Details.

cluster_args A list of arguments, passed to makeCluster. May contain a non-null spec ele-
ment, in which case the distinct nb_cores argument and the global Infusion op-
tion nb_cores are ignored. A typical usage would thus be control_args=list(spec=<number
of 'children'>). Additional elements outfile="log.txt" may be useful to
collect output from the nodes, and type="FORK" may be used to force a fork
cluster on linux(-alikes) (otherwise a socket cluster is set up as this is the default
effect of parallel::makeCluster).

verbose Whether to print some information or not.

... Arguments passed to add_reftable (and possibly beyond, to the simulation
function: see nsim argument of myrnorm_tab() in the Examples. These argu-
ments should be constant through all the simulation workflow.

control.Simulate

A list, used as an exclusive alternative to “. . . ” to pass additional arguments to
Simulate, beyond the parameter vector. The list must contain the same elements
as would go in the “. . . ”.

packages For parallel evaluation: Names of additional libraries to be loaded on the cores,
necessary for Simulate evaluation.

env For parallel evaluation: an environment containing additional objects to be ex-
ported on the cores, necessary for Simulate evaluation.

cl_seed Integer, or NULL. Providing the seed was conceived to allow repeatable results
at least for given parallelization settings, if not identical results across different
parallelization contexts. However, this functionality may have been been lost as
the code was adapted for the up-to-date workflow using add_reftable.

Details

The newsimuls argument should have the same structure as the return value of the function it-
self, except that newsimuls may include only a subset of the attributes returned by the function.
newsimuls should thus be list of matrices, each with a par attribute (see Examples). Rows of each
matrix stand for simulation replicates and columns stand for the different summary statistics.
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When nRealizations>1L, if nb_cores is unnamed or has name "replic" and if the simulation
function does not return a single table for all replicates (thus, if nRealizations is not a named
integer of the form “c(as_one=.)”, parallelisation is over the different samples for each parameter
value (and the seed of the random number generator is not controlled in a parallel context). For
any other explicit name (e.g., nb_cores=c(foo=7)), or if nRealizations is a named integer of the
form “c(as_one=.)”, parallelisation is over the parameter values (the rows of par.grid). In all
cases, the progress bar is over parameter values. See Details in Infusion.options for the subtle
way these different cases are distinguished in the progress bar.

Using a FORK cluster with nRealizations>1 is warned as unreliable: in particular, anyone trying
this combination should check whether other desired controls, such as random generator seed, or
progress bar are effective.

Value

If nRealizations>1L, the return value is an object of class EDFlist, which is a list-with-attributes
of matrices-with-attribute. Each matrix contains a simulated distribution of summary statistics for
given parameters, and the "par" attribute is a 1-row data.frame of parameters. If Simulate is used,
this must give all the parameters to be estimated; otherwise it must at least include all variable
parameters in this or later simulations to be appended to the simulation list.

The value has the following attributes: LOWER and UPPER which are each a vector of per-parameter
minima and maxima deduced from any newsimuls argument, and optionally any of the arguments
Simulate, control.Simulate, packages, env, par.grid and simulations (all corresponding
to input arguments when provided, except that the actual Simulate function is returned even if it
was input as a name).

If nRealizations=1 add_reftable is called: see its distinct return value.

Examples

### Examples using init_grid and add_simulation, for primitive workflow
### Use init_reftable and add_reftable for the up-to-date workflow

# example of building a list of simulations from scratch:
myrnorm <- function(mu,s2,sample.size) {

s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
return(c(mean=mean(s),var=var(s)))

}
set.seed(123)
onedistrib <- t(replicate(100,myrnorm(1,1,10))) # toy example of simulated distribution
attr(onedistrib,"par") <- c(mu=1,sigma=1,sample.size=10) ## important!
simuls <- add_simulation(NULL, Simulate="myrnorm", nRealizations=500,

newsimuls=list("example"=onedistrib))

# standard use: smulation over a grid of parameter values
parsp <- init_grid(lower=c(mu=2.8,s2=0.2,sample.size=40),

upper=c(mu=5.2,s2=3,sample.size=40))
simuls <- add_simulation(NULL, Simulate="myrnorm", nRealizations=500,

par.grid = parsp[1:7,])

## Not run: # example continued: parallel versions of the same
# Slow computations, notably because cluster setup is slow.
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# ... parallel over replicates, serial over par.grid rows
# => cl_seed has no effect and can be ignored
simuls <- add_simulation(NULL, Simulate="myrnorm", nRealizations=500,

par.grid = parsp[1:7,], nb_cores=7)
#
# ... parallel over 'par.grid' rows => cl_seed is effective
simuls <- add_simulation(NULL, Simulate="myrnorm", nRealizations=500,

cl_seed=123, # for repeatable results
par.grid = parsp[1:7,], nb_cores=c(foo=7))

## End(Not run)

####### Example where a single 'Simulate' returns all replicates:

myrnorm_tab <- function(mu,s2,sample.size, nsim) {
## By default, Infusion.getOption('nRealizations') would fail on nodes!
replicate(nsim,

myrnorm(mu=mu,s2=s2,sample.size=sample.size))
}

parsp <- init_grid(lower=c(mu=2.8,s2=0.2,sample.size=40),
upper=c(mu=5.2,s2=3,sample.size=40))

# 'as_one' syntax for 'Simulate' function returning a simulation table:
simuls <- add_simulation(NULL, Simulate="myrnorm_tab",

nRealizations=c(as_one=500),
nsim=500, # myrnorm_tab() argument, part of the 'dots'
parsTable=parsp)

## Not run: # example continued: parallel versions of the same.
# Slow cluster setup again
simuls <- add_simulation(NULL,Simulate="myrnorm_tab", parsTable=parsp,

nb_cores=7L,
nRealizations=c(as_one=500),
nsim=500, # myrnorm_tab() argument again
cl_seed=123, # for repeatable results
# need to export other variables used by *myrnorm_tab* to the nodes:
env=list2env(list(myrnorm=myrnorm)))

## End(Not run)

## see main documentation page for the package for other typical usage

check_raw_stats Check linear dependencies among raw summary statistics

Description

A convenient wrapper function for caret::findLinearCombos, allowing to detect linear depen-
dencies among the statistics, and optionally to remove variables that induce them.
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Usage

check_raw_stats(x, statNames, remove = FALSE, verbose = interactive())

Arguments

x data frame (particularly inheriting from class "reftable", i.e. a reference table
of simulations); or possibly a matrix with column names

statNames Character vector: variables among which dependencies are sought. Must belong
column names of x. For a reftable, this argument is optional and by default, all
raw statistic are included. For other classes of input, this argument is required.

remove Boolean: whether to return x with “offending” columns removed, or other in-
formation.

verbose Boolean: whether to display some messages.

Value

Return type depends on the availability of the caret package, and on the remove argument, as
follows. if remove=TRUE, an object of the same class as x is returned (with redundant columns
removed). If remove=FALSE, either the caret package is available, in which case a list is returned
with the same structure as the return value of caret::findLinearCombos but with column indices
replaced by column names; or a message pointing that caret is not available is returned (and another
is printed, only once per session).

confint.SLik Compute confidence intervals by (profile) summary likelihood

Description

confint takes an SLik object (as produced by MSL) and deduces confidence bounds for each pa-
rameter, using a (profile, if relevant) likelihood ratio method, and optionally a bootstrap method.

allCIs calls confint for all fitted parameters and re-structure the results.

Usage

allCIs(object, level=0.95, verbose=TRUE, ...)
## S3 method for class 'SLik_j'
confint(object, parm, level=0.95, verbose=interactive(), fixed=NULL,

which=c(TRUE,TRUE), nsim=0L, reset=TRUE,
cluster_args=NULL, nb_cores=NULL, type="perc",...)

## S3 method for class 'SLik'
confint(object, parm, level=0.95, verbose=interactive(), fixed=NULL,

which=c(TRUE,TRUE), ...)
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Arguments

object an SLik or SLik_j object

parm The parameter which confidence bounds are to be computed

level The desired coverage of the interval

verbose Whether to print some information or not

fixed When this is NULL the computed interval is a profile confidence interval over
all parameters excluding parm. fixed allows one to set fixed values to some of
these parameters.

which A pair of booleans, controlling whether to compute respectively the lower and
the upper CI bounds.

nsim Integer: number of bootstrap replicates. If >1, bootstrap interval(s) are com-
puted as further controlled by the type argument. Note that this will be ignored
if the bootstrap has previously been run and reset=FALSE.

reset Boolean: Whether to use any previously computed distribution (see Details) or
not.

cluster_args, nb_cores
Passed to parallelization wrappers such as dopar.

type Character vector, ignored if nsim = 0: bootstrap CI type(s). Possible types are
"norm", "basic", "perc" (as handled by boot.ci), and "Bartlett" (where
the interval bounds are defined by threshold values of the likelihood ratio statis-
tics modified using a Bartlett correction).

... further arguments passed to or from other methods. allCIs passes them to
confint, so that, e.g., nsim can be passed through the . . . . confint passes
them to parallelization wrappers such as dopar.

Details

confint.SLik_j results are stored in the object (until the next refine), including the result of
the bootstrap simulations if it was performed. This distribution may then be reused by a next call to
confint for the same parm if reset=FALSE. The default is however to recompute the distribution
(reset=TRUE).

Bootstrap CIs computed using boot.ci are stored as distinct elements of the return list (see Value).
However, for the "Bartlett" type of CI, the interval element of the return value is modified.

Value

Both functions modify the fit object as a side effect (see Details).

confint returns a list with sublists for each parameter, each sublist containing: the bounds of
the one-dimensional confidence interval (element interval, a vector); the parameter point for the
lower bound (element lowerpar, a vector including all parameters fitted in the SLik object), the full
parameter point for the upper bound (element upperpar, formatted as lowerpar), and optionally if
a bootstrap was run, the return value of a boot::boot.ci call (element bootCI) and the simulated
distribution of parameter estimates (element booreps, 1-column matrix).

allCIs returns invisibly a list with elements including CIs (itself a list of confint results), bounds
(a matrix made of bound points for all parameters), and some other elements.
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See Also

SLRT

Examples

if (Infusion.getOption("example_maxtime")>3) {
#### Provide fit for minimal toy example:
myrnorm <- function(mu,s2,sample.size) {

s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
return(c(mean=mean(s),var=var(s)))

} # simulate means and variances of normal samples of size 'sample.size'
set.seed(123)
# simulated data with stands for the actual data to be analyzed:
ssize <- 40L
(Sobs <- myrnorm(mu=4,s2=1,sample.size=ssize) )
## Construct initial reference table:
# Uniform sampling in parameter space:
parsp <- init_reftable(lower=c(mu=2.8, s2=0.4, sample.size=ssize),

upper=c(mu=5.2, s2=2.4, sample.size=ssize))
# Build simulation table:
# set.seed(456)
simuls <- add_reftable(Simulate="myrnorm", parsTable=parsp)

# Infer surface:
densv <- infer_SLik_joint(simuls,stat.obs=Sobs)
# Usual workflow using inferred surface:
slik_1 <- MSL(densv) ## find the maximum of the log-likelihood surface

#### Confidence interval calculations:
(ci1 <- confint(slik_1,"mu")) # basic likelihood ratio interval
(ci2 <- confint(slik_1,"mu", nsim=199L)) # Percentile interval added
(ci3 <- confint(slik_1,"mu", nsim=199L, type="Bartlett")) # 'interval' corrected

# Previous bootstrap computations are stored in the fit object,
# and recycled if reset=FALSE *and* nsim > 0:
(ci4 <- confint(slik_1,"mu", nsim=199L, type= "Bartlett", reset=FALSE)) # = ci3
(ci5 <- confint(slik_1,"mu", nsim=199L, type= "perc", reset=FALSE)) # = ci2
}

constr_crits Specificying arbitrary constraints on parameters

Description

constr_crits is an argument of init_reftable, add_reftable, infer_SLik_joint, and profile.SLik_j,
allowing to specify constraints on parameters, beyond the ones defined by the ranges over each pa-
rameter. Depending on the function it controls, this argument will affect the generation of param-
eter points or the maximization of the summary-likelihood. The infer_SLik_joint return value
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contains the constr_crits information it was given, allowing subsequent refine calls to take
constraints into account.

The constraints are represented as a mathematical expression for a vector of quantities that should
all be negative when the constraints are satisfied. For example, to incorporate the constraint t1 < t3
&& t2 < t3 between three time parameters t1, t2 and t3 present in the reference table, one can use
constr_crits = quote({ c(t1-t3, t2-t3) }).
See Examples in infer_SLik_joint for a nice artificial toy example.

For computational efficiency, it may be better to avoid using this feature when the constraints can
be represented as box constraints (i.e., independent ranges for each parameter) by some intuitive
reparametrization.

declare_latent Modeling and predicting latent variables

Description

Latent variables are unobserved variables which, for given model parameters, are random. Since
they are unobserved, they cannot appear in data nor used to infer parameters. However, they can
be predicted if their joint distribution with the data is learned from the reference table. Thus for
inference about latent variables, these should be returned along summary statistics by the simulation
function generating the samples for the reference table, but they should be declared as such so
that later inference steps can distinguish them from both parameters and summary statistics. The
declare_latent function is used for that purpose.

The pplatent function can be used to point-predict latent values, by their inferred mean or median
given the (projected) summary statistics and fitted parameter values.

The latint function provides prediction intervals for the latent variable, accounting for uncertainty
in parameter estimates, using a bootstrap method (see Details).

Usage

declare_latent(reftable, latentVars)
pplatent(object, type="mean",

newDP=NULL,
sumstats= t(get_from(object,"stat.obs")),
pars=t(object$MSL$MSLE),
size=1000L, ...)

latint(object, nsim=199L, levels=c(0.025,0.975),
sumstats= t(get_from(object,"stat.obs")),
Simulate, control.Simulate=get_from(object,"control.Simulate"),
bootSamples=NULL,
...)
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Arguments

reftable A reference table of simulation as returned by add_reftable

latentVars A vector of names of variables to be treated as latent variables.

object An object of class SLik_j.

type Character: the only handled non-default value is "median".
newDP, sumstats, pars

Matrices of data and/or (projected) summary statistics, with one column for each
variable. newDP should contain both, and if NULL, is constructed from the next
two arguments, sumstats holding statistics and pars holding parameters.

levels Numeric vector: one-sided confidence levels (cumulative probabilities at which
quantiles of the predictive distribution will be returned).

nsim Integer: number of bootstrap replicates.

size Integer: number of draws for estimating the median.

Simulate May be used to provide the simulation function if it is not stored in the object;
usage is then as for add_reftable. If it is set to NULL, bootstrap samples
will instead be drawn from the gaussian mixture fit, but this shoudl be avoided
for good performance. When the argument is missing (default), the Simulate
information is sought in the object, and if absent, the gaussian mixture fit is
used with a warning.

control.Simulate

A list of arguments of the Simulate function (seeadd_simulation). The de-
fault value should be used unless you understand enough of its structure to mod-
ify it wisely (e.g., it may contain the path of an executable used to perform the fit
on one machine and a different path may be specified to compute the prediction
interval on another machine).

bootSamples A data frame. The bootstrap samples may be provided by this argument, oth-
erwise they will be automatically simulated by the function provided by the
Simulate argument. The boot samples may for example be obtained by calling
simulate(<Slik_j object>, SGP=TRUE).

... For pplatent: Not currently used. For latint: may be used to pass arguments
verbose, nb_cores, packages, env, control.Simulate, cluster_args, and
cl_seed, with usage as described for add_reftable, to the bootstrap sample
simulation step. Parallelisation controls will also be used for the other steps of
the bootstrap procedure.

Details

The latint function aims to provide intervals for the latent variable V , with controlled coverage
for given parameter values. The parametric bootstrap method of Lawless & Fredette (2005) can
be adapted to the present problem. First, new data D∗ and new latent values V ∗ are jointly sim-
ulated, given the summary-ML estimates (this uses the sample-generating process simulator, but
these simulations are not added to the reference table). Second, their original method requires the
evaluation for each new (D∗, V ∗) of FV (V = V ∗|D∗; θ(D∗)), the value of the cumulative distri-
bution function FV of V evaluated at V = V ∗ values, given D∗ and given new parameter estimates
θ(D∗). It also requires the quantile function of V for the original data and parameter estimates.
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latint uses the fit of the multivariate gaussian mixture model to the reference table, stored in the
fit object, for fast parameter refitting and for fast estimation of these functions on each bootstrap
sample (D∗, V ∗).

latint(., levels=c(0.5)) will return the median of the predictive distribution, conceptually dis-
tinct from the plug-in prediction by pplatent(slik_j, type="median")

Quantile computations in pplatent and latint are approximate and might be modified in some
future version, but were sufficient to obtain reasonable results in simulations.

Value

declare_latent returns the input reftable with modified attributes. pplatent returns a vector
of predicted latent values.

pplatent returns a single numeric value or a vector. latint returns a list of matrices. Each matrix
has with one column per element of levels, and one row per row of sumstats. There is one such
matrix for each latent variable.

References

Lawless J. F., Fredette M. (2005) Frequentist prediction intervals and predictive distributions. Biometrika
92: 529–542, <doi:10.1093/biomet/92.3.529>

Examples

## Not run:
##### A toy example motivated by some inference problem for genomic data #####
# A model with three parameters logNe, Vs and Es is fitted.
# Data from 100 loci are here summarized by three genome-wide summary statistics
# (slogNe, sVs and sEs), and one locus-specific statistic that will provide
# information about a locus-specific latent variable.

## Simulation function
genomloc <- function(logNe=parvec["logNe"],Es=parvec["Es"],Vs=parvec["Vs"],

latent=TRUE, # returns the latent value by default
parvec) {

slogNe <- rnorm(1,logNe, sd=0.3)
genom_s <- rgamma(99, shape=Es/Vs,scale=Vs) # all loci except the focal one
sEs <- mean(genom_s)
sVs <- var(genom_s)
latentv <- rgamma(1, shape=Es/Vs,scale=Vs) # locus-specific latent variable to predict
sloc <- rnorm(1, mean=latentv-sEs,sd=latentv/3) # locus-specific statistic
resu <- list(slogNe=slogNe,sEs=sEs,sVs=sVs, sloc=sloc)
if (latent) resu$latentv <- latentv
unlist(resu)

}
#
## simulated data, standing for the actual data to be analyzed:
set.seed(123)
Sobs <- genomloc(logNe=4,Es=0.05, Vs=0.1,latent=FALSE) ## no latent value
#
workflow_design <- get_workflow_design(npar=3L, n_proj_stats=4L, n_latent=1L)
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parsp <- init_reftable(lower=c(logNe=2,Es=0.001,Vs=0.001),
upper=c(logNe=6,Es=0.2,Vs=0.2),
nUnique=workflow_design$init_reft_size)

simuls <- add_reftable(Simulate=genomloc, parsTable=parsp)

simuls <- declare_latent(simuls,"latentv")

## Projections are not necessary here since the number of statistics is minimal,
# but will be discussed later.
{ ############ Without projections
{ ## Usual workflow for estimation:

densv <- infer_SLik_joint(simuls,stat.obs=Sobs)
slik_j <- MSL(densv) ## find the maximum of the log-likelihood surface
slik_j <- refine(slik_j,maxit=2,update_projectors=TRUE)
# plot1Dprof(slik_j) ## 1D profiles show parameter inference is OK

}
{ ## inference about latent values:

pplatent(slik_j)
pplatent(slik_j, type="median")
latint(slik_j, nsim=999, levels=c(0.025,0.5,0.975))

}
{ ## Assessing prediction of latent variable:

# Builds testing set:
test_simuls <- t(replicate(1000, genomloc(logNe=4,Es=0.05, Vs=0.1)))
test_data <- test_simuls[,-5]
# Point prediction:
pred <- pplatent(slik_j, sumstats = test_data)

plot(test_simuls[,"latentv"], pred); abline(0,1) # prediction vs. true latent values
}

}

{ ########## Beyond standard use of projections for estimation of parameter values,
# projections can also be used when several individual-level statistics inform about
# the latent variable, to reduce them to a single summary statistic.
# Projection will then be needed at the prediction step too.

{ # projection with latent variable as response:
platent <- (project("latentv", data=simuls, stats=c("slogNe","sEs","sVs","sloc")))
# (This example only serves to show the syntax since no dimention reduction occurs)

dprojectors <- list(SLOC=platent,slogNe=NULL,sEs=NULL, sVs=NULL)

# => As soon as one projection is used, The 'projectors' argument must include
# all projectors used for the inference, whether for parameters or for latent variables.
# NULL projectors should then be declared for raw statistics retained
# in the projected reference table.

# Apply projections on simulated statistics and 'data':
projSimuls <- project(simuls,projectors=dprojectors,verbose=FALSE)
projSobs <- project(Sobs,projectors=dprojectors)

}
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{ ## Estimation:
ddensv <- infer_SLik_joint(projSimuls,stat.obs=projSobs)
dslik_j <- MSL(ddensv) ## find the maximum of the log-likelihood surface
dslik_j <- refine(dslik_j,maxit=2,update_projectors=TRUE)
# plot1Dprof(dslik_j)

}

{ ## Assessing prediction of latent variable: do not forget to project!

test_simuls <- t(replicate(1000, genomloc(logNe=4,Es=0.05, Vs=0.1)))
test_data <- test_simuls[,-5] # removing column of latent variable
ptest_data <- project(test_data,projectors=dprojectors,verbose=FALSE) # Here!
pred <- pplatent(dslik_j, sumstats = ptest_data)

plot(test_simuls[,"latentv"], pred); abline(0,1)
}

}

## End(Not run)

densv Saved computations of inferred log-likelihoods

Description

These are saved results from toy examples used in other documentation page for the package. They
give estimates by simulation of log-likelihoods of the (mu,s2) parameters of a Gaussian distribu-
tion for a given sample of size 20 with mean 4.1416238 and (bias-corrected) variance 0.9460778.
densv is based on the sample mean and sample variance as summary statistics, and densb on more
contrived summary statistics.

Usage

data("densv")
data("densb")

Format

Data frames (with additional attributes) with observations on the following 5 variables.

mu a numeric vector; mean parameter of simulated Gaussian samples
s2 a numeric vector; variance parameter of simulated Gaussian samples
sample.size a numeric vector; size of simulated Gaussian samples
logL a numeric vector; log probability density of a given statistic vector inferred from simulated

values for the given parameters
isValid a boolean vector. See infer_logLs for its meaning.

Both data frames are return objects of a call to infer_logLs, and as such they includes attributes
providing information about the parameter names and statistics names (not detailed here).
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See Also

See step (3) of the workflow in the Example on the main Infusion documentation page, showing
how densv was produced, and the Example in project showing how densb was produced.

dMixmod Internal S4 classes.

Description

The objects or methods referenced here are not to be called by the user, or are waiting for documen-
tation to be written.

dMixmod is an S4 class describing some distributions that extend the multivariate gaussian mixture
models (MGMM) by possibly involving discrete probability masses for some variables and gaussian
mixtures for other variables conditional on such discrete events. In terms of the represented prob-
ability models, and of its slots, is effectively extends the MixmodResults class from the Rmixmod
package. But it does not formally extends this class in terms of OOP programming. It should not
be considered as part of the programming interface, and may be subject to backward-incompatible
modifications without notice. In the current implementation it cannot represent general mixtures of
discrete probabilities and MGMMs, and may yield correct results only for the degenerate case of
pure MGMMs or when inference can be based on the conditional density of continuous variables
conditional on the (joint-, if relevant) discrete event observed in the data.

Usage

# dMixmod: Don't try to use it! It's for programming only.

Value

A dMixmod object has the same slots as a MixmodResults object, plus additional ones: @freq is
the frequency of the conditioning event for the gaussian mixture model. In the Infusion code, this
event is defined jointly by the “observed” summary statistics and the reference simulation table:
a probability mass for specific values v is identified from the simulated distribution of summary
statistics in the reference table, and freq is an estimate of the probability mass if the summary
statistics match v, or the converse probability if they do not match.

Note

Use str(attributes(.)) to see the slots of a dMixmod object if str(.) does not work.

Examples

# The dMixmod object can be used internally to handle repeated and boundary values
# of summary statistics. The user has to add an attribute to the observations,
# as explained in help("boundaries-attribute"):
Sobs <- c(mean=4.321, se=0.987) # hypothetical observation
attr(Sobs,"boundaries") <- c(someSummStat=-1)
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example_raw Workflow for primitive method, without projections

Description

Example of the workflow with add_simulation), implementing the method described in the origi-
nal publication (Rousset et al. 2017 <doi:10.1111/1755-0998.12627>).

Examples

## The following example illustrates the workflow.
## However, most steps run longer than accepted by the CRAN checks,
## So by default they will not run.
##
## (1) The user must provide the function for simulation of summary statistics
myrnorm <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
return(c(mean=mean(s),var=var(s)))

} # simulate means and variances of normal samples of size 'sample.size'
#
## simulated data:
set.seed(123)
Sobs <- myrnorm(mu=4,s2=1,sample.size=40) ## stands for the actual data to be analyzed
#
## (2) Generate, and simulate distributions for,
## an irregular grid of parameter values, with some replicates
if (Infusion.getOption("example_maxtime")>40) {

parsp <- init_grid(lower=c(mu=2.8,s2=0.2,sample.size=40),
upper=c(mu=5.2,s2=3,sample.size=40))

simuls <- add_simulation(NULL,Simulate="myrnorm", parsTable=parsp)

## (3) infer logL(pars,stat.obs) for each simulated 'pars'
# Relatively slow, hence saved as data 'densv'
densv <- infer_logLs(simuls,stat.obs=Sobs)

} else {
data(densv)
.Random.seed <- saved_seed

}
#
## (4) infer a log-likelihood surface and its maximum;
## plot and extract various information.
if (Infusion.getOption("example_maxtime")>11) {
slik <- infer_surface(densv)
slik <- MSL(slik) ## find the maximum of the log-likelihood surface
plot(slik)
profile(slik,c(mu=4)) ## profile summary logL for given parameter value
confint(slik,"mu") ## compute confidence interval for given parameter
plot1Dprof(slik,pars="s2",gridSteps=40) ## 1D profile

}
#
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## (5) ## refine iteratively
if (Infusion.getOption("example_maxtime")>39) {
slik <- refine(slik)

}

example_raw_proj Workflow for primitive method, with projections

Description

Example of the workflow with add_simulation), implementing the method described in the origi-
nal publication (Rousset et al. 2017 <doi:10.1111/1755-0998.12627>), modified to use projectors.

Examples

if (Infusion.getOption("example_maxtime")>117) {
## Normal(mu,sd) model, with inefficient raw summary statistics:
## To illustrate that case we transform normal random deviates rnorm(,mu,sd)
## so that the mean of transformed sample is not sufficient for mu,
## and the variance of transformed sample is not sufficient for sd.
blurred <- function(mu,s2,sample.size) {

s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))

}

set.seed(123)
dSobs <- blurred(mu=4,s2=1,sample.size=20) ## stands for the actual data to be analyzed

## Sampling design as in canonical example
parsp <- init_grid(lower=c(mu=2.8,s2=0.4,sample.size=20),

upper=c(mu=5.2,s2=2.4,sample.size=20))
# simulate distributions
dsimuls <- add_simulation(,Simulate="blurred", parsTable=parsp)

## Use projection to construct better summary statistics for each each parameter
mufit <- project("mu",stats=c("mean","var"),data=dsimuls)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls)

## apply projections on simulated statistics
corrSobs <- project(dSobs,projectors=list("MEAN"=mufit,"VAR"=s2fit))
corrSimuls <- project(dsimuls,projectors=list("MEAN"=mufit,"VAR"=s2fit))

## Analyze 'projected' data as any data (cf canonical example)
densb <- infer_logLs(corrSimuls,stat.obs=corrSobs)
} else data(densb)
#########
if (Infusion.getOption("example_maxtime")>10) {
slik <- infer_surface(densb) ## infer a log-likelihood surface
slik <- MSL(slik) ## find the maximum of the log-likelihood surface
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}
if (Infusion.getOption("example_maxtime")>500) {
slik <- refine(slik,10, update_projectors=TRUE) ## refine iteratively
}

example_reftable Workflow for method with reference table

Description

Examples of workflow with a reference table produced by add_reftable, to be preferred the prim-
itive method described in the first publication of Infusion.

Examples

if (Infusion.getOption("example_maxtime")>56) {

## Normal(mu,sd) model, with inefficient raw summary statistics:
## To illustrate that case we transform normal random deviates rnorm(,mu,sd)
## so that the mean of transformed sample is not sufficient for mu,
## and the variance of transformed sample is not sufficient for sd.
blurred <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))

}

## simulated data which stands for the actual data to be analyzed:
set.seed(123)
dSobs <- blurred(mu=4,s2=1,sample.size=40)

## Construct initial reference table:
parsp_j <- init_reftable(lower=c(mu=2.5, s2=0.25, sample.size=40),

upper=c(mu=5.2, s2=2.4, sample.size=40))
dsimuls <- add_reftable(,Simulate="blurred", parsTable=parsp_j,verbose=FALSE)

#- When no 'Simulate' function is provided,
#- but only a data.frame 'toydf' of simulations,
#- a formal reference table can be produced by
# dsimuls <- structure(toydf, LOWER=c(mu=2,s2=0,sample.size=40))
# dsimuls <- add_reftable(dsimuls)
#- where the 'LOWER' attribute tells
#- the parameters apart from the summary statistics.

## Construct projections
mufit <- project("mu",stats=c("mean","var"),data=dsimuls,verbose=FALSE)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls,verbose=FALSE)
dprojectors <- list(MEAN=mufit,VAR=s2fit)

## Apply projections on simulated statistics and 'data':
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dprojSimuls <- project(dsimuls,projectors=dprojectors,verbose=FALSE)
dprojSobs <- project(dSobs,projectors=dprojectors)

## Summary-likelihood inference:
# Infer log-likelihood surface
slik_j <- infer_SLik_joint(dprojSimuls,stat.obs=dprojSobs,verbose=TRUE)
# Find maximum, confidence intervals...
slik_j <- MSL(slik_j)

# Convenience function for plotting projections...
plot_proj(slik_j)
plot_importance(slik_j, parm="mu")

# ... and for computing likelihoods for new parameters and/or data:
summLik(slik_j, parm=slik_j$MSL$MSLE+0.1)

## refine estimates iteratively
maxrefines <- 2L
# See get_workflow_design() for a suggested number of refine() calls,
# typically more than the 2 refine calls shown in this small example.
for(it in 1:maxrefines) slik_j <-

refine(slik_j, eval_RMSEs=it==maxrefines, CIs=it==maxrefines)
##

if (Infusion.getOption("example_maxtime")>99) { # Post-fit procedures,
# all with distinct documentation:

plot(slik_j)
profile(slik_j,c(mu=4)) ## profile summary logL for given parameter value
confint(slik_j,"mu") ## compute 1D confidence interval for given parameter
plot1Dprof(slik_j,pars="s2",gridSteps=40) ## 1D profile
summary(slik_j) # or print()
logLik(slik_j)

SLRT(slik_j, h0=slik_j$MSL$MSLE+0.1, nsim = 100L) # LRT
SLRT(slik_j, h0=slik_j$MSL$MSLE[1]+0.1, nsim = 100L) # profile LRT

goftest(slik_j) # goodness of fit test

# Low-level predict() method (rarely directly used, but documented)
predict(slik_j, newdata = slik_j$MSL$MSLE) # the 'data' are here parameters!

# 'ranger' projections can take a lot of memory. One can reduce them by...
# deforest_projectors(slik_j)
# ...before...
# save(slik_j, file="slik_j")
# They will be rebuilt on the fly if needed for further iterations.

}
}

extractors Summary, print and logLik methods for Infusion results.
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Description

summary prints information about the fit. print is an alias for summary. logLik extracts the log-
likelihood (exact or approximated).

Usage

## S3 method for class 'SLik'
summary(object, ...)
## S3 method for class 'SLik'
print(x, ...)
## S3 method for class 'SLik'
logLik(object, ...)
# and identical usage for 'SLik_j' objects

Arguments

object, x An object of class SLik or SLik_j;

... further arguments passed to or from other methods (currently without any spe-
cific effect).

Value

logLik returns the inferred likelihood maximum, with attribute RMSE giving its root means square
error of estimation. summary and summary return the object invisibly. They print details of the fits
in a convenient form.

Note

See workflow example in example_reftable.

See Also

See get_from for a more general interface for extracting elements from Infusion results, and
summLik for using a fit object to evaluate the likelihood function for distinct parameter values and
even distinct data.

Examples

# See Note
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focal_refine Refine summary likelihood profile in focal parameter values

Description

This function refines an SLik_j object in a focused way defined by focal parameter values. It is
paticularly useful to check a suspect pattern in a likelihood profile. If there is a suspect dip or peak at
value <somepar>=<somevalue>, focal_refine(<SLik_j object>, focal=c(<somepar>=<somevalue>),
size=<size>) will define <size> parameter points near c(<somepar>=<somevalue>) and (subject
to these points being in the parameter bounds of the object) simulate new samples for these param-
eter points and refine the object using these new simulations.

Usage

focal_refine(object, focal, size, plotprof = TRUE, ...)

Arguments

object An object of class SLik_j.

focal Parameter value(s) (as a vector of named values)

size Target number of points to add to the reference table

plotprof Whether to replot a likelihood profile (1D or 2D depending on the dimension of
focal).

... Further arguments passed to profile.SLik_j (but not including argument return.optim)
or refine.

Value

The updated object

Examples

## Not run:
# Using the slik_j object from the toy example in help("example_reftable"):

plot1Dprof(slik_j,"s2")
slik_fix <- focal_refine(slik_j,focal=c(s2=2), size=100)
plot1Dprof(slik_fix,"s2")

# In that case the effect is not spectacular because
# there is no major problem in the starting profile.

## End(Not run)
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get_from Backward-compatible extractor from summary-likelihood objects

Description

A generic function, whose default method works for list, and with specific methods for objects
inheriting from classes SLik_j and SLik.

Usage

get_from(object, which, ...)

## S3 methods with additional argument(s)
## S3 method for class 'SLik'
get_from(object, which, raw=FALSE, force=FALSE, ...)
## S3 method for class 'SLik_j'
get_from(object, which, raw=FALSE, force=FALSE, ...)

Arguments

object Any object with a list structure.

which Character: identifier for the element to be extracted. See Examples for possible
values.

raw Boolean: if TRUE, object[[which]] is returned, without any particular check
of its value. By default, raw is FALSE and various operations may be performed
on the extracted value (see “example” below), including optional recomputation
if force is TRUE.

force Boolean: if TRUE, the extracted element may be computed if it appears to be
missing from the object. This is notably so for which="RMSEs" or which="par_RMSEs";
in these cases, the results of the computation are further saved in the original ob-
ject.

... further arguments passed to or from other methods (currently not used).

Value

Will depend on which, but aims to retain a convenient format backward-compatible with version
1.4.0.

See Also

logLik.
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Examples

# ##### 0bserved summary statistics
# # (raw data)
# get_from(slik, "raw_data")
# # (projected data, with raw ones as attribute, if relevant)
# get_from(slik, which="obs") # or which="stat.obs" or "proj_data"
#
# ##### Reference-table information
# # (raw = unprojected):
# get_from(slik, "reftable_raw")
# # : but this is NULL if no projections were performed.
#
# # Projected:
# get_from(slik, "reftable")
# # : including all parameters, latent variables, statistics,
# # 'cumul_iter' (the iteration in which each sample was added),
# # and attributes.
#
# ##### RMSEs
# # On any summary-likelihood object 'slik':
# get_from(slik, which="par_RMSEs") # matrix
# # despite <object>$par_RMSEs being an environment if
# # 'slik' was created by version > 1.4.0, as then shown by
# get_from(slik, which="par_RMSEs", raw=TRUE)
#
# # Further, if
# get_from(slik, which="par_RMSEs")
# # returns NULL because the element is absent from the object,
# # then one can force its computation by
# get_from(slik, which="par_RMSEs", force=TRUE)
# # The result are saved in the 'slik' object, so running again
# get_from(slik, which="par_RMSEs")
# # will no longer return NULL.
#
# ##### Other, less commonly needed elements
# get_from(slik, "Simulate"")
# get_from(slik, "control.Simulate")
# get_from(slik, "env")
# get_from(slik, "packages")
# # => for these elements, the documentation and arguments of refine.default()
# # provides meaning and context where they may be used.
#
# Number of elements of the multivariate gaussian mixture model:
# get_from(slik, "nbCluster")

get_LRboot Summary likelihood ratio tests
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Description

SLRT computes likelihood ratio tests based on the summary-likelihood surface and optionally on a
fast bootstrap approximation implemented in get_LRboot (the latter function can be called directly
but is rather typically called directly through SLRT). When bootstrapping is used, several correction
of the basic likelihood ratio test may be reported, some more speculative than others, and bootstrap
confidence intervals may be returned too.

get_LRboot provides a fast approximation to bootstrap distribution of likelihood ratio statistic (and
optionally, of parameter estimates). The bootstrap distribution of the likelihood ratio (LR) statistic
may be used to correct the tests based on its asymptotic chi-square distribution. However, the
standard bootstrap involves resimulating the data-generating process, given the ML estimates on
the original data. This function implements a fast approximation avoiding such simulation, instead
drawing from the inferred distribution of (projected, if relevant) summary statistics, again given the
maximum (summary-)likelihood estimates.

Usage

SLRT(object, h0, nsim=0L, BGP=NULL, type="perc",
level=0.95, nsteps=10L, variants=NULL, ...)

get_LRboot(object, h0_pars = NULL, nsim = 100L, reset = TRUE,
BGP=object$MSL$MSLE, which="ecdf_2lr",
bootCI.args=list(type="perc", conf = 0.95), ...)

Arguments

object an SLik_j object.

h0 Numeric named vector of tested parameter values.

nsteps Integer. Any value > 1 calls a profiling procedure (see Details).

h0_pars either NULL (the default), to approximate the distribution of the LR statistic for
the full vector of estimated parameters; or a vector of names of a subset of this
vector, to approximate the distribution of the profile LR statistic for this subset.

nsim Integer: number of bootstrap replicates. Values lower than the default are not
recommended. Note that this will be ignored if the distribution has previously
been simulated and reset=FALSE.

reset Boolean: Whether to use any previously computed distribution (see Details) or
not.

BGP Named numeric vector of “Bootstrap-Generating Parameters”. Ideally the dis-
tribution of the LR test statistic would be pivotal and thus the parameter values
under which this distribution is simulated would not matter. In practice, simulat-
ing by default its distribution under the “best” available information (the MSLE
for get_LRboot, or the specifically tested hypothesis defined by the h0 argu-
ment of SLRT) may be more accurate than under alternative parametric values.
For h0 being an incomplete parameter vector and BGP is NULL (the default),
SLRT will simulate under a completed parameter vector using estimates of other
parameters maximizing the likelihood profile for h0.

which NULL or character string: controls the return value. If NULL, the function
returns a list; otherwise, this specifies which element of the list to return.
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type, level vector of character strings: passed to boot.ci as arguments type and conf.

bootCI.args list of arguments passed to boot.ci. Should not include the boot.out argu-
ment.

... For SLRT: further arguments passed to get_LRboot. For get_LRboot: further ar-
guments controlling parallelization, including nb_cores. However, paralleliza-
tion may be best ignored in most cases (see Details).

variants For development purposes, not documented.

Details

The computation of the likelihood ratio in high-dimensional models is easily confounded by max-
imization issues. Computation of a likelihood profile for a tested parameter between its summary-
ML estimate and the tested value may be useful to reduce these issues. The number of steps of the
profile is controlled by the nsteps value.

Bootstraps:

The result of calling get_LRboot (either directly or through SLRT) with given h0_pars is stored in
the object (until the next refine), and this saved result is returned by a next call to get_LRboot
with the same h0_pars if reset=FALSE. The default is however to recompute the distribution
(reset=TRUE).

Parallelization is possible but maybe not useful because computations for each bootstrap replicate
are fast relative to parallelization overhead. It will be called when the . . . arguments include an
nb_cores>1. The . . . may include further arguments passed to dopar, but among the dopar argu-
ments, iseed will be ignored, and fit_env should not be used.

A raw bootstrap p-value can be computed from the simulated distribution as (1+sum(t >= t0))/(N+1)
where t0 is the original likelihood ratio, t the vector of bootstrap replicates and N its length. See
Davison & Hinkley (1997, p. 141) for discussion of the adjustments in this formula. However, a
sometimes more economical use of the bootstrap is to provide a Bartlett correction for the likeli-
hood ratio test in small samples. According to this correction, the mean value m of the likelihood
ratio statistic under the null hypothesis is computed (here estimated by simulation) and the original
LR statistic is multiplied by n/m where n is the number of degrees of freedom of the test. Unfortu-
nately, the underlying assumption that the corrected LR statistic follows the chi-square distribution
does not always work well.

Value

get_LRboot with default which argument returns a numeric vector representing the simulated dis-
tribution of the LR statistic, i.e. twice the log-likelihood difference, as directly used in pchisq() to
get the p-value.

SLRT returns a list with the following element(s), each being a one-row data frame:

basicLRT A data frame including values of the likelihood ratio chi2 statistic, its degrees of
freedom, and the p-value. The chi2 statistic may bear as an attribute a solution
vector value copied from the log-likelihood profile return value for the tested
h0.

and, if a bootstrap was performed:
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BartBootLRT A data frame including values of the Bartlett-corrected likelihood ratio chi2
statistic, its degrees of freedom, and its p-value;

rawBootLRT A data frame including values of the likelihood ratio chi2 statistic, its degrees of
freedom, and the raw bootstrap p-value;

bootCI (present if h0 specified a single parameter and nsim>2) The result of boot::boot.ci,
with slightly edited call element for conciseness.

References

Bartlett, M. S. (1937) Properties of sufficiency and statistical tests. Proceedings of the Royal Society
(London) A 160: 268-282.

Davison A.C., Hinkley D.V. (1997) Bootstrap methods and their applications. Cambridge Univ.
Press, Cambridge, UK.

Examples

## See help("example_reftable") for SLRT() examples;
## continuing from there, after refine() steps for good results:
# set.seed(123);mean(get_LRboot(slik_j, nsim=500, reset=TRUE)) # close to df=2
# mean(get_LRboot(slik_j, h0_pars = "s2", nsim=500, reset=TRUE)) # close to df=1

## Not run:
### *Old* simulation study of performance of the corrected LRTs:

## Same toy example as in help("example_reftable"):
blurred <- function(mu,s2,sample.size) {

s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))

}

## First build a largish reference table and projections to be used in all replicates
# Only the 600 first rows will be used as initial reference table for each "data"
#
set.seed(123)
#
parsp_j <- data.frame(mu=runif(6000L,min=2.8,max=5.2),

s2=runif(6000L,min=0.4,max=2.4),sample.size=40)
dsimuls <- add_reftable(,Simulate="blurred", parsTable=parsp_j,verbose=FALSE)
#
mufit <- project("mu",stats=c("mean","var"),data=dsimuls,verbose=TRUE)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls,verbose=TRUE)
dprojectors <- list(MEAN=mufit,VAR=s2fit)
dprojSimuls <- project(dsimuls,projectors=dprojectors,verbose=FALSE)

## Function for single-data analysis:
#
foo <- function(y, refine_maxit=0L, verbose=FALSE) {

dSobs <- blurred(mu=4,s2=1,sample.size=40)
## ----Inference workflow-----------------------------------------------
dprojSobs <- project(dSobs,projectors=dprojectors)
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dslik <- infer_SLik_joint(dprojSimuls[1:600,],stat.obs=dprojSobs,verbose=FALSE)
dslik <- MSL(dslik, verbose=verbose, eval_RMSEs=FALSE)
if (refine_maxit) dslik <- refine(dslik, maxit=refine_maxit)
## ---- LRT-----------------------------------------------
lrt <- SLRT(dslik, h0=c(s2=1), nsim=200)
c(basic=lrt$basicLRT$p_value,raw=lrt$rawBootLRT$p_value,

bart=lrt$BartBootLRT$p_value,safe=lrt$safeBartBootLRT$p_value)
}

## Simulations using convenient parallelization interface:
#
# library(doSNOW) # optional
#
bootreps <- spaMM::dopar(matrix(1,ncol=200,nrow=1), # 200 replicates of foo()
fn=foo, fit_env=list(blurred=blurred, dprojectors=dprojectors, dprojSimuls=dprojSimuls),
control=list(.errorhandling = "pass", .packages = "Infusion"),
refine_maxit=5L,
nb_cores=parallel::detectCores()-1L, iseed=123)

#
plot(ecdf(bootreps["basic",]))
abline(0,1)
plot(ecdf(bootreps["bart",]), add=TRUE, col="blue")
plot(ecdf(bootreps["safe",]), add=TRUE, col="red")
plot(ecdf(bootreps["raw",]), add=TRUE, col="green")
#
# Note that refine() iterations are important for good performance.
# Without them, even a larger reftable of 60000 lines
# may exhibit poor results for some of the CI types.

## End(Not run)

get_nbCluster_range Control of number of components in Gaussian mixture modelling

Description

These functions implement the default values for the number of components tried in Gaussian mix-
ture modelling (matching the nbCluster argument of Rmixmod::mixmodCluster()). get_nbCluster_range
allows the user to reproduce the internal rules used by Infusion to determine this argument. seq_nbCluster
is a wrapper to the function defined by the seq_nbCluster global option of the package. Its default
result is a sequence of integers determined by the number of rows of the data (see Infusion.options).
get_nbCluster_range() further checks the feasibility of the values generated by seq_nbCluster()),
using additional criteria involving the number of columns of the data to determine the maximum fea-
sible number of clusters. This maximum is controlled by the function defined by the maxnbCluster
global option of the package.

refine_nbCluster controls the default number of clusters of refine: it gets the range from
seq_nbCluster and keeps only the maximum value of this range if this maximum is higher than
the onlymax argument.
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Adventurous users can change the rules used by Infusion by changing the global options seq_nbCluster
and maxnbCluster (while conforming to the interfaces of these functions). Less ambitiously, they
can for example use the maximum value of the result of get_nbCluster_range() as a single rea-
sonable value for the nbCluster argument of infer_SLik_joint.

Usage

seq_nbCluster(nr)
refine_nbCluster(nr, onlymax=7)
get_nbCluster_range(projdata, nr = nrow(projdata), nc = ncol(projdata),

nbCluster = seq_nbCluster(nr), verbose=TRUE)

Arguments

projdata data frame: the data to be clustered, which typically include parameters and
projected summary statistics;

nr integer: number of rows of the data to be clustered;

onlymax integer: see Description;

nc integer: number of columns of the data to be clustered, typically twice the num-
ber of estimated parameters;

nbCluster integer or vector of integers: candidate values, which feasability is checked by
the function.

verbose boolean. Whether to print some information, or not.

Value

An integer vector

Examples

# Determination of number of clusters when attempting to estimate
# 20 parameters from a reference table with 30000 rows:
seq_nbCluster(nr=30000L)
get_nbCluster_range(nr=30000L, nc=40L) # nc = *twice* the number of parameters

get_workflow_design Workflow design

Description

get_workflow_design provides default control values for the simulation plan, ideally chosen for
good performance. The default design is ilustrated in the examples.
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Usage

get_workflow_design(npar, n_proj_stats=npar, n_latent=0L,
final_reft_size=NULL,
refine_blocksize=NULL, subblock_nbr=NULL,
version=packageVersion("Infusion"),
cumn_over_maxit = NULL,
test_fac=NULL)

Arguments

npar Number of fitted parameters of the statistical model.

n_proj_stats number of projected summary statistics.

n_latent Number of latent variables to be predicted.

npar, n_proj_stats and n_latent are here distinguished for clarity, but only their sum is currently
used to define the sampling design.

final_reft_size

NULL, or integer specifying a non-default value of the final reference table size.
refine_blocksize

NULL, or integer specifying a non-default value of the number of points added
per refine() call (except perhaps the first refine call in a workflow).

subblock_nbr NULL, or integer specifying a non-default value of the target number of itera-
tions per refine() call (actual number of iterations may differ).

version A version number for Infusion. This is intended to allow reproducibility of
results of some past versions, as return values have changed over versions.

cumn_over_maxit

logical; Whether to stop iteration when the target cumulative number of points
is added to the reference table, or when the target number of iterations is first
reached.

test_fac optional numeric value; for testing a workflow, it may be useful to run it with
smaller reference table sizes. test_fac specifies a reduction factor for these
sizes, relative to the default design.

Value

get_workflow_design returns a list of control values, with elements final_reft_size, init_reft_size,
refine_blocksize, reftable_sizes, and subblock_nbr, which can be used as shown in the Ex-
amples; as well as cumn_over_maxit, first_refine_ntot, and possibly other elements.

Examples

## This shows how the get_workflow_design() may be used,
## but in most cases one does not need to manipulate it.

## Not run:
blurred <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
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s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))

}

## Simulated data:
set.seed(123)
dSobs <- blurred(mu=4,s2=1,sample.size=40)

workflow_design <- get_workflow_design(npar=2L)

## Construct initial reference table:

# Sample its parameters:
if (IMPLICIT <- TRUE) { # use implicit control by get_workflow_design()

parsp_j <- init_reftable(lower=c(mu=2.5,s2=0.25,sample.size=40),
upper=c(mu=5.2,s2=2.4,sample.size=40))

# => get_workflow_design() has been called internally with default values
# to provide the dimension of the initial reference table.
# The following syntax provides a more explicit control:

} else {
parsp_j <- init_reftable(lower=c(mu=2.5,s2=0.25,sample.size=40),

upper=c(mu=5.2,s2=2.4,sample.size=4,
nUnique=workflow_design$init_reft_size))

}
# and yet another way to the same result could be
#
# parsp_j <- data.frame(mu=runif(init_reft_size,min=2.5,max=5.2),
# s2=runif(init_reft_size,min=0.25,max=2.4),
# sample.size=40)

# Generate the initial simulations:
dsimuls <- add_reftable(, Simulate="blurred", parsTable=parsp_j, verbose=FALSE)

## Construct projections
mufit <- project("mu",stats=c("mean","var"),data=dsimuls,verbose=FALSE)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls,verbose=FALSE)
dprojectors <- list(MEAN=mufit,VAR=s2fit)

## Apply projections on simulated statistics and 'data':
dprojSimuls <- project(dsimuls,projectors=dprojectors,verbose=FALSE)
dprojSobs <- project(dSobs,projectors=dprojectors)

## Summary-likelihood inference:
# Initial Inference of log-likelihood surface
slik_j <- infer_SLik_joint(dprojSimuls, stat.obs=dprojSobs, verbose=TRUE)
# Find maximum, confidence intervals...
slik_j <- MSL(slik_j, eval_RMSEs=FALSE, CIs=FALSE)

## Refinements over iterations
# Here, with only two estimated parameters, workflow_design$final_reft_size
# suggests a final reference table of 5000 simulations, attained through
# 6 refine() calls with intermediate sizes given by
(workflow_design$reftable_sizes)
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# here 500, 1000, 2000, 3000, 4000, 5000.
#
if (IMPLICIT) { # Again using implicit control by get_workflow_design()

# Essentially, it suffices to call
for (it in seq(6)) slik_j <-

refine(slik_j, eval_RMSEs= it==6L, CIs= it==6L)
# to run the default workflow. Again, the following syntax,
# showing how successive table sizes are controlled internally,
# provides a more explicit control:

} else {
reftable_sizes <- workflow_design$reftable_sizes
init_reft_size <- workflow_design$init_reft_size
refine_sizes <- diff(c(init_reft_size, reftable_sizes))
maxit <- workflow_design$subblock_nbr
for(it in seq_len(length(refine_sizes)-1L)) {

add_it <- refine_sizes[it]
slik_j <- refine(slik_j, ntot=add_it, maxit=maxit,

eval_RMSEs=FALSE, CIs=FALSE)
}
add_it <- tail(refine_sizes,1L)
slik_j <- refine(slik_j, ntot=add_it, maxit=maxit,

CIs=add_it, eval_RMSEs=add_it)
}

## End(Not run)

goftest Assessing goodness of fit of inference using simulation

Description

A goodness-of-fit test is performed in the case projected statistics have been used for inference.
Otherwise some plots of limited interest are produced.

summary and print methods for results of goftest call str to display the structure of this result.

Usage

goftest(object, nsim = 99L, method = "", stats=NULL, plot. = TRUE, nb_cores = NULL,
Simulate = get_from(object,"Simulate"),
control.Simulate=get_from(object,"control.Simulate"),
packages = get_from(object,"packages"),
env = get_from(object,"env"), verbose = interactive(),
cl_seed=.update_seed(object), get_gof_stats=.get_gof_stats)

Arguments

object an SLik or SLik_j object.

nsim Number of draws of summary statistics.
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method For development purposes, not documented.
stats Character vector, or NULL: the set of summary statistics to be used to construct

the test. If NULL, the union, across all projections, of the raw summary statistics
used for projections is potentially used for goodness of fit; however, if this set is
too large for gaussian mixture modelling, a subset of variable may be selected.
How they are selected is not yet fully settled (see Details).

plot. Control diagnostic plots. plot. can be of logical, character or numeric type. If
plot. is FALSE, no plot is produced. If plot. is TRUE (the default), a data frame
of up to 8 goodness-of-fit statistics (the statistics denoted u in Details) is plotted.
If more than eight raw summary statistics (denoted s in Details) were used, then
only the first eight u are retained (see Details for the ordering of the us here). If
plot. is a numeric vector, then u[plot.] are retained (possibly more than 8
statistics, as in the next case). If plot. is a character vector, then it is used to
match the names of the u statistics (not of s) to be retained in the plot; the names
of u are built from names of s by wrapping the latter within "Res(".")" (see
axes labels of default plots for examples of valid names).

nb_cores, Simulate, packages, env, verbose
See same-named add_simulation arguments.

control.Simulate

A list of arguments of the Simulate function (seeadd_simulation). The de-
fault value should generally be used, unless e.g. it contains the path of an exe-
cutable on one machine and a different path must be specified on another ma-
chine.

cl_seed NULL or integer (see refine for Details).
get_gof_stats function for selecting raw statistics (see Details).

Details

Testing goodness-of-fit: The test is somewhat heuristic but appears to give reasonable results (the
Example shows how this can be verified). It assumes that all summary statistics are reduced to
projections predicting all model parameters. It is then conceived as if any projection p predicting
a parameter were a sufficient statistic for this parameter, given the information contained in the
summary statistics s (this is certainly the ideal objective of machine-learning regression methods).
Then a statistic u independent (under the fitted model) from all projections should be a suitable
statistic for testing goodness of fit: if the model is correctly specified, the quantile of observed u, in
the distribution of u under the fitted model, should be uniformly distributed over repeated sampling
under the data-generating process. The procedure constructs statistics uncorrelated to all p (over
repeated sampling under the fitted model) and proceeds as if they were independent from p (rather
than simply uncorrelated). A number (depending on the size of the reference table) of statistics u
uncorrelated to p are then defined. Each such statistic is obtained as the residual of the regression
of a given raw summary statistic to all projections, where the regression input is a simulation table
of nsim replicates of s under the fitted model, and of their projections p (using the “projectors”
constructed from the full reference table). The latter regression involves one more, small-nsim,
approximation (as it is the sample correlation that is zeroed) but using the residuals is crucially
better than using the original summary statistics (as some ABC software may do). An additional
feature of the procedure is to construct a single test statistic t from joint residuals u, by estimating
their joint distribution (using Gaussian mixture modelling) and letting t be the density of u in this
distribution.
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Selection of raw summary statistics: See the code of the Infusion:::..get_gof_stats function
for the method used. It requires that ranger has been used to produce the projectors, and that
the latter include variable importance statistics (by default, Infusion calls ranger with argument
importance="permutation"). .get_gof_stats then selects the raw summary statistics with least
importance over projections (this may not be optimal, and in particular appears redundant with the
procedure described below to construct goodness-of-fit statistics from raw summary statistics; so
this might change in a later version), and returns a vector of names of raw statistics, sorted by
increasing least-importance. The number of summary statistics can be controlled by the global
package option gof_nstats_fn, a function with arguments nr and nstats for, respectively, the
number of simulations of the processus (as controlled by goftest(.,nsim)) and the total number
of raw summary statistics used in the projections.

The diagnostic plot will show a data frame of residuals u of the summary statistics identified as
the first elements of the vector returned by Infusion:::..get_gof_stats, i.e. again a set of raw
statistics with least-importance over projectors.

Value

An object of class goftest, which is alist with element(s)

pval The p-value of the test (NULL if the test is not feasible).

plotframe The data frame which is (by default) plotted by the function. Its last line con-
tains the residuals u for the analyzed data, and other lines contain the bootstrap
replicates.

Examples

### See end of example("example_reftable") for minimal example.

## Not run:
### Performance of GoF test over replicate draws from data-generating process

# First, run
example("example_reftable")
# (at least up to the final 'slik_j' object), then

# as a shortcut, the same projections will be used in all replicates:
dprojectors <- slik_j$projectors

set.seed(123)
gof_draws <- replicate(200, {

cat(" ")
dSobs <- blurred(mu=4,s2=1,sample.size=40)
## ----Inference workflow-----------------------------------------------
dprojSobs <- project(dSobs,projectors=dprojectors)
dslik <- infer_SLik_joint(dprojSimuls,stat.obs=dprojSobs,verbose=FALSE)
dslik <- MSL(dslik, verbose=FALSE, eval_RMSEs=FALSE)
## ----GoF test-----------------------------------------------
gof <- goftest(dslik,nb_cores = 1L, plot.=FALSE,verbose=FALSE)
cat(unlist(gof))
gof

})
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# ~ uniform distribution under correctly-specified model:
plot(ecdf(unlist(gof_draws)))

## End(Not run)

handling_NAs Discrete probability masses and NA/NaN/Inf in distributions of sum-
mary statistics.

Description

This section was written for the primitive workflow and may be largely irrelevant for the up-to-date
one. It explains the use of the boundaries attribute of observed statistics to handle (1) values of
the summary statistics that can occur with some probability mass; (2) special values (NA/NaN/Inf)
in distributions of summary statistics. This further explains why Infusion handles special values
by removing affected distributions unless the boundaries attribute is used.

Details

Special values may be encountered in an analysis. For example, trying to estimate a regression co-
efficient when the predictor variable is constant may return a NaN. Since functions such as refine
automatically add simulated distributions, this problem must be automatically handled by the user’s
simulation function or by the package functions, rather than by user’s tinkering with the Infusion
procedures.

The user must consider what s-he would do if actual data also included NA/NaN/Inf values. If
such data would not be subject to a statistical analysis, then the simulation procedure must reflect
that, otherwise the analysis will be biased. The processing of reference tables by Infusion functions
applies na.omit() on the tables so any line containing NA’s will be removed. The drawbacks
are that the number of informative simulations is reduced and that inference will be difficult if the
data-generating parameters were indeed prone to induce data that would not be subject to statistical
analysis. Thus, it may be necessary to simulate alternative data until no special values are obtained
and the target size of the simulated distribution is reached. One solution is for the user to write a
simulation function that calls itself recursively until a valid summary statistic is produced. Care is
then needed to avoid infinite recursion (which might well indicate unlikely parameter values).

Alternatively, if one considers that special values are informative about parameters (in the above
example of a regression coefficient, if a constant predictor variable says something about the pa-
rameters), then NA/NaN/Inf must be replaced by a (fixed) dummy numerical value which is flagged
to be distinctly handled, using the boundaries attribute of the observed summary statistics. The
simulation function should return statistic foo=-1 (say) instead of foo=NaN, and one should then
set attr(<observed>,"boundaries") <- c(foo=-1).

The boundary attribute is also useful to handle all values of the summary statistics that can occur
with some probability mass. For example if the estimate est_p of a probability takes values 0 or 1
with positive probability, one should set attr(<observed>,"boundaries") <- c(p_est=0,p_est=1).
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infer_logLs Infer log Likelihoods using simulated distributions of summary statis-
tics

Description

The functions described here are either experimental or relevant only for the primitive workflow.

For each simulated distribution of summary statistics, infer_logLs infers a probability density
function, and the density of the observed values of the summary statistics is deduced. By default,
inference of each density is performed by infer_logL_by_Rmixmod, which fits a distribution of
summary statistics using procedures from the Rmixmod package.

Usage

infer_logLs(object, stat.obs,
logLname = Infusion.getOption("logLname"),
verbose = list(most=interactive(),

final=FALSE),
method = Infusion.getOption("mixturing"),
nb_cores = NULL, packages = NULL, cluster_args,
...)

infer_tailp(object, refDensity, stat.obs,
tailNames=Infusion.getOption("tailNames"),
verbose=interactive(), method=NULL, cluster_args, ...)

infer_logL_by_GLMM(EDF,stat.obs,logLname,verbose)
infer_logL_by_Rmixmod(EDF,stat.obs,logLname,verbose)
infer_logL_by_mclust(EDF,stat.obs,logLname,verbose)
infer_logL_by_Hlscv.diag(EDF,stat.obs,logLname,verbose)

Arguments

object A list of simulated distributions (the return object of add_simulation)

EDF An empirical distribution, with a required par attribute (an element of the object
list).

stat.obs Named numeric vector of observed values of summary statistics.

logLname The name to be given to the log Likelihood in the return object, or the root of
the latter name in case of conflict with other names in this object.

tailNames Names of “positives” and “negatives” in the binomial response for the inference
of tail probabilities.

refDensity An object representing a reference density (such as an spaMM fit object or
other objects with a similar predict method) which, together with the density
inferred from each empirical density, defines a likelihood ratio used to define a
rejection region.
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verbose A list as shown by the default, or simply a vector of booleans, indicating re-
spectively whether to display (1) some information about progress; (2) a final
summary of the results after all elements of simuls have been processed. If a
count of ’outlier’(s) is reported, this typically means that stat.obs is not within
the envelope of a simulated distribution (or whatever other meaning the user
attaches to an FALSE isValid code: see Details)

method A function for density estimation. See Description for the default behaviour and
Details for the constraints on input and output of the function.

nb_cores Number of cores for parallel computation. The default is Infusion.getOption("nb_cores"),
and 1 if the latter is NULL. nb_cores=1 which prevents the use of parallelisation
procedures.

cluster_args A list of arguments, passed to makeCluster. May contain a non-null spec ele-
ment, in which case the distinct nb_cores argument is ignored.

packages For parallel evaluation: Names of additional libraries to be loaded on the cores,
necessary for evaluation of a user-defined ’method’.

... further arguments passed to or from other methods (currently not used).

Details

By default, density estimation is based on Rmixmod methods. Other available methods are not rou-
tinely used and not all of Infusion features may work with them. The function Rmixmod::mixmodCluster
is called, with arguments nbCluster=seq_nbCluster(nr=nrow(data)) and mixmodGaussianModel=Infusion.getOption("mixmodGaussianModel").
If Infusion.getOption("seq_nbCluster") specifies a sequence of values, then several cluster-
ings are computed and AIC is used to select among them.

infer_logL_by_GLMM, infer_logL_by_Rmixmod, infer_logL_by_mclust, and infer_logL_by_Hlscv.diag
are examples of the method that may be provided for density estimation. Other methods may be
provided with the same arguments. Their return value must include the element logL, an estimate
of the log-density of stat.obs, and the element isValid with values FALSE/TRUE (or 0/1). The
standard format for the return value is unlist(c(attr(EDF,"par"),logL,isValid=isValid)).

isValid is primarily intended to indicate whether the log likelihood of stat.obs inferred by a given
density estimation method was suitable input for inference of the likelihood surface. isValid has
two effects: to distinguish points for which isValid is FALSE in the plot produced by plot.SLik;
and more critically, to control the sampling of new parameter points within refine so that points
for which isValid is FALSE are less likely to be sampled.

Invalid values may for example indicate a likelihood estimated as zero (since log(0) is not suitable
input), or (for density estimation methods which may infer erroneously large values when extrap-
olating), whether stat.obs is within the convex hull of the EDF. In user-defined methods, invalid
inferred logL should be replaced by some alternative low estimate, as all methods included in the
package do.

The source code of infer_logL_by_Hlscv.diag illustrates how to test whether stat.obs is within
the convex hull of the EDF, using functions resetCHull and isPointInCHull (exported from the
blackbox package).

infer_logL_by_Rmixmod calls Rmixmod::mixmodCluster infer_logL_by_mclust calls mclust::densityMclust,
infer_logL_by_Hlscv.diag calls ks::kde, and infer_logL_by_GLMM fits a binned distribution
of summary statistics using a Poisson GLMM with autocorrelated random effects, where the bin-
ning is based on a tesselation of a volume containing the whole simulated distribution. Limited
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experiments so far suggest that the mixture models methods are fast and appropriate (Rmixmod,
being a bit faster, is the default method); that the kernel smoothing method is more erratic and
moreover requires additional input from the user, hence is not really applicable, for distributions in
dimension d= 4 or above; and that the GLMM method is a very good density estimator for d=2 but
will challenge one’s patience for d=3 and further challenge the computer’s memory for d=4.

Value

For infer_logLs, a data frame containing parameter values and their log likelihoods, and additional
information such as attributes providing information about the parameter names and statistics names
(not detailed here). These attributes are essential for further inferences.

See Details for the required value of the methods called by infer_logLs.

See Also

See step (3) of the workflow in the Example on the main Infusion documentation page.

infer_SLik_joint Infer a (summary) likelihood surface from a simulation table

Description

This infers the likelihood surface from a simulation table where each simulated data set is drawn for
a distinct (vector-valued) parameter, as is usual for reference tables in other forms of simulation-
based inference such as Approximate Bayesian Computation. A parameter density is inferred, as
well as a joint density of parameters and summary statistics, and the likelihood surface is inferred
from these two densities.

Usage

infer_SLik_joint(data, stat.obs, logLname = Infusion.getOption("logLname"),
Simulate = attr(data, "Simulate"),
nbCluster= seq_nbCluster(nr=nrow(data)),
using = Infusion.getOption("mixturing"),
verbose = list(most=interactive(),pedantic=FALSE,final=FALSE),
marginalize = TRUE,
constr_crits=NULL,
projectors=NULL,
is_trainset)

Arguments

data A data frame, whose each row contains a vector of parameters and one real-
ization of the summary statistics for these parameters. Typically this holds the
projected reference table (but see projectors argument for an experimental
alternative).
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stat.obs Named numeric vector of observed values of summary statistics. Typically this
holds the projected values (but see projectors argument for an experimental
alternative).

logLname The name to be given to the log Likelihood in the return object, or the root of
the latter name in case of conflict with other names in this object.

Simulate Either NULL or the name of the simulation function if it can be called from the
R session (see add_reftable for more information on this function).

nbCluster controls the nbCluster argument of Rmixmod::mixmodCluster ; a vector of in-
tegers, or "max" which is interpreted as the maximum of the default nbCluster
value.

using Either "Rmixmod" or "mclust" to select the clustering methods used.

marginalize Boolean; whether to derive the clustering of fitted parameters by marginalization
of the joint clustering; if not, a distinct call to a clustering function is performed.
It is strongly advised not to change the default. This argument might be depre-
cated in future versions.

constr_crits NULL, or quoted expression specifying a constraints on parameters, beyond the
ones defined by the ranges over each parameter: see constr_crits for details.
This will control the parameter space both for maximization of the summary-
likelihood, and for generation of new parameter points when refine() is called
on the return object. See Examples section for a nice artificial toy example.

verbose A list as shown by the default, or simply a vector of booleans, indicating re-
spectively whether to display (1) some information about progress; (2) more
information whose importance is not clear to me; (3) a final summary of the
results after all elements of simuls have been processed.

projectors if not NULL, this argument may be passed to project in the case the data or
stat.obs do not yet contain the projected statistics. This experimental feature
aims to remove the two user-level calls to project in the inference workflow.

is_trainset Passed to project in the case the projectors argument is used.

Value

An object of class SLik_j, which is a list including an Rmixmod::mixmodCluster object (or equiv-
alent objects produced by non-default methods), and additional members not documented here. If
projection was used, the list includes a data.frame reftable_raw of cumulated unprojected simu-
lations.

Examples

if (Infusion.getOption("example_maxtime")>50) {
myrnorm <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
return(c(mean=mean(s),var=var(s)))

} # simulate means and variances of normal samples of size 'sample.size'
set.seed(123)
# simulated data with stands for the actual data to be analyzed:
ssize <- 40
Sobs <- myrnorm(mu=4,s2=1,sample.size=ssize)
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# Uniform sampling in parameter space:
npoints <- 600
parsp <- data.frame(mu=runif(npoints,min=2.8,max=5.2),

s2=runif(npoints,min=0.4,max=2.4),sample.size=ssize)
# Build simulation table:
simuls <- add_reftable(Simulate="myrnorm", parsTable=parsp)
# Infer surface:
densv <- infer_SLik_joint(simuls,stat.obs=Sobs)
# Usual workflow using inferred surface:
slik_j <- MSL(densv) ## find the maximum of the log-likelihood surface
slik_j <- refine(slik_j,maxit=5)
plot(slik_j)
# etc:
profile(slik_j,c(mu=4)) ## profile summary logL for given parameter value
confint(slik_j,"mu") ## compute 1D confidence interval for given parameter
plot1Dprof(slik_j,pars="s2",gridSteps=40) ## 1D profile

# With constraints:
heart <- quote({ x <- 3*(mu-4.25); y <- 3*(s2-0.75); x^2+(y-(x^2)^(1/3))^2-1})
c_densv <- infer_SLik_joint(simuls,stat.obs=Sobs, constr_crits = heart)
c_slik_j <- MSL(c_densv, CIs=FALSE)
refine(c_slik_j, target_LR=10, ntot=3000)

}

infer_surface Infer a (summary) likelihood or tail probability surface from inferred
likelihoods

Description

These functions are either for the primitive workflow or experimental. For standard use of Infusion
see instead the functions used in the up-to-date workflow (example_reftable)

The logLs method uses a standard smoothing method (prediction under linear mixed models, a.k.a.
Kriging) to infer a likelihood surface, using as input likelihood values themselves inferred with
some error for different parameter values. The tailp method use a similar approach for smooth-
ing binomial response data, using the algorithms implemented in the spaMM package for fitting
GLMMs with autocorrelated random effects.

Usage

## S3 method for class 'logLs'
infer_surface(object, method="REML",verbose=interactive(),allFix=NULL,...)
## S3 method for class 'tailp'
infer_surface(object, method="PQL",verbose=interactive(),allFix,...)
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Arguments

object A data frame with attributes, containing independent prediction of logL or of LR
tail probabilities for different parameter points, as produced by infer_logLs or
infer_tailp.

method methods used to estimate the smoothing parameters. If method="GCV", a gener-
alized cross-validation procedure is used (for logLs method only). Other meth-
ods are as described in the HLfit documentation.

verbose Whether to display some information about progress or not.

allFix Fixed values in the estimation of smoothing parameters. For development pur-
poses, not for routine use. For infer_surface.logLs, this should typically
include values of all parameters fitted by fitme (ρ, ν, ϕ, λ, and $etaFix=β).

... further arguments passed to or from other methods (currently not used).

Value

An object of class SLik or SLikp, which is a list including the fit object returned by fitme, and
additional members not documented here.

Examples

## see main documentation page for the package

Infusion Inference using simulation

Description

Implements a collection of methods to perform inferences based on simulation of realizations of the
model considered. In particular it implements “summary likelihood”, an approach that effectively
evaluates and uses the likelihood of simulated summary statistics.

The procedures for the “primitive” workflow, implemented in the first published version of the
package, are being maintained for back compatibility, but users are urged to use the distinct, up-to-
date workflow (see Examples). The package is expected to perform best when used in combination
with Rmixmod for multivariate Gaussian mixture modeling, although the mclust package can also
be used (with less control and perhaps decreased performance). The inference workflow typically
(but not necessarily) includes dimension-reduction steps (“projections”) for summary statistics, and
has been more finely tuned for projections performed using the ranger package (though Infusion
should handle other methods).

The up-to-date workflow builds and updates an object of class "SLik_j" which is designed to
carry all the information required for pursuing the inference. Thus, successive inference steps (in
particular, successive calls to the key refine function) can be carried on different computers, with
the caveats noted below, by transferring the object between computers.

The "SLik_j" object includes in particular the reference table, information about all projections
(this can be memory-expensive, so it has been made possible to remove non-essential information,
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specifically for ranger results, using deforest_projectors: this information will be regenerated
automatically if needed), and a sample-simulation function. If the latter function is a wrapper for
an external simulation program, then this simulation program must be provided in addition to the
"SLik_j" object. If an external program has to be called differently on different computers, infor-
mation specific to each computer can be provided by the optional control.Simulate argument of
refine.

People used to the functional-programming style common in R, where the return value entirely
defines the effect of a function call, may be surprized by the distinct style of some of functions of this
package. Indeed, the "SLik_j" objects include environments that may be modified by functions,
independently of what these functions return. Notably, the profile plots (see plot1Dprof) and
summary-likelihood ratio tests (SLRT) may update the summary-likelihood estimates. However, the
more significant caveat of such usage of environments, from an inferential viewpoint, is that the
projectors stored in input and output fit objects of a refine call are stored in the same environment,
and therefore the projectors stored in the input object are modified in light of new simulations (or
by any other operation affecting them in the refine), which alters the statistical meaning of any
subsequent operation reusing the projectors from the input object. To keep the unmodified version
of the projectors, users may need to save a fit object on disk before a refine call. This feature could
of course be modified, but is retained for the following reasons: (1) in the routine workflow, only the
latest fit object and its projectors will be relevant (but when comparing performance of the inference
method for, e.g., reference tables of different sizes, more care is needed); and (2) projectors can be
memory-expensive objects, so keeping distinct versions of them in successive fit objects may have
substantial drawbacks.

Details

The methods implemented in Infusion by default assume that the summary statistics have densi-
ties. Special values of some statistic, having discrete probability mass, can be more or less automat-
ically handled by the up-to-date workflow, which also handles automatically NA values of summary
statistics. For the primitive workflow, both of these problems could be handled to a limited extent
using the boundaries attribute of the observed summary statistics (see handling_NAs for one use
of this attribute).

Note

See examples example_reftable for the most complete example using up-to-date workflow, and
example_raw_proj or example_raw for older workflows.

Examples

## see Note for links to examples.

init_reftable Define starting points in parameter space.
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Description

These functions sample the space of estimated parameters, and also handle other fixed arguments
that need to be passed to the function simulating the summary statistics. The current sampling
strategy of these functions is crude but achieves desirable effects for present applications: it samples
the space more uniformly than independent sampling of each point would, by generating fewer pairs
of close points; and it is not exactly a regular grid.

init_reftable allows constraints to be applied on parameters. init_grid does not handle such
constraints, and further generates replicates of nRepl of the parameter points sampled, which were
required in the primitive workflow for good smoothing of the likelihood surface.

Usage

init_reftable(lower=c(par=0), upper=c(par=1), steps=NULL,
nUnique=NULL,
maxmin=(nUnique * length(lower)^2)<400000L,
jitterFac=0.5, constr_crits=NULL, ...)

init_grid(lower=c(par=0), upper=c(par=1), steps=NULL, nUnique=NULL,
nRepl=min(10L,nUnique), maxmin=TRUE, jitterFac=0.5)

Arguments

## Arguments recommended for up-to-date workflow

lower A vector of lower bounds for the parameters, as well as fixed arguments to be
passed to the function simulating the summary statistics. Elements must be
named. Fixed parameters character strings.

upper A vector of upper bounds for the parameters, as well as fixed parameters. Ele-
ments must be named and match those of lower.

nUnique Number of distinct values of parameter vectors in output. The default for init_reftable
is determined by a call to get_workflow_design with npar argument being
the number of variable parameters as determined by comparison of lower and
upper. The result from get_workflow_design can be modified by passing fur-
ther arguments to this function through the . . . .
The default for init_grid is a less elaborate heuristic guess for good start from
not too many points, computed as floor(50^((v/3)^(1/3))) where v is the
number of variable parameters.

constr_crits NULL, or quoted expression specifying a constraints on parameters, beyond the
ones defined by the ranges over each parameter: see constr_crits for details.

maxmin Boolean. If TRUE, use a greedy max-min strategy (GMM, inspired from Ravi
et al. 1994) in the selection of points from a larger set of points generated by
an hypercube-sampling step. If FALSE, sample is instead used for this second
step. This may be useful as the default method becomes slow when thousands
of points are to be sampled.

## Other, less useful arguments

steps Number of steps of the grid, in each dimension of estimated parameters. If
NULL, a default value is defined from the other arguments. If a single value is
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given, it is applied to all dimensions. Otherwise, this must have the same length
as lower and upper and named in the same way as the variable parameters in
these arguments.

nRepl Number of replicates of distinct values of parameter vectors in output.
jitterFac Controls the amount of jitter of the points around regular grid nodes. The default

value 0.5 means that a mode can move by up to half a grid step (independently
in each dimension), so that two adjacent nodes moved toward each other can
(almost) meet each other.

... Further arguments passed to get_workflow_design when nUnique is left NULL.
Can be used notably to specify non-default n_proj_stats or n_latent.

Value

A data frame. Each row defines a list of arguments of vector of the function simulating the summary
statistics.

Note

init_grid is an exported function from the blackbox package.

References

Ravi S.S., Rosenkrantz D.J., Tayi G.K. 1994. Heuristic and special case algorithms for dispersion
problems. Operations Research 42, 299-310.

Examples

set.seed(123)
init_reftable(lower=c(mu=2.8,s2=0.5,sample.size=20),

upper=c(mu=5.2,s2=4.5,sample.size=20))
# Less recommended:
init_reftable(lower=c(mu=2.8,s2=0.5,sample.size=20),

upper=c(mu=5.2,s2=4.5,sample.size=20),
steps=c(mu=7,s2=9),nUnique=63)

init_grid()

MAF.options Control of MAF design and training

Description

Masked Autoregressive Flows can be used by Infusion to infer various densities. This functionality
requires the mafR package, and is requested through the using argument of infer.SLik.joint or
refine (see Details).

config_mafR is a convenient way to reset the Python session (erasing all results stored in its mem-
ory), and in particular to enforce GPU usage.

MAF.options is a wrapper for Infusion.options which facilitates the specification of options that
control the design of Masked Autoregressive Flows and their training.
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Usage

config_mafR(torch_device, ...)
MAF.options(template = "zuko-like", ...)

Arguments

torch_device character: "cpu", "cuda" (or "cuda:0", etc., useful if several GPUs are avail-
able) or "mps".

template Defines a template list of options, subsequently modified by options specified
through the . . . , if any. Possible values of template are "zuko-like", "PSM19",
NULL, or a list of options. The default value "zuko-like" reproduces Infu-
sion’s defaults.

... For MAF.options: a named value, or several of them, that override or com-
plete the template values. For config_mafR: for development purposes; not
documented.

Details

Possible using values:
With using="c.mafR" four different MAFs are computed in every iteration: the density of statistics
given parameters (providing the likelihood), the joint density, the instrumental density of parame-
ters, and the “instrumental posterior” density of parameters given the data.

With using="MAFmix", MAFs are computed only for the joint density and the instrumental density.
The likelihood is deduced from them and a multivariate Gaussian mixture model is used to infer the
“instrumental posterior” density.

using="mafR" can be used to let Infusion select one of the above options. "MAFmix" is currently
called as it is faster, but this is liable to change in the future, so do not use this if you want a
repeatable workflow.

Possible template values for MAF.options:
"PSM19" defines a template list of control values recommended by Papamakarios et al. (2019,
Section 5.1). "zuko-like" defines a template list of values inspired from the tutorials of the zuko
Python package, with some extra twists. Concretely, their definition is

if (template == "zuko-like") {
optns <- list(design_hidden_layers = .design_hidden_layers_MGM_like,

MAF_patience = 30, MAF_auto_layers = 3L, Adam_learning_rate = 0.001)
}
else if (template == "PSM19") {

optns <- list(design_hidden_layers = .design_hidden_layers_PSM19,
MAF_patience = 20, MAF_auto_layers = 5L, Adam_learning_rate = 1e-04)

}

and any replacement value should match the types (function, numeric, integer...) of the shown
values, and the formals of the internal functions, in order to avoid cryptic errors.

The internal .design_hidden_layers... functions return a vector of numbers Hi of hidden val-
ues per layer i of the neural network. THevector has an attribute giving the resulting approximate
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number of parameters P of the deep-learning model according to Supplementary Table 1 of Papa-
makarios et al. 2017. Hi =50L for "PSM19". For "zuko-like", a typically higher value will be
used. It is defined as a power of two such that P is of the order of 8 to 16 times the default number
of parameters of the multivariate gaussian mixture model that could be used instead of MAFs.

Other controls which can be modified through the . . . are
* MAF_validasize, a function which returns the size of the validation set, whose default definition
returns 5% of its input value nr which is the number of samples in the reference table (consistently
with Papamakarios et al., 2019);
* MAF_batchsize, a function that returns the batch size for the Adam optimizer. Its default simply
returns 100L, but non-default functions can be defined, with at least the . . . as formal arguments
(more elaborate formals are possible but not part of the API).

Value

config_mafR is used for its side effects. Returns NULL invisibly.

MAF.options returns the result of calling Infusion.options on the arguments defined by the
template and the . . . . Hence, it is a list of previous values of the affected options.

References

Papamakarios, G., T. Pavlakou, and I. Murray (2017) Masked Autoregressive Flow for Density
Estimation. Pp. 2335–2344 in I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, eds. Advances in Neural Information Processing Systems 30. Curran
Associates, Inc.
http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation

Rozet, F., Divo, F., Schnake, S (2023) Zuko: Normalizing flows in PyTorch. https://doi.org/10.5281/zenodo.7625672

See Also

save_MAFs for saving and loading MAF objects.

Examples

MAF.options(template = "zuko-like",
Adam_learning_rate=1e-4,
MAF_batchsize = function(...) 100L)

## Not run:
## These examples require the mafR package,
## and a Python installation with cuda capabilities.

if (requireNamespace("mafR", quietly=TRUE)) {

config_mafR() # set default: "cpu", i.e. GPU not used
config_mafR("cuda") # sets cuda as GPU backend
config_mafR() # reset python session, keeping latest backend

config_mafR(torch_device="cuda")
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# function for sampling from N(.,sd=1)
toyrnorm <- function(mu) {

sam <- rnorm(n=40,mean=mu,sd=1)
return(c(mean1=mean(sam)))

}

# simulated data, standing for the actual data to be analyzed:
set.seed(123)
Sobs <- toyrnorm(mu=4)

parsp <- init_reftable(lower=c(mu=2.8),
upper=c(mu=5.2))

simuls <- add_reftable(Simulate="toyrnorm", parsTable=parsp)

MAF.options(template = "zuko-like")
densv <- infer_SLik_joint(simuls,stat.obs=Sobs, using="mafR")

# Usual workflow using inferred surface:
slik_j <- MSL(densv, eval_RMSEs = FALSE) ## find the maximum of the log-likelihood surface
# ETC.

save_MAFs(slik_j, prefix = "toy_") # See its distinct documentation.
}

## End(Not run)

MSL Maximum likelihood from an inferred likelihood surface

Description

This computes the maximum of an object of class SLik representing an inferred (summary) likeli-
hood surface

Usage

MSL(object, CIs = prod(dim(object$logLs)) < 12000L, level = 0.95,
verbose = interactive(),
RMSE_n=Infusion.getOption("RMSE_nsim"),
eval_RMSEs=(RMSE_n>1L) * prod(dim(object$logLs))<12000L,
cluster_args=list(), nb_cores=NULL,
init=NULL, prior_logL=NULL)

Arguments

object an object of class SLik_j as produced by infer_SLik_joint (or, in the primi-
tive workflow, of class SLik as produced by infer_surface.logLs).

CIs If TRUE, construct one-dimensional confidence intervals for all parameters. See
confint.SLik_j to obtain bootstrap confidence intervals.
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level Intended coverage probability of the confidence intervals.
verbose Whether to display some information about progress and results.
RMSE_n Integer: number of simulation replicates for evaluation of prediction uncertainty

for likelihoods/ likelihood ratios/ parameters. The default value (10) provides
quick but inaccurate estimates.

eval_RMSEs Logical: whether to evaluate prediction uncertainty for likelihoods/ likelihood
ratios/ parameters.

cluster_args A list of arguments, passed to makeCluster, to control parallel computation
of RMSEs. Beware that parallel computation of RMSEs tends to be memory-
intensive. The list may contain a non-null spec element, in which case the
nb_cores global Infusion option is ignored. Do *not* use a structured list with
an RMSE element as is possible for refine (see Details of refine documenta-
tion).

nb_cores Integer: shortcut for specifying cluster_args$spec.
init Initial value for the optimiser. Better ignored.
prior_logL (effective only for up-to-date workflow using gaussian mixture modelling of a

joint distribution of parameters and statistics) a function that returns a vector of
prior log-likelihood values, which is then added to the likelihood deduced from
the summary likelihood analysis. The function’s single argument must handle a
matrix similar to the newdata argument of predict.SLik_j.

Details

If Kriging has been used to construct the likelihood surface, RMSEs are computed using approximate
formulas for prediction (co-)variances in linear mixed midels (see Details in predict). Otherwise, a
more computer-intensive bootstrap method is used. par_RMSEs are computed from RMSEs and from
the numerical gradient of profile log-likelihood at each CI bound. Only RMSEs, not par_RMSEs, are
compared to precision.

Value

The object is returned invisibly, with the following (possibly) added members, each of which being
(as from version 1.5.0) an environment:

MSL containing variables MSLE and maxlogL that match the par and value returned by an optim
call. Also contains the hessian of summary likelihood at its maximum.

CIobject The return value of calling allCIs, converted to an environment.
RMSEs containing, as variable RMSEs, the root mean square errors of the log-likelihood at its inferred

maximum and of the log-likelihood ratios at the CI bounds.
par_RMSEs containing, as variable par_RMSEs, root mean square errors of the CI bounds.

To ensure backward-compatibility of code to possible future changes in the structure of the objects,
the extractor function get_from should be used to extract the RMSEs and par_RMSEs variables from
their respective environments, and more generally to extract any element from the objects.

Examples

## see main documentation page for the package
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multi_binning Multivariate histogram

Description

Constructs a multivariate histogram of the points. Optionally, first tests whether a given value
is within the convex hull of input points and constructs the histogram only if this test is TRUE.
This function is available for development purposes but is not required otherwise . It is sparsely
documented and subject to changes without notice.

Usage

multi_binning(m, subsize=trunc(nrow(m)^(Infusion.getOption("binningExponent"))),
expand=5/100, focal=NULL)

Arguments

m A matrix representing points in d-dimensional space, where d is the number of
columns

subsize A control parameter for an undocumented algorithm

expand A control parameter for an undocumented algorithm

focal Value to be tested for inclusion within the convex hull. Its elements must have
names.

Details

The algorithm may be detailed later.

Value

Either NULL (if the optional test returned FALSE), or an histogram represented as a data frame
each row of which represents an histogram cell by its barycenter (a point in d-dimensional space),
its “binFactor” (the volume of the cell times the total number of observations) and its “count”
(the number of observations within the cell). The returned data frame has the following attributes:
attr(.,"stats") are the column names of the d-dimensional points; attr(.,"count") is the
column name of the count, and attr(.,"binFactor") is the column name of the binFactor.
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options Infusion options settings

Description

Allow the user to set and examine a variety of options which affect operations of the Infusion
package. However, typically these should not be modified, and if they are, not more than once in a
data analysis.

Usage

Infusion.options(...)

Infusion.getOption(x)

Arguments

x a character string holding an option name.

... A named value, or several of them, or a single unnamed argument which is a
named list). The following values, with their defaults, are used in Infusion:

mixturing character string: package or function to be used for mixture mod-
elling. Recognized packages are "Rmixmod" (the default) and "mclust";

train_cP_size: Expression for train_cP_size argument of project.character.
trainingsize: Expression for trainingsize argument of project.character.
projKnotNbr = 1000: default value of trainingsize argument of project.character

for REML (as implied by default expression for trainingsize).
logLname = "logL": default value of logLname argument of infer_logLs. The

name given to the inferred log likelihoods in all analyses.
LRthreshold= - qchisq(0.999,df=1)/2: A value used internally by sample_volume

to sample points in the upper region of the likelihood surface, as defined by
the given likelihood ratio threshold.

precision = 0.25: default value of precision argument of refine. Targets
RMSE of log L and log LR estimates.

nRealizations=1000: default value of nRealizations argument of add_simulation.
Number of realizations for each empirical distribution.

mixmodGaussianModel="Gaussian_pk_Lk_Ck": default models used in clus-
tering by Rmixmod. Run Rmixmod::mixmodGaussianModel() for a list
of possible models, and see the statistical documentation (Mixmod Team
2016) for explanations about them.

global_strategy_args: list of arguments for Rmixmod::mixmodStrategy().
seq_nbCluster= function(projdata, nr=nrow(projdata)) {seq(ceiling(nr^0.31))}:

function to control the value of nbCluster used in clustering by Rmixmod
(see Details for discussion of this default).
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maxnbCluster = function(projdata) {...} : function to control the maxi-
mum number of clusters (see Details).

example_maxtime=2.5: Used in the documentation to control whether the longer
examples should be run. The approximate running time of given examples
(or some very rough approximation for it) on one author’s laptop is com-
pared to this value.

nb_cores Number of cores for parallel computations (see Details for imple-
mentation of these).

gof_nstats_fn See goftest.

and possibly other undocumented values for development purposes.

Details

The set of the number of clusters tried (nbCluster argument in Rmixmod) is controlled by two
options: seq_nbCluster and maxnbCluster. The second is used to correct the first, using the
dimensions of the projdata locally used for clustering, which typically differs from the dimen-
sions of the user-level data (if projections have been applied, in particular). The default upper
value of the nbCluster range is derived from the value n0.3 recommended in the mixmod statistical
documentation (Mixmod Team, 2016), but modified based on different considerations. First, that
recommendation may be suitable for a large input of points in low dimension, but may request es-
timation of too many clustering parameters as the dimension of data points increases, justifying the
correction according tomaxnbCluster. Conversely, for large number of points, experience shows
that the maximum value derived from such rules is practically always selected by AIC, supporting
a rule specifying a higher number of points (such as the currently retained default n0.31).

Infusion can perform parallel computations if several cores are available and requested though
Infusion.options(nb_cores=.). If the doSNOW back-end is attached (by explicit request from the
user), it will be used; otherwise, pbapply will be used. Both provide progress bars, but doSNOW may
provide more efficient load-balancing. The character shown in the progress bar is 'P' for parallel via
doSNOW backend, 'p' for parallel via pbapply functions, and 's' for serial via pbapply functions.
In addition, add_simulation can parallelise at two levels: at an outer level over parameter point, or
at an inner level over simulation replicates for each parameter point. The progress bar of the outer
computation is shown, but the character shown in the progress bar is 'N' if the inner computation
is parallel via the doSNOW backend, and 'n' if it is parallel via pbapply functions. So, one should
see either 'P' or 'N' when using doSNOW.

Value

For Infusion.getOption, the current value set for option x, or NULL if the option is unset.

For Infusion.options(), a list of all set options. For Infusion.options(name), a list of length
one containing the set value, or NULL if it is unset. For uses setting one or more options, a list with
the previous values of the options changed (returned invisibly).

References

Mixmod Team (2016). Mixmod Statistical Documentation. Université de Franche-Comté, Be-
sançon, France. Version: February 10, 2016 retrieved from https://www.mixmod.org.

https://www.mixmod.org


54 plot.SLik

Examples

Infusion.options()
Infusion.getOption("LRthreshold")
## Not run:
Infusion.options(LRthreshold=- qchisq(0.99,df=1)/2)

## End(Not run)

plot.SLik Plot SLik or SLikp objects

Description

Primarily conceived for exposition purposes, for the two-parameters case. The black-filled points
are those for which the observed summary statistic was outside of the convex hull of the simulated
empirical distribution. The crosses mark the estimated ML point and the confidence intervals points,
that is, the outmost points on the contour defined by the profile likelihood threshold for the profile
confidence intervals. There is a pair of CI points for each interval. The smaller black dots mark
points added in the latest iteration, if refine was used.

Usage

## S3 method for class 'SLik'
plot(x, y, filled = FALSE, decorations = NULL,

color.palette = NULL, plot.axes = NULL,
plot.title = NULL, plot.slices=TRUE, ...)

## S3 method for class 'SLik_j'
plot(x, y, filled = nrow(x$logLs)>5000L, decorations = NULL,

color.palette = NULL, plot.axes = NULL,
plot.title = NULL, from_refine=FALSE, plot.slices=TRUE,
show_latest=FALSE, ...)

Arguments

x An object of class SLik or SLikp

y Not used, but included for consistency with the plot generic.

filled whether to plot a mapMM or a filled.mapMM.

decorations Graphic directives added to the default decorations value in calls of mapMM or a
filled.mapMM (see the source code of plot.SLik for the latter default values).

color.palette Either NULL or a function that can replace the default color function used by
plot.SLik. The function must have a single argument, giving the number of
color levels.

plot.title statements which replace the default titles to the main plot (see Details).

plot.axes statements which replace the default axes on the main plot (see Details).

from_refine For programming purposes, not documented.
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plot.slices boolean: whether to plot “slices” of the summary-likelihood surface for pairs
of parameters (p1,p2), when more than two parameters are fitted. In such plots
the additional parameters p3, p4... are fixed to their estimates [in contrast to
profile plots where p3, p4... take distinct values for each (p1,p2), maximizing
the function for each (p1,p2)].

show_latest Logical: whether to show distinctly the points added in the latest iteration.

... further arguments passed to or from other methods (currently can be used to pass
a few arguments such as map.asp in all cases, or variances to filled.mapMM).

Details

Different graphic functions are called depending on the number of estimated parameters. For two
parameters, mapMM or filled.mapMM are called. For more than two parameters, spaMM.filled.contour
is called. See the documentation of these functions for the appropriate format of the plot.title
and plot.axes arguments.

Value

plot.SLik_j returns invisibly a list including coordinates of the plot(s) (at least if the latest version
of the spaMM package is installed). The exact format will depend on the nature of the plot but the
names of elements should be self-explanatory. plot.SLik returns the plotted object invisibly.

Examples

## Not run:
## Using 'slik_j' object from the example in help("example_reftable")
plot(slik_j,filled=TRUE,

plot.title=quote(title("Summary-likelihood-ratio surface",
xlab=expression(mu),
ylab=expression(sigma^2))))

## End(Not run)

plot1Dprof Plot likelihood profiles

Description

These functions plot 1D and 2D profiles from a summary-likelihood object.

If you feel the 1D profiles are ugly, see the Details. Confidence intervals may still be correct in such
cases.

High quality 2D plots may be slow to compute, and there may be many of them in high-dimensional
parameter spaces, so parallelization of the computation of each profile point has been implemented
for them. Usual caveats apply: there is an time cost of launching processes on a cluster, particu-
larly on socket clusters, possibly offsetting the benefits of parallelization when each profile point
is fast to evaluate. Further, summary-likelihood objects are typically big (memory-wise), notably



56 plot1Dprof

when theyinclude many projections, and this may constrain the number of processes that can run in
parallel.

Parallelization is also implemented for 1D profiles, but over the parameter for which profiles are
computed, rather than over points in a profile. So it is effective only if profiles are computed for
several parameters.

In default 2D plots, some areas may be left blank, for distinct reasons: the function values may
be too low (as controlled by the min_logLR argument), or the likelihood profile may be maxi-
mized at parameter values which do not satisfy constraints defined by the constr_crits of the
infer_SLik_joint function. Low profile values, even when shown, are not accurate anyway, since
the inference workflow aims at inferring the top of likelihood “hill” relevant for the computation of
confidence regions.

Usage

plot1Dprof(object, pars=object$colTypes$fittedPars, fixed=NULL,
type="logLR", gridSteps=21, xlabs=list(), ylab, scales=NULL,
plotpar=list(pch=20),
control=list(min=-7.568353, shadow_col="grey70"),
decorations = function(par) NULL,
profiles=NULL, add=NULL, safe=TRUE,
cluster_args=NULL, do_plot=TRUE, CIlevels=NULL,
lower=NULL, upper=NULL,
verbose=TRUE,
...)

plot2Dprof(object, pars=object$colTypes$fittedPars, fixed=NULL,
type="logLR", gridSteps=17, xylabs=list(), main, scales=NULL,
plotpar=list(pch=20), margefrac = 0,
decorations = function(par1,par2) NULL,
filled.contour.fn = "spaMM.filled.contour", cluster_args=NULL,
min_logLR = qchisq(0.95,df=length(object$colTypes$fittedPars))/2 +3,
lower=NULL, upper=NULL, color.palette=NULL, profiles=NULL,
... )

Arguments

object An SLik or SLik_j object

pars Control of parameters for which profiles will be computed. If pars is specified
as a vector of names, profiles are plotted for each parameter, or (2D case) for all
pairs of distinct parameters.
Finer control is possible in the 2D case: the pars may be specified as a two-
column natrix, in which case profiles are generated for all pairs of distinct pa-
rameters specified by rows of the matrix. It may also be specified as a two-
element list, where each element is a vector of parameter names. In that case,
profiles are generated for all pairs of distinct parameters combining one element
of each vector.

fixed A named vector of parameter values to keep fixed in the profile computation:
these parameters will be excluded from the pars as well as from the paramters
over which maximization occurs.
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type Character: possible values are "logL" to plot the log-likelihood profile; "logLR"
(or "LR" for the not-log version) to plot the log-likelihood-ratio profile; and, for
1D profiles, "zoom", "ranges" and "dual" which are variants of the "logLR"
plot controlling the plot ranges in different ways (see Details).

gridSteps The number of values (in each dimension for 2D plots) for which likelihood
should be computed. For 1D plots, gridSteps=0 is now obsolete.

xlabs A list of alternative axis labels. The names of the list elements should be ele-
ments of pars (see Examples)

xylabs Same as xlabs but affecting both axes in 2D plots

ylab Same as ylab argument of plot. Default depends on type argument.

main Same as main argument of plot. Default depends on type argument.

scales A named character vector, which controls ticks and tick labels on axes, so that
these can be expressed as (say) the exponential of the parameter inferred in the
SLik object. For example if the likelihood of logPop = log(population size)
was thus inferred, scales=c(logPop="log") will give population size values
on the axis (but will retain a log scale for this parameter). Possible values of
each element of the vector are "identity" (default), "log", and "log10",

plotpar Arguments for par() such as font sizes, etc.

control Control of "zoom" or "dual" plots (see Details).

decorations A function implementing graphic directives added to the plot (anything that is
not a function is converted to the default function). Its formal parameters are as
shown by its trivial default value, the par[.] arguments being parameters names
(as a vector of character strings), to allow the additional plot elements to depend
on the parameter of each subplot (see Plot 3 in Examples).

margefrac For development purposes, not documented.

safe For development purposes, not documented.
filled.contour.fn

Name of a possible alternative to graphics::filled.contour to be used for
rendering the plot.

cluster_args NULL, or a list in which case a cluster may be created and used. The list ele-
ments must match the arguments spec and type of parallel::makeCluster.
A socket cluster is created unless type="FORK" (on operating systems that sup-
port fork clusters). For plot1Dprof, parallelisation is over the parametrs for
which profiles are computed; For plot2Dprof,it is over the grid of points for
each profile.

profiles The profiles element of the return value of a previous call of the function. The
point coordinates it provides for a given parameter or pair of parameters will be
used, instead of recomputing the profile.

add The profiles element of the return value of a previous plot1Dprof() call. The
point coordinates it provides for a given parameter will be added to the profile
produced by other arguments, using the graphic directives specified by the . . . \
to distingush them.

min_logLR Numeric; the minimal value of the log-likelihood ratio to be shown on 2D plots
of type logLR, parameter regions having lower ratios being left blank.
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do_plot Boolean: whether to actually plot the profiles or only return computations for it.
CIlevels NULL, or a vector of confidence levels whose bounds will be added to the plot.

Suggested values are c(0.99, 0.95,0.90,0.75)

lower, upper Numeric vectors of bounds for the parameters.
verbose Boolean: whether to print information about the progress of the computation.
color.palette Either NULL or a function that can replace the default color function used by

plot2Dprof. The function must have a single argument, giving the number of
color levels.

... Further arguments passed by another function. Currently these arguments are
ignored, except when handling the add argument, where they are passed to
graphics::lines.

Details

Possible issues in computing the profiles: Computation of profiles is complicated by local maxi-
mization issues, which may result in highly visible artefacts in the plots. plot1Dprof tries to reduce
their impact by computing the profile points starting from parameter values closest to the identified
likelihood-maximizing value, and by using a method for selecting initial values for maximization
which is partially controlled by the result of computation of the previous profile point. A second
sequential computation of points profile may additionally be performed, this time starting from pa-
rameter values closest to the identified 95%\ confidence intervals rather than from the MLEs, when
such intervals are available in the fit object or if they are requested by the CIlevels argument.

Graphic details of the plots: The 2D profile plots will typically include a contour level for the
95% 2D confidence region, labelled “2D CI” on the scale.

A "zoom" plot shows only the top part of the profile, defined as points whose y-values are above a
threshold minus-log-likelihood ratio control$min, whose default is -7.568353, the 0.9999 p-value
threshold.

A "ranges" (for plot1Dprof) is similar to "zoom" but maintains a fixed y range, facilitating com-
parison of profiles with and among different plot1Dprof calls. Few of the originally computed
points may appear in the retained x range, in which case it may be useful to generate additional
points ensured to appear in the plot, using the CIlevels argument.

A "dual" plot displays both the zoom, and a shadow graph showing the full profile. The dual plot
is shown only when requested and if there are values above and below control$min. The shadow
curve color is given by control$shadow_col.

Value

Both functions return a list, invisibly for plot1Dprof. The list has elements
* MSL_updated which is a boolean indicating whether the summary-likelihood maximum has been
recomputed (if it is TRUE, a message is printed);
* profiles, itself a list which stores information about each profile. The format of the information
per profile is not yet stable (subject to changes without notice), but consistent with the one handled
by the profiles and add argument). Its elements currently include
- the x,y or x,y,z coordinates of the putative plot;
- the full coordinates of the profile points in a profpts matrix (1D plot) or a 3D array (2D plot;
first dimension are the fitted parameters, second and third are x and y steps).

plot1Dprof may have the side effect of adding confidence interval information to the fit object.
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Examples

if (Infusion.getOption("example_maxtime")>20) { # 2D plots relatively slow
#### Toy bivariate gaussian model, three parameters, no projections
#
myrnorm2 <- function(mu1,mu2,s2,sample.size) {
sam1 <- rnorm(n=sample.size,mean=mu1,sd=sqrt(s2))
sam2 <- rnorm(n=sample.size,mean=mu2,sd=sqrt(s2))
s <- c(sam1,sam2)
e_mu <- mean(s)
e_s2 <- var(s)
c(mean=e_mu,var=e_s2,kurt=sum((s-e_mu)^4)/e_s2^2)

}
#
## simulated data, standing for the actual data to be analyzed:
set.seed(123)
Sobs <- myrnorm2(mu1=4,mu2=2,s2=1,sample.size=40) ##
#
## build reference table
parsp <- init_reftable(lower=c(mu1=2.8,mu2=1,s2=0.2),

upper=c(mu1=5.2,mu2=3,s2=3))
parsp <- cbind(parsp,sample.size=40)
simuls <- add_reftable(Simulate="myrnorm2", parsTable=parsp)

## Inferring the summary-likelihood surface...
densvj <- infer_SLik_joint(simuls,stat.obs=Sobs)
slik_j <- MSL(densvj) ## find the maximum of the log-likelihood surface

### plots
# Plot 1: a 1D profile:
prof1 <- plot1Dprof(slik_j,pars="s2",gridSteps=40,xlabs=list(s2=expression(paste(sigma^2))))

# Using 'add' for comparison of successive profiles:
slik_2 <- refine(slik_j, n=600)
# Plot 2: comparing 1D profiles of different iterations:
prof2 <- plot1Dprof(slik_2,"s2", gridSteps=40,xlabs=list(s2=expression(paste(sigma^2))),

add=prof1$profiles, col="grey30")

# Plot 3: using 'decorations' and 'profiles' for recycling previous computation for s2:
DGpars <- c(mu1=4,mu2=2,s2=1,sample.size=40) # data-generating parameters
plot1Dprof(slik_2, gridSteps=40,xlabs=list(s2=expression(paste(sigma^2))),

profiles=prof2$profiles,
decorations=function(par) {

points(y=-7,x=DGpars[par],pch=20,cex=2,col="red");
points(y=-0.5,x=slik_2$MSL$MSLE[par],pch=20,cex=2,col="blue")

}
)

plot2Dprof(slik_j,gridSteps=21,
## alternative syntaxes for non-default 'pars':
# pars = c("mu1","mu2"), # => all combinations of given elements
# pars = list("s2",c("mu1","mu2")), # => combinations via expand.grid()
# pars = matrix(c("mu1","mu2","s2","mu1"), ncol=2), # => each row of matrix
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xylabs=list(
mu1=expression(paste(mu[1])),
mu2=expression(paste(mu[2])),
s2=expression(paste(sigma^2))

))
# One could also add (e.g.)
# cluster_args=list(spec=4, type="FORK"),
# when longer computations are requested.

}

if (Infusion.getOption("example_maxtime")>5) {
#### Older example with primitive workflow
data(densv)
slik <- infer_surface(densv) ## infer a log-likelihood surface
slik <- MSL(slik) ## find the maximum of the log-likelihood surface
prof1 <- plot1Dprof(slik,pars="s2",gridSteps=40,xlabs=list(s2=expression(paste(sigma^2))))
}

plot_proj Diagnostic plots for projections

Description

plot_proj and plot_importance are convenience functions providing diagnostic plots for projec-
tions, plot_proj plots predictions. This function is tailored for use on ranger projections, with
out-of bag predictions for the training set shown in blue, and predictions for points outside the
training set shown in black. Either parm or proj will then be needed to identify the projection to be
plotted (perhaps both in some programming contexts, or if other projections methods are used).

plot_importance plots the importance metric variable.importance stored in a ranger object.
Here, the projection may be identified by either parm or proj, or even directly provided as the
object.

Usage

plot_proj(
object, parm=NULL, proj,
new_rawdata,
use_oob=Infusion.getOption("use_oob"), is_trainset=FALSE,
xlab=NULL, ylab=NULL, ...)

plot_importance(object, parm, proj, n.var = 30L, xlim=NULL,
xlab = "Variable Importance", ylab = "", main="", ...)

Arguments

object An object of class SLik_j. For plot_importance, it may also be an object of
class ranger.



predict.SLik_j 61

parm Character string: a parameter name. Either one of parm or proj is required to
get a diagnostic plot for a specific projector. Otherwise, a multipanel plot will
be produced for all projectors.

proj Character string: name of projected statistic.
new_rawdata Reference table on which projections should be computed. If NULL, projections

are not recomputed. Instead, the values stored in the object are used.
use_oob, is_trainset

Passed to project.default. Ignored if new_rawdata is NULL.
n.var Integer: (maximum) number of predictor variables to be included in the plot.
xlim, xlab, ylab, main, ...

Passed to plot (for plot_proj) or to dotchart (for plot_importance).

Details

Projectors may be updated in an object after the projected statistics have been computed and in-
cluded in the reference table, without any explicit action of the user on the object (see general
information about Infusion for why and when this may occur). In particular the projectors stored in
input and output fit objects of a refine call are stored in the same environment, and therefore the
projectors stored in the input object are modified in light of new simulations. In that case, the plots
produced by plot_proj may reflect properties either of the updated projections (if new_rawdata is
used), or worse, may mix results of different projections (if new_rawdata is not used). A message
or a warning may be issued when such events occur.

Value

These functions are mainly used for their side effect (the plot). plot_importance returns the vector
of importance values invisibly. plot_proj returns invisibly, for each parameter a list with the x,y
xlab and ylab elements of the plot call, or a structured list of such lists when plots are produced
for several parameters.

Note

See workflow examples in example_reftable.

Examples

## see Note for links to examples.

predict.SLik_j Evaluate log-likelihood for given parameters

Description

As the Title says. As likelihood is obtained as a prediction from a statistical model for the likelihood
surface, this has been implemented as a method of the predict generic, for objects created by the
up-to-date workflow using gaussian mixture modelling of a joint distribution of parameters and
statistics. Hence, it has a newdata argument, as shared by many predict methods; but these
newdata should be parameter values, not data). You can use the alternative summLik extractor if
you do not like this syntax.
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Usage

## S3 method for class 'SLik_j'
predict(
object, newdata, log = TRUE, which = "safe",
tstat = t(get_from(object,"stat.obs")),
solve_t_chol_sigma_lists = object$clu_params$solve_t_chol_sigma_lists,
constr_tuning= FALSE,
...)

Arguments

object an object of class SLik_j, as produced by infer_SLik_joint.

newdata A matrix, whose rows each contain a full vector of the fitted parameters; or a sin-
gle vector. If parameter names are not provided (as column names in the matrix
case), then the vector is assumed to be ordered as object$colTypes$fittedPars.

log Boolean: whether to return log-likelihood or likelihood.

which "safe" or "lik". The default protects against some artefacts of extrapolation:
see Details.

tstat The data (as projected summary statistics). Defaults to the data input in the
inference procedure (i.e., the projected statistics used as stat.obs argument of
infer_SLik_joint).

solve_t_chol_sigma_lists

For programming purposes. Do not change this argument.

constr_tuning positive number, or FALSE: controls the effect of parameter constraints speci-
fied by the constr_crits argument of infer_SLik_joint on the evaluation of
summary log-likelihood. When it is FALSE (or 0), no penalty is applied; when
this is Inf, the log-likelihood of parameters violating constraints will be -Inf.
Intermediate values allow an intermediate penalization (the source code should
be consulted for further details), but their use is not recommended.

... For consistency with the generic. Currently ignored.

Details

An object of class SLik_j contains a simulated joint distribution of parameters and (projected)
summary statistics, and a fit of a multivariate gaussian mixture model to this simulated distribution,
the “jointdens”, from which a marginal density “pardens” of parameters can be deduced. The raw
likelihood(P;D) is the probability of the data D given the parameters P, viewed as function the
parameters and for fixed data. It is inferred as jointdens(D,P)/pardens(P) (for different P, each of
jointdens and pardens are probabilities from a single (multivariate) gaussian mixture model, but this
is not so for their ratio).

When pardens(P) is low, indicating that the region of parameter space around P has been poorly
sampled in the reference table, inference of likelihood in such regions is unreliable. Spuriously
high likelihood may be inferred, which results notably in poor inference based on likelihood ratios.
For this reason, it is often better to use the argument which="safe" whereby the likelihood may
be penalized where pardens(P) is low. The penalization is applied to cases where the uncorrected
likelihood is higher than the maximum one in the reference table, and pardens(P) is lower than a



profile.SLik 63

threshold also determined from the reference table. The source code should be consulted for further
details.

Value

Numeric: a single value, or a vector of (log-)likelihoods for different rows of the input newdata.
When which="safe", a "lowdens" attribute will be added when at least on parameter points had a
low “pardens” (see Details).

Examples

## see help("example_reftable")

profile.SLik Compute profile summary likelihood

Description

Predicts the profile likelihood for a given parameter value (or vector of such values) using predic-
tions from an SLik_j (or older SLik) object (as produced by MSL).

Usage

## S3 method for class 'SLik_j'
profile(fitted, value, fixed=NULL, return.optim=FALSE,

init = "default", which="safe",
constr_crits=fitted$constr_crits,
eq_constr=NULL, ...)

## S3 method for class 'SLik'
profile(fitted, ...)

Arguments

fitted an SLik object.

value The parameter value (as a vector of named values) for which the profile is to be
computed. Setting in explictly to NULL will maximize likelihood subject only
to optional constraints specified by other arguments.

fixed This argument appears redundant with the value argument, so it will be depre-
cated and its use should be avoided. When it is non-NULL, the profile is computed
for value updated to c(value, fixed).

return.optim If this is TRUE, and if maximization of likelihood given value and fixed is
indeed required, then the full result of the optimization call is returned.

constr_crits Inequality constraints, by default those provided in the first iteration of the work-
flow, if any. See constr_crits for details.

eq_constr Optional equality constraints, provided in the same format as constr_crits
(This feature is experimental: in particular the procedure for finding initial
values for maximization of likelihood does not use the eq_constr information).
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... For SLik_j method, arguments passed to SLik method. For SLik_j method,
currently not used.

init Better ignored. Either a named vector of parameter values (initial value for some
optimizations) or a character string. The default is to call a procedure to find a
good initial point from a set of candidates. The source code should be consulted
for further details and is subject to change without notice.

which Better ignored (for development purpose).

Value

If return.optim is FALSE (default): the predicted summary profile log-likelihood, with possible
attribute "solution", the optimization solution vector (named numeric vector, missing if no pro-
filing was needed). if return.optim is TRUE, the result of an optimization call, a list including
elements solution (solution vector) and objective (log-likelihood).

See Also

example_reftable

Examples

## see e.g. 'example_reftable' documentation

project.character Learn a projection method for statistics and apply it

Description

project is a generic function with two methods. If the first argument is a parameter name,
project.character (alias: get_projector) defines a projection function from several statistics to
an output statistic predicting this parameter. project.default (alias: get_projection) produces
a vector of projected statistics using such a projection. project is particularly useful to reduce
a large number of summary statistics to a vector of projected summary statistics, with as many
elements as parameters to infer. This dimension reduction can substantially speed up subsequent
computations. The concept implemented in project is to fit a parameter to the various statistics
available, using machine-learning or mixed-model prediction methods. All such methods can be
seen as nonlinear projection to a one-dimensional space. project.character is an interface that
allows different projection methods to be used, provided they return an object of a class that has a
defined predict method with a newdata argument.

deforest_projectors is an utility to reduce the saved size of objects containing ranger objects
(reproject can be used to reverse this).
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Usage

project(x,...)

## S3 method for building the projection
## S3 method for class 'character'
project(x, stats, data,

trainingsize= eval(Infusion.getOption("trainingsize")),
train_cP_size= eval(Infusion.getOption("train_cP_size")), method,
methodArgs=eval(Infusion.getOption("proj_methodArgs")),
verbose=TRUE, keep_data=TRUE, ...)

get_projector(...) # alias for project.character

## S3 method for applying the projection
## Default S3 method:
project(x, projectors, use_oob=Infusion.getOption("use_oob"),

is_trainset=FALSE, methodArgs=list(), ext_projdata, ...)
get_projection(...) # alias for project.default

##
deforest_projectors(object)

Arguments

x The name of the parameter to be predicted, or a vector/matrix/list of matrices of
summary statistics.

stats Statistics from which the predictor is to be predicted

use_oob Boolean: whether to use out-of-bag predictions for data used in the training
set, when such oob predictions are available (i.e. for random forest methods).
Default as controlled by the same-named package option, is TRUE. This by
default involves a costly check on each row of the input x, whether it belongs
to the training set, so it is better to set it to FALSE if you are sure x does not
belong to the training set (for true data in particular). Alternatively the check
can be bypassed if you are sure that x was used as the training set.

is_trainset Boolean. In a project call, set it to TRUE if x was used as the training set, to
bypass a costly check (see use_oob argument). The same logic may apply in a
plot_proj call, except that it is not immediately obvious for users whether the
full reference table in an object was used as the training set, so trying to save
time by setting is_trainset=TRUE requires more insight.

data A list of simulated empirical distributions, as produced by add_simulation, or
a data frame with all required variables.

trainingsize, train_cP_size
Integers; for most projection methods (excluding "REML" but including "ranger")
only trainingsize is taken into account: it gives the maximum size of the
training set (and is infinite by default for "ranger" method). If the data have
more rows the training set is randomly sampled from it. For the "REML" method,
train_cP_size is the maximum size of the data used for estimation of smooth-
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ing parameters, and trainingsize is the maximum size of the data from which
the predictor is built given the smoothing parameters.

method character string: "REML", "GCV", or the name of a suitable projection function.
The latter may be defined in another package, e.g. "ranger" or "randomForest",
or predefined by Infusion, or defined by the user. See Details for predefined
functions and for defining new ones. The default method is "ranger" if this
package is installed, and "REML" otherwise. Defaults may change in later ver-
sions, so it is advised to provide an explicit method to improve reproducibility.

methodArgs A list of arguments for the projection method. For project.character, the
ranger method is run with some default argument if no methodArgs are speci-
fied. Beware that a NULL methodArgs$splitrule is interpreted as the "extratrees"
splitrule, whereas in a direct call to ranger, this would be interpreted as the
"variance" splitrule. For project.default, the only methodArgs element
handled is num.threads passed to predict.ranger (which can also be con-
trolled globally by Infusion.options(nb_cores=.)).
For other methods, project kindly (tries to) assign values to the required argu-
ments if they are absent from methodArgs, according to the following rules:
If "REML" or "GCV" methods are used (in which case methodArgs is completely
ignored); or
if the projection method uses formula and data arguments (in particular if the
formula is of the form response ~ var1 + var2 + ...; otherwise the formula
should be provided through methodArgs). This works for example for methods
based on nnet; or
if the projection method uses x and y arguments. This works for example for the
(somewhat obsolete) method randomForest (though not with the generic func-
tion method="randomForest", but only with the internal function method="randomForest:::randomForest.default").

projectors A list with elements of two possible forms: (1) <name>=<project result>,
where the <name> must differ from any name of x and <project result> is the
return object of a project call; or (2) <name>=NULL where <name> is the name
of a variable (raw summary statistic) in x (such explicit NULLs are needed for
any raw statistic to be retained in the projected data; see Value).

verbose Whether to print some information or not. In particular, TRUE, true-vs.-predicted
diagnostic plots will be drawn for projection methods “known” by Infusion (no-
tably "ranger", "fastai.tabular.learner.TabularLearner", "keras::keras.engine.training.Model",
"randomForest", "GCV", caret::train).

keep_data, ext_projdata
(experimental, and only when ranger is used). Setting keep_data=FALSE al-
lows the input data to be removed from the return object of project.character
(where they are otherwise part of its call element). This may be useful to save
memory when multiple projections are based on the same data. However, as
this data information is sometimes used, it must then be manually added as
element projdata to the return value of infer_SLik_joint, and provided to
project.default calls through the ext_projdata argument.

object An object of class SLik_j.

... Further arguments passed to or from other functions. Currently, they are passed
to plot.
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Details

The preferred project method is non-parametric regression by (variants of) the random forest
method as implemented in ranger. It is the default method, if that package is installed. Alter-
native methods have been interfaced as detailed below, but the functionality of most interfaces is
infrequently tested.

By default, the ranger call through project will use the split rule "extratrees", with some other
controls also differing from the ranger package defaults. If the split rule "variance" is used, the
default value of mtry used in the call is also distinct from the ranger default, but consistent with
Breiman 2001 for regression tasks.

Machine learning methods such as random forests overfit, except if out-of-bag predictions are used.
When they are not, the bias is manifest in the fact that using the same simulation table for learning
the projectors and for other steps of the analyses tend to lead to too narrow confidence regions. This
bias disappears over iterations of refine when the projectors are kept constant. Infusion avoid
this bias by using out-of-bag predictions when relevant, when ranger and randomForest are used.
But it provides no code handling that problem for other machine-learning methods. Then, users
should cope with that problems, and at a minimum should not update projectors in every iteration
(the “Gentle Introduction to Infusion may contain further information about this problem”).

Prediction can be based on a linear mixed model (LMM) with autocorrelated random effects, inter-
nally calling the fitme function with formula <parameter> ~ 1+ Matern(1|<stat1>+...+<statn>).
This approach allows in principle to produce arbitrarily complex predictors (given sufficient input)
and avoids overfitting in the same way as restricted likelihood methods avoids overfitting in LMM.
REML methods are then used by default to estimate the smoothing parameters. However, faster
methods are generally required.

To keep REML computation reasonably fast, the train_cP_size and trainingsize arguments
determine respectively the size of the subset used to estimate the smoothing parameters and the size
of the subset defining the predictor given the smoothing parameters. REML fitting is already slow
for data sets of this size (particularly as the number of predictor variables increase).

If method="GCV", a generalized cross-validation procedure (Golub et al. 1979) is used to estimate
the smoothing parameters. This is faster but still slow, so a random subset of size trainingsize is
still used to estimate the smoothing parameters and generate the predictor.

Alternatively, various machine-learning methods can be used (see e.g. Hastie et al., 2009, for an
introduction). A random subset of size trainingsize is again used, with a larger default value
bearing the assumption that these methods are faster. Predefined methods include

• "ranger", the default, a computationally efficient implementation of random forest;

• "randomForest", the older default, probably obsolete now;

• "neuralNet", a neural network method, using the train function from the caret package
(probably obsolete too);

• "fastai" deep learning using the fastai package;

• "keras" deep learning using the keras package.

The last two interfaces may yet offer limited or undocumented control: using deep learning seems
attractive but the benefits over "ranger" are not clear (notably, the latter provide out-of-bag predic-
tions that avoid overfitting).

In principle, any object suitable for prediction could be used as one of the projectors, and
Infusion implements their usage so that in principle unforeseen projectors could be used. That is, if

https://gitlab.mbb.univ-montp2.fr/francois/Infusion/-/blob/master/documents/InfusionIntro.pdf
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predictions of a parameter can be performed using an object MyProjector of class MyProjectorClass,
MyProjector could be used in place of a project result if predict.MyProjectorClass(object,newdata,...)
is defined. However, there is no guarantee that this will work on unforeseen projection methods,
as each method tends to have some syntactic idiosyncrasies. For example, if the learning method
that generated the projector used a formula-data syntax, then its predict method is likely to re-
quest names for its newdata, that need to be provided through attr(MyProjector,"stats") (these
names cannot be assumed to be in the newdata when predict is called through optim).

Value

project.character returns an object of the class returned by the called method (by default, a
ranger object for the up-to-date workflow).

project.default returns an object of the same class and structure as the input x, containing the
variables named in the projectors argument, each variable being a projected statistics inferred
from the input summary statistics, or a summary statistic copied from the input x (if an explicit
NULL projector was included for this statistic in the projectors argument).

deforest_projectors is used for its side effect (the contents of an environment within the input
object been modifed), and returns a character string emphasizing this feature.

Note

See workflow examples in example_reftable and example_raw_proj.

References

Breiman, L. (2001). Random forests. Mach Learn, 45:5-32. <doi:10.1023/A:1010933404324>

Golub, G. H., Heath, M. and Wahba, G. (1979) Generalized Cross-Validation as a method for
choosing a good ridge parameter. Technometrics 21: 215-223.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, New York, 2nd edition, 2009.

See Also

plot_proj and plot_importance for diagnostic plots of the projections.

Examples

## see Note for links to examples.
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refine Refine estimates iteratively

Description

refine is a generic function with methods for objects of the classes produced by MSL. In the up-
to-date workflow, it can automatically (1) define new parameters points, (2) add simulations to the
reference table for these points, (3) optionally recompute projections, (4) update the inference of
the likelihood surface, and (5) provides new point estimates, confidence intervals, and other results
of an MSL call. It can repeat these steps iteratively as controlled by its workflow_design. Although
it has many control arguments, few of them may be needed in any application. In particular it is
designed to use reasonable default controls for the number of iterations, the number of points added
in each iteration, and whether to update projections or not, when given only the current fit object as
input.

reproject and recluster are wrappers for refine(..., ntot=0L), updating the object after ei-
ther recomputing the projections or only re-performing the multivariate gaussian mixture clustering.

Usage

## S3 method for class 'SLik'
refine(object, method=NULL, ...)
## Default S3 method:
refine(

object,
## reference table simulations
Simulate = attr(surfaceData,"Simulate"),
control.Simulate = attr(surfaceData,"control.Simulate"),
newsimuls = NULL,
## CIs
CIs = workflow_design$reftable_sizes[useCI],
useCI = prod(dim(object$logLs))<12000L, level = 0.95,
## workflow design
workflow_design = get_workflow_design(

npar=length(fittedPars), n_proj_stats = length(statNames),
n_latent=length(latentVars)),

maxit, ntot= maxit*.get_size_first_iter(object), n=NULL,
## termination conditions
precision = Infusion.getOption("precision"),
eval_RMSEs = workflow_design$reftable_sizes,
## verbosity
verbose = list(notable=TRUE, most=interactive(),final=NULL, movie=FALSE,

proj=FALSE, rparam=NULL, progress_bars=interactive()),
## projection controls
update_projectors = NULL,
methodArgs = list(),
## Likelihood surface modeling (up-to-date workflow)
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using = object$using,
nbCluster = quote(refine_nbCluster(nr=nrow(data))),
## parallelisation
cluster_args = list(), nb_cores=NULL, env=get_from(object,"env"),
packages = get_from(object,"packages"), cl_seed=.update_seed(object),
## obscure stuff
target_LR = NULL,
## not explicitly needed in up-to-date workflow
trypoints = NULL,
surfaceData,
method,
useEI = list(max=TRUE,profileCI=TRUE,rawCI=FALSE),
rparamFn = Infusion.getOption("rparamFn"),
##
...

)

reproject(object, eval_RMSEs = NULL, CIs = NULL, ...)
recluster(object, eval_RMSEs = NULL, CIs = NULL, update_projectors=FALSE, ...)

Arguments

object an SLik or SLik_j object

## reference table simulations

Simulate Character string: name of the function used to simulate samples. As it is typi-
cally stored in the object this argument does not need to be explicitly given; oth-
erwise this should be the same function provided to add_reftable, whose doc-
umentation details the design requirements. The only meaningful non-default
value is NULL, in which case refine may return (if newsimuls is also NULL) a
data frame of parameter points on which to run a simulation function.

control.Simulate

A list of arguments of the Simulate function (see add_simulation). The de-
fault value should be used unless you understand enough of its structure to mod-
ify it wisely (e.g., it may contain the path of an executable on one machine and
a different path may be specified to refine a fit on another machine).

newsimuls For the SLik_j method, a matrix or data frame, with the same parameters and
summary statistics as the data of the original infer_SLik_joint call.
For other methods, a list of simulation of distributions of summary statistics, in
the same format as for link{add_simulation}. If no such list is provided (i.e.,
if newsimuls remains NULL), the function extracted by get_from(object,"Simulate")
is used (it is inherited from the Simulate argument of add_simulation through
the initial sequence of calls of functions add_simulation, infer_logLs or
infer_tailp, and infer_surface). If no such function is available, then this
function returns parameters for which new distribution should be provided by
the user.

## CIs
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CIs Boolean, or boolean vector, or numeric (preferably integer) vector: controls to
infer bounds of (one-dimensional, profile) confidence intervals. The numeric
vector form allows to specify reference table size(s) for which CIs should be
computed when these sizes are first reached. TRUE or FALSE will force or in-
hibit computation in all iterations. Finally (and probably less useful), a boolean
vector such as CIs=c(TRUE,FALSE,TRUE) requests computation of CIs when
the number of points cumulatively added reaches the target number of points
for the first, third, and any subsequent iterations up to maxit (this may differ in
certain cases from the first, third, and so on, iterations: see Details).
The default for refine is described in the Details. The default for reproject is
to update the CIs if there are computed ones within the input object.

useCI whether to perform RMSE computations for inferred confidence interval points.

level Intended coverage of confidence intervals

## workflow design

workflow_design

A list structured as the return value of get_workflow_design. The default value
makes reference to elements of the input object’s colTypes element.

maxit Maximum number of iterative refinements (see also precision argument).

ntot NULL or numeric: control of the total number of simulated samples (one for
each new parameter point) to be added to the reference table over the maxit
iterations. See Details for the rules used to determine the number of points
added in each iteration. Reasonable default values are defined for ntot and
maxit (see Details), so that beginners (and ideally, even more advanced users)
do not have to find good values.
ntot=0L may be used to re-generate the projectors or the clustering without
augmenting the reference table.

n NULL or numeric, for a number of parameter points (excluding replicates and
confidence interval points in the primitive workflow), whose likelihood should
be computed in each iteration (see n argument of sample_volume). Slightly less
intutive alternative to ntot specification, as there is at least one iteration where
the actual number of added points is not the nominal n (see Details). n=0L will
have the same effect as ntot=0L.

## termination conditions

precision Requested local precision of surface estimation, in terms of prediction standard
errors (RMSEs) of both the maximum summary log-likelihood and the likeli-
hood ratio at any CI bound available. Iterations will stop when either maxit is
reached, or if the RMSEs have been computed for the object (see eval_RMSEs
argument) and this precision is reached for the RMSEs. A given precision on
the CI bounds themselves might seem more interesting, but is not well specified
by a single precision parameter if the parameters are on widely different scales.

eval_RMSEs Same usage as for CIs; controls the eval_RMSEs argument of MSL in each iter-
ation. See Details for the default. The default for reproject is to update the
RMSEs if there are computed ones within the input object.

## verbosity
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verbose A list as shown by the default, or simply a vector of booleans. verbose$most
controls whether to display information about progress and results, except plots;
$final controls whether to plot() the final object to show the final likeli-
hood surface. Default is to plot it only in an interactive session and if fewer
than three parameters are estimated; $movie controls whether to plot() the up-
dated object in each iteration; verbose$proj controls the verbose argument
of project.character; verbose$rparam controls (cryptic) information about
generation of new parameter points; verbose$progress_bars controls display
of some progress bars. If verbose is an unnamed vector of booleans, they are
interpreted as as-many first elements of theverbose vector, in the order shown
by the default.

## projection controls

update_projectors

Same usage as for CIs; this controls in which iterations the projectors are up-
dated. The default NULL value is strongly recommended. See Details for further
explanations.

methodArgs A list of arguments for the projection method. By default the methodArgs of the
original project.character calls are reused over iteration, but elements of the
new methodArgs list will be used to update the original methodArgs. Note that
the updated list becomes the new default for further iterations.

## Likelihood surface modeling

using Passed to infer_SLik_joint: a character string used to control the joint-density
estimation method, as documented for that function (see method instead for
equivalent control in primitive workflow). Default is to use to same method
as in the the first iteration, but this argument allows a change of method.

nbCluster Passed to infer_SLik_joint. The data in the expression for the default value
refers to the data argument of the latter function.

## parallelisation

cluster_args A list of arguments for makeCluster, in addition to makeCluster’s spec argu-
ment which is in most cases best specified by the nb_cores argument. Cluster
arguments allow independent control of parallel computations for the different
steps of a refine iteration (see Details; as a rough but effective summary, use
only nb_cores when the simulations support it, and see the methodArgs ar-
gument if independent control of parallelisation of the projection procedure is
needed).

nb_cores Integer: shortcut for specifying cluster_args$spec for sample simulation.

packages NULL or a list with possible elements add_simulation and logL_method (the
latter for the primitive workflow). These elements should be formatted as the
packages arguments of add_simulation and infer_logLs, respectively, wherein
they are the additional packages to be loaded on child processes. The effect of
the default value of this argument is to pass over successive refine calls the
value stored in the input fit object (itself determined by the latest use of the
packages argument in, e.g., add_simulation or in previous refines).
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env An environment, passed as the env argument to add_simulation. The default
value keeps the pre-refine value over iterations.

cl_seed NULL or integer, passed to add_simulation. The default code uses an internal
function, .update_seed, to update it from a previous iteration.

## others

target_LR Likelihood ratio threshold used to control the sampling of new points and the
selection of points for projections. Do not change it unless you known what you
are doing.

method For the primitive workflow: (a vector of) suggested method(s) for estimation
of smoothing parameters (see method argument of infer_surface). The ith
element of the vector is used in the ith iteration, if available; otherwise the last
element is used. This argument is not always heeded, in that REML may be used
if the suggested method is GCV but it appears to perform poorly. The default
for SLikp and SLikp objects are "REML" and "PQL", respectively.

trypoints A data frame of parameters on which the simulation function get_from(object,"Simulate")
should be called to extend the reference table. Only for programming by expert
users, because poorly thought input trypoints could severely affect the infer-
ences.

useEI for the primitive workflow only: cf this argument in rparam.

surfaceData for the primitive workflow only: a data.frame with attributes, usually taken from
the object and thus not specified by user, usable as input for infer_surface.

rparamFn Function used to sample new parameter values.

... further arguments passed to or from other methods. refine passes these argu-
ments to the plot method suitable for the object.

Details

* Controls of exploration of parameter space: New parameter points are sampled so as to fill
the space of parameters contained in the confidence regions defined by the level argument, and to
surround it by a region sampled proportionally to likelihood.

Each refine call performs several iterations, these iterations stopping when ntot points have been
added to the simulation table. The target number of points potentially added in each iteration is
controlled by the ntot and maxit arguments as described below, but fewer points may be actually
added in each iteration, and more than maxit iterations may be needed to add the ntot points, if in
a given iteration too few “good” candidate points are generated according to the internal rules for
sampling the parameter region with high likelihood. In that case, the next iteration tries to keep up
with the missing points by adding more points than the target number, but if not enough points have
been added after maxit iterations, further iterations will be run.

CIs and RMSEs may be computed in any iteration but the default values of eval_RMSEs and CIs are
chosen so as to avoid performing these computations too often, particularly when they are expected
to be slow. The default implies that the RMSE for the maximum logL will be computed at the end
each block of iterations that defines a refine (itself defined to reach to reference table sizes specified
by the workflow_design and its default value). If the reference table is not too large (see default
value of useCI for the precise condition), RMSEs of the logL are also computed at the inferred
bounds of profile-based confidence intervals for each parameter.
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Although the update_projectors argument allow similar control of the iterations where projec-
tions are updated, it is advised to keep it NULL (default value), so that whether projectors are up-
dated in a given iteration is controlled by default internal rules. Setting it to TRUE would induce up-
dating whenever any of the target reference table sizes implied by the workflow_design$subblock_sizes
is reached. The default NULL, as the same effect subject to additional conditions: updating may not
be performed when the training set is considered too similar to the one used to compute pre-existing
projections, or when the train set includes more samples than the limit define by the global package
option upd_proj_subrows_thr

Default values of ntot and maxit are controlled by the value of the workflow_design, which
itself has the shown default value, and are distinct for the first vs. subsequent refines. The target
number of points in each iteration is also controlled differently for the first vs. subsequent refines.
This design is motivated by the fact that the likelihood surface is typically poorly inferred in the
first refine so that the parameter points sampled then tend to be less relevant than those that can be
sampled in later iterations. In the first refine call, the target number of points increases roughly as
powers of two over iterations, to reach ntot cumulatively after maxit iterations. The default ntot
is twice the size of the initial reference table, and the default maxit is 5. The example_reftable
Example illustrates this, where the initial reference table holds 200 simulations, and the default
target number of points to be added in 5 iterations by the first refine call are 25, 25, 50, 100 and
200. In later refine calls, the target number is ntot/maxit in each iteration.

* Independent control of parallelisation may be needed in the different steps, e.g. if the simu-
lations are not easily parallelised whereas the projection method natively handles parallelisation.
In the up-to-date workflow with default ranger projection method, distinct parallelisation con-
trols may be passed to add_reftable for sample simulations, to project methods when projec-
tions are updated, and to MSL for RMSE computations (alternatively for the primitive workflow,
add_simulation, infer_logLs and MSL are called). The most explicit way of specifying distinct
controls is by a list structured as

cluster_args=list(reftable=list(<makeCluster arguments>),
RMSEs=list(<makeCluster arguments>))

A project=list(num.threads=<.>) element can be added to this list, providing control of the
num.threads argument of ranger functions. However, this is retained mainly for back compatibil-
ity as the methodArgs argument can now be used to specify the num.threads.

Simpler arguments may be used and will be interpreted as follows: nb_cores, if given and not over-
riden by a spec argument in cluster_args (or in sublists of it), will control simulation and pro-
jection steps (but not RMSE computation): that is, nb_cores then gives the number of parallel pro-
cesses for sample simulation, with additional makeCluster arguments taken from cluster_args,
but RMSE computations are performed serially. On the other hand, a spec argument in cluster_args=list(spec=<.>,
<other makeCluster arguments>)) will instead apply the same arguments to both reference table
and RMSE computation, overcoming the default effect of nb_cores in both of them.

Value

refine returns an updated SLik or SLik_j object, unless both newsimuls and Simulate arguments
are NULL, in which case a data frame of parameter points is returned.
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Note

See workflow examples in (by order of decreasing relevance) example_reftable, example_raw_proj
and example_raw.

See get_workflow_design, the function that controls the default value of the workflow_design
argument, and can be used to provide non-default controls.

Examples

## see Note for links to examples.

reparam_fit Conversion to new parameter spaces

Description

Functions to facilitate inferences using alternative parametrizations of the same model, reusing an
existing reference table. reparam_reftable produces a reference table in the new parametrization.
reparam_fit does the same internally, and runs infer_SLik_joint and MSL on the new reference
table.

reparam_fit is experimental and may have various limitations.

Usage

reparam_fit(fitobject, to, reparamfn,
LOWER=NULL, UPPER=NULL, nbCluster="max",
constr_crits = get_from(fitobject, "constr_crits"),
raw=FALSE,

reftable_attrs=NULL,
...)

reparam_reftable(fitobject, to, reparamfn,
LOWER=NULL, UPPER=NULL, raw=FALSE, reftable_attrs=NULL)

Arguments

fitobject an object of class SLik_j.

to Character vector: names of all parameters in the new parametrization.

reparamfn A function which can convert a data frame/matrix/vector of “old” parameters to
an object of the same class in the new parametrization. It must have two argu-
ments: its first argument must hold the “old” data frame/matrix/vector; and the
second argument is either to (holding the to argument given to reparam_reftable)
if reparamfn needs this information, or ....

LOWER, UPPER Optional named vectors of bounds. They may be incomplete, containing values
only for new parameters, and not necessarily for all of them (missing informa-
tion is deduced from the observed ranges in the reference table).
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nbCluster Passed to infer_SLik_joint.

constr_crits constr_crits applicable in the new parametrization. The suitability of such
constraints is checked on the transformed reference table. When this argument
is ignored, its default value is taken from the input object and therefore refers to
the old parametrization. The check may then highlight the need for providing
constraints redefined in reference to the new parametrization.

raw Boolean; if TRUE, the object is re-built starting from the raw reference table. In
particular the projections are re-computed.

reftable_attrs A list whose elements are set as attributes to the re-parametrized reference
table (see Value in add_reftable). Elements not provided by this argument
will be copied from the input reference table. A typical use is to provide as
Simulate function in the new parametrization (see Examples).

... Passed to MSL.

Value

reparam_reftable returns a reference table with attributes, suitable as input for infer_SLik_joint.
reparam_fit returns the return value of an MSL call.

The information about projections retained in these objects come from original fitobject.

Examples

## Not run:

## Toy simulation function
# (inspired by elementary population-genetic scenario)

hezsim <- function(logNe=parvec["logNe"],
logmu=parvec["logmu"],parvec) {

Ne <- 10^logNe
mu <- 10^logmu
Es <- Ne*mu
Vs <- 1/log(1+Ne)
genom_s <- rgamma(5, shape=Es/Vs,scale=Vs) # 5 summary statistics
names(genom_s) <- paste0("stat",seq(5))
genom_s

}

{ ## Analysis with 'canonical' parameters
#
## simulated data, standing for the actual data to be analyzed:
set.seed(123)
Sobs <- hezsim(logNe=4,logmu=-4)
#
parsp <- init_reftable(lower=c(logNe=1,logmu=-5),

upper=c(logNe=6,logmu=-2))
init_reft_size <- nrow(parsp)
simuls <- add_reftable(Simulate=hezsim, parsTable=parsp)
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{
plogNe <- project("logNe", data=simuls, stats=paste0("stat",seq(5)))
plogmu <- project("logmu", data=simuls, stats=paste0("stat",seq(5)))

dprojectors <- list(plogNe=plogNe,plogmu=plogmu)

projSimuls <- project(simuls,projectors=dprojectors,verbose=FALSE)
projSobs <- project(Sobs,projectors=dprojectors)

}

{ ## Estimation:
ddensv <- infer_SLik_joint(projSimuls,stat.obs=projSobs)

dslik_j <- MSL(ddensv, eval_RMSEs=FALSE) ## find the maximum of the log-likelihood surface
refined_dslik_j <- refine(dslik_j, eval_RMSEs=FALSE, CIs=FALSE)

}
}

{ ## Reparametrization to composite parameters

locreparamfn <- function(object, ...) {
logTh <- object[["logmu"]]+object[["logNe"]]
if (inherits(object,"data.frame")) { # *data.frame case always needed.*

data.frame(logTh=logTh,
logNe=object[["logNe"]])

} else if (is.matrix(object)) {
cbind(logTh=logTh,

logNe=object[["logNe"]])
} else c(logTh=logTh,

logNe=object[["logNe"]])
}

{ ## without re-projection
rps <- reparam_fit(refined_dslik_j, to=c("logTh","logNe"),

reparamfn = locreparamfn)
plot(rps)

}

{ ## with re-projection [necessary to allow refine()'s]

# For refine() a new simulation will be needed, with new input parameters:
hezsim2 <- function(logNe=parvec["logNe"],logTh=parvec["logTh"],parvec) {

hezsim(logNe=logNe,logmu=logTh-logNe)
}

rps <- reparam_fit(refined_dslik_j, to=c("logTh","logNe"),
reparamfn = locreparamfn,
raw=TRUE, # to allow re-projection
reftable_attrs=list(Simulate=hezsim2))

plot(rps)
refine(rps)

}
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}

## End(Not run)

rparam Sample the parameter space

Description

These functions are relevant only for the primitive workflow. They take an SLik object (as produced
by MSL) and samples its parameter space in (hopefully) clever ways, not yet well documented.
rparam calls sample_volume to define points targeting the likelihood maximum and the bounds
of confidence intervals, with n for these different targets dependent on the mean square error of
prediction of likelihood at the maximum and at CI bounds.

Usage

rparam(object, n= 1, useEI = list(max=TRUE,profileCI=TRUE,rawCI=FALSE),
useCI = TRUE, verbose = interactive(), tryn=30*n,
level = 0.95, CIweight=Infusion.getOption("CIweight"))

sample_volume(object, n = 6, useEI, vertices=NULL,
dlr = NULL, verbose = interactive(),
fixed = NULL, tryn= 30*n)

Arguments

object an SLik or SLik_j object

n The number of parameter points to be produced

useEI List of booleans, each determining whether to use an “expected improvement”
(EI) criterion (e.g. Bingham et al., 2014) to select candidate parameter points
to better ascertain a particular focal point. The elements max, profileCI and
rawCI determine this for three types of focal points, respectively the MSL es-
timate, profile CI bounds, and full-dimensional bounds. When EI is used, n
points with best EI are selected among tryn points randomly generated in some
neighborhood of the focal point.

vertices Points are sampled within a convex hull defined by vertices. By default, these
vertices are taken from object$fit$data.

useCI Whether to define points targeting the bounds of confidence intervals for the
parameters. An expected improvement criterion is also used here.

level If useCI is TRUE but confidence intervals are not available from the object, such
intervals are computed with coverage level.

dlr A (log)likelihood ratio threshold used to select points in the upper region of the
likelihood surface. Default value is given by Infusion.getOption("LRthreshold")
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verbose Whether to display some information about selection of points, or not

fixed A list or named vector, of which each element is of the form <parameter
name>=<value>, defining a one-dimensional constraint in parameter space. Points
will be sampled in the intersection of the volume defined by the object and of
such constraint(s).

tryn See useEI argument.

CIweight For development purposes, not documented.

Value

a data frame of parameter points. Only parameters variable in the SLik object are considered.

References

D. Bingham, P. Ranjan, and W.J. Welch (2014) Design of Computer Experiments for Optimization,
Estimation of Function Contours, and Related Objectives, pp. 109-124 in Statistics in Action: A
Canadian Outlook (J.F. Lawless, ed.). Chapman and Hall/CRC.

Examples

if (Infusion.getOption("example_maxtime")>10) {
data(densv)
summliksurf <- infer_surface(densv) ## infer a log-likelihood surface
sample_volume(summliksurf)

}

save_MAFs Save or load MAF Python objects

Description

Infusion fit results created using the mafR package contain (pointers to) Python objects, which are
lost (their pointers being reduced to null pointers) when the fit object is saved on file and reloaded.
The functions described here circumvent this issue.

save_MAFs will save the Python objects in distinct files. load_MAFs will load them back into the fit
object, not overriding anyone pre-existing into the target fit object. The Python objects are saved
under, and read from, files whose names are made of "jointdens", "pardens"... and the given
prefix and extension.

Usage

save_MAFs(object, ext="_MAF.pkl", prefix="")
load_MAFs(object, ext="_MAF.pkl", prefix="", set_path_only=FALSE)



80 simulate.SLik_j

Arguments

object An object of class "SLik_j" as produced by the up-to-date Infusion workflow.

prefix, ext Character: Prefix and extension for the filename of each saved MAF object.

set_path_only Boolean: if TRUE, checks the presence of the saved MAF files, but do not
load them, and (re)set the path information in the object (see Details for a
programming context of usage).

Details

Both functions can write file path information into the input object’s load_MAFs_info element (an
environment), where it can be read afterwards. save_MAFs will do so in all cases, and load_MAFs
will do so when called with argument set_path_only=TRUE. When a bootstrap is run using paral-
lelisation, the child processes can thus load files using their location information stored in this way.
When the files have been moved after the save_MAFs call, their location information must then be
updated using load_MAFs(., set_path_onlTRUE).

Value

Both functions return the updated input object.

See Also

reticulate::py_save_object is used to save the Python objects.

Examples

## Given object 'slik_j' of class SLik_j
# save_MAFs(slik_j, prefix = "2024Feb30_")
## => '2024Feb30_jointdens_MAF.pkl', etc.
# save(slik_j, file="slik_j.rda")
## => Objects from Python environments are not saved in the RData file.

# and later:
# load(file="slik_j.rda")
# slik_j <- load_MAFs(slik_j, prefix = "2024Feb30_")
## Objects from pkl files are put back at the right place in 'slik_j'.

simulate.SLik_j Simulate method for an SLik_j object.

Description

simulate method for SLik_j objects, by default simulating realizations of the vector of projected
summary statistics, drawn from their inferred distribution, given the summary-ML estimates which
are the default value of the given argument.
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For any non-default given argument, the sampling distribution is still deduced from the multivari-
ate Gaussian mixture fit of the reference table, by conditioning it on given values. Any variable
included in the mixture model may be included in given, allowing to simulate from other distribu-
tions than that of the vector of projected summary statistics.

This usage should not be confused with simulating the sample-generating process, necessarily dis-
tinctly available to the user, and which does not rely on the mixture model stored in the fit object.
Simulations of the sample-generating process for given parameter values can be obtained by setting
non-default option SGP=TRUE.

Usage

## S3 method for class 'SLik_j'
simulate(object, nsim = 1, seed = NULL, given=object$MSL$MSLE,

norm_or_t=.wrap_rmvnorm, SGP=FALSE, ...)

Arguments

object An object of class SLik_j as produced by the up-to-date workflow.

nsim number of response vectors of projected summary statistics to simulate.

seed Seed for the random number generator (RNG). Here this controls the .Random.seed
in the global environment, as in simulate.lm. This means that if a non-NULL
seed is specified, it controls the RNG during the simulate call, but the RNG is
reset to its prior state on exit.

given The default is the summary-MLE, a full vector of fitted parameters; but Any
variable included in the mixture fit of the referencetable may be included (see
Description).

norm_or_t Controls the sampler in in cluster of the mixture. The default value is a trivial
wrapper around the rmvnorm sampler (consistently with the fitted model), but
this argument makes it possible to specify other samplers (e.g., norm_or_t=Infusion:::.wrap_rmvt
to sample from rmvt(., df=1); or used-defined samplers with the same inter-
face).

SGP Boolean. Whether to sample from the sample-generating process.

... Additional arguments. Currently ignored, except when SGP=TRUE, in which case
e.g. control.Simulate can be passed through the dots to control the sample
simulator.

Value

By default (SGP=FALSE), a matrix of size nsim times the number of projected summary statistics;
if SGP=TRUE, a data frame with columns for parameters, for raw summary statistics, and optionally
for latent variables if relevant.

Examples

## Assuming an object 'slik_j' of class 'SLik_j':
# simulate(slik_j, nsim=3)
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summLik Model density evaluation for given data and parameters

Description

Evaluation of inferred probability density as function of parameters and of (projected) summary
statistics is implemented as a generic function summLik. This documentation deals mostly with its
method for objects of class SLik_j produced by the up-to-date version of the summary-likelihood
workflow.

Given the (projected) statistics for the data used to build the SLik_j object, and the fitted parameters,
this returns the (log)likelihood, as the generic logLik extractor does. However, parameters can be
varied (so that summLik provides the likelihood function rather than simply its maximum), the
data can be varied too, and likelihood profiles (or even full new estimates) are computed when an
incomplete parameter vector (or even NULL) is specified.

Usage

summLik(object, parm, data, ...)

## S3 method for class 'SLik_j'
summLik(object, parm, data=t(get_from(object,"proj_data")),

log=TRUE, which="safe", constr_tuning = Inf,
newMSL=FALSE, ...)

Arguments

object An SLik or SLik_j object

parm Vector, data frame or matrix, containing coordinates of parameter points for
which (log) likelihoods will be computed; or NULL. A profile will be computed
if a single incomplete parameter vector is provided. A full new estimate will be
computed in parm is NULL.

data Matrix of (projected, if relevant) summary statistics for which the likelihood of
given parameters is to be computed. By default, the (projected) statistics for the
data used to build the SLik_j object

log Boolean: whether to return log likelihood or raw likelihood. Better ignored.

which character string: "lik" for (log) likelihood deduced from the multivariate gaus-
sian mixture model for joint parameters and summary statistics, without further
modifications. But the default, "safe", may correct this result to deal with pos-
sible extrapolation artefacts (see Details of predict.SLik_j).

constr_tuning Passed to predict.SLik_j.

newMSL Boolean. If this is TRUE and a profile was computed, attributes are added to the
result (see Value).

... further arguments passed to or from other methods. Currently only passed to
predict.SLik_j when no likelihood profile is computed.
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Value

Numeric vector, with optional attribute(s).

If no profile is computed, it may have attributes from the return value of predict.SLik_j. If
a profile is computed, the returned value has attribute "profpt" giving the profile-maximizing
parameter vector. Further, if newMSL=TRUE, the following attributes are added: "newobs_MSL", a
list with information about unconstrained summary-likelihood maximization (useful mainly when
there are new data); and "LRstat", the resulting log-likelihood ratio.

See Also

predict.SLik_j) for case without profiling; logLik, the standard extractor of likelihood for the
model fitted to the original data.

Examples

## Not run:
## Using 'slik_j' object from the example in help("example_reftable")
summLik(slik_j, parm=slik_j$MSL$MSLE+0.1)

# summLik() generalizes logLik():
summLik(slik_j, parm=slik_j$MSL$MSLE) == logLik(slik_j) # must be TRUE

## End(Not run)
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