Package 'MSEtool'

January 20, 2025

```
Title Management Strategy Evaluation Toolkit
```

Version 3.7.3

Description

Development, simulation testing, and implementation of management procedures for fisheries (see Carruthers & Hordyk (2018) <doi:10.1111/2041-210X.13081>).

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.5.0), snowfall

Imports abind, dplyr, methods, grDevices, ggplot2, ggrepel, gridExtra, parallel, Rcpp, stats, utils

Suggests boot, broom, covr, crayon, remotes, DT, fmsb, kableExtra, knitr, MASS, mvtnorm, openxlsx, pbapply, r4ss, readxl, reshape2, rfishbase, rmarkdown, shiny, testthat, tidyr, TMB, usethis

LinkingTo Rcpp, RcppArmadillo

BugReports https://github.com/Blue-Matter/MSEtool/issues

URL https://msetool.openmse.com/

NeedsCompilation yes

Author Adrian Hordyk [aut, cre],

Quang Huynh [aut],

Tom Carruthers [aut],

Chris Grandin [ctb] (iSCAM functions)

Maintainer Adrian Hordyk <adrian@bluematterscience.com>

Repository CRAN

Date/Publication 2024-11-22 17:20:06 UTC

	6
Albacore_TwoFleet	7
applyMMP	7
applyMP	8
ASAP2OM	9
Assess2MOM	0
Assess2OM	2
Atlantic_mackerel	5
avail	6
Awatea2OM	7
BAM2MOM	8
boxplot.Data	9
calcRefYield	0
CALsimp	0
Can	1
CheckDuplicate	2
CheckMPs	2
checkMSE	3
CheckOM	4
Choose	5
CombineMMP	6
Converge	6
Cos_thresh_tab	8
cparscheck	8
Cplot	9
Data-class	0
Data2csv	4
DataDescription	4
DataDir	5
DataInit	5
DataSlots	6
Data_xl	7
DecE_Dom	8
DFO_bar	9
DFO_hist	0
DFO_plot	0
DFO_plot2	1
DFO_proj	1
DFO_quant	2
 DFO_report	3
DFO spider	3
DFO_tab	4
DFO_tab_formatted	-
DLMDataDir	-
dnormal	
doHCR 4	

doIfreq	 . 47
Dom	 . 48
doRec	 . 49
Emp	 . 50
Fease	 . 52
Fleet-class	 . 53
FleetDescription	 . 55
FMSYref	 . 56
Generic_Obs	 . 57
getclass	 . 58
getDataList	 . 59
getfirstlev	 . 59
getmov2	 . 60
getMP	 . 61
getnIVs	 . 61
getsel	 . 62
hconv	 . 62
Herm-int	 . 63
Hist-class	 . 64
hist2	 . 66
HistDescription	
Imp-class	. 67
ImpDescription	. 69
initialize-methods	. 69
Input	. 70
isCAM	 . 70
iSCAM2OM	 . 72
iSCAMcomps	 . 74
iSCAMinds	 . 75
joinData	. 75
join_plots	. 76
Kplot	 . 77
Lag_Data	 . 78
ldim	 . 79
LH2OM	 . 79
LHdatabase	 . 81
makeMOM	. 82
makemov	. 83
makemov2	 . 83
makeRel	 . 84
makeTransparent	. 86
ML2D	 . 86
MMSE-class	 . 87
MOM-class	 . 89
movestockCPP	 . 91
movfit_Rcpp	 . 91
MPCalcsNAs	 . 92
MPtype	. 92

MSE-class
MSEDescription
MSEextra
MSYCales
multiData
multiDataS
multidebug
NIL
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Obs-class
ObsDescription
OM-class
OMDescription
OMdoc
OMexample
OMinit
optCPU
Overages
PerformanceMetric
plot.Data
plot.MMSE
plot.MOM
plot.MSE
plot.pars
plotFun
plotmulti
plotOFL
plotquant
plotRel
PMLimit
PMobj-class
Pplot
Pplot2
PWhisker
quantile_plot
RealFease
Rec-class
Replace
replic8
Report
RegData
Required
runCOSEWIC
runInMP
runMP
select_MP
Sense
setup

show,PMobj-method	140	Э
show,Rec-method	140	Э
show-MSEtool	141	1
SIL	141	1
simCAA		
simCAL	143	3
simmov		
simmov2		
Simulate		
SimulatedData		
SimulateMOM		
SketchFun		
smoothy		
Splot		
SS2Data		
SS2DataMOM		
SS2MOM		
SSBrefplot		
Stock-class		
StockDescription		
Sub		
SubCpars		
SubOM		
summary,Data-method		
summary,MMSE-method		
summary,MSE-method		
TAC	167	7
TACfilter		
Taxa_Table		
TEG		
testOM		
Thresh_tab		
tinyErr	171	1
TradePlot		
tune_MP	174	4
Turing	175	5
Uses	177	7
validcpars	177	7
VOI	179	9
VOI2	180)
VOIplot	181	1
WHAM2OM	182	2
wormplot	184	4
writeCSV	184	4
XL2Data	185	5
XL2Fleet	186	5
XL2OM	186	5
XL2Stock	183	7

6 Albacore

Index 189

Albacore

Stock class objects

Description

Example objects of class Stock

Usage

Albacore

Blue_shark

Bluefin_tuna

Bluefin_tuna_WAtl

Butterfish

Herring

Mackerel

Porgy

Rockfish

Snapper

Sole

Toothfish

Format

An object of class Stock of length 1.

Albacore_TwoFleet 7

```
An object of class Stock of length 1.
```

Examples

```
avail("Stock")
```

Albacore_TwoFleet

MOM class objects

Description

Example objects of class MOM

Usage

```
Albacore_TwoFleet
```

Format

An object of class MOM of length 1.

Examples

```
avail("MOM")
```

applyMMP

Apply multi Management Procedures (class MMP) to a hierarchical list of Data class objects

Description

Apply multi Management Procedures (class MMP) to a hierarchical list of Data class objects

Usage

```
applyMMP(
  DataList,
  MP = NA,
  reps = 1,
  nsims = NA,
  silent = FALSE,
  parallel = snowfall::sfIsRunning()
)
```

8 applyMP

Arguments

DataList A hierarchical list of Data objects (Fleets nested in Stocks)

MP Name of the MMP to run reps Number of samples

nsims Optional. Number of simulations.

silent Logical. Should messages be suppressed?
parallel Logical. Whether to run MPs in parallel

Value

A hierarchical list of management recommendations (object class Rec), Fleets nested in Stocks

applyMP

Apply Management Procedures to an object of class Data

Description

Apply Management Procedures to an object of class Data

Usage

```
applyMP(
   Data,
   MPs = NA,
   reps = 100,
   nsims = NA,
   silent = FALSE,
   parallel = snowfall::sfIsRunning()
)
```

Arguments

Data An object of class Data

MPs Name(s) of the MPs to run

reps Number of samples

nsims Optional. Number of simulations.

silent Logical. Should messages be suppressed?

parallel Logical. Whether to run MPs in parallel. Can be a vector of length(MPs)

Value

A list with the first element a list of management recommendations, and the second the updated Data object

ASAP2OM 9

ASAP20M	Convert ASAP 3 assessments into an operating model
	<i>r</i>

Description

Reads a fitted ASAP model and uses the MLE estimates with identical reconstruction among simulations. Future recruitment is sampled from a lognormal distribution with autocorrelation. ASAP2Data imports a Data object.

Usage

```
ASAP2OM(
   asap,
   nsim = 48,
   proyears = 50,
   mcmc = FALSE,
   Name = "ASAP Model",
   Source = "No source provided",
   nyr_par_mu = 3,
   Author = "No author provided",
   report = FALSE,
   silent = FALSE
)
ASAP2Data(asap, Name = "ASAP assessment")
```

Arguments

asap	A list returned by ASAP, e.g., asap <- $dget("asap3.rdat")$.
nsim	The number of simulations in the operating model

proyears The number of MSE projection years

mcmc Logical, whether to use mcmc samples. Currently unsupported.

Name The name of the operating model

Source Reference to assessment documentation e.g. a url

nyr_par_mu integer, the number of recent years to estimate vulnerability over for future pro-

jections

Author Who did the assessment

report Logical, should a comparison of biomass reconstruction be produced?

silent Logical, should progress reporting be printed to the console?

Details

Length at age is not used in ASAP so arbitrary placeholder values are used for length-based parameters. Update these parameters to model length in the operating model.

10 Assess2MOM

Value

An operating model OM class.

Author(s)

Q. Huynh

See Also

Assess2OM

Assess2MOM

Reads bootstrap estimates from a stock assessment model into a multifleet operating model.

Description

A function that develops a multiple fleet operating model (MOM) and either models a unisex or 2-sex stock from arrays of abundance, fishing mortality, and biological parameters. The user still needs to parameterize most of the observation and implementation portions of the operating model.

Usage

```
Assess2MOM(
  Name = "MOM created by Assess2MOM",
  proyears = 50,
  interval = 2,
  CurrentYr = as.numeric(format(Sys.Date(), "%Y")),
  h = 0.999,
  Obs = MSEtool::Imprecise_Unbiased,
  Imp = MSEtool::Perfect_Imp,
  naa,
  faa,
  waa,
 Mataa,
 Maa,
  laa,
  fecaa,
  nyr_par_mu = 3,
  LowerTri = 1,
  recind = 0,
  plusgroup = TRUE,
  altinit = 0,
  fixq1 = TRUE,
  report = FALSE,
  silent = FALSE,
)
```

Assess2MOM 11

Arguments

Name	Character string. The name of the multi-OM.
proyears	Positive integer. The number of projection years for MSE.
interval	
interval	Positive integer. The interval at which management procedures will update the management advice in multiMSE, e.g., 1 = annual updates.
CurrentYr	Positive integer. The current year (e.g., final year of fitting to data)
h	The steepness of the stock-recruitment curve. Either a single numeric or a length nsim vector.
Obs	Either a single observation model to be used for all sexes and populations (class Obs), or a list where Obs[[f]] is the Obs object for fleet f (identical between sexes).
Imp	Either a single implementation model to be used for all sexes and populations (class Imp), or a list where Imp[[f]] is the Obs object for fleet f (identical between sexes).
naa	Numbers-at-age by sex [first age is age zero]. Four-dimensional numeric array [sim, ages, year, p]. [p] indexes the population, where [p = 1] for females and [p = 2] for males.
faa	Fishing mortality rate-at-age by sex and fleet [first age is age zero]. Five-dimensional numeric array [sim, ages, year, p, f] where [f] indexes fishery fleet.
waa	Weight-at-age [first age is age zero]. Four-dimensional numeric array [sim, ages, year, p].
Mataa	Maturity (spawning fraction)-at-age [first age is age zero]. Four-dimensional numeric array [sim, ages, year, p].
Маа	Natural mortality rate-at-age [first age is age zero]. Four-dimensional numeric array [sim, ages, year, p].
laa	Length-at-age [first age is age zero]. Four-dimensional numeric array [sim, ages, year, p].
fecaa	Fecundity at age [first age is age zero]. If missing, default fecundity is the product of maturity and weight at age.
nyr_par_mu	Positive integer. The number of recent years that natural mortality, age vulnerability, weight, length and maturity parameters are averaged over for defining future projection conditions.
LowerTri	Integer. The number of recent years for which model estimates of recruitment are ignored (not reliably estimated by the assessment)
recind	Positive integer. The first age class that fish 'recruit to the fishery'. The default is 0 - ie the first position in the age dimension of naa is age zero
plusgroup	Logical. Does the assessment assume that the oldest age class is a plusgroup?
altinit	Integer. Various assumptions for how to set up the initial numbers. 0: standard, 1: no plus group, 2: temporary fix for MSEtool plus group initialization
fixq1	Logical. Should q be fixed (ie assume the F-at-age array faa is accurate?

12 Assess2OM

report

Logical, if TRUE, a diagnostic will be reported showing the matching of the OM reconstructed numbers at age vs the assessment.

silent

Whether to silence messages to the console.

. . .

Additional arguments (for all, either a numeric or a length nsim vector):

- SRrel Stock-recruit relationship. (1 for Beverton-Holt (default), 2 for Ricker)
- R0 unfished recruitment
- phi0 unfished spawners per recruit associated with R0 and h. With timevarying parameters, openMSE uses the mean phi0 in the first ageM (age of 50 percent maturity) years for the stock-recruit relationship. Assess20M will re-calculate R0 and h in the operating model such that the stock-recruit alpha and beta parameters match values implied in the input.
- Perr recruitment standard deviation (lognormal distribution) for sampling future recruitment
- AC autocorrelation in future recruitment deviates.

Details

Use a seed for the random number generator to sample future recruitment.

Value

An object of class MOM.

Author(s)

Q. Huynh

See Also

SS2MOM multiMSE Assess2OM

Asses	s20M	١
-------	------	---

Reads bootstrap estimates from a stock assessment model (including VPA) into an operating model. Assess20M is identical to VPA20M.

Description

A function that uses a set of bootstrap estimates of numbers-at-age, fishing mortality rate-at-age, M-at-age, weight-at-age, length-at-age and Maturity-at-age to define a fully described MSEtool operating model. The user still needs to parameterize most of the observation and implementation portions of the operating model.

Assess2OM 13

Usage

```
Assess20M(
 Name = "A fishery made by VPA2OM",
  proyears = 50,
  interval = 2,
  CurrentYr = as.numeric(format(Sys.Date(), "%Y")),
  h = 0.999,
  Obs = MSEtool::Imprecise_Unbiased,
  Imp = MSEtool::Perfect_Imp,
  naa,
  faa,
 waa,
 Mataa,
 Maa,
  laa,
  nyr_par_mu = 3,
  LowerTri = 1,
  recind = 0,
 plusgroup = TRUE,
  altinit = 0,
  fixq1 = TRUE,
  report = FALSE,
  silent = FALSE,
)
VPA20M(
  Name = "A fishery made by VPA2OM",
  proyears = 50,
  interval = 2,
  CurrentYr = as.numeric(format(Sys.Date(), "%Y")),
  h = 0.999,
 Obs = MSEtool::Imprecise_Unbiased,
  Imp = MSEtool::Perfect_Imp,
  naa,
  faa,
 waa,
 Mataa,
  Maa,
  laa,
  nyr_par_mu = 3,
  LowerTri = 1,
  recind = 0,
  plusgroup = TRUE,
  altinit = 0,
  fixq1 = TRUE,
  report = FALSE,
  silent = FALSE,
```

14 Assess2OM

```
)
```

Arguments

Character string. The name of the operating model. Name Positive integer. The number of projection years for MSE. proyears interval Positive integer. The interval at which management procedures will update the management advice in runMSE, e.g., 1 = annual updates. Positive integer. The current year (final year of fitting to data) CurrentYr h The steepness of the stock-recruitment curve (greater than 0.2 and less than 1, assumed to be close to 1 to match VPA assumption). Either a single numeric or a length nsim vector. 0bs The observation model (class Obs). This function only updates the catch and index observation error. The implementation model (class Imp). This function does not update imple-Imp mentation parameters. Numeric array [sim, ages, year]. Numbers-at-age [first age is age zero]. naa Numeric array [sim, ages, year]. Fishing mortality rate-at-age [first age is age zero]. faa Numeric array [sim, ages, year]. Weight-at-age [first age is age zero]. waa Mataa Numeric array [sim, ages, year]. Maturity (spawning fraction)-at-age [first age is age zero]. Maa Numeric array [sim, ages, year]. Natural mortality rate-at-age [first age is age zero]. laa Numeric array [sim, ages, year]. Length-at-age [first age is age zero]. nyr_par_mu Positive integer. The number of recent years that natural mortality, age vulnerability, weight, length and maturity parameters are averaged over for defining future projection conditions. LowerTri Integer. The number of recent years for which model estimates of recruitment are ignored (not reliably estimated by the assessment) recind Positive integer. The first age class that fish 'recruit to the fishery'. The default is 0 - ie the first position in the age dimension of naa is age zero plusgroup Logical. Does the assessment assume that the oldest age class is a plusgroup? altinit Integer. Various assumptions for how to set up the initial numbers. 0: standard, 1: no plus group, 2: temporary fix for MSEtool plus group initialization fixa1 Logical. Should q be fixed (ie assume the F-at-age array faa is accurate? Logical, if TRUE, a diagnostic will be reported showing the matching of the report OM reconstructed numbers at age vs the assessment. silent Whether to silence messages to the console. Additional arguments (for all, either a numeric or a length nsim vector):

- - fecaa Fecundity at age. Default fecundity is the product of maturity and weight at age.
 - SRrel Stock-recruit relationship. (1 for Beverton-Holt (default), 2 for Ricker)
 - · R0 unfished recruitment

Atlantic_mackerel 15

- phi0 unfished spawners per recruit associated with R0 and h. With time-varying parameters, openMSE uses the mean phi0 in the first ageM (age of 50 percent maturity) years for the stock-recruit relationship. Assess20M will re-calculate R0 and h in the operating model such that the stock-recruit alpha and beta parameters match values implied in the input.
- Perr recruitment standard deviation (lognormal distribution) for sampling future recruitment
- AC autocorrelation in future recruitment deviates.
- spawn_time_frac The fraction of a year when spawning takes place (e.g., 0.5 is the midpoint of the year)

Details

Use a seed for the random number generator to sample future recruitment.

Value

An object of class OM.

Author(s)

T. Carruthers

See Also

SS2OM iSCAM2OM WHAM2OM ASAP2OM

Atlantic_mackerel

Data class objects

Description

Example objects of class Data

Usage

Atlantic_mackerel

China_rockfish

Cobia

Example_datafile

Gulf_blue_tilefish

ourReefFish

16 avail

```
Red_snapper
```

Simulation_1

Format

An object of class Data of length 1.

Examples

```
avail("Data")
```

avail

What objects of this class are available

Description

Generic class finder

Usage

```
avail(classy, package = NULL, msg = TRUE)
```

Arguments

classy A class of object (character string, e.g. 'Fleet')

package Optional. Names(s) of the package to search for object of class classy. String

Default is all openMSE packages. Always searches the global environment as

well.

msg Print messages?

Details

Finds objects of the specified class in the global environment or the openMSE packages.

Author(s)

T. Carruthers

Awatea2OM 17

See Also

Can Cant avail

Examples

```
avail("OM", msg=FALSE)
Stocks <- avail("Stock")
Fleets <- avail("Fleet")
MPs <- avail("MP")</pre>
```

Awatea20M

Reads MCMC estimates from Awatea (Paul Starr) processed r file structure into an operating model

Description

A function that generates an operating model from the MCMC samples of an Awatea model. Code optimized for the BC Pacific ocean perch assessment (Haigh et al. 2018).

Usage

```
Awatea20M(
   AwateaDir,
   nsim = 48,
   proyears = 50,
   Name = "OM made by Awatea2OM",
   Source = "No source provided",
   Author = "No author provided",
   verbose = TRUE
)
```

Arguments

AwateaDir A folder with Awatea files nsim The number of simulations

proyears The number of projection years for the MSE

Name The name of the operating model

Source Reference to assessment documentation e.g. a url

Author Who did the assessment verbose Return detailed messages?

Details

This function averages biological parameters across sex and then sends arrays to VPA2OM, assumes unfished status (B/B0 = 1) in the first year, and assumes a single fishing fleet.

18 BAM2MOM

Author(s)

Q. Huynh and T. Carruthers

References

Haigh, R., et al. 2018. Stock assessment for Pacific Ocean Perch (*Sebastes alutus*) in Queen Charlotte Sound, British Columbia in 2017. Canadian Science Advisory Secretariat (CSAS) Research Document 2018/038. 232 pp. https://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2018/2018_038-eng.html

BAM2MOM

Import a multi-stock, multi-fleet OM from a BAM object

Description

Import a multi-stock, multi-fleet OM from a BAM object

Usage

```
BAM2MOM(
  rdat,
  nsim = 48,
  proyears = 50,
  interval = 1,
  stock_name = NULL,
  fleet_name = NULL,
  LowerTri = 0,
  report = FALSE,
  ...
)

BAM2OM(rdat, nsim = 48, proyears = 50, interval = 2, report = FALSE, ...)
```

Arguments

rdat	A list object from the BAMextras package. Use bamExtras::standardize_rdat(rdat)
nsim	the number of simulations
proyears	the number of projection years
interval	the management interval
stock_name	Name of the stock(s)
fleet_name	Name of the fleet(s)
LowerTri	Integer. The number of recent years for which model estimates of recruitment are ignored (not reliably estimated by the assessment)
report	Logical, if TRUE, a diagnostic will be reported showing the matching of the OM reconstructed numbers at age vs the assessment.
	Additional arguments passed to MSEtool::Assess2MOM

boxplot.Data 19

Value

An object of class MOM

Functions

• BAM20M(): Create a single stock/fleet OM from a BAM object

boxplot.Data Boxplot of TAC recommendations

Description

Boxplot of TAC recommendations

Usage

```
## S3 method for class 'Data'
boxplot(x, upq = 0.9, lwq = 0.1, ylim = NULL, outline = FALSE, col = NULL, ...)
```

Arguments

X	An object of class MSE
upq	Upper quantile of TACs for max ylim
lwq	Lower quantile of TACs for min ylim
ylim	Optional numeric vector of length 2 to specify limits of y-axis.
outline	Logical. Include outliers in plot?
col	Optional colours to pass to boxplot
	Optional additional arguments passed to boxplot

Value

Returns a data frame containing the information shown in the plot

Author(s)

A. Hordyk

20 CALsimp

calcRefYield	Calculate Reference Yield
Calciverifiera	Culculate Rejetence Hela

Description

Calculate Reference Yield

Usage

```
calcRefYield(x, StockPars, FleetPars, pyears, Ncurr, nyears, proyears)
```

Arguments

X	Integer, the simulation number
StockPars	List of Stock Parameters
FleetPars	List of Fleet Parameters
pyears	The number of years to project forward. Equal to 'nyears' for optimizing for q.
Ncurr	Array with current numbers-at-age (dim=c(nsim, maxage+1, nareas))

nyears Number of historical years proyears Number of projection years

Author(s)

A. Hordyk

CALsimp	Simplifies the CAL slot of data object

Description

A function that condenses the number of catch-at-length bins in a data object

Usage

```
CALsimp(Data, nbins = 10, simno = 1)
```

Arguments

D-4-	A - alicat of alone 'Data'
Data	An object of class 'Data'.

nbins Integer. The target number of catch at length bins

simno Integer. An optional argument to specify the simulation number if writing sim-

ulated data

Author(s)

T. Carruthers

Can 21

Can

Identify management procedures (MPs) based on data availability

Description

Diagnostic tools that look up the slot requirements of each MP and compares to the data available in the Data object.

Usage

```
Can(Data, timelimit = 1, MPs = NA, dev = FALSE, silent = FALSE)

Cant(Data, timelimit = 1, silent = FALSE)

DLMdiag(
   Data,
   command = c("available", "not available", "needed"),
   reps = 5,
   timelimit = 1,
   funcs1 = NA,
   dev = FALSE,
   silent = FALSE
)

Needed(Data, timelimit = 1, silent = FALSE)
```

Arguments

Data	A data-limited methods data object (class Data)
timelimit	The maximum time (seconds) taken for an MP to undertake 5 reps (this filters out methods that are too slow)
MPs	Optional list of MP names
dev	Logical. Run in development mode?
silent	Logical Display messages?
command	What to calculate? Character. Options = c("available", "not available", "needed")
reps	The number of replicates for the MP
funcs1	A character vector of the MP names (optional)

Functions

- Can(): Identifies MPs that have the correct data, do not produce errors, and run within the time limit.
- Cant(): Identifies MPs that don't have sufficient data, lead to errors, or don't run in time along with a list of their data requirements.

22 CheckMPs

- DLMdiag(): Internal function called by Can and Cant
- Needed(): Identifies what data are needed to run the MPs that are currently not able to run given a Data object

See Also

avail Data

Examples

```
CanMPs <- Can(MSEtool::Cobia)
CantMPs <- Cant(MSEtool::Cobia)
Needs <- Needed(MSEtool::Cobia)</pre>
```

CheckDuplicate

Check for duplicated MPs names

Description

Custom MPs cannot have the same names of MPs in MSEtool and related packages

Usage

```
CheckDuplicate(MPs)
```

Arguments

MPs

Character vector of MP names

Value

An error if duplicated MP names, otherwise nothing

CheckMPs

Check that specified MPs are valid and will run on MSE-tool::SimulatedData

Description

Check that specified MPs are valid and will run on MSEtool::SimulatedData

Usage

```
CheckMPs(MPs = NA, silent = FALSE)
```

checkMSE 23

Arguments

MPs Character vector of MP names

silent Logical. Report messages?

Value

MP names

checkMSE

Utility functions for MSE objects

Description

Utility functions for MSE objects

Usage

```
checkMSE(MSEobj)
addMPs(MSEobjs)
joinMSE(MSEobjs = NULL)
joinHist(Hist_List)
updateMSE(MSEobj, save.name = NULL)
```

Arguments

MSEobj A MSE object

MSEobjs A list of MSE objects

Hist_List A list of objects of class Hist

save.name Character string. Optional file name to save the updated MSE object to disk.

Value

An object of class MSE

A new object of class Hist

24 CheckOM

Functions

- checkMSE(): Check that an MSE object includes all slots in the latest version of DLMtool
- addMPs(): Adds additional MPs to an MSE object by combining multiple MSE objects that have identical historical OM values but different MPs.
- joinMSE(): Joins two or more MSE objects together across simulations. MSE objects must have identical number of historical years, and projection years.
- joinHist(): Join objects of class Hist. Does not join slot OM
- updateMSE(): Updates an existing MSE object (class MSE) from a previous version of the MSEtool to include slots new to the latest version. Also works with Stock, Fleet, Obs, Imp, and Data objects. The new slots will be empty, but avoids the 'slot doesn't exist' error that sometimes occurs. Returns an object of class matching class(MSEobj)

Author(s)

A. Hordyk

See Also

joinData

Check0M

Check OM object is complete

Description

Check OM object is complete

Usage

```
CheckOM(OM, msg = TRUE, stop_if_missing = TRUE)
```

Arguments

OM An object of class OM msg Logical. Display messages?

stop_if_missing

Logical. Stop with error is values are missing and there is no default?

Value

The OM object with default values (if needed)

Examples

```
testOM <- CheckOM(testOM)</pre>
```

Choose 25

Description

Interactive plots to specify trends and variability in fishing effort, fleet selectivity, and natural mortality for the operating model.

Usage

```
ChooseEffort(Fleet, Years = NULL)
ChooseM(OM, type = c("age", "length"), x = NULL, y = NULL)
ChooseSelect(Fleet, Stock, FstYr = NULL, SelYears = NULL)
```

Arguments

Fleet	A fleet object.
Years	An optional vector of years. Should be nyears long.
OM	An object of class 'OM'
type	A character string - is M to be mapped by 'age' or 'length'?
x	Optional vector for x-axis
У	Optional vector for y-axis
Stock	Optional Stock object. If provided, average length-at-maturity is included on plot for reference.
FstYr	Optional value for first historical year. If empty, user must specify the year in console.
SelYears	Optional vector of values for each year where selectivity pattern changed. If empty, user must specify the years in console (comma separated).

Details

ChooseEffort	Interactive plot which allows users to specify the relative trajectory and variability in the historical fishing ef
ChooseM	Interactive plot which allows users to specify M by age or size class
ChooseSelect	Input the first historical year, and all years where selectivity pattern changed (separated by comma). Interact

ChooseSelect Input the first historical year, and all years where selectivity pattern changed (separated by comma). Interact

Value

ChooseEffort and ChooseSelect return a Fleet object while ChooseM returns an OM object.

26 Converge

Author(s)

A. Hordyk

CombineMMP

Create a blank MP recommendations object (class Rec) of the right dimensions

Description

Create a blank MP recommendations object (class Rec) of the right dimensions

Usage

```
CombineMMP(temp, nareas)
```

Arguments

temp A list of nsim simulations.

nareas The number of areas.

Author(s)

T. Carruthers

Converge

Check Convergence

Description

Have I undertaken enough simulations (nsim)? Has my MSE converged on stable (reliable) performance metrics?

Usage

```
Converge(
   MSEobj,
   PMs = c("Yield", "P10", "AAVY"),
   maxMP = 15,
   thresh = 0.5,
   ref.it = 20,
   inc.leg = FALSE,
   all.its = FALSE,
   nrow = NULL,
   ncol = NULL,
   silent = FALSE
)
```

Converge 27

Arguments

MSEobj	An MSE object of class 'MSE'
PMs	A character vector of names of the PM methods or a list of the PM methods
maxMP	Maximum number of MPs to include in a single plot
thresh	The convergence threshold. Maximum root mean square deviation over the last ref.it iterations
ref.it	The number of iterations to calculate the convergence statistics. For example, a value of 20 means convergence diagnostics are calculated over last 20 simulations
inc.leg	Logical. Should the legend be displayed?
all.its	Logical. Plot all iterations? Otherwise only (nsim-ref.it):nsim
nrow	Numeric. Optional. Number of rows
ncol	Numeric. Optional. Number of columns
silent	Hide the messages printed in console?

Details

Performance metrics are plotted against the number of simulations. Convergence diagnostics are calculated over the last ref.it (default = 20) iterations. The convergence diagnostics are:

- 1. Is the order of the MPs stable over the last ref.it iterations?
- 2. Is the average difference in performance statistic over the last ref.it iterations < thresh?

By default three commonly used performance metrics are used:

- 1. Average Yield Relative to Reference Yield
- 2. Probability Spawning Biomass is above 0.1BMSY
- 3. Probability Average Annual Variability in Yield is < 20 per cent

Additional or alternative performance metrics objects can be supplied. Advanced users can develop their own performance metrics.

Value

A table of convergence results for each MP

Author(s)

A. Hordyk

Examples

```
## Not run:
MSE <- runMSE()
Converge(MSE)
## End(Not run)</pre>
```

28 cparscheck

Cos_thresh_tab

Current default thresholds for COSEWIC satisficing

Description

Current default thresholds for COSEWIC satisficing

Usage

```
Cos_thresh_tab(Ptab1)
```

Arguments

Ptab1

A COSEWIC performance table made by COSEWIC_tab()

Author(s)

T. Carruthers

cparscheck

 $Internal \ function \ for \ checking \ that \ the \ {\tt OM@cpars} \ is \ formatted \ correctly$

Description

Internal function for checking that the OM@cpars is formatted correctly

Usage

```
cparscheck(cpars)
```

Arguments

cpars

a list of model parameters to be sampled (single parameters are a vector nsim long, first dimension of matrices and arrays must be nsim)

Value

either an error and the length of the first dimension of the various cpars list items or passes and returns the number of simulations in cpars

Author(s)

T. Carruthers

Cplot 29

Cplot

Plot the median biomass and yield relative to last historical year

Description

Compare median biomass and yield in first year and last 5 years of projection

Usage

```
Cplot(
   MSEobj,
   MPs = NA,
   lastYrs = 5,
   point.size = 2,
   lab.size = 4,
   axis.title.size = 12,
   axis.text.size = 10,
   legend.title.size = 12
)
```

Arguments

```
MSEobj An object of class MSE

MPs Optional vector of MPs to plot

lastYrs Numeric. Last number of years to summarize results.

point.size Size of the points

lab.size Size of labels

axis.title.size Axis title size

axis.text.size Axis text size

legend.title.size

Legend title size
```

Examples

```
## Not run:
MSE <- runMSE()
Cplot(MSE)
## End(Not run)</pre>
```

Data-class Class 'Data'

Description

An object for storing fishery data for analysis

Slots

Name The name of the Data object. Single value. Character string

Common_Name Common name of the species. Character string

Species Scientific name of the species. Genus and species name. Character string

Region Name of the general geographic region of the fishery. Character string

LHYear The last historical year of the simulation (before projection). Single value. Positive integer

MPrec The previous recommendation of a management procedure. Vector of length nsim. Positive real numbers

Units Units of the catch/absolute abundance estimates. Single value. Character string

MPeff The current level of effort. Vector of length nsim. Positive real numbers

nareas Number of fishing areas. Vector of length nsim. Non-negative integer

MaxAge Maximum age. Vector nsim long. Positive integer

Mort Natural mortality rate. Vector nsim long. Positive real numbers

CV_Mort Coefficient of variation in natural mortality rate. Vector nsim long. Positive real numbers

vbLinf Maximum length. Vector nsim long. Positive real numbers

CV_vbLinf Coefficient of variation in maximum length. Vector nsim long. Positive real numbers

vbK The von Bertalanffy growth coefficient K. Vector nsim long. Positive real numbers

CV_vbK Coefficient of variation in the von Bertalanffy K parameter. Vector nsim long. Positive real numbers

vbt0 Theoretical age at length zero. Vector nsim long. Non-positive real numbers

CV_vbt0 Coefficient of variation in age at length zero. Vector nsim long. Positive real numbers

wla Weight-Length parameter alpha. Vector nsim long. Positive real numbers

CV_wla Coefficient of variation in weight-length parameter a. Vector nsim long. Positive real numbers

wlb Weight-Length parameter beta. Vector nsim long. Positive real numbers

CV_wlb Coefficient of variation in weight-length parameter b. Vector nsim long. Positive real numbers

steep Steepness of stock-recruitment relationship. Vector nsim long. Value in the range of one-fifth to 1

CV_steep Coefficient of variation in steepness. Vector nsim long. Positive real numbers

sigmaR Recruitment variability. Vector nsim long. Positive real numbers

CV_sigmaR Coefficient of variation in recruitment variability. Vector nsim long. Positive real numbers

- L50 Length at 50 percent maturity. Vector nsim long. Positive real numbers
- CV_L50 Coefficient of variation in length at 50 per cent maturity. Vector nsim long. Positive real numbers
- L95 Length at 95 percent maturity. Vector nsim long. Positive real numbers
- LenCV Coefficient of variation of length-at-age (assumed constant for all age classes). Vector nsim long. Positive real numbers
- LFC Length at first capture. Vector nsim long. Positive real numbers
- CV_LFC Coefficient of variation in length at first capture. Vector nsim long. Positive real numbers
- LFS Shortest length at full selection. Vector nsim long. Positive real numbers
- CV_LFS Coefficient of variation in length at full selection. Vector nsim long. Positive real numbers
- Vmaxlen Vulnerability of individuals at asymptotic length. Vector nsim long. Real number between 0 and 1.
- Year Years that corresponding to catch and relative abundance data. Vector nyears long. Positive integer
- Cat Total annual catches. Matrix of nsim rows and nyears columns. Non-negative real numbers
- CV_Cat Coefficient of variation in annual catches. Matrix nsim rows and either 1 or nyear columns. Positive real numbers. Note: built-in MPs use only the first value of CV_Cat for all years.
- Effort Annual fishing effort. Matrix of nsim rows and nyears columns. Non-negative real numbers
- CV_Effort Coefficient of variation in annual effort. Matrix nsim rows and either 1 or nyear columns. Positive real numbers. Note: built-in MPs use only the first value of CV_Effort for all years.
- Ind Relative total abundance index. Matrix of nsim rows and nyears columns. Non-negative real numbers
- CV_Ind Coefficient of variation in the relative total abundance index. Matrix nsim rows and either 1 or nyear columns. Positive real numbers. Note: built-in MPs use only the first value of CV_Ind for all years
- SpInd Relative spawning abundance index. Matrix of nsim rows and nyears columns. Non-negative real numbers
- CV_SpInd Coefficient of variation in the relative spawning abundance index. Matrix nsim rows and either 1 or nyear columns. Positive real numbers.
- VInd Relative vulnerable abundance index. Matrix of nsim rows and nyears columns. Non-negative real numbers
- CV_VInd Coefficient of variation in the relative vulnerable abundance index. Matrix nsim rows and either 1 or nyear columns. Positive real numbers.
- AddInd Optional additional indices. Array of dimensions nsim, n additional indices, and nyears (length Year).
- CV_AddInd Coefficient of variation for additional indices. Array of same dimensions as AddInd
- AddIndV Vulnerability-at-age schedules for the additional indices. Array with dimensions: nsim, n additional indices, MaxAge+1.

AddIunits Units for the additional indices - biomass (1; default) or numbers (0). Numeric vector length n.ind.

- AddIndType Index calculated from total stock (1, default), spawning stock (2), or vulnerable stock (3). Numeric vector of length n.ind
- Rec Recent recruitment strength. Matrix of nsim rows and nyears columns. Non-negative real numbers
- CV_Rec Log-normal CV for recent recruitment strength. Matrix nsim rows and either 1 or nyear columns. Positive real numbers. Note: built-in MPs use only the first value of CV_Rec for all years.
- ML Mean length time series. Matrix of nsim rows and nyears columns. Non-negative real numbers
- Lc Modal length of catches. Matrix of nsim rows and nyears columns. Positive real numbers
- Lbar Mean length of catches over Lc. Matrix of nsim rows and nyears columns. Positive real numbers
- Vuln_CAA Optional vulnerability-at-age schedule for catch-at-age samples. Used to condition OM for closed-loop simulation testing. Replaces the fleet selectivity schedule in the OM used to generate CAA samples. Matrix with dimensions nsim x MaxAge+1.
- CAA Catch at Age data (numbers). Array of dimensions nsim x nyears x MaxAge+1. Non-negative integers
- Vuln_CAL Optional vulnerability-at-length schedule for catch-at-length samples. Used to condition OM for closed-loop simulation testing. Replaces the fleet selectivity schedule in the OM used to generate CAL samples. Matrix with dimensions nsim x length(CAL_mids).
- CAL_bins The values delimiting the length bins for the catch-at-length data. Vector. Non-negative real numbers
- CAL_mids The values of the mid-points of the length bins. Optional, calculated from CAL_bins if not entered. Vector. Non-negative real numbers.
- CAL Catch-at-length data. An array with dimensions nsim x nyears x length(CAL_mids). Non-negative integers. By default the CAL data will be the retained lengths (i.e, not including discards). If OM@control\$CAL =="removals" then the CAL data will include all removals (retained + discards).
- Dep Stock depletion SSB(current)/SSB(unfished). Vector nsim long. Fraction.
- CV_Dep Coefficient of variation in current stock depletion. Vector nsim long. Positive real numbers
- Abun An estimate of absolute current vulnerable abundance. Vector nsim long. Positive real numbers
- CV_Abun Coefficient of variation in estimate of absolute current stock size. Vector nsim long. Positive real numbers
- SpAbun An estimate of absolute current spawning stock abundance. Vector nsim long. Positive real numbers
- CV_SpAbun Coefficient of variation in estimate of absolute spawning current stock size. Vector nsim long. Positive real numbers
- FMSY_M An assumed ratio of FMSY to M. Vector nsim long. Positive real numbers
- CV_FMSY_M Coefficient of variation in the ratio in FMSY/M. Vector nsim long. Positive real numbers

- BMSY_B0 The most productive stock size relative to unfished. Vector nsim long. Fraction
- CV_BMSY_B0 Coefficient of variation in the position of the most productive stock size relative to unfished. Vector nsim long. Positive real numbers
- Cref Reference or target catch level (eg MSY). Vector of length nsim. Positive real numbers
- CV_Cref Log-normal CV for reference or target catch level. Vector of length nsim. Positive real numbers
- Bref Reference or target biomass level (eg BMSY). Vector of length nsim. Positive real numbers
- CV_Bref Log-normal CV for reference or target biomass level. Vector of length nsim. Positive real numbers
- Iref Reference or target relative abundance index level (eg BMSY / B0). Vector of length nsim. Positive real numbers
- CV_Iref Log-normalCV for reference or target relative abundance index level. Vector of length nsim. Positive real numbers
- t The number of years corresponding to AvC and Dt. Single value. Positive integer
- AvC Average catch over time t. Vector nsim long. Positive real numbers
- CV_AvC Coefficient of variation in average catches over time t. Vector nsim long. Positive real numbers
- Dt Depletion over time t SSB(now)/SSB(now-t+1). Vector nsim long. Fraction
- CV_Dt Coefficient of variation in depletion over time t. Vector nsim long. Positive real numbers
- Ref A reference management level (eg a catch limit). Single value. Positive real number
- Ref_type Type of reference management level (eg 2009 catch limit). Single value. Character string
- Log A record of events. Single value. Character string
- params A place to store estimated parameters. An object. R list
- PosMPs The methods that can be applied to these data. Vector. Character strings
- TAC The calculated catch limits (function TAC). An array with dimensions PosMPs x replicate TAC samples x nsim. Positive real numbers
- Sense The results of the sensitivity analysis (function Sense). An array with dimensions PosMPs x sensitivity increments. Positive real numbers
- MPs The methods that were applied to these data. Vector. Character strings
- OM A table of operating model conditions. R table object of nsim rows. Real numbers
- Obs A table of observation model conditions. R table object of nsim rows. Real numbers
- Misc Other information for MPs. An object. R list

Objects from the Class

Objects can be created by calls of the form new('Data', stock)

Author(s)

T. Carruthers and A. Hordyk

DataDescription

Examples

```
newdata<-new('Data')</pre>
```

Data2csv

Converts a Data object into a .csv data file

Description

A function that writes a correctly formatted .csv file from a MSEtool Data object

Usage

```
Data2csv(Data, file = NULL, simno = 1, overwrite = F, keepNAs = T)
```

Arguments

Data An object of class 'Data'.

file Character string. The name of the location and file you wish to create (e.g.

"C:/temp/mydata.csv")

simno Integer. An optional argument to specify the simulation number if writing sim-

ulated data

overwrite Boolean. Should existing data files be automatically overwritten.

keepNAs Boolean. Should slots with NAs still be written to the data file.

Author(s)

T. Carruthers

DataDescription DataD	Description
-----------------------	-------------

Description

A data.frame with description of slots for class Data

Usage

DataDescription

Format

An object of class data. frame with 94 rows and 2 columns.

DataDir 35

DataDir

Directory of the data in the installed package on your computer

Description

A way of locating where the package was installed so you can find example data files and code etc.

Usage

```
DataDir(stock = NA)
```

Arguments

stock

Character string representing the name of a .csv file e.g. 'Snapper', 'Rockfish'

Value

The file path to the object

Author(s)

T. Carruthers

Examples

```
## Not run:
tilefish_location <- DataDir("Gulf_blue_tilefish")
tilefish_Data <- new("Data", tilefish_location)
## End(Not run)</pre>
```

DataInit

Initialize Data Input Files

Description

Creates template for the Data input file (Excel or CSV) and Data documentation file (Markdown) in the working directory or the directory specified by the dir argument

Usage

```
DataInit(name = "Data", ext = c("xlsx", "csv"), overwrite = FALSE, dir = NULL)
```

36 DataSlots

Arguments

name Name of the data input files. Default is 'Data'. Use 'Example' to create popu-

lated example Data Input and Data Documentation files.

ext Optional file extension for input file. 'xlsx' (default) or 'csv'

overwrite Logical. Overwrite existing files?

dir Optional directory path to create the Data files. Default is 'getwd()"

Value

Nothing. Creates template data files in the working directory.

Author(s)

A. Hordyk

Examples

```
## Not run:
DataInit("Example") # populated example
DataInit("myData") # empty template
## End(Not run)
```

DataSlots

DataSlots

Description

Dataframe with details of slots in Dat object

Usage

DataSlots

Format

An object of class tbl_df (inherits from tbl, data.frame) with 101 rows and 4 columns.

Data_xl 37

Read in Data object from Excel spreadsheet

Description

A function to read in Data object from an Excel spreadsheet with tabs named following specific convention.

Usage

```
Data_xl(fname, stkname, fpath = "", saveCSV = FALSE)
```

Arguments

fname	Name of the Excel spreadsheet file. Must include file extension.
-------	--

stkname Name of the Stock.

fpath Full file path, if file is not in current working directory saveCSV Do you also want to the Data parameters to a CSV file?

Details

The Excel spreadsheet must have tabs named with the following convention. For example if stkname is 'myFish', the Data parameters are in a tab named 'myFishData'.

Value

A object of class Data

Author(s)

A. Hordyk

Examples

```
## Not run:
OM <- OM_x1(fname='OMTables.xlsx', stkname='myFish')
## End(Not run)</pre>
```

38 DecE_Dom

DecE_Dom

Fleet class objects

Description

Example objects of class Fleet

Usage

 ${\tt DecE_Dom}$

DecE_HDom

DecE_NDom

 $FlatE_Dom$

FlatE_HDom

 $FlatE_NDom$

Generic_DecE

Generic_FlatE

Generic_Fleet

Generic_IncE

IncE_HDom

 ${\tt IncE_NDom}$

Low_Effort_Non_Target

Target_All_Fish

Targeting_Small_Fish

Format

An object of class Fleet of length 1.

DFO_bar 39

An object of class Fleet of length 1.

Examples

```
avail("Fleet")
```

DFO_bar

Department of Fisheries and Oceans stock status bar plot

Description

A plot of biomass relative to BMSY over projected years

Usage

```
DFO_bar(MSEobj, yres = 10)
```

Arguments

MSEobj An MSE object of class MSE produced by DLMtool function runMSE

yres Integer: the year interval over which to calculate B/BMSY in future years

Author(s)

DFO_plot

_						
1)	FC	1	h	٦.	c	+
$\boldsymbol{\nu}$,		1		·

Department of Fisheries and Oceans historical plot

Description

A plot of current and historical stock status by simulation according to the stock status zones and reference points of DFO. http://www.dfo-mpo.gc.ca/reports-rapports/regs/sff-cpd/precaution-eng.htm

Usage

```
DFO_hist(OM, panel = T, nsim = 48)
```

Arguments

OM An operating model object of class OM

panel should the plots be separate or in two panels?

nsim how many simulations should be plotted (over-ridden by OM@nsim where cpars

is specified)

Author(s)

T. Carruthers

DFO_plot

Department of Fisheries and Oceans trade-off plot

Description

A plot of mean biomass relative to BMSY and fishing mortality rate relative to FMSY over the final 5 years of the projection http://www.dfo-mpo.gc.ca/reports-rapports/regs/sff-cpd/precautioneng.htm

Usage

```
DFO_plot(MSEobj, zero_origin = T)
```

Arguments

MSEobj An MSE object of class MSE produced by MSEtool function runMSE

zero_origin Logical: should plots have a zero-zero origin?

Author(s)

DFO_plot2 41

DFO_plot2	Department of Fisheries and Oceans default plot 2

Description

A preliminary plot for returning trade-offs plots and performance table for probability of obtaining half reference (FMSY) yield and probability of biomass dropping below 50 per cent BMSY

Usage

```
DFO_plot2(MSEobj, nam = NA, panel = T, Bcut = 50, Ycut = 50)
```

Arguments

MSEobj An object of class MSE

nam Title of plot

panel Should the plots be organized in many panels in a single figure

Bcut The cutoff biomass for satisficing (relative to BMSY)
Ycut the cutoff yield for satisficing (relative to reference yield)

Value

A table of performance metrics.

Author(s)

T. Carruthers

DFO_pi	roj <i>L</i>	epartment of Fisheries and Oceans projection plot

Description

A projection plot of MP performance by simulation according to the stock status zones and reference points of DFO. http://www.dfo-mpo.gc.ca/reports-rapports/regs/sff-cpd/precaution-eng.htm

Usage

```
DFO_proj(MSEobj, maxplot = 6)
```

Arguments

MSEobj An operating model object of class MSE

maxplot The maximum number of MPs to be plotted per figure

DFO_quant

Author(s)

T. Carruthers

DFO_quant

Department of Fisheries and Oceans biomass quantile plot

Description

A plot of biomass relative to BMSY quantiles over projected years

Usage

```
DFO_quant(
   MSEobj,
   maxcol = 6,
   qcol = rgb(0.4, 0.8, 0.95),
   lcol = "dodgerblue4",
   curyr = 2018,
   quants = c(0.05, 0.25, 0.75, 0.95),
   addline = T,
   forreport = T
)
```

Arguments

MSEobj	An MSE object of class MSE produced by DLMtool function runMSE
maxcol	Integer how many columns for panel plots?
qcol	A color, the quantile coloration
lcol	A color, the mean B/BMSY line
curyr	The current calendar year
quants	A vector 2 long for the quantiles e.g. 0.1 and 0.9 for the 10th and 90th quantiles
addline	Should two individual example simulations be added to the plot?
forreport	Logical. Is it for a report? If true, one plot of six MPs in a row will be provided one after another.

Author(s)

DFO_report 43

DFO_report

Create a standard DFO MSE report

Description

Provides performance plots typical in the assessment of Canadian fish stocks.

Usage

```
DFO_report(
   MSEobj,
   output_file = NA,
   author = "Author not specified",
   title = NA,
   maxMPs = 15
)
```

Arguments

MSEobj An object of class MSE

output_file The directory and filename you wish to use for the report e.g. "C:/temp/myMSEreport.html"

author The person who made this report

title The title of the report

maxMPs Maximum number of MPs to plot

Author(s)

T. Carruthers

DFO_spider

DFO performance spider plot (top three MPs)

Description

DFO performance spider plot (top three MPs)

Usage

```
DFO_spider(MSEobj)
```

Arguments

MSEobj

An object of class MSE produced by MSEtool::runMSE()

Author(s)

44 DFO_tab_formatted

DFO_tab

Create a standard DFO performance table

Description

P_Cr_S is the probability of being in the critical zone in the first 10 projected years P_Ct_S is the probability of being in the cautious zone in the first 10 projected years P_H_S is the probability of being in the healthy zone in the first 10 projected years POF_S is the probability of overfishing in the first 10 projected years STY is the mean yield relative to FMSY management over the first 10 projected years P_Cr_L is the probability of being in the critical zone in the last 10 projected years P_H_L is the probability of being in the cautious zone in the last 10 projected years P_H_L is the probability of being in the healthy zone in the last 10 projected years POF_L is the probability of overfishing in the last 10 projected years LTY is the mean yield relative to FMSY management over the last 10 projected years AAVY is the average annual variability in yield over the whole projection phrased as a CV percentage P_Reb is the probability the stock has rebuilt to over BMSY in 2 mean generation times

Usage

```
DFO_tab(MSEobj, maxMPs = 15, rnd = 0)
```

Arguments

MSEobj An object of class MSE

maxMPs Integer: the maximum number of top ranking MPs to include in the table (ranked

by long term yield)

rnd The number of significant figures for rounding.

Author(s)

T. Carruthers

DFO_tab_formatted

A formatted version of the standard DFO performance plot, color coded by thresholds

Description

Crit_S is the probability of being in the critical zone in the first 10 projected years Caut_S is the probability of being in the cautious zone in the first 10 projected years Health_S is the probability of being in the healthy zone in the first 10 projected years OvFish_S is the probability of overfishing in the first 10 projected years Yield_S is the mean yield relative to FMSY management over the first 10 projected years Crit is the probability of being in the critical zone in the last 10 projected years Caut is the probability of being in the cautious zone in the last 10 projected years Health is the probability of being in the healthy zone in the last 10 projected years OvFish is the probability

DLMDataDir 45

of overfishing in the last 10 projected years Yield is the mean yield relative to FMSY management over the last 10 projected years AAVY is the average annual variability in yield over the whole projection phrased as a CV percentage Reb is the probability the stock has rebuilt to over BMSY in 2 mean generation times

Usage

```
DFO_tab_formatted(
  Ptab1,
  thresh = c(30, 50, 40, 60, 50, 20, 40, 50, 60, 50, 30, 50),
  ret_thresh = F
)
```

Arguments

Ptab1 A DFO performance table made by DFO_tab()

thresh A vector of thresholds for each column Health, Yield and Reb are 'greater than

threshold' conditions

ret_thresh Logical: if true just the threshold levels are returned

Author(s)

T. Carruthers

DLMDataDir

Directory of the installed package on your computer

Description

Directory of the installed package on your computer

Usage

```
DLMDataDir(stock = NA)
```

Arguments

stock

Character string representing the name of a .csv file e.g. 'Snapper', 'Rockfish'

Value

The file path to the object

46 doHCR

dnormal Double-normal selectivity curve	ormal
---	-------

Description

Double-normal selectivity curve

Usage

```
dnormal(lens, lfs, sl, sr)
```

Arguments

lens	Vector of lengths
lfs	Length at full selection
sl	Sigma of ascending limb
sr	Sigma of descending limb

doHCR		

Hockey Stick Harvest control rule that modifies TAC.

Description

A hockey stick (2 inflection points) HCR that accepts estimated level relative to reference level and modifies a proposed TAC based on control points for the x axis (est/ref) and y axis (fraction of TAC)

Usage

```
doHCR(trial\_TAC, est, ref, CP = c(0, 1), CPy = c(0, 1))
```

Arguments

trial_TAC	Postitive real number, the proposed total allowable catch before HCR modification.
est	Positive real number on same scale as ref, the estimated stock level (e.g. mean current index level)
ref	Positive real number on same scale as est, a reference level of stock level (e.g. index level at BMSY)
СР	Vector of real numbers, 2 positions long ($c(Lx, Ux)$), the lower and upper control points of a hockey stick HCR on the xaxis (est/ref). Below Lx (est/ref < Lx) the TAC is trial_TAC x Ly. Above Ux (est/ref > Ux) the TAC is trial_TAC x Uy. Between the TAC is linearly ramped between these levels.
СРу	Vector of real numbers, 2 positions long (c(Ly, Uy)), the lower and upper control points of a hockey stick HCR on the yaxis (fraction of trial_TAC).

doIfreq 47

Value

A real number (TAC advice but theoretically could be used for effort, size limits etc).

Author(s)

T. Carruthers

doIfreq	Create indices that are sampled at various frequencies	

Description

Given an index (historical period and projected period) this function creates sparsity in the projected index to simulate varying frequency (intensity) of data collection.

Usage

```
doIfreq(I_hist, I_freq, LHYr, CurYr, Year)
```

Arguments

I_hist	Vector of real numbers, concatinated observed (historical) and simulated (projected) indices.
I_freq	Positive integer. The frequency of index sampling (e.g. 1 is every year, 2 is every 2 years - a gap every 2 years in the projected, simulated data).
LHYr	Positive integer, a year (e.g. 2023), the last historical year, demarks the historical period where observations have been collected from the projected period where sparsity is to be simulated.
CurYr	Positive integer, a year (e.g. 2043), the most recent year of the simulation.
Year	Vector of positive integers (as long as I_hist), the years corresponding with I hist.

Value

A thinned ector I_hist long of index observations.

Author(s)

48 Dom

Dom	Determine dominate MPs

Description

MPs that perform worse than comparable MPs across all performance metrics are considered 'dominated' as other options are always preferable.

Usage

```
Dom(MSEobj, ..., PMlist = NULL, Refs = NULL, Yrs = NULL)
```

Arguments

MSEobj	An object of class MSE
•••	Names of Performance Metrics (PMs), or other arguments to TradePlot. First PM is recycled if number of PMs is not even
PMlist	Optional list of PM names. Overrides any supplied in above
Refs	An optional named list (matching the PM names) with numeric values to over-ride the default Ref values.
Yrs	An optional named list (matching the PM names) with numeric values to over- ride the default Yrs values.

Details

The Dom function compares the probabilities calculated in the performance metric (PM) functions and determines the MPs that have a lower probability across all PMs compared to other MPs of the same management type (e.g., size limit, TAC, etc). Consequently, it is important that all PM functions are constructed so that higher probabilities = better performance (e.g, PNOF is the probability of NOT overfishing)

Value

A named list of length 2 with a character vector of non-dominated MPs in MPs and a data.frame of dominated MPs and the names of the relevant dominated MPs in DomMPs

Author(s)

```
A. Hordyk
```

Examples

```
## Not run:
MSE <- runMSE(MPs=NA) # run all MPs
Nondom <- Dom(MSE, "P10", "LTY", "PNOF")
# Non-dominated MPs
Nondom$MPs</pre>
```

doRec 49

```
# Dominated MPs
Nondom$DomMPs
```

End(Not run)

doRec

Calculate a management recommendation given constraints

Description

Creates a TAC management recommendation given constraints on how much that can change from previous TAC and contraints on minimum and maximum TAC

Usage

```
doRec(MPrec, mod, delta_down, delta_up, TACrng)
```

Arguments

MPrec	Positive real number, the previous management recommendation (e.g. 100 tonnes).
mod	Imperfect fraction, the proposed modification (change to MPrec) (e.g. 1.2 is a 20% increase)
delta_down	A vector 2 positions long, the minimum and maximum levels of downward change (e.g. when mod < 1) in the recommendation.
delta_up	A vector 2 positions long, the minimum and maximum levels of upward change (e.g. when mod > 1) in the recommendation.
TACrng	A vector 2 positions long, the minimum and maximum TAC (same units as MPrec).

Value

n object of class Rec.

Author(s)

50 Emp

 Emp

A flexible empirical management procedure.

Description

An all-purpose empirical MP that runs of Indices of relative abundance

Usage

```
Emp(
 х,
 Data,
  reps = 1,
  Inds = NA,
  I_freq = NA,
  I_wt = NA,
  calib_yrs = 2,
  enp_mult = 0.3,
  Ind_fac = NA,
  TACrng = NA,
  delta_down = c(0.01, 0.5),
  delta_up = c(0.01, 0.5),
  resp = 1,
  curI_2_target = NA,
 HCR\_CP\_B = c(0, 0),
 HCR_CP_TAC = c(0, 1),
 Mode = 1
)
```

Arguments

X	Positive integer, the simulation number (a position in data object Data)
Data	An object of class 'Data' containing all fishery data (simulated or real - real has only one 'simulation')
reps	Positive integer, the number of stochastic samples of management advice (not applicable here)
Inds	Vector of positive integers. The indices (dimension 2) of the Additional Indices Data@AddInd to be used in calculation. When this is NA, the single index Data@Ind is used
I_freq	Vector of positive integers. Same length as Inds - how frequently will each index be available. 1 is every year, 2 is every 2 years, etc.
I_wt	Vector of positive real numbers. Same lengtt as Inds - the weighting of each index in the calculation of mean index level.
calib_yrs	Positive integer. The number of recent historical years used to calculate the 'current' Catch per Index value (more or less a nuisance parameter)

Emp 51

enp_mult	Fraction. The degree of smoothing for the polynomial function of indices. Larger numbers mean more smoothing. This is effective number of parameters. 0.3 means that the number of parameters in the polynomial smoother is 30% the length of the index.
Ind_fac	Positive real number. The factor (multiplier) of current catch(calib_yrs) / index(calib_yrs) to fish at in the future. A value of 2 means that per index the catches will be twice as high as today. If NA, the fraction of defaults to perfectly known mean((0.75 * FMSY)/last_historical_F) - mean over simulations.
TACrng	Vector 2 positions long, the minimum and maximum allowable catches. If NA this defaults to c(0, max_historical_catch*100) - essentially no TAC limit.
delta_down	Vector 2 positions long, the minimum and maximum allowable fractional downward change in TAC among management cycles.
delta_up	Vector 2 positions long, the minimum and maximum allowable fractional upward change in TAC among management cycles.
resp	Positive real number, the responsiveness of the TAC change algorithm. TAC_change = exp(log(new_TAC/old_TAC)*resp). Lower values linearly reduce the logspace TAC response and make smaller adjustements as proposed TAC changes are larger).
curI_2_target	Positive real number, the current (most recent historical year) index relative that at the target biomass level. If NA this defaults to perfectly known mean(last_historical_biomass / (1.25 * BMSY)), mean over all simulations.
HCR_CP_B	Vector of positive real numbers. Biomass control points of an HCR. These are the x-axis locations of the hockey stick inflection points. $c(0,1)$ means a linear ramp from I/I_target. $c(0.5,1)$ means no fishing til half I_target then a linear ramp in fishing to I_target. $c(0,0)$ means no HCR.
HCR_CP_TAC	Vector of positive real numbers. Response control points of an HCR. These are the y-levels corresponding with the hockey stick. These are the minimum and maximum modifiers applied to the TAC recommendation.
Mode	Integer. What type of index-based MP is used? 1 = Index rate, aims to fish at a rate of index (ie TAC = f(I, current_C / current_I, Ind_fac, HCR_CP_B, HCR_CP_TAC)), 2 = Index target, makes incremental TAC adjustments based on I/I_target (i.e. TAC = f(I, curI_2_target,))

Value

An object of class MP.

Author(s)

Fease

Fease

MP feasibility diagnostic

Description

What MPs may be run (best case scenario) for various data-availability scenarios and management constraints?

Usage

```
Fease(
   Data = NULL,
   TAC = TRUE,
   TAE = TRUE,
   SL = TRUE,
   Spatial = TRUE,
   names.only = TRUE,
   msg = TRUE,
   include.ref = FALSE
)
```

Arguments

Data	An object of class 'Data'. Optional. If Data object is included, the returned MPs are both feasible (in terms of management) and possible (sufficient data to run MP)
TAC	Logical. Are catch limits feasible for this fishery?
TAE	Logical. Are effort controls feasible for this fishery?
SL	Logical. Are size-selectivity regulations (either gear changes or size-retention regulations) feasible for this fishery?
Spatial	Logical. Are spatial closures feasible for this fishery?
names.only	Logical. Should only the names of the feasible MPs be returned (default)? If FALSE, a data frame with MP name, and two columns of logical values: Can (possible given data) and Fease (feasible given management constraints) is returned
msg	Logical. Should messages be printed to the console?
include.ref	Logical. Should reference MPs (e.g. FMSYref) be included as feasible methods? Default is FALSE

Value

Either a vector of MP names that are feasible for the fishery (default) or a 3 column data frame (names.only=FALSE).

Fleet-class 53

Author(s)

T. Carruthers & A. Hordyk

Examples

```
## Not run:
Fease(TAC=FALSE)
Fease(SL=FALSE, Spatial=FALSE)
Fease(Atlantic_mackerel, TAE=FALSE, names.only=FALSE)
## End(Not run)
```

Fleet-class

Class 'Fleet'

Description

The component of the operating model that controls fishing dynamics

Slots

Name Identifying name for the fleet. Usually includes location and gear type.

- nyears The number of years for the historical simulation. Single value. For example, if the simulated population is assumed to be unfished in 1975 and this is the year you want to start your historical simulations, and the most recent year for which there is data available is 2019, then nyears equals 45.
- CurrentYr The last historical year simulated before projections begin. Single value. Note that this should match the last historical year specified in the Data object, which is usually the last historical year for which data is available.
- EffYears Vector indicating the historical years where there is information available to infer the relative fishing effort expended. This vector is specified in terms of the position of the year in the vector rather than the calendar year. For example, say our simulation starts with an unfished stock in 1975, and the current year (the last year for which there is data available) is 2019. Then there are 45 historical years simulated, and EffYears should include numbers between 1 and 45. Note that there may not be information available for every historical year, especially for data poor fisheries. In these situations, the EffYears vector should include only the positions of the years for which there is information, and the vector may be shorter than the total number of simulated historical years (nyears).
- EffLower Lower bound on relative fishing effort corresponding to EffYears. EffLower must be a vector that is the same length as EffYears describing how fishing effort has changed over time. Information on relative fishing effort can be entered in any units provided they are consistent across the entire vector because the data provided will be scaled to 1 (divided by the maximum number provided).

54 Fleet-class

EffUpper Upper bound on relative fishing effort corresponding to EffYears. EffUpper must be a vector that is the same length as EffYears describing how fishing effort has changed over time. Information on relative fishing effort can be entered in any units provided they are consistent across the entire vector because the data provided will be scaled to 1 (divided by the maximum number provided).

- Esd Additional inter-annual variability in fishing mortality rate. For each historical simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. If this parameter has a positive (non-zero) value, the yearly fishing mortality rate is drawn from a log-normal distribution with a standard deviation (in log space) specified by the value of Esd drawn for that simulation. This parameter applies only to historical projections.
- qinc Mean temporal trend in catchability (also though of as the efficiency of fishing gear) parameter, expressed as a percentage change in catchability (q) per year. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. Positive numbers indicate an increase and negative numbers indicate a decrease. q then changes by this amount for in each year of the simulation This parameter applies only to forward projections.
- qcv Inter-annual variability in catchability expressed as a coefficient of variation. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This parameter applies only to forward projections.
- L5 Shortest length at which 5% of the population is vulnerable to selection by the gear used in this fleet. Values can either be specified as lengths (in the same units used for the maturity and growth parameters in the stock object) or as a percentage of the size of maturity (see the parameter isRel for more information). For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the same in all years unless cpars is used to provide time-varying selection.
- LFS Shortest length at which 100% of the population is vulnerable to selection by the gear used by this fleet. Values can either be specified as lengths (in the same units used for the maturity and growth parameters in the stock object) or as a percentage of the size of maturity (see the parameter isRel for more information). For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the same in all years unless cpars is used to provide time-varying selection.
- Vmaxlen Proportion of fish selected by the gear at the asymptotic length (Stock@Linf). Upper and Lower bounds between 0 and 1. A value of 1 indicates that 100% of fish are selected at the asymptotic length, and the selection curve is logistic. If Vmaxlen is less than 1 the selection curve is dome shaped. For example, if Vmaxlen is 0.4, then only 40% of fish are vulnerable to the fishing gear at the asymptotic length.
- isRel Specify whether selection and retention parameters use absolute lengths or relative to the size of maturity. Single logical value (TRUE or FALSE).
- LR5 Shortest length at which 5% of the population is vulnerable to retention by the fleet. Values can either be specified as lengths (in the same units used for the maturity and growth parameters in the stock object) or as a percentage of the size of maturity (see the parameter isRel for more information). For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the same in all years unless cpars is used to provide time-varying selection.
- LFR Shortest length where 100% of the population is vulnerable to retention by the fleet. Values can either be specified as lengths (in the same units used for the maturity and growth parameters

FleetDescription 55

in the stock object) or as a percentage of the size of maturity (see the parameter isRel for more information). For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the same in all years unless cpars is used to provide time-varying selection.

- Rmaxlen Proportion of fish retained at the asymptotic length (Stock@Linf). Upper and Lower bounds between 0 and 1. A value of 1 indicates that 100% of fish are retained at the asymptotic length, and the selection curve is logistic. If Rmaxlen is less than 1 the retention curve is dome shaped. For example, if Rmaxlen is 0.4, then only 40% of fish at the asymptotic length are retained.
- DR Discard rate, defined as the proportion of fully selected fish that are discarded by the fleet. Upper and Lower bounds between 0 and 1, with a value of 1 indicates that 100% of selected fish are discarded. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided.
- Spat_targ Distribution of fishing in relation to vulnerable biomass (VB) across areas. The distribution of fishing effort is proportional to VB^Spat_targ. Upper and lower bounds of a uniform distribution. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This parameter allows the user to model either avoidance or spatial targeting behavior by the fleet. If the parameter value is 1, fishing effort is allocated across areas in proportion to the population density of that area. Values below 1 simulate an avoidance behavior and values above 1 simulate a targeting behavior.
- MPA Logical argument (TRUE or FALSE). Creates an MPA in Area 1 for all years if true is selected. Defaults to FALSE.

Misc Miscellaneous list for bio-economic parameters

Creating Object

Objects can be created by calls of the form new('Fleet')

Author(s)

T. Carruthers and A. Hordyk

Examples

showClass('Fleet')

FleetDescription

FleetDescription

Description

A data.frame with description of slots for class Fleet

Usage

FleetDescription

56 FMSYref

Format

An object of class data. frame with 20 rows and 2 columns.

FMSYref

Reference management procedures

Description

Several reference MPs for your operating model to use in the management strategy evaluation. FMSYref (and related) assume perfect information about FMSY (FMSY is taken from the operating model stored at Data@Misc\$ReferencePoints\$ByYear\$FMSY), and set an effort limit (TAE) so that F=FMSY (or some fraction of FMSY) in each year the MP is applied. NFref sets annual catch to zero and is used for looking at variability in stock with no fishing.

Usage

```
FMSYref(x, Data, reps = 100, plot = FALSE)
FMSYref50(x, Data, reps = 100, plot = FALSE)
FMSYref75(x, Data, reps = 100, plot = FALSE)
NFref(x, Data, reps = 100, plot = FALSE)
curEref(x, Data, reps = 100, plot = FALSE)
```

Arguments

X	A position in the data object
Data	A data object
reps	The number of stochastic samples of the MP recommendation(s)
plot	Logical. Show the plot?

Details

Note that you can out-perform FMSYref easily. The requirement for fixed F is actually quite strict and is by no means the upper limit in terms of yield. Don't panic if your method beats this one for yield, especially for short-lived species of high temporal variability in productivity!

Value

An object of class Rec with the TAC slot populated with a numeric vector of length reps

Generic_Obs 57

Functions

- FMSYref(): A reference FMSY method that fishes at FMSY
- FMSYref50(): A reference FMSY method that fishes at 50% of FMSY
- FMSYref75(): A reference FMSY method that fishes at 75% of FMSY
- NFref(): A reference MP that sets annual catch to almost zero (1e-15)
- curEref(): A reference MP that keeps fishing effort at the level of the last historical year

Required Data

See Data for information on the Data object

Author(s)

T. Carruthers, A. Hordyk

Examples

```
FMSYref(1, MSEtool::SimulatedData, plot=TRUE)
FMSYref50(1, MSEtool::SimulatedData, plot=TRUE)
FMSYref75(1, MSEtool::SimulatedData, plot=TRUE)
NFref(1, MSEtool::SimulatedData, plot=TRUE)
curEref(1, MSEtool::SimulatedData)
```

Generic_Obs

Obs class objects

Description

Example objects of class Obs

Usage

Generic_Obs

Imprecise_Biased

Imprecise_Unbiased

Perfect_Info

Precise_Biased

Precise_Unbiased

58 getclass

Format

An object of class 0bs of length 1.

Examples

```
avail("Obs")
```

getclass

get object class

Description

Internal function for determining if object is of classy

Usage

```
getclass(x, classy)
```

Arguments

x Character string object name

classy A class of object (character string, e.g. 'Fleet')

Value

TRUE or FALSE

Author(s)

T. Carruthers with nasty hacks from A. Hordyk

getDataList 59

getDataList

Get part of an MP specific data-list

Description

Get part of an MP specific data-list

Usage

```
getDataList(MSElist, mm)
```

Arguments

MSElist A hierarchical list [Stock][Fleet][MP]

mm integer the MP number

Value

a sublist of MSElist for a specific MP

getfirstlev

Extract the first dimension of a hierarchical list of recommendation

objects

Description

Extract the first dimension of a hierarchical list of recommendation objects

Usage

```
getfirstlev(x, name, pp, ff)
```

Arguments

x Simulation number

name Character. The slot name to extract.

pp Integer. The stock number (second level list)

ff Integer. The fleet number (third level list)

Author(s)

60 getmov2

getmov2	Optimization function to find a movement model that matches user specified movement characteristics modified for Rcpp.

Description

The user specifies the probability of staying in the same area and spatial heterogeneity (both in the unfished state).

Usage

```
getmov2(x, Prob_staying, Frac_area_1)
```

Arguments

X	A position in vectors Prob_staying and Frac_area_1
Prob_staying	User specified probability that individuals in area 1 remain in that area (unfished conditions)

User specified fraction of individuals found in area 1 (unfished conditions)

Details

This is paired with movfit to find the correct movement model.

Value

A markov movement matrix

Author(s)

T. Carruthers

Frac_area_1

Examples

```
Prob_staying<-0.8 # probability that individuals remain in area 1 between time-steps Frac_area_1<-0.35 # the fraction of the stock found in area 1 under equilibrium conditions markovmat<-getmov2(1,Prob_staying, Frac_area_1) vec<-c(0.5,0.5) # initial guess at equilibrium distribution (2 areas) for(i in 1:300)vec<-apply(vec*markovmat,2,sum) # numerical approximation to stable distribution c(markovmat[1,1],vec[1]) # pretty close right?
```

getMP 61

getMP

Search R session for MP

Description

Calls dynGet(), then get() in order to find the MP definition in the R session.

Usage

```
getMP(MP)
```

Arguments

MP

Character of MP name

Value

The function definition or an error message from try() if unsuccessful

Author(s)

Q. Huynh

getnIVs

Count independent variables for a MICE relationship at position x in a Rel list

Description

Count independent variables for a MICE relationship at position x in a Rel list

Usage

```
getnIVs(x, Rel)
```

Arguments

x Position of a MICE relationship in the list Rel (MOM@Rel)

Rel The list of MICE relationships (MOM@Rel)

Author(s)

62 hcony

getsel	Calculate	selectivity	curve
Bc coc -	Carcalance	sercenting	curre

Description

Calculate selectivity curve

Usage

```
getsel(x, lens, lfs, sls, srs)
```

Arguments

X	Simulation number
lens	Matrix of lengths (nsim by nlengths)
lfs	Vector of length at full selection (nsim long)
sls	Vector of sigmas of ascending limb (nsim long)
srs	Vector of sigmas of descending limb (nsim long)

ìC		

Stock recruit parameterization

Description

Convert stock recruit parameters from steepness parameterization to alpha/beta (and vice versa)

Usage

```
hconv(alpha, phi0, SR = 1, type = 1)
R0conv(alpha, beta, phi0, SR = 1, type = 1)
SRalphaconv(h, phi0, SR = 1, type = 1)
SRbetaconv(h, R0, phi0, SR = 1, type = 1)
```

Arguments

alpha	Alpha parameter	
phi0	Unfished spawners per recruit	
SR	Stock-recruit function: (1) Beverton-Holt, or (2) Ricker	
type	The parameterization of the Beverton-Holt function with respect to alpha and beta. See details.	
beta	Beta parameter	
h	Steepness parameter	
RØ	Unfished recruitment parameter	

Herm-int 63

Details

The Type 1 Beverton-Holt equation is

$$R = \alpha S / (1 + \beta S)$$

The Type 2 Beverton-Holt equation is

$$R = S/(\alpha + \beta S)$$

The Ricker equation is

$$R = \alpha S \exp(-\beta S)$$

Value

A numeric.

Functions

- hconv(): Returns steepness (h) from alpha and phi0
- R0conv(): Returns unfished recruitment (R0) from alpha, beta, and phi0
- SRalphaconv(): Returns alpha from h and phi0
- SRbetaconv(): Returns beta from h, R0, and phi0

Author(s)

Q. Huynh

Herm-int

Internal Herm functions

Description

- expandHerm expands the Herm list in SexPars to a matrix of fractions at age
- checkHerm checks that each array in the list has dimension nsim x maxage+1 x nyears + proyears. For backwards compatibility, also converts matrices to arrays by adding the year dimension.
- subsetHerm returns year-specific Herm values.

Usage

```
expandHerm(Herm, maxage, np, nsim)
checkHerm(Herm, maxage, nsim, nyears, proyears)
subsetHerm(Herm, y)
```

64 Hist-class

Arguments

Herm A list of Hermaphroditic fractions at age
maxage The maximum age of stocks being simulated
np The total number of stocks being simulated

nsim The number of simulations
nyears The number of historical years
proyears The number of projection years

y The year to subset

Author(s)

T. Carruthers

Q. Huynh

Hist-class Class 'Hist'

Description

An object for storing information generated by the end of the historical simulations

Slots

Data The Data object at the end of the historical period

OMPars A numeric data.frame with nsim rows with sampled Stock, Fleet, Obs, and Imp parameters.

AtAge A named list with arrays of dimensions: c(nsim, maxage+1, nyears+proyears) or c(nsim, maxage+1, nyears, nareas)

- Length: Length-at-age for each simulation, age, and year
- Weight: Weight-at-age for each simulation, age, and year
- Select: Selectivity-at-age for each simulation, age, and year
- Retention: Retention-at-age for each simulation, age, and year
- Maturity: Maturity-at-age for each simulation, age, and year
- N.Mortality: Natural mortality-at-age for each simulation, age, and year
- Z.Mortality: Total mortality-at-age for each simulation, age, year and area
- F.Mortality: Fishing mortality-at-age for each simulation, age, year and area
- Fret.Mortality: Fishing mortality-at-age for retained fish for each simulation, age, year and area
- Number: Total numbers by simulation, age, year and area
- · Biomass: Total biomass by simulation, age, year and area
- VBiomass: Vulnerable biomass by simulation, age, year and area
- SBiomass: Spawning biomass by simulation, age, year and area
- Removals: Removals (biomass) by simulation, age, year and area

Hist-class 65

- Landings: Landings (biomass) by simulation, age, year and area
- Discards: Discards (biomass) by simulation, age, year and area

TSdata A named list with population and fleet dynamics:

- Number: Total numbers; array dimensions c(nsim, nyears, nareas)
- Biomass: Total biomass; array dimensions c(nsim, nyears, nareas)
- VBiomass: Vulnerable biomass; array dimensions c(nsim, nyears, nareas)
- SBiomass: Spawning Biomass; array dimensions c(nsim, nyears, nareas)
- Removals: Removals (biomass); array dimensions c(nsim, nyears, nareas)
- Landings: Landings (biomass); array dimensions c(nsim, nyears, nareas)
- Discards: Discards (biomass); array dimensions c(nsim, nyears, nareas)
- Find: Historical fishing mortality (scale-free); matrix dimensions c(nsim, nyears)
- RecDev: Recruitment deviations (historical and projection); matrix dimensions c(nsim, nyears+proyears+maxage)
- SPR: Named list with Equilibrium and Dynamic SPR (both matrices iwth dimensions c(nsim, nyears))
- Unfished_Equilibrium: A named list with unfished equilibrium numbers and biomass-atage

Ref A named list with biological reference points:

- ByYear: A named list with asymptotic reference points (i.e., calculated annually without recruitment deviations) all matrices with dimensions nsim by nyears+proyears:
 - N0: Asymptotic unfished total number
 - SN0: Asymptotic unfished spawning number
 - B0: Asymptotic unfished total biomass
 - SSB0: Asymptotic unfished spawning biomass
 - VB0: Asymptotic unfished vulnerable biomass
 - MSY: Asymptotic MSY
 - FMSY: Fishing mortality corresponding with asymptotic MSY
 - SSBMSY: Spawning stock biomass corresponding with asymptotic MSY
 - BMSY: total biomass corresponding with asymptotic MSY
 - VBMSY: Vulnerable biomass corresponding with asymptotic MSY
 - F01: Fishing mortality where the change in yield per recruit is 10% of that at F = 0
 - Fmax: Fishing mortality that maximizes yield per recruit
 - F_SPR: Fishing mortality corresponding to spawning potential ratio of 20 60% in increments of 5%; array dimensions c(nsim, 9, nyears+proyears)
 - Fcrash: Fishing mortality corresponding to the recruits-per-spawner at the origin of the stock-recruit relationship
 - Fmed: Fishing mortality corresponding to the median recruits-per-spawner in the historical period
 - SPRcrash: SPR corresponding to the recruits-per-spawner at the origin of the stock-recruit relationship
- Dynamic_Unfished: A named list with dynamic unfished reference points for each simulation and year:
 - N0: Unfished total numbers

66 hist2

- B0: Unfished total biomass
- SN0: Unfished spawning numbers
- SSB0: Unfished spawning biomass
- VB0: Unfished vulnerable biomass
- Rec: Unfished recruitment
- ReferencePoints: A data.frame with nsim rows with with biological reference points calculated as an average over age-of-maturity ageM years around the current year (i.e. nyears):
 - N0: Average unfished numbers
 - B0: Average unfished biomass
 - SSB0: Average unfished spawning biomass (used to calculate depletion)
 - SSN0: Average unfished spawning numbers
 - VB0: Average unfished vulnerable biomass (used to calculate depletion if cpar\$control\$D='VB')
 - MSY: Average maximum sustainable yield (equilibrium)
 - FMSY: Average fishing mortality corresponding with MSY
 - SSBMSY: Average spawning stock biomass corresponding with MSY
 - BMSY: Average total biomass corresponding with MSY
 - VBMSY: Average vulnerable biomass corresponding with MSY
 - UMSY: Average exploitation rate corresponding with MSY
 - FMSY_M: Average FMSY/M ratio
 - SSBMSY_SSB0: Average ratio of SSBMSY to SSB0
 - BMSY_B0: Average ratio of BMSY to B0
 - VBMSY_VB0: Average ratio of VBMSY to VB0
 - RefY: Maximum yield obtained in forward projections with a fixed F

SampPars A named list with all sampled Stock, Fleet, Obs, and Imp parameters

OM The OM object (without cpars)

Misc A list for additional information

Author(s)

A. Hordyk

hist2

Wrapper for histogram function

Description

Produces a blank plot if all values in x are equal

Usage

```
hist2(x, col, axes = FALSE, main = "", breaks = 10, cex.main = 1)
```

HistDescription 67

Arguments

x A vector of values

col Colour of the histogram

axes Logical - should axes be included?

main Character - main title

breaks Number of breaks. See ?hist for more details

cex.main Text size of the main title

HistDescription

HistDescription

Description

A data.frame with description of slots for class Hist

Usage

HistDescription

Format

An object of class data. frame with 76 rows and 2 columns.

Imp-class

Class 'Imp'

Description

An operating model component that specifies the degree of adherence to management recommendations (Implementation error)

Slots

Name The name of the Implementation error object. Single value. Character string.

Name The name of the Implementation error object. Single value. Character string.

TACFrac Mean fraction of recommended TAC that is actually taken. For each historical simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the mean TAC fraction obtained across all years of that simulation, and a yearly TAC frac is drawn from a log-normal distribution with the simulation mean and a coefficient of variation specified by the value of TACSD drawn for that simulation. If the value drawn is greater than 1 the amount of catch taken is greater than that recommended by the TAC, and if it is less than 1 the amount of catch taken is less than that recommended by the TAC. Positive real numbers.

68 Imp-class

TACSD Log-normal coefficient of variation in the fraction of recommended TAC that is actually taken. For each historical simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is used, along with the TACFrac drawn for that simulation, to create a log-normal distribution that yearly values specifying the actual amount of catch taken are drawn from. Positive real numbers.

- TAEFrac Mean fraction of recommended TAE that is actually taken. For each historical simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the mean TAE fraction obtained across all years of that simulation, and a yearly TAE frac is drawn from a log-normal distribution with the simulation mean and a coefficient of variation specified by the value of TAESD drawn for that simulation. If the value drawn is greater than 1 the amount of effort employed is greater than that recommended by the TAE, and if it is less than 1 the amount of effort employed is less than that recommended by the TAE. Positive real numbers.
- TAESD Log-normal coefficient of variation in the fraction of recommended TAE that is actually taken. For each historical simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is used, along with the TAEFrac drawn for that simulation, to create a log-normal distribution that yearly values speciying the actual amount of efort employed are drawn from. Positive real numbers.
- SizeLimFrac Mean fraction of recommended size limit that is actually retained. For each historical simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the mean size limit fraction obtained across all years of that simulation, and a yearly size limit fraction is drawn from a log-normal distribution with the simulation mean and a coefficient of variation specified by the value of SizeLimSD drawn for that simulation. If the value drawn is greater than 1 the size of fish retained is greater than that recommended by the size limit, and if it is less than 1 the amount of size of fish retained is less than that recommended by the size limit. Positive real numbers.
- SizeLimSD Log-normal coefficient of variation in the fraction of recommended size limit that is actually retained. For each historical simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is used, along with the SizeLimFrac drawn for that simulation, to create a log-normal distribution that yearly values speciying the actual fraction of the size limit retained are drawn from. Positive real numbers.

Objects from the Class

Objects can be created by calls of the form new('Imp')#'

Author(s)

T. Carruthers and A. Hordyk

Examples

showClass('Imp')

ImpDescription 69

ImpDescription In

ImpDescription

Description

A data.frame with description of slots for class Imp

Usage

ImpDescription

Format

An object of class data. frame with 7 rows and 2 columns.

initialize-methods

~~ Methods for Function initialize ~~

Description

```
~~ Methods for Function initialize ~~
```

Methods

```
list('signature(.Object = \'DLM\')') %% ~~describe this method here~~
list('signature(.Object = \'Fleet\')') %% ~~describe this method here~~
list('signature(.Object = \'MSE\')') %% ~~describe this method here~~
list('signature(.Object = \'Obs\')') %% ~~describe this method here~~
list('signature(.Object = \'OM\')') %% ~~describe this method here~~
list('signature(.Object = \'Stock\')') %% ~~describe this method here~~
list('signature(.Object = \'Fease\')') %% ~~describe this method here~~
list('signature(.Object = \'DLM_general\')') %% ~~describe this method here~~
```

70 iSCAM

Input	Function to run a set of	cinput control methods
-------	--------------------------	------------------------

Description

Runs a set of input control methods are returns the output in a single table

Usage

```
Input(Data, MPs = NA, reps = 100, timelimit = 10, CheckMPs = TRUE, msg = TRUE)
```

Arguments

Data A Data object

MPs A list of input MPs, if NA all available input MPs are run reps Number of repetitions (for those methods that use them)

timelimit Maximum timelimit to run MP (in seconds)

CheckMPs Logical, the Can function is run if this is TRUE

msg Logical. Should messages be printed?

Author(s)

A. Hordyk

Examples

```
## Not run:
library(MSEtool)
Input(MSEtool::Cobia)
## End(Not run)
```

iSCAM Reads iSCAM files into a hierarchical R list object

Description

Internal functions for reading iSCAM input and output files into R

iSCAM 71

Usage

```
load.iscam.files(model.dir, burnin = 1000, thin = 1, verbose = FALSE)

fetch.file.names(path, filename)

read.report.file(fn)

read.data.file(file = NULL, verbose = FALSE)

read.control.file(
    file = NULL,
    num.gears = NULL,
    num.age.gears = NULL,
    verbose = FALSE
)

read.projection.file(file = NULL, verbose = FALSE)

read.par.file(file = NULL, verbose = FALSE)

read.mcmc(model.dir = NULL, verbose = TRUE)
```

Arguments

model.dir Folder name

burnin The initial mcmc samples to be discarded

thin The degree of chain thinning 1 in every thin iterations is kept

verbose should detailed results be printed to console

The number age-gears

path File path
filename The filename
fn File location
file File location
num.gears The number of gears

Functions

num.age.gears

- load.iscam.files(): Wrapper function to generate R list
- fetch.file.names(): A function for returning the three types of iSCAM input and output files
- read.report.file(): A function for returning the results of the .rep iscam file
- read.data.file(): A function for returning the results of the .dat iscam file
- read.control.file(): A function for returning the results of the iscam control file
- read.projection.file(): A function for returning the results of the iscam projection file
- read.par.file(): A function for returning the results of the iscam .par file
- read.mcmc(): A function for returning the results of the iscam mcmc files

72 iSCAM2OM

Author(s)

Chris Grandin (DFO PBS)

See Also

iSCAM2OM

iSCAM20M

Reads MPD or MCMC estimates and data from iSCAM file structure into an operating model

Description

Functions for importing an iSCAM assessment. From a fitted model, iSCAM20M populates the various slots of an operating model and iSCAM2Data generates a Data object. These functions rely on several functions written by Chris Grandin (DFO PBS).

Usage

```
iSCAM2OM(
  iSCAMdir,
 nsim = 48,
 proyears = 50,
 mcmc = FALSE,
  spawn_time_frac = 0,
 Name = "iSCAM model",
  Source = "No source provided",
  length_timestep = 1,
 nyr_par_mu = 2,
 Author = "No author provided",
  report = FALSE,
  silent = FALSE
)
iSCAM2Data(
  iSCAMdir,
 Name = "iSCAM assessment",
 Source = "No source provided",
 length_timestep = 1,
  Author = "No author provided"
)
```

Arguments

iSCAMdir

A folder with iSCAM input and output files in it. Alternatively, a list returned by load.iscam.files.

iSCAM2OM 73

nsim The number of simulations to take for parameters with uncertainty (for OM@cpars

custom parameters)

proyears The number of MSE projection years

mcmc Logical, whether to use mcmc samples to create custom parameters cpars. Al-

ternatively, a list returned by read.mcmc. Set the seed for the function to sub-

sample the mcmc samples.

spawn_time_frac

Numeric between 0-1 indicating when spawning occurs within the time step

Name The name of the operating model

Source Reference to assessment documentation e.g. a url

length_timestep

How long is a model time step in years (e.g. a quarterly model is 0.25, a monthly

model 1/12) (currently only uses annual time step)

nyr_par_mu integer, the number of recent years to estimate vulnerability over for future pro-

jections

Author Who did the assessment

report logical should a numbers at age reconstruction plot be produced?

silent logical should progress reporting be printed to the console?

Biological parameters

The function calls model <- load.iscam.files(iSCAMdir) and grabs the following matrices:

- model\$mpd\$d3_weight_mat fecundity (product of weight and maturity at age)
- model\$mpd\$ma maturity at age

MPD historical reconstruction

The function calls model <- load.iscam.files(iSCAMdir) and then grabs the following matrices:

- model\$mpd\$N abundance at age
- model\$mpd\$F fishing mortality at age
- model\$mpd\$M natural mortality at age

If a delay-difference model is recognized, then the following is used instead:

- model\$mpd\$F_dd fishing mortality at age
- model\$mpd\$M_dd natural mortality at age

Abundance at age is reconstructed using model\$mpd\$rt (recruitment) and projected with F_dd and M_dd to match model\$mpd\$numbers.

74 iSCAMcomps

MCMC historical reconstruction

If mcmc = TRUE the function calls mcmc_model <- read.mcmc(iSCAMdir), and grabs nsim subsamples of the MCMC output through the following arrays:

- mcmc_model\$params and mcmc_model\$ft fishing mortality at age from the fleet selectivity parameters and apical F's
- mcmc_model\$m year-specific natural mortality at age
- mcmc_model\$params\$rinit and mcmc_model\$rt recruitment and abundance

Start age

While the iSCAM start age can be greater than zero, abundance at age is back-calculated to age zero with M, maturity, growth = 0. In this way, the stock-recruit dynamics from iSCAM are preserved.

These arrays are then passed to Assess2OM to generate the operating model.

Reference points

iSCAM calculates the stock-recruit relationship and subsequently a single set of MSY and unfished reference points using R0, steepness, and unfished spawners per recruit from the mean M, fecundity, and growth (mean with respect to time).

R0 and h are recalculated for the operating model by obtaining the stock-recruit alpha and beta from the iSCAM parameters and the mean unfished spawners per recruit in the first ageM (age of 50% maturity) years.

Author(s)

T. Carruthers, Q. Huynh

iSCAMcomps

Combines all iSCAM age composition data across fleets

Description

iSCAM assessments are often fitted to numerous fleets that have differing age selectivities. iS-CAMcomps is a simple way of providing the aggregate catch at age data. It should be noted that this process is important and in a real application would require due diligence (ie peer reviewed data workshop).

Usage

```
iSCAMcomps(replist, Year)
```

Arguments

replist S3 class object: the output from a read from an iSCAM data folder

Year Integer vector: the years of the data object ie Data@Year

iSCAMinds 75

Author(s)

T. Carruthers

iSCAMinds	Combines indices into a single index using linear modelling (** Dep-
	recated **)

Description

iSCAM assessments often make use of multiple indices of abundance. The data object and MPs currently only make use of a single index. combiSCAMinds is a function that creates a single index from many using linear modelling. It is a simple way of providing initial calculations of management recommendations and it should be noted that this process is important and in a real application would require due diligence (ie peer reviewed data workshop).

Usage

```
iSCAMinds(idata, Year, fleeteffect = T)
```

Arguments

idata List: the indices recorded in a read from an iSCAM data folder, e.g. replist\$data\$indices

Year Integer vector: the years of the data object ie Data@Year fleeteffect Logical: should a fleet effect be added to the linear model?

Author(s)

T. Carruthers

joinData	Join Data objects present in a list

Description

A function that combined a list of data objects into a single data object (same dimensions but can have different numbers of simulations)

Usage

```
joinData(DataList)
```

Arguments

DataList A list of data objects of identical dimension (except for simulation)

76 join_plots

Author(s)

T. Carruthers

See Also

```
joinMSE joinHist
```

join_plots

Plot several plots with a shared legend

Description

Plot several plots with a shared legend

Usage

```
join_plots(
  plots,
  ncol = length(plots),
  nrow = 1,
  position = c("right", "bottom"),
  legend = TRUE
)
```

Arguments

plots list of plot objects of class gg or ggplot

ncol Optional number of columns

nrow Optional number of rows

position position of the legend ("bottom" or "right")

legend Logical. Use a legend?

Note

modified from https://github.com/tidyverse/ggplot2/wiki/share-a-legend-between-two-ggplot2-graphs

Kplot 77

Kplot

KOBE plot: a projection by projection plot of F/FMSY and B/BMSY

Description

A standard KOBE plot by each method that also shows the percentage of methods that ended up in each quadrant.

Usage

```
Kplot(
   MSEobj,
   maxsim = 60,
   MPs = NA,
   sims = NULL,
   maxMP = 9,
   nam = NA,
   cex.leg = 1.5
)
```

Arguments

MSEobj	An object of class MSE
maxsim	Maximum number of simulations (lines) to plot on each panel.
MPs	Optional subset MSE object by MP
sims	Optional subset MSE object by simulation
maxMP	Maximum number of MPs to include in plot
nam	The name of the plot
cex.leg	Size of legend

Note

Apologies for the nauseating shading.

Author(s)

T. Carruthers with some additions from A. Hordyk

78 Lag_Data

Lag_Data	Lag the time-series slots in a Data object by a specified number of time-steps

Description

Lag the time-series slots in a Data object by a specified number of time-steps

Usage

```
Lag_Data(Data, Data_Lag = 0, msg = FALSE)
```

Arguments

Data An object of class Data

Data_Lag Either a numeric vector of length 1 with a positive number specifying the num-

ber of time-steps to lag all time-series data, or a named list with numeric values

(length 1). See details for more information.

msg Logical. Display the messages?

Details

By default, all simulated data in the forward projections are provided up to the previous time-step. That is, in projection year t, the simulated data are up to and including t-1. This function will lag the time-series values by the specified value. For example, Data_Lag=5 will mean in projection time-step t the data will be up to and including t-6.

Note: The Data@Year slot is *not* lagged by this function. Many built-in MPs use the length of Data@Year to determine the number of years of data for smoothing over recent years etc. This may not be appropriate so check the MP is behaving as you expect if you use Lag_Data.

Value

An object of class Data with time-series slots lagged.

```
# Lag all time-series slots by 2 time-steps (usually years)
Data <- Example_datafile
Lagged_1 <- Lag_Data(Data, 2)
length(Data@Year)
length(Lagged_1@Year)
length(Data@Cat[1,])
length(Lagged_1@Cat[1,])
length(Data@Ind[1,])
length(Lagged_1@Ind[1,])
# Lag CAA by 5 and Ind by 3 time-steps
Lagged_2 <- Lag_Data(Data, Data_Lag=list(CAA=5, Ind=3))</pre>
```

Idim 79

```
length(Lagged_2@Year)
length(Lagged_2@Cat[1,])
dim(Data@CAA[1,,])
dim(Lagged_2@CAA[1,,])
length(Data@Ind[1,])
length(Lagged_2@Ind[1,])
```

ldim

Dimensions of a hierarchical list object

Description

Dimensions of a hierarchical list object

Usage

ldim(x)

Arguments

Х

A list

Author(s)

T. Carruthers

LH20M

Predict missing life-history parameters

Description

Predict missing life-history based on taxonomic information and hierarchical model fitted to Fish-Base life-history parameters

Usage

```
LH2OM(
   OM,
   dist = c("unif", "norm"),
   filterMK = FALSE,
   plot = TRUE,
   Class = "predictive",
   Order = "predictive",
   Family = "predictive",
   msg = TRUE,
```

80 LH2OM

```
db = MSEtool::LHdatabase
)
predictLH(
  inpars = list(),
  Genus = "predictive",
  Species = "predictive",
  nsamp = 100,
  db = MSEtool::LHdatabase,
  dist = c("unif", "norm"),
  filterMK = TRUE,
  plot = TRUE,
  Class = "predictive",
 Order = "predictive",
  Family = "predictive",
 msg = TRUE
)
```

Arguments

OM An object of class 'OM'

dist Character. Should parameters be sampled from a uniform (unif) or normal

(norm) distribution?

filterMK Logical or numeric specifying percentiles. See Details. e.g. OM@M and OM@K.

Empty slots or slots with all values of 0 are considered unknown.

plot Logical. Should the plot be produced?

Class Optional higher order taxonomic information
Order Optional higher order taxonomic information
Family Optional higher order taxonomic information

msg Logical. Should messages be printed?

db Database from FishLife model with fitted model results

inpars A named list with lower and upper bounds of provided parameters: Linf, L50,

K and *M* (must be length 2). Unknown or missing parameters should not be included. For example, an empty list assumes that all four life history parameters are unknown and need to be estimated. See Details below for more information.

Genus Character string specifying the Genus name. Optional. Default is 'predictive'

Species Character string specifying the Species name. Optional. Default is 'predictive'.

If full species name (Genus + Species) is not found if FishLife database (based on FishBase) higher order taxonomy will be used (e.g., Family) for the predic-

tions.

nsamp The number of samples to return

Details

filterMK:

LHdatabase 81

If filterMK is logical: Should the predicted M and K parameters be filtered within the range specified in inparsor OM?

Otherwise, filterMK must be numeric vector of length(2) specifying lower and upper percentiles that will be applied to the predicted M or K values

The model predicts missing life-history parameters based on provided parameters and taxonomic information. If both M and K are provided in inpars or OM, K values are predicted and predictions filtered so that resulting K values are within bounds specified in inpars \$K or OM@K (see filterMK).

If both Linf and L50 are provided in inpars or OM, L50 values are predicted and values in inpars\$L50 or OM@L50 are ignored.

Value

LH2OM: An OM with OM@cpars populated with OM@nsim samples of M, K, Linf and L50 predictLH: A data.frame with nsamp rows with Linf, L50, K, and M values.

Functions

- LH2OM(): Predict missing life-history and populate OM@cpars
- predictLH(): Predict missing life-history based on taxonomic information and hierarchical model fitted to FishBase life-history parameters

Author(s)

A. Hordyk

Source

https://github.com/James-Thorson-NOAA/FishLife

References

Thorson, J. T., S. B. Munch, J. M. Cope, and J. Gao. 2017. Predicting life history parameters for all fishes worldwide. Ecological Applications. 27(8): 2262–2276

LHdatabase

LHdatabase

Description

Database from the FishLife package with predicted life-history parameters for all species on Fish-Base

Usage

LHdatabase

82 makeMOM

Format

An object of class list of length 3.

Source

```
https://github.com/James-Thorson-NOAA/FishLife/
```

References

Thorson, J. T., S. B. Munch, J. M. Cope, and J. Gao. 2017. Predicting life history parameters for all fishes worldwide. Ecological Applications. 27(8): 2262–2276

makeMOM

Utility for making multi-OMs

Description

Converts an OM to a single stock, single fleet MOM.

Usage

```
makeMOM(..., silent = FALSE)
```

Arguments

... An OM.

silent Should messages be printed out to the console?

Value

A class MOM object.

Author(s)

Q. Huynh

```
MOM <- makeMOM(testOM)</pre>
```

makemov 83

makemov	Calculates movement matrices from user inputs for fraction in each area (fracs) and probability of staying in areas (prob)

Description

A function for calculating a movement matrix from user specified unfished stock biomass fraction in each area. Used by simmov to generate movement matrices for an operating model.

Usage

```
makemov(fracs = c(0.1, 0.2, 0.3, 0.4), prob = c(0.5, 0.8, 0.9, 0.95))
```

Arguments

fracs A vector nareas long of fractions of unfished stock biomass in each area

prob A vector of the probability of individuals staying in each area or a single value

for the mean probability of staying among all areas

Author(s)

T. Carruthers

See Also

simmov

makemov2	Calculates movement matrices from user inputs for fraction in each area (fracs) the relative fraction moving to other areas, plus a mean probability of staying in any given area.

Description

A function for calculating a movement matrix from user specified distribution among areas (v) and relative movement to other areas (solves for positive diagonal - vector of prob staying). Used by simmov2 to generate movement matrices for an operating model. There must be a prior on the positive diagonal of the movement matrix or these will tend to 1 and hence perfectly satisfy the requirement V = MV.

84 makeRel

Usage

```
makemov2(
  dist = c(0.05, 0.6, 0.35),
  prob = 0.5,
  probE = 1,
  frac_other = matrix(c(NA, 2, 1, 2, NA, 1, 1, 2, NA), nrow = 3, byrow = T),
  plot = F
)
```

Arguments

dist A vector nareas long of fractions of unfished stock biomass in each area

prob A vector of the probability of individuals staying in each area or a single value

for the mean probability of staying among all areas

probE The logit CV associated with prob (used as a penalty when optimizing for diag-

onal)

frac_other A matrix nareas x nareas that specifies the relative fraction moving from one

area to the others. The positive diagonal is unspecified.

plot Should the convergence to a stable distribution be plotted?

Author(s)

T. Carruthers

See Also

simmov2

makeRel

MICE relationships for multi-OM

Description

Generate a MICE Rel object, with predict and simulate methods, for multiMSE. Currently implements intra-stock dynamics via density-dependent processes.

Usage

```
makeRel(type = "DDM", stock = 1, CV = 0, ...)
## S3 method for class 'Rel'
print(x, ...)
## S3 method for class 'Rel'
predict(object, newdata, ...)
## S3 method for class 'Rel'
simulate(object, nsim = 1, seed = 1, ...)
```

makeRel 85

Arguments

type	String to indicate the type of stock interaction. "DDM" for density-dependent natural mortality.
stock	The index position of the stock in the MOM.
CV	Coefficient of variation of the predicted value for simulate. Used to pass values to the operating model.
	Additional arguments depending on type. See details below.
х	For print.Rel, a Rel class object from make_Rel.
object	A Rel class object from make_Rel.
newdata	A data frame to provide values of predictor variables with which to calculate the response variable.
nsim	The number of simulations.
seed	Integer to specify the seed for the random number generator.

Value

A class "Rel" object to pass to MOM@Rel.

Density-dependent M ("DDM")

Natural mortality (M) is a linear function of stock depletion in terms to total biomass (B) in year y (Forrest et al. 2018):

$$M_y = M_0 + (M_1 + M_0)(1 - B_y/B_0)$$

with a constraint that $M_y=M_0$ if $B_y>B_0$

Provide the following arguments:

- M0: Natural mortality as B approaches B0. Vector [nsim]
- M1: Natural mortality as B approaches zero. Vector [nsim]
- Optional B0: Unfished biomass. Calculated from stock-recruit alpha and beta and unfished biomass per recruit at M = M0. Vector [nsim]

Author(s)

Q. Huynh

References

Forrest, R., Holt, K., and Kronlund, A. 2018. Performance of alternative harvest control rules for two Pacific groundfish stocks with uncertain natural mortality: Bias, robustness and trade-offs. Fisheries Research 206: 259–286. doi:10.1016/j.fishres.2018.04.007

86 ML2D

Examples

```
# Depensatory natural mortality
Rel <- makeRel(type = "DDM", M0 = 0.8, M1 = 0.2, CV = 0.1)

# Predict M when B/B0 = 0.1
pred <- predict(Rel, newdata = data.frame(B_1 = 0.1, B0_1 = 1))

# Simulate values of M with CV = 0.1
Rel$fitted.values <- pred
simulate(Rel, nsim = 10, seed = 1)

# Add Rel to MOM
MOM <- makeMOM(testOM)
MOM@Rel <- list(Rel)</pre>
```

makeTransparent

Make colors transparent

Description

Make colors transparent

Usage

```
makeTransparent(someColor, alpha = 100)
```

Arguments

someColor Character string describing color

alpha transparency

Author(s)

T. Carruthers

ML2D

Depletion and F estimation from mean length of catches

Description

A highly dubious means of getting very uncertain estimates of current stock biomass and (equilibrium) fishing mortality rate from growth, natural mortality rate, recruitment and fishing selectivity.

Usage

```
ML2D(OM, ML, nsim = 100, ploty = T, Dlim = c(0.05, 0.6))
```

MMSE-class 87

Arguments

OM An object of class 'OM'

ML A estimate of current mean length of catches

nsim Number of simulations

ploty Produce a plot of depletion and F

Dlim Limits on the depletion that is returned as a fraction of unfished biomass.

Value

An object of class 'OM' with 'D' slot populated

Author(s)

T. Carruthers

MMSE-class Class 'MMSE'

Description

A Multi Management Strategy Evaluation object that contains information about simulation conditions and performance of MPs for a multi-stock, multi-fleet operating model.

Slots

Name Name of the MMSE object. Single value. Character string

nyears The number of years for the historical simulation. Single value. Positive integer

proyears The number of years for the projections - closed loop simulations. Single value. Positive integer

nMPs Number of management procedures simulation tested. Single value. Positive integer.

MPs The names of the MPs that were tested. Vector of length nMPs. Character strings.

MPcond The MP condition. Character ('bystock': an MP per stock, 'byfleet' and MP per stock and fleet, 'MMP' an MP for all stocks and fleets)

MPrefs The names of the MPs applied for each stock (row) and fleet (column). An array.

nsim Number of simulations. Single value. Positive integer

nstocks Number of stocks. Single value. Positive integer

nfleets Number of fleets. Single value. Positive integer

Snames Names of the stocks

Fnames Names of the fleets (matrix nstocks x nfleets)

Stocks The stock operating model objects. List of Stocks

Fleets The fleet operating model objects. Hierarchical list, fleets nested in stocks.

88 MMSE-class

Obss The fleet specific observation error operating model objects. Hierarchical list, fleets nested in stocks.

- Imps The fleet specific implementation error operating model objects. Hierarchical list, fleets nested in stocks.
- OM A table of sampled parameters of the operating model. Data frame of nsim rows.
- Obs A table of sampled parameters of the observation model. Data frame of nsim rows.
- SB_SBMSY Simulated spawning biomass relative to SBMSY over the projection. An array with dimensions: nsim, nStocks, nMPs, proyears. Non-negative real numbers
- F_FMSY Simulated fishing mortality rate relative to FMSY over the projection. An array with dimensions: nsim, nStocks, nFleets, nMPs, proyears. Non-negative real numbers
- N Simulated stock numbers over the projection. An array with dimensions: nsim, nStocks, maxage+1, nMPs, proyears, nareas. Non-negative real numbers
- B Simulated stock biomass over the projection. An array with dimensions: nsim, nStocks, nMPs, proyears. Non-negative real numbers
- SSB Simulated spawning stock biomass over the projection. An array with dimensions: nsim, nStocks, nMPs, proyears. Non-negative real numbers
- VB Simulated vulnerable biomass over the projection. An array with dimensions: nsim, nStocks, nMPs, proyears. Non-negative real numbers
- FM Simulated fishing mortality rate over the projection. An array with dimensions: nsim, nStocks, nFleets, nMPs, proyears. Non-negative real numbers
- SPR A list of SPR values. Currently not used.
- Catch Simulated catches (landings) over the projection. An array with dimensions: nsim, nStocks, nFleets, nMPs, proyears. Non-negative real numbers
- Removals Simulated removals (landings+discards) over the projection. An array with dimensions: nsim, nStocks, nFleets, nMPs, proyears. Non-negative real numbers
- Effort Simulated relative fishing effort in the projection years. An array with dimensions: nsim, nStocks, nFleets, nMPs, proyears. Non-negative real numbers
- TAC Simulated Total Allowable Catch (prescribed) over the projection (this is NA for input controls). An array with dimensions: nsim, nStocks, nFleets, nMPs, proyears. Non-negative real numbers
- TAE Simulated Total Allowable Effort (prescribed) over the projection (this is NA for output controls). An array with dimensions: nsim, nStocks, nFleets, nMPs, proyears. Non-negative real numbers
- BioEco A named list of bio-economic output. Not currently used.
- RefPoint Named list of annual MSY reference points MSY, FMSY, and SBMSY. Array with dimensions: nsim, nstocks, nMPs, nyears+proyears. Will be the same as multiHist@Ref\$ByYear unless selectivity is changed by MP
- multiHist The object of class multiHist containing information from the spool-up period.
- PPD Posterior predictive data. List of Data objects at the end of the projection period (length nMPs)
- Misc Miscellaneous output such as posterior predictive data

MOM-class 89

Objects from the Class

Objects can be created by calls of the form new('MMSE', Name, nyears, proyears, nMPs, MPs, nsim, OMtable, Obs,B_BMSYa, F_FMSYa, Ba, FMa, Ca, OFLa, Effort, PAA, CAA, CAL, CALbins)

Author(s)

T. Carruthers

MOM-class

Class 'MOM'

Description

An object containing all the parameters needed to control a multi-stock, multi-fleet MSE which can be build from component Stock, Fleet, Obs, and Imp objects.

Details

Almost all of these inputs are a vector of length 2 which describes the upper and lower bounds of a uniform distribution from which to sample the parameter.

Slots

Name Name of the operating model

Agency Name of the agency responsible for the management of the fishery. Character string

Region Name of the general geographic region of the fishery. Character string

Sponsor Name of the organization who sponsored the OM. Character string

Latitude Latitude (decimal degrees). Negative values represent the South of the Equator. Numeric. Single value

Longitude Longitude (decimal degrees). Negative values represent the West of the Prime Meridian. Numeric. Single value

nsim The number of simulations

proyears The number of projected years

interval The assessment interval - how often would you like to update the management system? pstar The percentile of the sample of the management recommendation for each method

maxF Maximum instantaneous fishing mortality rate that may be simulated for any given age class

reps Number of samples of the management recommendation for each method. Note that when this is set to 1, the mean value of the data inputs is used.

cpars A hierarchical list nstock then nfleet long of custom parameters. Time series are a matrix nsim rows by nyears columns. Single parameters are a vector nsim long. See validcpars()

seed A random seed to ensure users can reproduce results exactly

Source A reference to a website or article from which parameters were taken to define the operating model

90 MOM-class

Stocks List of stock objects

Fleets List of Fleet objects

Obs Hierarchical List of Observation model objects Level 1 is stock, level 2 is fleet

Imps Hierarchical List of Implementation model objects Level 1 is stock, level 2 is fleet

CatchFrac A list nstock long, of matrices nsim x nfleet representing the fraction of current catches of the various fleets to each stock (each matrix is nsim by nfleet long and rows sum to 1 for each stock)

Allocation A list nstock long, of matrices nsim x nfleet representing the fraction of future TACs of the various fleets to each stock (each matrix is nsim by nfleet long and rows sum to 1 for each stock).

Efactor A list nstock long, of current effort factors by fleet (default is 1 - same as current effort)

Complexes A list of stock complexes. Each position is a vector of stock numbers (as they appear in StockPars) for which data should be aggregated and TAC recommendations split among stocks according to vulnerable biomass

SexPars A list of slots that control sex-specific dynamics, i.e., sex-specific spawning and hermaphroditism. More generally, controls spawning and moving abundance between stocks. See details.

Rel A list of biological / ecological relationships among stocks over-ridden if an MP of class 'MP_F" is supplied that is a multi-fleet MP.

Objects from the Class

Objects can be created by calls of the form new('MOM', Stock_list, Fleet_list, Obs_list, Imp_list).

SexPars

- SSBfrom A nstock x nstock matrix that specifies the proportion of the spawning output of the row p stock for the column p' stock. A diagonal matrix means each stock is responsible for its own recruitment.
- Herm A list with each entry containing a matrix (nsim x maxage + 1) that specifies the proportion at age that moves from stock p to p' (sequential hermaphroditism). The names of the list should be of the form "H_p'_p" where p and p' are integers that identify the stock. Arrays can also be used (nsim x maxage + 1 x nyears + proyears) for time-varying values.
- share_par Optional. Logical to indicate whether stock-recruit, depletion, and observation/implementation parameters are mirrored between stocks. By default, TRUE.

Author(s)

T. Carruthers and A. Hordyk

See Also

Article on MOM and multiMSE: https://openmse.com/features-multimse/

movestockCPP 91

r	novestockCPP	Apply the movement model to the stock for one time-step

Description

Apply the movement model to the stock for one time-step

Usage

```
movestockCPP(nareas, maxage, mov, Number)
```

Arguments

nareas The number of spatial areas

maxage The maximum age

mov Numeric matrix (nareas by nareas) with the movement matrix

Number A numeric matrix (maxage+1, nareas) with current numbers-at-age in each area

Author(s)

A. Hordyk

movfit_Rcpp	Rcpp version of the Optimization function that returns the squared dif-
	ference between user specified and calculated movement parameters.

Description

The user specifies the probability of staying in the same area and spatial heterogeneity (both in the unfished state). This function returns the squared difference between these values and those produced by the three logit movement model.

Usage

```
movfit_Rcpp(par, prb, frac)
```

Arguments

par	Three parameters in the logit space that control the four probabilities of moving between 2 areas
prb	User specified probability that individuals in area 1 remain in that area (unfished conditions)
frac	User specified fraction of individuals found in area 1 (unfished conditions)

92 MPtype

Details

This is paired with getmov to find the correct movement model.

Author(s)

T. Carruthers with an amateur attempt at converting to Rcpp by A. Hordyk (but it works!)

MPCalcsNAs

Fill any NAs arising from MPCalcs (hermaphroditism mode)

Description

Fill any NAs arising from MPCalcs (hermaphroditism mode)

Usage

```
MPCalcsNAs(MPCalcs)
```

Arguments

MPCalcs

A list of arrays arising fromt the DLMtool function CalcMPDynamics()

Author(s)

T. Carruthers

MPtype

Management Procedure Type

Description

Management Procedure Type

Usage

```
MPtype(MPs = NA)
```

Arguments

MPs

A vector of MP names. If none are provided function is run on all available MPs

Value

A data.frame with MP names, management type (e.g "Input", "Output") and management recommendations returned by the MP (e.g, TAC (total allowable catch), TAE (total allowable effort), SL (size-selectivity), and/or or Spatial)

MSE-class 93

See Also

Required

Examples

```
MPtype(c("AvC", "curE", "matlenlim", "MRreal", "FMSYref"))
```

MSE-class

Class 'MSE'

Description

A Management Strategy Evaluation object that contains information about simulation conditions and performance of data-limited methods

Slots

Name Name of the MSE object. Single value. Character string

nyears The number of years for the historical simulation. Single value. Positive integer

proyears The number of years for the projections - closed loop simulations. Single value. Positive integer

nMPs Number of management procedures simulation tested. Single value. Positive integer.

MPs The names of the MPs that were tested. Vector of length nMPs. Character strings.

nsim Number of simulations. Single value. Positive integer

- OM Operating model parameters (last historical year used for time-varying parameters). Data.frame with nsim rows
- Obs Observation parameters (last historical year used for time-varying parameters). Data.frame with nsim rows
- SB_SBMSY Simulated spawning biomass relative to spawning BMSY over the projection. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- F_FMSY Simulated fishing mortality rate relative to FMSY over the projection. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- N Simulated total numbers over the projection. An array with dimensions: nsim, maxage+1, nMPs, proyears, nareas. Non-negative real numbers.
- B Simulated stock biomass over the projection. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- SSB Simulated spawning stock biomass over the projection. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- VB Simulated vulnerable biomass over the projection. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- FM Simulated fishing mortality rate over the projection. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers

94 MSEDescription

SPR Named list with equilibrium and dynamic SPR. Each element is an array with dimensions: nsim, nMPs, proyears. Non-negative real numbers.

- Catch Simulated catches (landings) over the projection. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- Removals Simulated removals (catch + discards) over the projection. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- Effort Simulated relative fishing effort in the projection years. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- TAC Simulated Total Allowable Catch prescribed by MPs. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- TAE Simulated Total Allowable Effort prescribed by MPs. An array with dimensions: nsim, nMPs, proyears. Non-negative real numbers
- BioEco Named list with bio-economic output Only used if bio-economic parameters are included in OM
- RefPoint Named list of annual MSY reference points MSY, FMSY, and SBMSY. Array with dimensions: nsim, nMPs, nyears+proyears. Will be the same as Hist@Ref\$ByYear unless selectivity is changed by MP
- CB_hist Simulated catches (landings) from the spool-up period. An array with dimensions: nsim, nyears. Non-negative real numbers
- FM_hist Simulated fishing mortality rate from the spool-up period. An array with dimensions: nsim, nyears Non-negative real numbers
- SSB_hist Simulated spawning stock biomass from the spool-up period. An array with dimensions: nsim, nyears. Non-negative real numbers
- Hist Information from the historical spool-up period. Object of class Hist. Only contains slots AtAge and TSdata unless extended=TRUE in runMSE
- PPD Posterior predictive data. List of Data objects at the end of the projection period (length nMPs) Misc Miscellaneous output

Author(s)

T. Carruthers and A. Hordyk

MSEDescription

MSEDescription

Description

A data.frame with description of slots for class MSE

Usage

MSEDescription

Format

An object of class data. frame with 29 rows and 2 columns.

MSEextra 95

MSEextra

Load more data from MSEextra package

Description

Downloads the MSEextra package from GitHub

Usage

```
MSEextra(silent = FALSE, force = FALSE)
```

Arguments

silent Logical. Should messages to printed?

force Logical. For install from github if package is up-to-date?

MSYCalcs

Internal function to calculate MSY Reference Points

Description

Internal function to calculate MSY Reference Points

Usage

```
MSYCalcs(
  logF,
 M_at_Age,
 Wt_at_Age,
 Mat_at_Age,
  Fec_at_Age,
  V_at_Age,
 maxage,
  relRfun,
  SRRpars,
  R0x = 1,
  SRrelx = 3L,
  hx = 1,
  SSBpR = 0,
  opt = 1L,
 plusgroup = 1L,
  spawn_time_frac = 0
)
```

96 multiData

Arguments

log F log fishing mortality

M_at_Age Vector of M-at-age

Wt_at_Age Vector of weight-at-age

Mat_at_Age Vector of maturity-at-age

Fec_at_Age Vector of mature weight-at-age

V_at_Age Vector of selectivity-at-age

maxage Maximum age

relRfun Optional. A function used to calculate reference points if SRrelc =3

SRRpars Optional. A named list of arguments for SRRfun

R0x R0 for this simulation. Set = 1 if SRrelx = 4 for per-recruit calculations

SRR type for this simulation. Use 4 for per-recruit calculations, i.e. constant

recruitment.

hx numeric. Steepness value for this simulation. Not used if SRrelx = 4.

SSBpR numeric. Unfished spawners per recruit for this simulation. Not used if SRrelx

= 4.

opt Option. 1 = return - Yield, 2= return all MSY calcs

plusgroup Integer. Default = 0 = no plus-group. Use 1 to include a plus-group

spawn_time_frac

Numeric. Fraction of the year when spawning occurs. Default = 0.

Value

See opt

multiData Combine data among fleets

Description

Catches, CAA, CAL are summed. LFC and LFS are weighted averages. ML, Lc and Lbar are recalculated from summed CAL. All other observations are for fleet 1 (indicative)

Usage

```
multiData(MSElist, StockPars, p, mm, nf)
```

Arguments

MSElist A hierarchical list of data objects stock then fleet then MP

StockPars A list of stock parameters
p Integer the Stock number
mm Integer the MP number
nf The number of fleets

multiDataS 97

Author(s)

T. Carruthers

multiDataS

Combine data among stocks

Description

Catches, CAA, CAL are summed. Indices, LFC and LFS are weighted averages. ML, Lc and Lbar are recalculated from summed CAL. All other observations are for fleet 1 and weighted average across stocks

Usage

```
multiDataS(MSElist, Real.Data.Map, np, mm, nf, realVB)
```

Arguments

MSElist A hierarchical list of data objects stock then fleet then MP Real.Data.Map Matrix describing which data are mapped across stocks

np The number of stocks
mm Integer the MP number
nf The number of fleets

realVB A matrix of real vulnerable biomass [nsim,np, year]

Author(s)

T. Carruthers

multidebug

A basic comparison of runMSE output (MSE) and multiMSE (MMSE)

Description

A basic comparison of runMSE output (MSE) and multiMSE (MMSE)

Usage

```
multidebug(MSEsingle, MSEmulti, p = 1, f = 1, MPno = 1, maxsims = 4)
```

98 NIL

Arguments

MSE single An object of class MSE arising from a run of runMSE(OM, ...)

MSE multi An object of class MMSE arising from a run of multiMSE(MOM, ...)

p Integer. The stock number from the MSEmulti object (to be plotted)

f Integer. The fleet number from the MSEmulti object (to be plotted)

MPno Integer. The MP number from the MSEmulti and MSEsingle object (to be plot-

ted)

maxsims Integer. The maximum number of simulations to plot.

Author(s)

T.Carruthers

NIL Item in list: get the list values from a list of lists

Description

Create of vector of values that correspond with a slot in a list of objects

Usage

```
NIL(listy, namey, lev1 = T)
```

Arguments

listy A list of objects

namey A character vector representing the list item's name

lev1 Logical, should NIL default to the first level of the list?

Author(s)

T. Carruthers

NOAA_plot

NOAA_plot	National Oceanographic and Atmospheric Administration default plot
	-

Description

A preliminary plot for returning trade-offs plots and performance table for total yield, variability in yield, probability of overfishing and likelihood of biomass dropping below 50 per cent BMSY

Usage

```
NOAA_plot(MSEobj, nam = NA, type = NA, panel = T)
```

Arguments

MSEobj An object of class MSE

nam Title of plot

type Plots full range of data if NA. Plots a subset that meet thresholds if not NA.

panel Should a two panel plot be made or should plots be made in sequence.

Value

A table of performance metrics.

Author(s)

T. Carruthers

Obs-class Class 'Obs'

Description

An operating model component that controls the observation model

Slots

Name The name of the observation model object. Single value. Character string.

Name The name of the Observation error object. Single value. Character string.

Cobs Observation error around the total catch. Observation error in the total catch is expressed as a coefficient of variation (CV). Cobs requires upper and lower bounds of a uniform distribution, and for each simulation a CV is sampled from this distribution. Each CV is used to specify a log-normal error distribution with a mean of 1 and a standard deviation equal to the sampled CV. The yearly observation error values for the catch data are then drawn from this distribution. For each time step the simulation model records the true catch, but the observed catch is generated by applying this yearly error term (plus any bias, if specified) to the true catch.

100 Obs-class

Cbiascv Log-normally distributed coefficient of variation controlling the sampling bias in observed catch for each simulation. Bias occurs when catches are systematically skewed away from the true catch level (for example, due to underreporting of catch or undetected illegal catches). Cbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years.

- CAA_nsamp Number of catch-at-age observations collected per time step. For each time step a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. Positive integers.
- CAA_ESS Effective sample size of catch-at-age observations collected per time step. For each time step a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. CAA_ESS should not exceed CAA_nsamp. If greater than 1, then this is the multinomial distribution sample size. If less than 1, this is the coefficient of variation for the logistic normal distribution (see help doucmentation for simCAA for details).
- CAL_nsamp Number of catch-at-length observations collected per time step. For each time step a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. Positive integers.
- CAL_ESS Effective sample size. For each time step a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. CAL_ESS should not exceed CAL nsamp. Positive integers.
- Iobs Observation error in the relative abundance index expressed as a coefficient of variation (CV). Iobs requires upper and lower bounds of a uniform distribution, and for each simulation a CV is sampled from this distribution. Each CV is used to specify a log-normal error distribution with a mean of 1 and a standard deviation equal to the sampled CV. The yearly observation error values for the index of abundance data are then drawn from this distribution. For each time step the simulation model records the true change in abundance, but the observed index is generated by applying this yearly error term (plus any bias, if specified) to the true relative change in abundance. Positive real numbers.
- Btobs Observation error in the absolute abundance expressed as a coefficient of variation (CV). Btobs requires upper and lower bounds of a uniform distribution, and for each simulation a CV is sampled from this distribution. Each CV is used to specify a log-normal error distribution with a mean of 1 and a standard deviation equal to the sampled CV. The yearly observation error values for the absolute abundance data are then drawn from this distribution. For each time step the simulation model records the true abundance, but the observed abundance is generated by applying this yearly error term (plus any bias, if specified) to the true abundance. Positive real numbers.
- Btbiascv Log-normally distributed coefficient (CV) controlling error in observations of the current stock biomass. Bias occurs when the observed index of abundance is is systematically higher or lower than the true relative abundance. Btbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- beta A parameter controlling hyperstability/hyperdepletion in the measurement of abundance. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. Values below 1 lead to hyperstability (the observed index decreases more slowly than the true abundance) and values above 1 lead to hyperdepletion (the observed index decreases more rapidly than true abundance). Positive real numbers.

LenMbiascv Log-normal coefficient of variation for sampling bias in observed length at 50 percent maturity. LenMbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.

- Mbiascv Log-normal coefficient of variation for sampling bias in observed natural mortality rate. Mbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- Kbiascv Log-normal coefficient of variation for sampling bias in observed growth parameter K. Kbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- tobiascv Log-normal coefficient of variation for sampling bias in observed to. tobiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- Linfbiascy Log-normal coefficient of variation for sampling bias in observed maximum length. Linfbiascy is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- LFCbiascv Log-normal coefficient of variation for sampling bias in observed length at first capture. LFCbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- LFSbiascv Log-normal coefficient of variation for sampling bias in length-at-full selection. LFS-biascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- FMSY_Mbiascv Log-normal coefficient of variation for sampling bias in estimates of the ratio of the fishing mortality rate that gives the maximum sustainable yield relative to the assumed instantaneous natural mortality rate. FMSY/M. FMSY_Mbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- BMSY_B0biascv Log-normal coefficient of variation for sampling bias in estimates of the BMSY relative to unfished biomass (BMSY/B0). BMSY_B0biascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- Irefbiascv Log-normal coefficient of variation for sampling bias in the observed relative index of abundance (Iref). Irefbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.

102 Obs-class

Brefbiascv Log-normal coefficient of variation for sampling bias in the observed reference biomass (Bref). Brefbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.

- Crefbiascv Log-normal coefficient of variation for sampling bias in the observed reference catch (Cref). Crefbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- Dbiascv Log-normal coefficient of variation for sampling bias in the observed depletion level. Dbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- Dobs Log-normal coefficient of variation controlling error in observations of stock depletion among years. Observation error in the depletion expressed as a coefficient of variation (CV). Dobs requires the upper and lower bounds of a uniform distribution, and for each simulation a CV is sampled from this distribution. Each CV is used to specify a log-normal error distribution with a mean of 1 and a standard deviation equal to the sampled CV. The yearly observation error values for the depletion data are then drawn from this distribution. For each time step the simulation model records the true depletion, but the observed depletion is generated by applying this yearly error term (plus any bias, if specified) to the true depletion.
- hbiascv Log-normal coefficient of variation for sampling persistent bias in steepness. hbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- Recbiascv Log-normal coefficient of variation for sampling persistent bias in recent recruitment strength. Recbiascv requires the upper and lower bounds of a uniform distribution, and for each simulation a CV is sampled from this distribution. Each CV is used to specify a log-normal error distribution with a mean of 1 and a standard deviation equal to the sampled CV. The yearly bias values for the depletion data are then drawn from this distribution. Positive real numbers.
- sigmaRbiascv Log-normal coefficient of variation for sampling persistent bias in recruitment variability. sigmaRbiascv is a single value specifying the standard deviation of a log-normal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years. Positive real numbers.
- Eobs Observation error around the total effort. Observation error in the total effort is expressed as a coefficient of variation (CV). Eobs requires upper and lower bounds of a uniform distribution, and for each simulation a CV is sampled from this distribution. Each CV is used to specify a log-normal error distribution with a mean of 1 and a standard deviation equal to the sampled CV. The yearly observation error values for the effort data are then drawn from this distribution. For each time step the simulation model records the true effort, but the observed effort is generated by applying this yearly error term (plus any bias, if specified) to the true effort.
- Ebiascv Log-normally distributed coefficient of variation controlling the sampling bias in observed effort for each simulation. Bias occurs when effort is systematically skewed away

ObsDescription 103

from the true effort level. Ebiascv is a single value specifying the standard deviation of a lognormal distribution with a mean of 1 and a standard deviation equal to the sampled CV. For each simulation a bias value is drawn from this distribution, and that bias is applied across all years.

Objects from the Class

Objects can be created by calls of the form new('0bs')

Note

Its questionable whether the hyperstability/hyperdepletion should be categorised as an observation model characteristic as it is most often driven by fleet dynamics (and therefore should be in the fleet object). Oh well its here and you might want to make it hyperstable beta < 1 or hyperdeplete beta > 1, only.

Author(s)

T. Carruthers and A. Hordyk

Examples

```
showClass('Obs')
```

ObsDescription

ObsDescription

Description

A data.frame with description of slots for class Obs

Usage

ObsDescription

Format

An object of class data. frame with 30 rows and 2 columns.

104 OM-class

OM-class Class 'OM'

Description

An object containing all the parameters needed to control the MSE which can be build from component Stock, Fleet, Obs, and Imp objects.

Details

Almost all of these inputs are a vector of length 2 which describes the upper and lower bounds of a uniform distribution from which to sample the parameter.

Slots

Name Name of the operating model

Agency Name of the agency responsible for the management of the fishery. Character string

Region Name of the general geographic region of the fishery. Character string

Sponsor Name of the organization who sponsored the OM. Character string

Latitude Latitude (decimal degrees). Negative values represent the South of the Equator. Numeric. Single value

Longitude Longitude (decimal degrees). Negative values represent the West of the Prime Meridian. Numeric. Single value

nsim The number of simulations

proyears The number of projected years

interval The assessment interval - how often would you like to update the management system?

pstar The percentile of the sample of the management recommendation for each method

maxF Maximum instantaneous fishing mortality rate that may be simulated for any given age class reps Number of samples of the management recommendation for each method. Note that when

reps Number of samples of the management recommendation for each method. Note that when this is set to 1, the mean value of the data inputs is used.

cpars A list of custom parameters. Time series are a matrix nsim rows by nyears columns. Single parameters are a vector nsim long. See validcpars()

seed A random seed to ensure users can reproduce results exactly

Source A reference to a website or article from which parameters were taken to define the operating model

Objects from the Class

Objects can be created by calls of the form new('OM', Stock, Fleet, Obs, Imp).

Author(s)

T. Carruthers and A. Hordyk

OMDescription 105

OMDescription

OMDescription

Description

A data frame with description of slots for class OM

Usage

OMDescription

Format

An object of class data. frame with 15 rows and 2 columns.

OMdoc

Generate OM Documentation Report

Description

Generate OM Documentation Report

Usage

```
OMdoc(
   OM = NULL,
   rmd.source = NULL,
   overwrite = FALSE,
   out.file = NULL,
   inc.plot = TRUE,
   render = TRUE,
   output = "html_document",
   openFile = TRUE,
   quiet = FALSE,
   dir = NULL,
   ...
)
```

Arguments

OM	An object of class 'OM' or the name of an OM xlsx file
rmd.source	Optional. Name of the source.rmd file corresponding to the 'OM'. Default assumption is that the file is 'OM@Name.Rmd'
overwrite	Logical. Should existing files be overwritten?
out.file	Optional. Character. Name of the output file. Default is the same as the text file.

OMexample OMexample

inc.plot	Logical. Should the plots be included?
render	Logical. Should the document be compiled? May be useful to turn off if there are problems with compiling the Rmd file.
output	Character. Output file type. Default is 'html_document'. 'pdf_document' is available but may require additional software and have some formatting issues.
openFile	Logical. Should the compiled file be opened in web browser?
quiet	TRUE to suppress printing of the pandoc command line.
dir	Optional file path to read the xlsx and rmd files. Default is getwd()
	Optional additional named arguments provided to runMSE

Value

Creates a Rmarkdown file and compiles a HTML report file in the working directory.

Author(s)

A. Hordyk

Examples

```
## Not run:
OMinit('myOM', Stock='Herring', Fleet='Generic_Fleet', Obs='Generic_Obs',
Imp='Perfect_Imp', overwrite=TRUE)
myOM <- XL2OM('myOM.xlsx')
OMdoc(myOM)
## End(Not run)</pre>
```

OMexample

Copy example OM XL and OM Documentation

Description

Copy example OM XL and OM Documentation

Usage

```
OMexample(dir = getwd())
```

Arguments

dir the file path to copy the files to.

```
## Not run:
OMexample()
## End(Not run)
```

OMinit 107

OMinit

Initialize Operating Model

Description

Generates an Excel spreadsheet and a source.rmd file in the current working directory for specifying and documenting a MSEtool Operating Model.

Usage

```
OMinit(
  name = NULL,
  ...,
  files = c("xlsx", "rmd"),
  dir = NULL,
  overwrite = FALSE
)
```

Arguments

name	The name of the Excel and source.rmd file to be created in the working directory (character). Use 'example' for a populated example OM XL and documentation file.
	Optional MSEtool objects to use as templates: OM, Stock, Fleet, Obs, or Impobjects
files	What files should be created: 'xlsx', 'rmd', or c('xlsx', 'rmd') (default: both) to use as templates for the Operating Model.
dir	Optional file path to create the xlsx and rmd files. Default is getwd()
overwrite	Logical. Should files be overwritten if they already exist?

Value

name.xlsx and name.rmd files are created in the working directory.

Author(s)

A. Hordyk

```
## Not run:
# Create an Excel OM template and rmd file called 'myOM.xlsx' and 'myOM.rmd':
OMinit('myOM')

# Create an Excel OM template and text file called 'myOM.rmd' and 'myOM.rmd', using
# another OM as a template:
OMinit('myOM', myOM)
```

108 optCPU

```
# Create an Excel OM template and text file called 'myOM.rmd' and 'myOM.rmd', using
# the Stock object 'Herring' as a template:
OMinit('myOM', Herring)

# Create an Excel OM template and text file called 'myOM.rmd' and 'myOM.rmd', using
# the Stock object 'Herring', and Obs object 'Generic_obs' as templates:
OMinit('myOM', Herring, Generic_obs)

## End(Not run)
```

optCPU

Determine optimal number of cpus

Description

Determine optimal number of cpus

Usage

```
optCPU(nsim = 96, thresh = 5, plot = TRUE, msg = TRUE, maxn = NULL)
```

Arguments

nsim Numeric. Number of simulations.

thresh Recommended n cpus is what percent of the fastest time?

plot Logical. Show the plot?

msg Logical. Should messages be printed to console?

maxn Optional. Maximum number of cpus. Used for demo purposes

Author(s)

A. Hordyk

See Also

setup

```
## Not run:
optCPU()
## End(Not run)
```

Overages 109

Overages

Imp class objects

Description

Example objects of class Imp

Usage

```
Overages
```

Perfect_Imp

Format

```
An object of class Imp of length 1.
```

An object of class Imp of length 1.

Examples

```
avail("Imp")
```

PerformanceMetric

Performance Metrics Methods

Description

Performance metric (PMs) methods for your management strategy evaluation.

```
P10(MSEobj = NULL, Ref = 0.1, Yrs = NULL)

P50(MSEobj = NULL, Ref = 0.5, Yrs = NULL)

P100(MSEobj = NULL, Ref = 1, Yrs = NULL)

PNOF(MSEobj = NULL, Ref = 1, Yrs = NULL)

LTY(MSEobj = NULL, Ref = 0.5, Yrs = -10)

STY(MSEobj = NULL, Ref = 0.5, Yrs = 10)

Yield(MSEobj = NULL, Ref = 1, Yrs = NULL)
```

110 PerformanceMetric

```
PGK(MSEobj = NULL, Ref = 1, Yrs = NULL)

AAVY(MSEobj = NULL, Ref = 0.2, Yrs = NULL)

AAVE(MSEobj = NULL, Ref = 0.2, Yrs = NULL)
```

Arguments

MSEobj An object of class MSE

Ref Reference point for calculating the performance metric. See details.

Yrs Numeric vector of length 2 with year indices to summarize performance. If

NULL, the performance is summarized over all projection years.

Details

Performance Metric definitions:

P10 Probability B > 0.1 BMSY P50 Probability B > 0.5 BMSYP100 Probability B > BMSY **PNOF** Probability F < FMSY LTY Probability Long-Term Yield > 0.5 Relative Yield Probability Short-Term Yield > 0.5 Relative Yield STY AAVY Probability AAVY < 0.2 (Average Annual Variability in Yield) Probability AAVE < 0.2 (Average Annual Variability in Effort) AAVE Yield Average Yield (relative to Reference Yield)

Argument Ref provides the ratio relative to the reference point for calculating the performance metric. For biomass-based PMs (P10, P50, P100), this is the fraction of BMSY. For PNOF, the fraction of FMSY. For Yield (and LTY/STY), the fraction of the Reference Yield. For AAVY is it the maximum acceptable variability in yield (i.e, default for AAVY is Ref=0.2)

The Yrs argument defines the number of years to calculate the performance statistic over. A value of NULL, the default for AAVY, AAVE, P10, P50, P100, and PNOF, means that the performance metric is calculated over all projection years. A numeric vector of length two is used to specify the first and last year, e.g, if Yrs=c(1,10) the performance statistic is calculated over the first 10 projection years. A numeric vector of length one with positive or negative value respectively can be used to specify the first x or last x years, e.g, Yrs=10 is first 10 years, and Yrs=-10 is the last 10 years. See ChkYrs for more details.

By default Long-Term Yield (LTY) is the Yield in the last ten years of the projection period in the MSE, and Short-Term Yield (STY) is that in the first 10 years of the projection period.

Value

An object of class PMobj

plot.Data 111

Examples

```
## Not run:
myMSE <- runMSE()
P10(myMSE)
P50(myMSE)
P100(myMSE)
PNOF(myMSE)
LTY(myMSE)
STY(myMSE)
AAVY(myMSE)
AAVE(myMSE)
Yield(myMSE)</pre>
## End(Not run)
```

plot.Data

Plot Data object

Description

Creates plots of the Data object in the R console. Wrapper for summary (Data)

Usage

```
## $3 method for class 'Data'
plot(
    x,
    wait = TRUE,
    i = 1,
    plots = "all",
    rmd = FALSE,
    head = "##",
    tplot = 25,
    ...
)
```

Arguments

X	An object of class Data
wait	Logical. Wait for key press before next plot?
i	iteration number for the Data object.
plots	Character. What plots to show? all, TS, CAA, CAL, PD for all plots, time-series, catch-at-age, catch-at-length, and probability distributions respectively
rmd	Logical. Used in a rmd file?
head	Character. Heading for rmd file. Default is '##' (second level heading)
tplot	Integer. Number of plots per page. Default 25
	Not used

plot.MMSE

plot.MMSE

Standard plot for an object of class MMSE (multi MSE)

Description

Plot the projected biomass, fishing, mortality rate and yield for all stocks and MPs

Usage

```
## S3 method for class 'MMSE'
plot(
    x = NULL,
    maxcol = 6,
    qcol = rgb(0.4, 0.8, 0.95),
    lcol = "dodgerblue4",
    quants = c(0.05, 0.25, 0.75, 0.95),
    curyr = 2018,
    addline = FALSE,
    ...
)
```

Arguments

X	Object of class MMSE. A Multi-OM object created by multiMSE(MOM,)
maxcol	Integer. The maximum number of columns (MPs) to be plotted in each plot
qcol	Character, color. The color of the inner percentile range
lcol	Character, color. The color of the outer percentile range.
quants	Numeric vector. The percentiles that are plotted (LB2,LB1,UB1,UB2). LB2 and UB2 are the outer percentiles, LB1 and UB1 are the inner percentiles.
curyr	Integer. The current year from which projections start.
addline	Logical. Should two individual simulations be added to the percentile plots?
	Not used

Author(s)

T.Carruthers

plot.MOM 113

plot.MOM

Standard plot for an object of class MOM

Description

Plot the stocks, fleets, catch fractions and relationships in multi operating model object

Usage

```
## S4 method for signature 'MOM,missing'
plot(x, silent = TRUE, maxsims = 6)
```

Arguments

x Object of class MOM. A Multi-OM object created by new('MOM', ...)

silent Logical. Do you wish to see print outs / warnings?

maxsims Integer. What are the maximum number of individual simulations you wish to

plot?

Author(s)

T.Carruthers

plot.MSE

Plot MSE object

Description

Plot MSE object

Usage

```
## S3 method for class 'MSE' plot(x, ...)
```

Arguments

x object of class MSE

... other parameters passed to plot (currently ignored)

plot.pars

Plot Operating Model Object

Description

Generate HTML reports with plots of operating model components ("Stock", "Fleet", "Obs", and "Imp"), the historical simulations ("Hist"), or the complete OM ("OM").

The individual component plots of objects of class Stock and Fleet can also be generated by using the generic plot. pars function. See Examples below.

```
## S3 method for class 'pars'
plot(
  х,
  Object,
  Stock = NULL,
  nsamp = 3,
  nsim = 200,
  nyears = 50,
  proyears = 28,
  output_file = NULL,
  output_dir = getwd(),
  quiet = TRUE,
  tabs = TRUE,
  title = NULL,
  date = NULL,
  plotPars = NULL,
  html = FALSE,
  open = TRUE,
  dev = FALSE,
)
## S3 method for class 'Stock'
plot(
  Х,
  nsamp = 3,
  nsim = 200,
  nyears = 50,
  proyears = 28,
  output_file = NULL,
  output_dir = getwd(),
  quiet = TRUE,
  tabs = TRUE,
  title = NULL,
```

```
date = NULL,
 plotPars = NULL,
 open = TRUE,
  dev = FALSE,
)
## S3 method for class 'Fleet'
plot(
  х,
  Stock = NULL,
  nsamp = 3,
  nsim = 200,
  nyears = 50,
  proyears = 28,
  output_file = NULL,
  output_dir = getwd(),
  quiet = TRUE,
  tabs = TRUE,
  title = NULL,
  date = NULL,
 plotPars = NULL,
 open = TRUE,
  dev = FALSE,
)
## S3 method for class 'Obs'
plot(
 х,
  nsamp = 3,
  nsim = 200,
 nyears = 50,
 proyears = 28,
  output_file = NULL,
  output_dir = getwd(),
  quiet = TRUE,
  tabs = TRUE,
  title = NULL,
  date = NULL,
 plotPars = NULL,
 open = TRUE,
  dev = FALSE,
)
## S3 method for class 'Imp'
plot(
```

```
Х,
  nsamp = 3,
  nsim = 200,
  nyears = 50,
  proyears = 28,
  output_file = NULL,
  output_dir = getwd(),
  quiet = TRUE,
  tabs = TRUE,
  title = NULL,
  date = NULL,
 plotPars = NULL,
  open = TRUE,
 dev = FALSE,
)
## S3 method for class 'Hist'
plot(
  х,
 nsamp = 3,
 nsim = 200,
  nyears = 50,
  proyears = 28,
  output_file = NULL,
  output_dir = getwd(),
  quiet = TRUE,
  tabs = TRUE,
  title = NULL,
  date = NULL,
  plotPars = NULL,
  open = TRUE,
  dev = FALSE,
)
## S3 method for class 'OM'
plot(
  Х,
  nsamp = 3,
  nsim = 200,
  nyears = 50,
  proyears = 28,
  output_file = NULL,
  output_dir = getwd(),
  quiet = TRUE,
  tabs = TRUE,
  title = NULL,
```

```
date = NULL,
plotPars = NULL,
open = TRUE,
dev = FALSE,
...
)
```

Arguments

An object of class Stock, Fleet, Obs, Imp, Hist, or OM, OR one of the following character strings for Object of class Stock: "M", "Growth", "Maturity", "Recruitment", "Spatial", or "Depletion" and for Object of class Fleet: "Effort", "Catchability", "MPA", and "Selectivity".

Object An object of class Stock or Fleet

Stock An object of class Stock required for Fleet parameters nsamp The number of random samples to show in the plot

nsim The number of simulations (only used for objects not of class OM)

nyears The number of historical years (only used for objects not of class OM)

proyears The number of projection years (only used for objects not of class OM)

output_file Name of the output html file (without file extension)

output_dir Output directory. Defaults to getwd()

quiet An option to suppress printing of the pandoc command line

tabs Include tabs in the HTML file?

date Optional title for the markdown report
Optional date for the markdown report
PlotPars A named list with options for plots:

• breaks - numeric. Number of breaks in histograms.

• col - character. Color of histograms.

• axes - logical. Include axes in histogram?

• cex.main - numeric. Size of main title in plots.

• lwd - numeric. Line width for time-series plots.

html Logical. Compile to a HTML report (TRUE) or print plots in R console (FALSE)

open Logical. Open the html file?

dev Logical. For development use only.

... Not used

Examples

```
## Not run:
# Plot Stock Object:
Stock <- MSEtool::Albacore
plot(Stock)</pre>
```

118 plotFun

```
# Individual plots:
plot("M", Stock)
plot("Growth", Stock)
plot("Maturity", Stock)
plot("Recruitment", Stock)
plot("Spatial", Stock)
plot("Depletion", Stock)
# Plot Fleet Object
Fleet <- MSEtool::Generic_DecE</pre>
plot(Fleet, Stock)
# Individual plots:
plot("Effort", Fleet, Stock)
plot("Catchability", Fleet, Stock)
plot("MPA", Fleet, Stock)
plot("Selectivity", Fleet, Stock)
# Plot Obs Object
Obs <- MSEtool::Imprecise_Unbiased
plot(Obs)
# Plot Imp Object
Imp <- MSEtool::Overages</pre>
plot(Imp)
# Plot Hist Object
OM <- MSEtool::testOM
Hist <- Simulate(OM)</pre>
plot(Hist)
# Plot OM Object
plot(OM)
## End(Not run)
```

plotFun

Print out plotting functions

Description

This function prints out the available plotting functions for objects of class MSE or Data

```
plotFun(class = c("MSE", "Data"), msg = TRUE)
```

plotmulti 119

Arguments

class Character string. Prints out the plotting functions for objects of this class.

msg Logical. Should the functions be printed to screen?

Note

Basically the function looks for any functions in the MSEtool that have the word plot in them. There is a chance that some plotting functions are missed. Let us know if you find any and we will add them.

Author(s)

A. Hordyk

plotmulti

A basic SSB plot for debugging runMSE output

Description

A basic SSB plot for debugging runMSE output

Usage

```
plotmulti(MSEmulti, maxsim = 8)
```

Arguments

MSEmulti An object of class MMSE arising from a run of multiMSE(MOM, ...)

maxsim Integer. The number of simulations to plot

Author(s)

T.Carruthers

120 plotquant

plot0FL

A generic OFL plot for NOAA use

Description

As title.

Usage

```
plotOFL(Data, xlims = NA, perc = 0.5)
```

Arguments

Data An object of class Data that has been run though TAC()

xlims x axis limits

perc The percentile of the OFL distribution to be plotted

Value

A table of performance metrics.

Author(s)

T. Carruthers

plotquant

A fairly tidy time-series quantile plot

Description

A fairly tidy time-series quantile plot

```
plotquant(
    x,
    p = c(0.05, 0.25, 0.75, 0.95),
    yrs,
    qcol,
    lcol,
    addline = T,
    ablines = NA
)
```

plotRel 121

Arguments

X	Matrix. A time series quantity [simulation, year]
p	Numeric vector. The percentiles that are plotted (LB2,LB1,UB1,UB2). LB2 and UB2 are the outer percentiles, LB1 and UB1 are the inner percentiles.
yrs	Numeric vector. The years corresponding to the indexing of x
qcol	Character, color. The color of the inner percentile range
lcol	Character, color. The color of the outer percentile range.
addline	Logical. Should two individual simulations be added to the percentile plots?
ablines	Numeric vector. Horizontal lines to be added to the plot.

Author(s)

T.Carruthers

plotRel	Plot a relationship between stocks	

Description

Plot a relationship between stocks

Usage

```
plotRel(Stocks, Rel, Relno, Snams, leg = F, extras = 0)
```

Arguments

Stocks	A list of stock objects (MOM@Stocks)
Rel	A list of inter-stock MICE relationships (MOM@Rel)

Relno Integer. The relationship you wish to plot

Snams A vector of stock names

leg Logical. Do you want to plot a legend?

extras Integer. The number of blank plots to create at the end.

Author(s)

T.Carruthers

PMLimit PMLimit

PMLimit

Create a table of Performance Limits and Performance Objectives

Description

Create a table of Performance Limits and Performance Objectives

```
PMLimit(
  MSE,
  . . . ,
 Prob = NULL,
 Labels = NULL,
  FeaseMPs = NULL,
  out.file = NULL,
  output_format = "html_document",
  openFile = TRUE,
  quiet = TRUE,
  dir = NULL,
  RMDfile = NULL,
  font_size = 14,
  auto_width = FALSE,
  enableSearch = TRUE,
  PMlist = NULL,
  build = TRUE
)
PMObj(
 MSE,
  . . . ,
 Labels = NULL,
  out.file = NULL,
  output_format = "html_document",
  openFile = TRUE,
  quiet = TRUE,
  dir = NULL,
  RMDfile = NULL,
  font_size = 14,
  use.colors = TRUE,
  cols = NULL,
  show.legend = TRUE,
  auto_width = FALSE,
  enableSearch = TRUE,
  PMlist = NULL,
  build = TRUE,
  cex.tex = 0.75,
```

PMLimit 123

```
inc.title = TRUE,
title = "Legend"
)
```

Arguments

MSE An object of class 'MSE'

... PM objects to be used as performance limits. Characters (i.e names of PM

objects)

Prob Minimum probability threshold

Labels Optional named list specifying new labels for MPs. For example: Labels =

list(AvC="Average Catch", CC1="Constant Catch")

FeaseMPs Optional. Character vector of MP names that are considered feasible. e.g. the

output from Fease()

out.file Name of the output file. If none provided, output file will be named 'Per-

fLimTable'

output_format Output file format. Currently only 'html_document' is supported

openFile Logical. Should the file be opened in browser?

quiet Logical. An option to suppress printing of the pandoc command line.

dir Optional. Directory for output file. Default is working directory.

RMDfile Optional. RMD template file

font_size Numeric. Font size for text in the table

auto_width Logical. Should table be width be automatic?

enableSearch Currently disabled. Logical. Should search be enabled in the html table?

PMlist Optional. List of PM names. build Logical. Build the html table?

use.colors Logical. Color scale the probability text?

cols Optional character vector of colors for probability text

show.legend Logical. Show the legend??

cex.tex Size of legend text

inc. title Logical. Include title for legend?

title Title for the legend

Value

PMLimit invisibly returns names of MPs that pass all performance limits

Functions

- PMLimit(): Create a table of Performance Limits
- PMObj(): Create a table of Performance Objectives.

PMobj-class

Author(s)

A. Hordyk

Examples

```
## Not run:
MSE <- runMSE()
PMLimit(MSE, "P50", "PNOF", Prob=0.9)
PMObj(MSE, "P100", "LTY")
## End(Not run)</pre>
```

PMobj-class

An object for storing data for analysis using data-limited methods

Description

Used internally

Slots

Name Name of the Performance Metric. Character

Caption A caption to be used in plots. Character, call, or function.

Stat Statistic of interest for the PM. Dimensions: nsim, nMP, yrs. Array

Ref Reference value to calculate probability for statistic. Numeric.

Prob Probability (mean over years) Dimensions: nsim by MP. Matrix, numeric or data.frame

Mean Mean probability (mean over years and simulations). Numeric. Length nMPs

MPs Name of MPs. Single value. Character string

Objects from the Class

Objects can be created by calls of the form new('PMobj')

Author(s)

A. Hordyk

Pplot 125

Pplot

A projection by projection plot of F/FMSY and B/BMSY

Description

A shorter version of the plot method for MSEs that just shows the projected trends in stock status and over exploitation

Usage

```
Pplot(MSEobj, nam = NA, maxMP = 10, MPs = NA, maxsims = 20)
```

Arguments

MSEobj An object of class MSE

nam Title of plot

maxMP The maximum number of MPs to plot (defaults to the first 10)

MPs A character vector of MPs to plot

maxsims Integer, the maximum number of simulations to plot

Author(s)

T. Carruthers

Pplot2

A projection by projection plot of F/FMSY, B/BMSY, B/B0, and yield

Description

A projection by projection plot of F/FMSY, B/BMSY, B/B0, and yield

```
Pplot2(
   MSEobj,
   YVar = c("F_FMSY", "SSB_SSBMSY"),
   MPs = NA,
   sims = NULL,
   traj = c("all", "quant", "both"),
   quants = c(0.1, 0.9),
   incquant = TRUE,
   quantcol = "lightgray",
   RefYield = c("lto", "curr"),
   LastYr = TRUE,
```

Pplot2

```
ref.lines = c(0.5, 1, 1.5),
 maxMP = 6,
 alpha = 60,
 cex.axis = 1,
 cex.lab = 1,
 YLab = NULL,
 incMP = TRUE,
 MPcex = 1,
 MPcol = "black",
 incLeg = TRUE,
 cex.leg = 1.5,
 legPos = "topleft",
 yline = NULL,
 xline = NULL,
 parOR = FALSE,
 xaxis = TRUE,
 yaxis = TRUE,
 oneIt = TRUE,
)
```

An object of class MSE

Arguments

MSEobj

•	3
YVar	What to plot on the y-axis? Options are: c('SSB_SSB0', 'SSB_SSBMSY', 'F_FMSY', 'Yield')
MPs	Optional subset by MP
sims	Optional subset by simulation
traj	Plot all projections (all), only quantiles (quant), or both projections and median (both)
quants	Numeric vector of length 2 specifying the quantiles (e.g., 10th and 90th. Median is always included)
incquant	Logical. Include the quantiles or only plot median?
quantcol	Colour of the quantile polygon
RefYield	Should yield be relative to long-term optimum (1to) or last historical year (curr)
LastYr	Logical. Include the last historical year in the yield projections?
ref.lines	Numeric vector of y-values for horizontal reference lines. Set to NULL to remove lines.
maxMP	Maximum number of MPs to plot
alpha	Alpha for transparency of lines
cex.axis	Size of axis text
cex.lab	Size of axis label
YLab	Optional label for y-axis
incMP	Logical. Include name of MP?
	MPs sims traj quants incquant quantcol RefYield LastYr ref.lines maxMP alpha cex.axis cex.lab YLab

PWhisker 127

MPcol Optional character vector of colors for MP labels incLeg Logical. Include a legend?	
incleg Logical, Include a legend?	
cex.leg Size of legend text	
legPos Legend position	
yline Optional horizontal lines	
xline Optional vertical lines	
parOR Logical to over-ride the par parameters	
xaxis Logical. Should x-axis labels be displayed?	
yaxis Logical. Should y-axis labels be displayed?	
oneIt Logical. Should one iteration be plotted on the quantile plot	?
Additional arguments to be passed to plotting functions	

Author(s)

T. Carruthers & A.Hordyk

PWhisker	Performance Whisker Plot	

Description

A NAFO / ICCAT / SSB style MSE performance whisker plot

Usage

PWhisker(MSEobj)

Arguments

MSEobj An object of class MSE

Value

A box plot of performance

Author(s)

T. Carruthers

128 quantile_plot

~+	: 1	_	-1-+	
quant	ΤI	.e_	DIOL	

A quantile plot

Description

Plots quantiles and simulations for a stochastic time-series variable

Usage

```
quantile_plot(
  datmat,
  xvals,
  p = c(0.05, 0.25, 0.5, 0.75, 0.95),
  tcol,
  ylim,
  sims = 1:3,
  refline = NA,
  dox = F,
  doy = F
)
```

Arguments

datmat	Matrix of real values with dimensions (simulation, year) (e.g. SB/SBMSY)
xvals	Vector of numerical values of length ncol(datmat). The xaxis labels for datmat.
p	Vector of quantiles five positions long. Defaults to $c(0.05, 0.25, 0.5, 0.75, 0.95)$ so the 90% and 50% intervals with the median plotted in white.
tcol	Color of shaded regions (transparent)
ylim	Numerical vector of length 2, lower and upper limits for the yaxis
sims	Vector of positive integers, the individual simulations to plot
refline	Positive real number, a reference line to plot (on scale of y axis)
dox	Logical, should the x axis labels be plotted.
doy	Logical, should the y axis labels be plotted.

Author(s)

T. Carruthers

RealFease 129

RealFease

MP feasibility diagnostic using real data

Description

What MPs do not return NAs from the real data

Usage

```
RealFease(Data = NULL)
```

Arguments

Data

An object of class 'Data'. Optional. If Data object is included, the returned MPs are both feasible (in terms of management) and possible (sufficient data to run MP)

Value

a vector of MP names that calculate without errors for the specific data.

Author(s)

T. Carruthers

Rec-class

Class 'Rec'

Description

An object for storing the MP recommendations

Slots

TAC A numeric value with the TAC recommendation

Effort A numeric value with the effort recommendation as a fraction of current (nyear) fishing effort

Spatial A boolean vector of length 'nareas' specifying if area is open (1) or closed (0) to fishing Allocate A boolean value describing if effort should be re-allocated from close to open areas LR5 smallest length at 5 per cent retention - in absolute units - i.e same units as Linf and L50 LFR smallest length at full retention - in absolute units - i.e same units as Linf and L50 HS upper harvest slot (no retention above this) - in absolute units - i.e same units as Linf and L50 Rmaxlen retention of the largest size class - fraction between 0 and 1

Replace

L5 smallest length at 5 per cent selection - in absolute units - i.e same units as Linf and L50

LFS smallest length at full selection - in absolute units - i.e same units as Linf and L50

Vmaxlen selection of the largest size class - fraction between 0 and 1

Fdisc fraction of discarded fish that die - fraction between 0 and 1

DR Discard rate - the fraction of caught fish that are discarded

Misc An empty list that can be used to store information and pass on to MPs in future

Objects from the Class

Objects can be created by calls of the form new('Rec')

Author(s)

A. Hordyk

Replace

Replace an existing Stock, Fleet, Obs, or Imp object

Description

A function that replaces a Stock, Fleet, Obs, or Imp object from an OM with one from another object.

Usage

```
Replace(
   OM,
   from,
   Sub = c("Stock", "Fleet", "Obs", "Imp"),
   Name = NULL,
   silent = FALSE
)
```

Arguments

ОМ	An operating model object (class OM) which will be updated with a sub-model from another OM
from	An object of class OM, Stock, Fleet, Obs, or Imp to be replace the values in OM
Sub	A character string specifying what object type to replace (only used if from is class OM) "Stock", "Fleet", "Obs", or "Imp" (default is all four which is probably not what you want to do)
Name	Character. Name for the new OM object (OM@Name)
silent	Should messages be printed?

replic8

Value

An object of class OM

Author(s)

A. Hordyk

Examples

```
# Replace Stock
OM <- MSEtool::testOM
OM2 <- Replace(OM, Blue_shark)

# Replace Fleet
OM <- MSEtool::testOM
OM2 <- Replace(OM, Generic_DecE)

# Replace Fleet from another OM
# OM1 <- new("OM", Albacore, Generic_DecE, Perfect_Info, Overages)
# OM2 <- new("OM", Blue_shark, Generic_IncE, Generic_Obs, Perfect_Imp)
# OM1a <- Replace(OM1, OM2, "Fleet")</pre>
```

replic8

Enlarge (replicate) a DLM data object to create an additional dimension for simulation / sensitivity testing

Description

Replicates position 1 data to multiple positions for sensitivity testing etc

Usage

```
replic8(Data, nrep)
```

Arguments

Data A data-limited methods data object

nrep The number of positions to expand the DLM object to

Author(s)

T. Carruthers

Report Report

Report

Generate a Data Report

Description

A HTML Data Report is generated and opened in a web browser

Usage

```
Report(
  Data = NULL,
  md = NULL,
  name = "Data-Report",
  title = "Data Documentation",
  author = "Author Name",
  date = Sys.Date(),
  output_format = c("html_document", "pdf_document"),
  open = TRUE,
  quiet = TRUE,
  dir = NULL,
  overwrite = FALSE
)
```

Arguments

Data	Either an object of class Data or the file path to a valid file to be imported with XL2Data
md	Full file path to a valid text file documenting the Data
name	Optional. Name of the output file
title	Title for the Report. Title in the markdown file will override this value
author	Author of the Report. Author in the markdown file will override this value
date	Date of the Report. Date in the markdown file will override this value
output_format	Output file format: html_document or pdf_document
open	Logical. Open the compiled report?
quiet	Logical.An option to suppress printing of the pandoc command line.
dir	Optional. Directory to save the file. Defaults to getwd()
overwrite	Logical. Overwrite an existing file with the same name?

Value

Nothing. A Data Report is generated and saved in dir

Author(s)

A. Hordyk

ReqData 133

Examples

```
## Not run:
DataInit('Example') # generate example Data Input and Documentation files
Report('Example', 'Example.md')
## End(Not run)
```

ReqData

ReqData

Description

Dataframe with required data slots for built-in MPs

Usage

ReqData

Format

An object of class data. frame with 123 rows and 2 columns.

Required

What management procedures need what data

Description

A function that finds all the MPs and searches the function text for slots in the Data object

Usage

```
Required(funcs = NA, noCV = FALSE)
```

Arguments

funcs A character vector of management procedures noCV Logical. Should the CV slots be left out?

Value

A matrix of MPs and their required data in terms of slotnames('Data'), and broad Data classes for each MP

Author(s)

T. Carruthers

134 runCOSEWIC

See Also

Can Cant Needed MPtype Data

runCOSEWIC

COSEWIC MSE run using the correct MPs and projected time horizon

Description

Dedicated functions for MSE run and reporting for COSEWIC (Committee on the Status of Endangered Wildlife in Canada). MSE projects for 6x maximum age using NFref, FMSYref and curE management procedures.

```
runCOSEWIC(OM, ...)
COSEWIC_Pplot(
 MSEobj,
  syear = 2017,
 qcol = "#FFCB62",
 quants = c(0.05, 0.25, 0.5, 0.75, 0.95)
COSEWIC_Dplot(
 MSEobj,
  syear = 2017,
 qcol = "#79F48D",
 quants = c(0.05, 0.25, 0.5, 0.75, 0.95),
 nGT = 3
)
COSEWIC_Blow(
 MSEobj,
 syear = 2017,
 qcol = rgb(0.4, 0.8, 0.95),
 quants = c(0.05, 0.25, 0.5, 0.75, 0.95),
  nGT = 3
)
COSEWIC_Hplot(
 MSEobj,
  syear = 2017,
 qcol = rgb(0.4, 0.8, 0.95),
  quants = c(0.05, 0.25, 0.5, 0.75, 0.95)
)
```

runCOSEWIC 135

```
COSEWIC_report(
   MSEobj,
   output_file = NA,
   author = "Author not specified",
   title = NA
)

COSEWIC_tab(MSEobj, rnd = 0, GTs = c(3, 6), syear = 2017, nGT = 3)

COSEWIC_tab_formatted(
   Ptab1,
   thresh = c(20, 40, 40, 20, 40, 40, 40, 30, 5),
   ret_thresh = F
)
```

Arguments

OM	An operating model object of class OM
	Other named arguments to pass to runMSE
MSEobj	An object of class MSE with MPs = c("NFref", "FMSYref", "curE")
syear	Current year, starting year for projections (e.g. 2017)
qcol	Color of shaded regions (bars, quantiles)
quants	Quantiles of the shaded regions (vector 5 long e.g. 0.1, 0.2, 0.5, 0.8, 0.9)
nGT	Number of generation times. For COSEWIC_tab, for moving window of SSB chance (metrics A1 and A2). For COSEWIC_Blow and COSEWIC_Dplot, used for projections (the number of projection years should be greater than MaxAge * nGT).
output_file	The directory and filename you wish to use for the report e.g. "C:/temp/myMSEreport.html"
author	The person who made this report
title	The title of the report
rnd	The number of significant figures for rounding.
GTs	A vector of mean generation times to evaluate performance metrics over
Ptab1	A COSEWIC performance table made by COSEWIC_tab
thresh	A vector of thresholds for each column Health, Yield and Reb are 'greater than threshold' conditions
ret_thresh	Logical: if true just the threshold levels are returned

Functions

- runCOSEWIC(): Calls runMSE with number of projection years for 6x maximum age and uses NFref, FMSYref, and curE MPs.
- COSEWIC_Pplot(): Projection plots of spawning stock biomass under three scenarios: no catch, FMSY fishing and status quo fishing effort.

136 runInMP

• COSEWIC_Dplot(): Depletion plots evaluate whether significant declines have occurred over three generation times in both historical and projection years.

- COSEWIC_Blow(): Plots that evaluate the likelihood of declining below Blow, by default, biomass that takes 3 generation times to reach half BMSY with zero fishing
- COSEWIC_Hplot(): Plots of historical spawning stock relative to unfished and MSY levels.
- COSEWIC_report(): Create a standard DFO COSEWIC report (provides performance plots to inform COSEWIC processes in Canadian fish stocks).
- COSEWIC_tab(): Creates a standard COSEWIC performance table:
 - P_Cr is the probability of being in the critical zone (less than 20% depletion)
 - P_Ct is the probability of being in the cautious zone (between 20% and 40% depletion)
 - P_H is the probability of being in the healthy zone (above 40% depletion)
 - P_Cr_MSY is the probability of being in the critical zone (less than 40% BMSY)
 - P_Ct_MSY is the probability of being in the cautious zone (between 40% and 80% BMSY)
 - P_H_MSY is the probability of being in the healthy zone (above 80% BMSY)
 - Caut is the probability of being in the cautious zone in the last 10 projected years
 - P_A1 is the probability of being designated threatened according to COSEWIC Indicator
 A1 (Spawning biomass less than 70% that three generation times previously)
 - P_A2 is the probability of being designated threatened according to COSEWIC Indicator
 A2 (Spawning biomass less than 50% that three generation times previously)
 - Blow is the probability that the stock is below the biomass for which it takes 3 generation times to reach 50% BMSY with zero fishing
- COSEWIC_tab_formatted(): A formatted version of the standard COSEWIC performance plot, color coded by thresholds.

Author(s)

T. Carruthers

References

https://cosewic.ca/index.php/en/

runInMP

Runs input control MPs on a Data object.

Description

Function runs a MP (or MPs) of class 'Input' and returns a list: input control recommendation(s) in element 1 and Data object in element 2.

```
runInMP(Data, MPs = NA, reps = 100)
```

runMP 137

Arguments

Data A object of class Data

MPs A vector of MPs of class 'Input'

reps Number of stochastic repetitions - often not used in input control MPs.

Author(s)

A. Hordyk

runMP Run a Man	agement Procedure
-----------------	-------------------

Description

Run a Management Procedure

Usage

```
runMP(Data, MPs = NA, reps = 100, perc = 0.5, chkMPs = FALSE, silent = FALSE)
```

Arguments

Data A MSEtool Data object

MPs The name of the MP to run (or a vector or names)

reps Number of repetitions

perc Percentile to summarize reps (default is median)

chkMPs Logical. Should the MPs be checked before attempting to run them?

silent Logical. Should messages by suppressed?

Value

invisibly returns the Data object

Sense Sense

select_MP	Select DataList for an MP from MMSE@PPD
-----------	---

Description

Select DataList for an MP from MMSE@PPD

Usage

```
select_MP(PPD, MP = 1)
```

Arguments

PPD PPD slot from an MMSE object

MP Numeric value indicating the MP to return DataList

Value

A nested list Data objects (nstock by nfleet)

Sense	Sensitivity analysis

Description

A function that determines the inputs for a given data-limited method of class Output and then analyses the sensitivity of TAC estimates to marginal differences in each input. The range used for sensitivity is based on the user-specified CV for that input (e.g. CV_Mort, Mort)

Usage

```
Sense(Data, MP, nsense = 6, reps = 100, perc = c(0.05, 0.5, 0.95), ploty = T)
```

Arguments

Data	A data-limited methods data object
MP	A character string representing an MP applied in calculating the TAC recommendations in the DLM object
nsense	The number of points over which to calculate the TAC (resolution)
reps	The number of samples of the quota taken for the calculation of the TAC
perc	The percentile of the sample TAC
ploty	A logical switch, (T/F, should a plot be drawn?)

setup 139

Author(s)

T. Carruthers

Examples

```
## Not run:
Data <- Sense(MSEtool::Cobia, "AvC")
## End(Not run)</pre>
```

setup

Setup parallel processing

Description

Sets up parallel processing using the snowfall package

Usage

```
setup(cpus = NULL, logical = FALSE, ...)
```

Arguments

cpus the number of CPUs to use for parallel processing. If left empty all physical

cores will be used, unless logical=TRUE, in which case both physical and logi-

cal (virtual) cores will be used.

logical Use the logical cores as well? Using the virtual cores may not lead to any sig-

nificant decrease in run time. You can test the optimal number of cores using

optCPU()

... other arguments passed to 'snowfall::sfInit'

Examples

```
## Not run:
setup() # set-up the physical processors
setup(6) # set-up 6 processors
setup(logical=TRUE) # set-up physical and logical cores
## End(Not run)
```

show,Rec-method

show, PMobj-method

Show the output of a PM

Description

Show the output of a PM

Usage

```
## S4 method for signature 'PMobj'
show(object)
```

Arguments

object

object of class MSE

show, Rec-method

Show the output of a single MP recommendation

Description

Show the output of a single MP recommendation

Usage

```
## S4 method for signature 'Rec'
show(object)
```

Arguments

object

object of class Rec

show-MSEtool 141

show-MSEtool

Show MSEtool S4 objects

Description

Briefly prints a couple of lines from str to avoid swamping the console with the contents of very large objects.

Usage

```
## S4 method for signature 'Data'
show(object)

## S4 method for signature 'OM'
show(object)

## S4 method for signature 'Hist'
show(object)

## S4 method for signature 'MSE'
show(object)

## S4 method for signature 'MMSE'
show(object)
```

Arguments

object

S4 object from MSEtool

SIL

Slot in list: get the slot values from a list of objects

Description

Create of vector of values that correspond with a slot in a list of objects

Usage

```
SIL(listy, sloty)
```

Arguments

listy	A list of object
-------	------------------

sloty A character vector representing the slot name

142 simCAA

Author(s)

T. Carruthers

simCAA	Simulate Catch-at-Age Data	

Description

CAA generated with either a multinomial or logistic normal observation model from retained catchat-age array

Usage

```
simCAA(nsim, yrs, n_age, Cret, CAA_ESS, CAA_nsamp)
```

Arguments

nsim	Number of simulations
yrs	Number of years
n_age	Number of age classes
Cret	Retained Catch at age in numbers - array(sim, years, maxage+1)
CAA_ESS	CAA effective sample size. If greater than 1, then this is the multinomial distribution sample size. If less than 1, this is the coefficient of variation for the logistic normal distribution (see details).
CAA_nsamp	CAA sample size

Details

The logistic normal generates the catch-at-age sample by first sampling once from a multivariate normal distribution with the mean vector equal to the logarithm of the proportions-at-age and the diagonal of the covariance matrix is the square of the product of the CV and the log proportions (all off-diagonals are zero). The sampled vector is then converted to proportions with the softmax function and expanded to numbers (CAA_nsamp). This method allows for simulating fractional values in the catch-at-age matrix.

Value

CAA array

simCAL 143

simCAL

Simulate Catch-at-Length Data

Description

Simulate CAL and calculate length-at-first capture (LFC), mean length (ML), modal length (Lc), and mean length over modal length (Lbar)

Usage

```
simCAL(
 nsim,
 nyears,
 maxage,
 CAL_ESS,
 CAL_nsamp,
 nCALbins,
 CAL_binsmid,
 CAL_bins,
  vn,
  retL,
 Linfarray,
 Karray,
  t0array,
  LenCV
)
```

Arguments

nsim	Number of simulations
nyears	Number of years

maxage Maximum age

CAL_ESS CAA effective sample size

CAL_nsamp CAA sample size

nCALbins number of CAL bins

CAL_binsmid mid-points of CAL bins

CAL_bins Boundary of CAL bins

vn Vulnerable numbers-at-age

retL Retention at length curve

Linfarray Array of Linf values by simulation and year

Karray Array of K values by simulation and year

t@array Array of tO values by simulation and year

LenCV CV of length-at-age#'

144 simmov

Value

named list with CAL array and LFC, ML, & Lc vectors

simmov

Calculates movement matrices from user inputs

Description

A wrapper function for makemov used to generate movement matrices for the operating model. Calculates a movement matrix from user-specified unfished stock biomass fraction in each area and probability of staying in the area in each time step.

Usage

```
simmov(
    OM,
    dist = c(0.1, 0.2, 0.3, 0.4),
    prob = 0.5,
    distE = 0.1,
    probE = 0.1,
    prob2 = NA,
    figure = TRUE
)

plot_mov(mov, age = 1, type = c("matrix", "all"), year = 1, qval = 0.9)
```

Arguments

OM	Operating model, an object of class OM.
dist	A vector of fractions of unfished stock in each area. The length of this vector will determine the number of areas (nareas) in the OM.
prob	Mean probability of staying across all areas (single value) or a vector of the probability of individuals staying in each area (same length as dist).
distE	Logit (normal) St.Dev error for sampling stock fractions from the fracs vector
probE	Logit (normal) St.Dev error for sampling desired probability of staying either by area (prob is same length as dist) or the mean probability of staying (prob is a single number).
prob2	Optional vector as long as prob and dist. Upper bounds on uniform sampling of probability of staying, lower bound is prob.
figure	Logical to indicate if the movement matrix will be plotted (mean values and range across OM@nsim simulations.)
mov	A four-dimensional array of dimension c(nsim, maxage, nareas, nareas) or a five-dimensional array of dimension c(nsim, maxage, nareas, nareas, nyears + proyears) specifying movement in the operating model.

simmov2 145

age	An age from 0 to maxage for the movement-at-age matrix figure when type = "matrix".
type	Whether to plot a movement matrix for a single age ("matrix") or the full movement versus age figure ("all")
year	If mov is a 5-dimensional array, the year (from 1 to nyears + proyears) for which to plot movement.
qval	The quantile to plot or report the range of values among simulations.

Value

The operating model OM with movement parameters in slot cpars. The mov array is of dimension nsim, maxage, nareas, nareas.

Functions

- simmov(): Estimation function for creating movement matrix.
- plot_mov(): Plotting function.

Note

Array mov is age-specific, but currently the movement generated by simmov is independent of age.

Author(s)

T. Carruthers and Q. Huynh

Examples

```
## Not run:
movOM_5areas <- simmov(testOM, dist = c(0.01,0.1,0.2,0.3,0.39), prob = c(0.1,0.6,0.6,0.7,0.9))
movOM_5areas@cpars$mov[1, 1, , ] # sim 1, age 1, movement from areas in column i to areas in row j
plot_mov(movOM_5areas@cpars$mov)
plot_mov(movOM_5areas@cpars$mov, type = "all")
## End(Not run)</pre>
```

simmov2	Calculates movement matrices from user specified distribution among
	other areas

Description

A wrapper function for makemov2 used to generate movement matrices for the operating model. Calculates a movement matrix from user-specified relative movement to other areas and probability of staying in the area in each time step.

146 simmov2

Usage

```
simmov2(
    OM,
    dist = c(0.05, 0.6, 0.35),
    distE = 0.01,
    frac_other = matrix(c(NA, 2, 1, 3, NA, 1, 1, 4, NA), nrow = 3, byrow = T),
    frac_otherE = 0.01,
    prob = 0.8,
    probE = 1,
    figure = TRUE
)
```

Arguments

OM	Operating model, an object of class OM.
dist	A vector of fractions of unfished stock in each area. The length of this vector will determine the number of areas (nareas) in the OM.
distE	Logit (normal) St.Dev error for sampling desired fraction in each area
frac_other	A matrix (nareas rows from, nareas columns to) of relative fractions moving to other areas (the positive diagonal (staying) is unspecified).
frac_otherE	Logit (normal) St.Dev error for sampling desired fraction moving to other areas.
prob	the mean probability of staying in the same area among all areas
probE	Logit (normal) St.Dev error for sampling desired probability of staying in each area
figure	Logical to indicate if the movement matrix will be plotted (mean values and range across OM@nsim simulations.)

Value

The operating model OM with movement parameters in slot cpars. The mov array is of dimension nsim, maxage, nareas, nareas.

Functions

• simmov2(): Estimation function for creating movement matrix.

Note

Array mov is age-specific, but currently the movement generated by simmov is independent of age.

Author(s)

T. Carruthers and Q. Huynh

Simulate 147

Examples

```
## Not run:
movOM_3areas <- simmov2(testOM, frac_other = matrix(c(NA,2,1, 2,NA,1, 1,2,NA),
nrow=3, byrow=T), frac_otherE = 0.01, prob = 0.8, probE = 0.3)
# sim 1, age 1, movement from areas in column i to areas in row j
movOM_3areas@cpars$mov[1, 1, , ]
plot_mov(movOM_3areas@cpars$mov)
plot_mov(movOM_3areas@cpars$mov, type = "all")
## End(Not run)</pre>
```

Simulate

Run a Management Strategy Evaluation

Description

Functions to run the Management Strategy Evaluation (closed-loop simulation) for a specified operating model

Usage

```
Simulate(OM = MSEtool::testOM, parallel = FALSE, silent = FALSE, nsim = NULL)
Project(
 Hist = NULL,
 MPs = NA,
 parallel = FALSE,
  silent = FALSE,
  extended = FALSE,
  checkMPs = FALSE
)
runMSE(
  OM = MSEtool::testOM,
 MPs = NA,
 Hist = FALSE,
  silent = FALSE,
  parallel = FALSE,
  extended = FALSE,
  checkMPs = FALSE
)
```

Arguments

OM

An operating model object (class OM or class Hist). Also works for MOM objects, as a wrapper for ProjectMOM

148 Simulate

Logical or a named list. Should MPs be run using parallel processing? For parallel runMSE, can also be "sac" to run the entire MSE in parallel using the splitapply-combine technique. See Details for more information. silent Should messages be printed out to the console? nsim Optional. numeric value to override OM@nsim. Hist Should model stop after historical simulations? Returns an object of class 'Hist' containing all historical data MPs A vector of methods (character string) of class MP Logical. Return extended projection results? if TRUE, MSE@Misc\$extended is extended a named list with extended data (including historical and projection by area), and extended version of MSE@Hist is returned. Logical. Check if the specified MPs exist and can be run on SimulatedData? checkMPs

Details

Running MPs in parallel:

For most MPs, running in parallel can actually lead to an increase in computation time, due to the overhead in sending the information over to the cores. Consequently, by default the MPs will not be run in parallel if parallel=TRUE (although other internal code will be run in parallel mode). To run MPs in parallel, specify a named list with the name of the MP(s) assigned as TRUE. For example,parallel=list(AvC=TRUE) will run the AvC MP in parallel mode.

Split-apply-combine MSE in parallel:

Additional savings in computation time can be achieved by running the entire simulation in batches. Individual simulations of the operating model are divided into separate cores using SubC-pars, Simulate and Project are applied independently for each core via snowfall::sfClusterApplyLB, and the output (a list of MSE objects) is stitched back together into a single MSE object using joinMSE.

The ideal number of cores will be determined based on the number of simulations and available cores.

There are several issues to look out for when using this split-apply-combine technique:

- Numerical optimization for depletion may fail in individual cores when OM@cpars\$qs is not specified.
- Length bins should be specified in the operating model in OM@cpars\$CAL_bins. Otherwise, length bins can vary by core and create problems when combining into a single object.
- Compared to non-parallel runs, sampled parameters in the operating model will vary despite the same value in OM@seed.
- If there is an error in individual cores or while combining the parallel output into a single Hist or MSE object, the list of output (from the cores) will be returned.

Value

Functions return objects of class Hist or MSE

- Simulate An object of class Hist
- Project An object of class MSE
- runMSE An object of class MSE if Hist = TRUE otherwise a class Hist object

SimulatedData 149

Functions

- Simulate(): Run the Historical Simulations from an object of class OM
- Project(): Run the Forward Projections
- runMSE(): Run the Historical Simulations and Forward Projections from an object of class 'OM

SimulatedData

SimulatedData Data

Description

An object of class Data

Usage

SimulatedData

Format

An object of class Data of length 1.

SimulateMOM

Run a multi-fleet multi-stock Management Strategy Evaluation

Description

Functions for running a multi-stock and/or multi-fleet Management Strategy Evaluation (closed-loop simulation) for a specified operating model

Usage

```
SimulateMOM(MOM = MSEtool::Albacore_TwoFleet, parallel = TRUE, silent = FALSE)

ProjectMOM(
    multiHist = NULL,
    MPs = NA,
    parallel = FALSE,
    silent = FALSE,
    checkMPs = FALSE,
    dropHist = FALSE,
    extended = FALSE
)

multiMSE(
    MOM = MSEtool::Albacore_TwoFleet,
```

150 SimulateMOM

```
MPs = list(list(c("AvC", "DCAC"), c("FMSYref", "curE"))),
Hist = FALSE,
silent = FALSE,
parallel = TRUE,
checkMPs = FALSE,
dropHist = TRUE,
extended = FALSE
)
```

Arguments

MOM	A multi-fleet multi-stock operating model (class MOM)
parallel	Logical or a named list. Should MPs be run using parallel processing? See Details for more information.
silent	Should messages be printed out to the console?
multiHist	An Historical Simulation object (class multiHist)
MPs	A matrix of methods (nstock x nfleet) (character string) of class MP
checkMPs	Logical. Check if the specified MPs exist and can be run on SimulatedData?
dropHist	Logical. Drop the (very large) multiHist object from the returned MMSE object? The multiHist object can be (re-)created using SimulateMOM or kept in MMSE@multiHist if dropHist=FALSE
extended	Logical. Return extended projection results? if TRUE, MMSE@Misc\$extended is a named list with extended data (including historical and projected abundance by area).
Hist	Should model stop after historical simulations? Returns a list containing all historical data

Details

Running MPs in parallel:

For most MPs, running in parallel can actually lead to an increase in computation time, due to the overhead in sending the information over to the cores. Consequently, by default the MPs will not be run in parallel if parallel=TRUE (although other internal code will be run in parallel mode).

To run MPs in parallel, specify a named list with the name of the MP(s) assigned as TRUE. For example, parallel=list(AvC=TRUE) will run the AvC MP in parallel mode.

Value

Functions return objects of class MMSE and multiHist #'

- SimulateMOM An object of class multiHist
- ProjectMOM An object of class MMSE
- multiMSE An object of class MMSE

SketchFun 151

Functions

- SimulateMOM(): Simulate historical dynamics for multi-OM
- ProjectMOM(): Run Forward Projections for a MOM object
- multiMSE(): Run a multi-stock, multi-fleet MSE

Author(s)

T. Carruthers and A. Hordyk

SketchFun

Manually map the historical relative fishing effort trajectory.

Description

Internal function for interactive plot which allows users to specify the relative trajectory and variability in the historical fishing effort.

Usage

```
SketchFun(nyears, Years=NULL)
```

Arguments

nyears Number of years

Years An optional vector of years. Should be nyears long.

Author(s)

A. Hordyk

smoothy

General purpose polynomial smoother

Description

Polynomial smoother (no gradient prediction) applied to a vector that can include NA values. Intended to be rapid for use in management procedures

Usage

```
smoothy(xx, plot = F, enp_mult, plotname = "", xlab = "x", ylab = "y", x = NA)
```

Splot

Arguments

хх Vector of real numbers, data to be smoothed. plot Logical, should the 'fit' of the smoother be plotted? Fraction, effective number of parameters multiplier. The smoother parameter enp_mult number is length(xx) x enp_mult. So higher values of enp_mult means less smoothing (more parameters). plotname Character, in case you want to put a label on the plot (plot = T). xlab Character, in case you want an xaxis label on the plot (plot = T) ylab Character, in case you want a yaxis label on the plot (plot = T) Numeric vector same length as xx, in case you want to have a custom xaxis (e.g. Х

years)

Author(s)

T. Carruthers

Splot Standard MSE projection plot

Description

Plots projections of F/FMSY, SB/SBMSY and Yield

Usage

```
Splot(MSEobj, MPs = 5, p = c(0.05, 0.25, 0.5, 0.75, 0.95))
```

Arguments

MSEobj	Object of class 'MSE' from runMSE() or Project()
MPs	Either a positive integer (the first MPs number of MPs to plot), a character vector (the names of the MPs to plot), or an integer vector (the index of the MPs to plot)
р	Vector of quantiles five positions long. Defaults to $c(0.05,0.25,0.5,0.75,0.95)$ so the 90% and 50% intervals with the median plotted in white.

Author(s)

SS2Data 153

SS2Data	Reads data Stock Synthesis file structure into a Data object using pack-
	age r4ss

Description

A function that uses the file location of a fitted SS3 model including input files to population the various slots of an Data object.

Usage

```
SS2Data(
    SSdir,
    Name = "Imported by SS2Data",
    Common_Name = "",
    Species = "",
    Region = "",
    min_age_M = 1,
    gender = 1,
    comp_fleet = "all",
    comp_season = "sum",
    comp_partition = "all",
    comp_gender = "all",
    index_season = "mean",
    silent = FALSE,
    ...
)
```

Arguments

SSdir

comp_season

Name	The name for the Data object
Common_Name	Character string for the common name of the stock.
Species	Scientific name of the species
Region	Geographic region of the stock or fishery.
min_age_M	Currently, the Data object supports a single value of M for all ages. The argument selects the minimum age for calculating the mean of age-dependent M from the SS assessment.
gender	An integer index for the sex for importing biological parameters (1 = female, 2 = male).
comp_fleet	A vector of indices corresponding to fleets in the assessment over which to aggregate the composition (catch-at-length and catch-at-age) data. By default,

character string "all" will aggregate across all fleets.

used. By default, "mean" will take the average across seasons.

Integer, for seasonal models, the season for which the value of the index will be

A folder with Stock Synthesis input and output files in it

154 SS2DataMOM

comp_partition Integer vector for selecting length/age observations that are retained (2), discarded (1), or both (0). By default, "all" sums over all available partitions.

comp_gender Integer vector for selecting length/age observations that are female (1), male (2), or both (0), or both scaled to sum to one (3). By default, "all" sums over all gender codes.

index_season Integer, for seasonal models, the season for which the value of the index will be used. By default, "mean" will take the average across seasons.

silent Logical. Suppress all messages?

Arguments to pass to SS_output

Value

An object of class Data.

Note

Currently supports the version of r4ss on CRAN (v.1.24) and Github (v.1.34-40). Function may be incompatible with other versions of r4ss.

Author(s)

T. Carruthers and Q. Huynh

See Also

SS2OM

SS2DataMOM	Reads data Stock Synthesis file structure into a nested Data object analogous with multiMSE

Description

A function that uses the file location of a fitted SS3 model including input files to population the various slots of an Data object.

Usage

```
SS2DataMOM(SSdir, age_M = NULL, comp_partition = 2, silent = FALSE, ...)
```

Arguments

SSdir A folder with Stock Synthesis input and output files in it. Alternatively,

age_M A vector of ages to average across to calculate a single value of natural mortality.

Currently, the Data object supports a single value of M for all ages. By default,

NULL averages over all ages.

comp_partition Integer vector for selecting length/age observations that are retained (2), dis-

carded (1), or both (0). By default, only retained comps are used. If multiple

codes are used, then comp matrix is the sum over all codes.

silent Logical. Suppress messages?

... Arguments to pass to SS_output

Value

A nested list of Data objects, with the first index by stock/sex and the second index by fleet.

Note

Currently tested on r4ss version 1.38.1-41 and SS 3.30.14.

Catches in Data@Cat are the predicted sex-specific catch calculated from the SS output.

Author(s)

Q. Huynh

See Also

SS2MOM

SS2MOM	Import Stock Synthesis to MOM (2-sex multi-fleet) or OM (single-sex,
	single-fleet)

Description

Functions that uses the file location or the r4ss output list of a fitted SS3 model including input files to populate the various slots of an MOM or OM object. SS2MOM and SS2OM mainly populates the Stock and Fleet components components of the operating model. SS2MOM creates a 2-sex model and multiple fleets with discarding behavior. SS2OM returns a single sex (either male, female, or averaged biological parameters) and single fleet (aggregate selectivity and mortality, no explicit discarding modeled). For either, the user still needs to parameterize most of the observation and implementation portions. SSMOM2OM is the internal function that simplifies the MOM object to an OM object. plot_SS2OM generates a markdown report to compare the OM and SS output.

Usage

```
SS2MOM(
  SSdir,
  nsim = 48,
  proyears = 50,
  reps = 1,
  maxF = 3,
  seed = 1,
  interval = 1,
  pstar = 0.5,
  Obs = MSEtool::Generic_Obs,
  Imp = MSEtool::Perfect_Imp,
  silent = FALSE,
 Name = "MOM generated by SS2MOM",
  Source = "No Source provided",
)
plot_SS2MOM(
 Х,
  SSdir,
  gender = 1:2,
  filename = "SS2MOM",
  dir = tempdir(),
  open_file = TRUE,
  silent = FALSE,
)
SS20M(
  SSdir,
  nsim = 48,
 proyears = 50,
  reps = 1,
 maxF = 3,
  seed = 1,
  interval = 1,
  pstar = 0.5,
  Obs = MSEtool::Generic_Obs,
  Imp = MSEtool::Perfect_Imp,
  import_mov = TRUE,
  gender = 1:2,
  seasons_to_years = TRUE,
 model_discards = TRUE,
  silent = FALSE,
 Name = "OM generated by SS2OM function",
  Source = "No source provided",
  Author = "No author provided",
```

```
report = FALSE,
  filename = "SS2OM",
  dir = tempdir(),
  open_file = TRUE,
)
SSMOM20M(
  MOM,
  SSdir,
  gender = 1:2,
  import_mov = TRUE,
  seed = 1,
  silent = FALSE,
  model_discards = TRUE
)
plot_SS20M(
  Х,
  SSdir,
  gender = 1:2,
  filename = "SS2OM",
  dir = tempdir(),
  open_file = TRUE,
  silent = FALSE,
)
MOM_agg_fleets(MOM)
```

Arguments

SSdir A folder with Stock Synt	thesis input and output files in it.
--------------------------------	--------------------------------------

nsim The number of simulations to take for parameters with uncertainty (for OM@cpars

custom parameters).

proyears The number of projection years for MSE

reps The number of stochastic replicates within each simulation in the operating

model.

maxF The maximum allowable F in the operating model.

seed The random seed for the operating model.

interval The interval at which management procedures will update the management ad-

vice in multiMSE, e.g., 1 = annual updates.

pstar The percentile of the sample of the management recommendation for the MP/MMP.

Obs The observation model (class Obs). These functions do not update implementa-

tion parameters.

Imp The implementation model (class Imp). These functions do not update imple-

mentation parameters.

silent Whether to silence messages to the console.

Name The name of the operating model

Source Reference to assessment documentation e.g. a url

... Arguments to pass to SS_output.

x For plot_SS20M, an object of either class OM or Hist. For plot_SS2M0M, an

object of either class MOM or multiHist.

gender An integer that indexes the sex for importing life history parameters (1 = usually

female, 2 = usually male, 1:2 = mean across both sexes). Only used for SS20M

only in a 2-sex model.

filename If report = TRUE, character string for the name of the markdown and HTML

files.

dir If report = TRUE, the directory in which the markdown and HTML files will be

saved.

open_file If report = TRUE, whether the HTML document is opened after it is rendered.

import_mov Logical. Import movement matrix?

seasons_to_years

Logical, when season is the time step, whether to convert OM from a seasonal

model to annual model.

model_discards Logical, how to simplify a multi-fleet SS model to an OM object. If TRUE, OM

will still model discards using the mean retention across fleets (weighted by fleet F). Otherwise, no discards are modeled and all fishing removals are calculated

in the OM from the SS F-at-age matrix.

Author Who did the assessment

report Logical, if TRUE, the function will run runMSE to generate the Hist object from

the operating model to compare against SS output. A markdown report will be

generated.

MOM object

Value

SS2MOM returns an object of class MOM. SS2OM returns an object of class OM.

Functions

• MOM_agg_fleets(): Aggregate all fleets in an MOM object.

Note

Currently tested on r4ss version 1.38.1-40.0 and SS 3.30.14.

Author(s)

Q. Huynh

See Also

SS2Data SS2DataMOM

SSBrefplot 159

SSBrefplot	Plot Spawning stock biomass and reference points for both historical and projected period

Description

Plot Spawning stock biomass and reference points for both historical and projected period

Usage

```
SSBrefplot(MSE, simno = 1, ystart = 1, log = F, leg = T)
```

Arguments

MSE	An object of class 'MSE' produced by from runMSE()
simno	Positive integer, the simulation number you wish to plot
ystart	Positive integer, the calendar year corresponding with the first historical year
log	Boolean, whether log SSB and reference points should be plotted
leg	Boolean, should a legend be included in the plot?

Author(s)

T. Carruthers

|--|

Description

An operating model component that specifies the parameters of the population dynamics model

Slots

Name An identifying name for the Stock object. Single value. Character string.

Common_Name Common name of the species. Character string.

Species Scientific name of the species. Genus and species name. Character string.

maxage The maximum age of individuals that is simulated. There are maxage+1 (recruitment to age-0) age classes in the storage matrices. maxage is the 'plus group' where all age-classes > maxage are grouped, unless option switched off with OM@cpars\$plusgroup=0. Single value. Positive integer.

Stock-class

R0 Initial number of unfished recruits to age-0. This number is used to scale the size of the population to match catch or data, but does not affect any of the population dynamics unless the OM has been conditioned with data. As a result, for a data-limited fishery any number can be used for R0. In data-rich stocks R0 may be estimated as part of a stock assessment, but for data limited stocks users can choose either an arbitrary number (say, 1000) or choose a number that produces simulated catches in recent historical years that are similar to real world catch data. Single value. Positive real number.

- M The instantaneous rate of natural mortality. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. Uniform distribution lower and upper bounds. Non-negative real numbers.
- Msd Inter-annual variation in M expressed as a coefficient of variation of a log-normal distribution. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. If this parameter is positive, yearly M is drawn from a log-normal distribution with a mean specified by log(M) drawn for that simulation and a standard deviation in log space specified by the value of Msd drawn for that simulation. Uniform distribution lower and upper bounds. Non-negative real numbers
- h Steepness of the stock recruit relationship. Steepness governs the proportion of unfished recruits produced when the stock is at 20% of the unfished population size. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the same in all years of a given simulation. Uniform distribution lower and upper bounds. Values from 1/5 to 1.
- SRrel Type of stock-recruit relationship. Use 1 to select a Beverton Holt relationship, 2 to select a Ricker relationship. Single value. Integer
- Perr Recruitment process error, which is defined as the standard deviation of the recruitment deviations in log space. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. Uniform distribution lower and upper bounds. Non-negative real numbers.
- AC Autocorrelation in the recruitment deviations in log space. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided, and used to add lag-1 auto-correlation to the log recruitment deviations. Uniform distribution lower and upper bounds. Non-negative real numbers.
- Linf The von Bertalanffy growth parameter Linf, which specifies the average maximum size that would reached by adult fish if they lived indefinitely. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the same in all years unless Linfsd is a positive number. Uniform distribution lower and upper bounds. Positive real numbers.
- Linfsd Inter-annual variation in Linf. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. If this parameter has a positive value, yearly Linf is drawn from a log-normal distribution with a mean specified by the value of Linf drawn for that simulation and a standard deviation (in log space) specified by the value of Linfsd drawn for that simulation. Uniform distribution lower and upper bounds. Non-negative real numbers.
- K The von Bertalanffy growth parameter k, which specifies the average rate of growth. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This value is the same in all years unless Ksd is a positive number. Uniform distribution lower and upper bounds. Positive real numbers.

Stock-class 161

Ksd Inter-annual variation in K. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. If this parameter has a positive value, yearly K is drawn from a log-normal distribution with a mean specified by the value of K drawn for that simulation and a standard deviation (in log space) specified by the value of Ksd drawn for that simulation. Uniform distribution lower and upper bounds. Non-negative real numbers.

- to The von Bertalanffy growth parameter to, which specifies the theoretical age at a size 0. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. Uniform distribution lower and upper bounds. Non-positive real numbers.
- LenCV The coefficient of variation (defined as the standard deviation divided by mean) of the length-at-age. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided to specify the distribution of observed length-at-age, and the CV of this distribution is constant for all age classes (i.e, standard deviation increases proportionally with the mean). Uniform distribution lower and upper bounds. Positive real numbers.
- L50 Length at 50% maturity. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. The L50 and L50_95 parameters are converted to ages using the growth parameters provided and used to construct a logistic curve to determine the proportion of the population that is mature in each age class. Uniform distribution lower and upper bounds. Positive real numbers.
- L50_95 Difference in lengths between 50% and 95% maturity. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. The value drawn is then added to the length at 50% maturity to determine the length at 95% maturity. This parameterization is used instead of specifying the size at 95 percent maturity to avoid situations where the value drawn for the size at 95% maturity is smaller than that at 50% maturity. The L50 and L50_95 parameters are converted to ages using the growth parameters provided and used to construct a logistic curve to determine the proportion of the population that is mature in each age class. Uniform distribution lower and upper bounds. Positive real numbers.
- D Estimated current level of stock depletion, which is defined as the current spawning stock biomass divided by the unfished spawning stock biomass. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. This parameter is used during model initialization to select a series of yearly historical recruitment values and fishing mortality rates that, based on the information provided, could have resulted in the specified depletion level in the simulated last historical year. Uniform distribution lower and upper bounds. Positive real numbers (typically < 1)
- a The alpha parameter in allometric length-weight relationship. Single value. Weight parameters are used to determine catch-at-age and population-at-age from the number of individuals in each age class and the length of each individual, which is drawn from a normal distribution determined by the Linf, K, t0, and LenCV parameters. As a result, they function as a way to scale between numbers at age and biomass, and are not stochastic parameters. Single value. Positive real number.
- b The beta parameter in allometric length-weight relationship. Single value. Weight parameters are used to determine catch-at-age and population-at-age from the number of individuals in each age class and the length of each individual, which is drawn from a normal distribution determine by the Linf, K, t0, and LenCV parameters. As a result, they function as a way to

Stock-class

scale between numbers at age and biomass, and are not stochastic parameters. Single value. Positive real number.

Size_area_1 The size of area 1 relative to area 2. The fraction of the unfished biomass in area 1. Please specify numbers between 0 and 1. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. For example, if Size_area_1 is 0.2, then 20% of the total area is allocated to area 1. Fishing can occur in both areas, or can be turned off in one area to simulate the effects of a no take marine reserve. Uniform distribution lower and upper bounds. Positive real numbers.

Frac_area_1 The fraction of the unfished biomass in area 1. Please specify numbers between 0 and 1. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. For example, if Frac_area_1 is 0.5, then 50% of the unfished biomass is allocated to area 1, regardless of the size of area 1 (i.e, size and fraction in each area determine the density of fish, which may impact fishing spatial targeting). In each time step recruits are allocated to each area based on the proportion specified in Frac_area_1. Uniform distribution lower and upper bounds. Positive real numbers.

Prob_staying The probability of individuals in area 1 remaining in area 1 over the course of one year. Please specify numbers between 0 and 1. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. For example, in an area with a Prob_staying value of 0.95 each fish has a 95% probability of staying in that area in each time step, and a 5% probability of moving to the other area. Uniform distribution lower and upper bounds. Positive fraction.

Fdisc The instantaneous discard mortality rate the stock experiences when fished using the gear type specified in the corresponding fleet object and discarded. For each simulation a single value is drawn from a uniform distribution specified by the upper and lower bounds provided. Uniform distribution lower and upper bounds. Non-negative real numbers.

Source A reference to a website or article from which parameters were taken to define the stock object. Single value. Character string.

Objects from the Class

Objects can be created by calls of the form new('Stock')

Author(s)

T. Carruthers and A. Hordyk

Examples

showClass('Stock')

StockDescription 163

|--|--|

Description

A data.frame with description of slots for class Stock

Usage

StockDescription

Format

An object of class data. frame with 27 rows and 2 columns.

Sub Subset MSE object by management procedure (MP) or simulation.	
---	--

Description

Subset the MSE object by particular MPs (either MP number or name), or particular simulations, or a subset of the projection years (e.g., 1: < projection years).

Usage

```
Sub(MSEobj, MPs = NULL, sims = NULL, years = NULL)
```

Arguments

MSEobj	A MSE object.
MPs	A vector MPs names or MP numbers to subset the MSE object. Defaults to all MPs.
sims	A vector of simulation numbers to subset the MSE object. Can also be a logical vector. Defaults to all simulations.
years	A numeric vector of projection years. Should start at 1 and increase by one to some value equal or less than the total number of projection years.

Author(s)

A. Hordyk

See Also

SubOM for OM components and SubCpars for subsetting by simulation and projection years.

SubCpars SubCpars

Examples

```
## Not run:
MSE <- runMSE()
MSE_1 <- Sub(MSE, MPs=1:2)
MSE_1@MPs
MSE_2 <- Sub(MSE, sims=1:10)
MSE_2@nsim
## End(Not run)</pre>
```

SubCpars

Subset the cpars slot in an operating model

Description

Subset the custom parameters of an operating model by simulation and projection years

Usage

```
SubCpars(x, ...)
## S4 method for signature 'OM'
SubCpars(x, sims = 1:x@nsim, proyears = x@proyears, silent = FALSE)
## S4 method for signature 'MOM'
SubCpars(x, sims = 1:x@nsim, proyears = x@proyears, silent = FALSE)
```

Arguments

X	An object of class OM or MOM
	Arguments for method.
sims	A logical vector of length x@nsim to either retain (TRUE) or remove (FALSE). Alternatively, a numeric vector indicating which simulations (from 1 to nsim) to keep.
proyears	If provided, a numeric to reduce the number of projection years (must be less than x@proyears).
silent	Logical to indicate if messages will be reported to console.

Details

Useful function for running multiMSE in batches if running into memory constraints.

Value

An object of class OM or MOM (same class as x).

SubOM 165

Author(s)

T. Carruthers, Q. Huynh

See Also

Sub for MSE objects, SubOM for OM components.

Sub_{OM}

Subset a Stock, Fleet, Obs, or Imp object from an OM object

Description

A function that strips out a Stock, Fleet, Obs, or Imp object from a complete OM object. Mainly used for internal functions.

Usage

```
SubOM(OM, Sub = c("Stock", "Fleet", "Obs", "Imp"))
```

Arguments

OM An operating model object (class OM)

Sub A character string specifying what object type to strip out "Stock", "Fleet",

"Obs", or "Imp"

Value

An object of class Stock, Fleet, Obs, or Imp

Author(s)

A. Hordyk

See Also

Sub for subsetting MSE output and SubCpars for subsetting by simulation and projection years.

Examples

```
Stock <- SubOM(testOM, "Stock")
class(Stock)</pre>
```

summary, Data-method Summ

Summary of Data object

Description

Summary of Data object

Usage

```
## S4 method for signature 'Data'
summary(
  object,
  wait = TRUE,
  x = 1,
  plots = "all",
  rmd = FALSE,
  head = "##",
  tplot = 25
)
```

Arguments

object	An object of class Data
wait	Logical. Wait for key press before next plot?
X	iteration number for the Data object.
plots	Character. What plots to show? all, TS, CAA, CAL, PD for all plots, time-series, catch-at-age, catch-at-length, and probability distributions respectively
rmd	Logical. Used in a rmd file?
head	Character. Heading for rmd file. Default is '##' (second level heading)
tplot	Integer. Number of plots per page. Default 25

summary, MMSE-method

Summary of MMSE object

Description

Summary of MMSE object

Usage

```
## S4 method for signature 'MMSE'
summary(object, ..., silent = FALSE, Refs = NULL)
```

summary,MSE-method 167

Arguments

object of class MMSE

... a list of names of PM methods

silent Should summary be printed to console? Logical.

Refs An optional named list (matching the PM names) with numeric values to over-

ride the default Ref values. See examples.

summary, MSE-method

Summary of MSE object

Description

Summary of MSE object

Usage

```
## S4 method for signature 'MSE'
summary(object, ..., silent = FALSE, Refs = NULL)
```

Arguments

object of class MSE

... a list of names of PM methods

silent Should summary be printed to console? Logical.

Refs An optional named list (matching the PM names) with numeric values to over-

ride the default Ref values. See examples.

TAC

Calculate TAC recommendations for more than one MP

Description

A function that returns the stochastic TAC recommendations from a vector of output control MPs given a data object Data

Usage

```
TAC(Data, MPs = NA, reps = 100, timelimit = 1, checkMP = TRUE, silent = FALSE)
```

TACfilter

Arguments

Data A data-limited methods data object

MPs optional vector of MP names

reps Number of repetitions

timelimit The maximum time (seconds) taken to complete 10 reps

checkMP Logical. Check if the MP can be run first?

silent Logical. Suppress messages?

Author(s)

T. Carruthers

Examples

```
## Not run:
library(MSEtool)
Data <- TAC(MSEtool::Cobia)
plot(Data)
## End(Not run)</pre>
```

TACfilter

TAC Filter

Description

Filters vector of TAC recommendations by replacing negatives with NA and and values beyond five standard deviations from the mean as NA

Usage

TACfilter(TAC)

Arguments

TAC

A numeric vector of TAC recommendations

Author(s)

Taxa_Table 169

Taxa_Table

Taxa_Table

Description

Database from rfishbase

Usage

Taxa_Table

Format

An object of class tbl_df (inherits from tbl, data.frame) with 34721 rows and 8 columns.

Source

doi:10.1111/j.10958649.2012.03464.x

References

Carl Boettiger and Duncan Temple Lang and Peter Wainwright 2012. Journal of Fish Biology

TEG

Tom's expand grid

Description

Create an indexing grid from just a vector of maximum dimension sizes

Usage

TEG(vec)

Arguments

vec

A vector of maximum array sizes

Author(s)

170 Thresh_tab

test0M

OM class objects

Description

Example objects of class OM

Usage

test0M

Format

An object of class OM of length 1.

Examples

avail("OM")

Thresh_tab

Current default thresholds for DFO satisficing

Description

Crit_S is the probability of being in the critical zone in the first 10 projected years Caut_S is the probability of being in the cautious zone in the first 10 projected years Health_S is the probability of being in the healthy zone in the first 10 projected years OvFish_S is the probability of overfishing in the first 10 projected years Yield_S is the mean yield relative to FMSY management over the first 10 projected years Crit is the probability of being in the critical zone in the last 10 projected years Caut is the probability of being in the cautious zone in the last 10 projected years Health is the probability of being in the healthy zone in the last 10 projected years OvFish is the probability of overfishing in the last 10 projected years Yield is the mean yield relative to FMSY management over the last 10 projected years AAVY is the average annual variability in yield over the whole projection phrased as a CV percentage Reb is the probability the stock has rebuilt to over BMSY in 2 mean generation times

Usage

Thresh_tab(Ptab1)

Arguments

Ptab1

A DFO performance table made by DFO_tab()

Author(s)

tinyErr 171

ti	inyErr	Remove observation,	implementation,	and process error

Description

Takes an existing OM object and converts it to one without any observation error, implementation error, very little process error, and/or gradients in life history parameters and catchability.

Usage

```
tinyErr(x, ...)
## S4 method for signature 'OM'
tinyErr(x, obs = TRUE, imp = TRUE, proc = TRUE, grad = TRUE, silent = FALSE)
```

Arguments

X	An object of class OM
	Arguments to generic function
obs	Logical. Remove observation error? Obs is replaced with Perfect_Info
imp	Logical. Remove implementation error? Imp is replaced with Perfect_Imp
proc	Logical. Remove process error? All sd and cv slots in Stock and Fleet object are set to 0 .
grad	Logical. Remove gradients? All grad slots in Stock and qinc in Fleet are set to 0 .
silent	Logical. Display messages?

Details

Useful for debugging and testing that MPs perform as expected under perfect conditions.

Value

An updated object of class OM

Examples

```
OM_noErr <- tinyErr(MSEtool::testOM)</pre>
```

172 TradePlot

TradePlot

Generic Trade-Plot Function

Description

Generic Trade-Plot Function

Usage

```
TradePlot(
 MSEobj,
 Lims = c(0.2, 0.2, 0.8, 0.8),
 Title = NULL,
 Labels = NULL,
 Satisficed = FALSE,
 Show = "both",
 point.size = 2,
  lab.size = 4,
 axis.title.size = 12,
  axis.text.size = 10,
  legend = TRUE,
  legend.title.size = 12,
 position = c("right", "bottom"),
 cols = NULL,
 fill = "gray80",
 alpha = 0.4,
 PMlist = NULL,
 Refs = NULL,
 Yrs = NULL
)
Tplot2(MSEobj, Lims = c(0.2, 0.2, 0.8, 0.8), ...)
Tplot3(MSEobj, Lims = c(0.5, 0.5, 0.8, 0.5), ...)
NOAA_plot2(MSEobj)
```

Arguments

MSEobj An object of class MSE

... Names of Performance Metrics (PMs), or other arguments to TradePlot. First

PM is recycled if number of PMs is not even

Lims A numeric vector of acceptable risk/minimum probability thresholds. Recycled

if not equal to number of PMs.

TradePlot 173

Optional title for each plot. Character vector of length (PMs)/2. Recycled. Title Labels Optional named list specifying new labels for MPs. For example: Labels = list(AvC="Average Catch", CC1="Constant Catch") Satisficed Logical. Show only the MPs that meet minimum acceptable thresholds (specified in Lims) Show Character. Show the plots ('plots'), results table ('table'), 'both' (default), or invisibly return objects only ('none') Numeric. Size of the MP points point.size Numeric. Size of MP label. Set to NULL to remove MP labels. lab.size axis.title.size Numeric. Size of axis titles axis.text.size Numeric. Size of axis text legend Logical. Include legend? legend.title.size Numeric. Size of legend title text position Character. Position of legend - 'right' or 'bottom' cols Optional character vector of colors for the legend (MP Types) or if cols is a character vector of length MSEobj@nMPs, then the MP labels are colored (no color legend). fill Character. Color of the fill alpha Numeric. Transparency of fill Optional list of PM names. Overrides any supplied in ... above **PMlist** Refs An optional named list (matching the PM names) with numeric values to override the default Ref values. See examples.

Value

Yrs

Invisibly returns a list with summary table of MP performance and the ggplot objects for the plots

An optional named list (matching the PM names) with numeric values to over-

Functions

- Tplot(): A trade-off plot showing probabilities that:
 - not overfishing (PNOF) against long-term yield is > 50\

ride the default Yrs values. See examples.

- spawning biomass is below BMSY (P100) against LTY
- spawning biomass is below 0.5BMSY (P50) against LTY
- spawning biomass is below 0.1BMSY (P10) against LTY
- Tplot2(): A trade-off plot showing probabilities that:
 - short-term yield is > 50\
 - spawning biomass is below 0.1BMSY (P10) against average annual variability in yield is
 < 20\

174 tune_MP

- Tplot3(): A trade-off plot showing probabilities that:
 - not overfishing (PNOF) against long-term yield is > 50\
 - spawning biomass is below 0.1BMSY (P10) against average annual variability in yield is
- NOAA_plot2(): A trade-off plot developed for NOAA showing probabilities that:
 - not overfishing (PNOF) against long-term yield is > 50\
 - spawning biomass is below 0.5BMSY (P50) against average annual variability in yield is

Author(s)

A. Hordyk

Description

A generic function that uses optimize to tune a single MP parameter to minimize a user-specified function (e.g. squared distance from a mean yield, PGK = 60%, etc.)

Usage

```
tune_MP(Hist_list, MP, MP_parname, interval, minfunc, tol = 0.01, parallel = F)
```

Arguments

Hist_list	A list of objects of class Hist - created by runMSE(, Hist=T)
MP	A character string that is the name of the MP to be tuned
MP_parname	A character string that is the argument (parameter) of the MP to be tuned
interval	A numeric vector two positions long that is the $c(lower.bound, upper.bound)$ for the parameter to be tuned $(MP_parname)$
minfunc	A function to be minimized (e.g. the squared difference between mean yield obtained by the MP and a desired yield) that takes a list of MSE objects as its first argument.
tol	A positive numerical value that is the tolerance for the optimize procedure (default is 1E-2)
parallel	Logical: should the MSE projections (over the Hist objects in Hist_list) be calculated in parallel?

Value

A function of class MP with argument MP_parname tuned by optim to minimize minfunc

Turing 175

Author(s)

T. Carruthers

Examples

```
## Not run:
testOM@cpars$Data = new('Data')
testOM@cpars$Data@MPrec=2000
Hist_1 = runMSE(testOM, Hist=T)
testOM2 = testOM
testOM2@D = testOM@D / 2
Hist_2 = runMSE(testOM2, Hist=T)
myMP = function(x, Data, reps=1, rate = 1){
  CpI = mean(Data@Cat[x,46:50]) / mean(Data@Ind[x,46:50],na.rm=T)
  I = Data@Ind[x,]
  recI = mean(I[length(I)-((5-1):0)])
  Rec=new('Rec')
  Rec@TAC = recI * CpI * rate
}
class(myMP) = "MP"
C1000 = function(MSE_list){
  mucat = mean(sapply(MSE_list,function(X){mean(X@Catch)}))
  cat(paste0("mean catch = ",round(mucat,3),"\n"))
  (mucat - 1000)^2 # try to match 1,250t mean yield
}
myMP_t = tune_MP(list(Hist_1,Hist_2), MP = "myMP", MP_parname = "rate",
                 interval = c(1,1.5), minfunc = C1000, tol=1E-3, parallel =F)
formals(myMP_t)$rate
## End(Not run)
```

Turing

Turing Test

Description

Plots the available data in the Data object together with 5 samples of historical data from the Operating Model (OM) in a random order. The test is used to determine if the data generated by the OM is similar to the fishery data in the Data object. In a well specified OM the user should not be able to visually identify which of the 6 plots is the real fishery data and which are generated by the OM.'

Turing Turing

Usage

```
Turing(OM, Data, wait = TRUE)
TuringMOM(multiHist, Data, wait = TRUE)
```

Arguments

OM An object of class OM or class multiHist

Data An object of class Data or a nested list of Data objects for each stock and fleet

wait Logical. Wait for key press before next plot?

multiHist An object of class multiHist. The output of SimulateMOM

Details

In its current form the Turing function does not interpolate missing data in the Data object. Therefore if there are years with missing data, say in the catch time-series, it will be obvious which are the real data and which have been generated by the model. Future versions of the function may include methods to impute missing data for plotting purposes.

The question to ask when examining the plots produced by Turing: do the plots of the 6 data samples look like they are all samples from the same underlying distribution?

Functions

• TuringMOM(): Turing function for multi-stock, multi-fleet MOMs

Note

The Turing function was suggested by Andre Punt in his review of one of our recent projects. It is named after the Turing test, developed by Alan Turing in 1950, which is designed to see if a human can detect the difference between human and machine generated information.

Examples

```
## Not run:
Turing(MSEtool::testOM, MSEtool::SimulatedData, wait=FALSE)
## End(Not run)
```

Uses 177

Uses

Find the Management Procedures that use a particular data slot

Description

Find the Management Procedures that use a particular data slot

Usage

```
Uses(slot, silent = FALSE)
```

Arguments

slot A slot from an object of class Data. Character string.

silent Logical. Should messages be printed?

Value

A character string of MPs that use the slot.

Author(s)

A. Hordyk

Examples

```
Uses("Mort")
```

validcpars

Valid custom parameters (cpars)

Description

Valid custom parameters (cpars)

Usage

```
validcpars(
  type = c("all", "Stock", "Fleet", "Obs", "Imp", "internal"),
  valid = TRUE,
  show = TRUE
)
```

178 validcpars

Arguments

type What cpars to show? 'all', 'Stock', 'Fleet', 'Obs', 'Imp', or 'internal'

valid Logical. Show valid cpars?

show Logical. Display the table in the Viewer?

Value

a HTML datatable with variable name, description and type of valid cpars

Control list

A named list for control, for example, OM@cpars\$control <- list(TAC = "removals", CAL = "removals"), can be specified to override default settings in the MSE simulation. Possible names in the control list are:

- TAC Character, set to "removals" so that the TAC is applied to the sum of retained + discarded catch. Default only applies the TAC to the retained catch.
- CAL Character, set to "removals" to sample the catch-at-length from retained + discarded catch. Default only samples from retained catch.
- D Character, set to "VB" so that historical depletion OM@D corresponds to vulnerable biomass depletion (only used when OM@cpars\$qs = NULL).
- optVB Logical, set to TRUE so that historical depletion OM@D corresponds to vulnerable biomass depletion. Default sets depletion according to spawning biomasss when OM@cpars\$qs = NULL.
- optSBMSY Logical, set to TRUE such that OM@D corresponds to the ratio of spawning biomass to MSY. Default uses according to spawning biomass depletion (biomass relative to unfished levels).
- Depletion Character, set to "end" such that historical depletion OM@D corresponds to the biomass at the end of the last projection year. Default corresponds to the value at the beginning of the last projection year.
- ntrials Integer, set the number of iterations to sample the operating model to match the depletion to OM@D. Default is 50.
- fracD Numeric, the maximum allowable proportion of simulations allowed to hit the bounds of the depletion parameter (simulation returns an error if exceeded). Default is 0.05.
- checks Logical. If TRUE, plots depletion and SB/SBMSY figures and prints values to the R console to diagnose issues with operating model configuration with regards to depletion.
- unfished Logical. If TRUE, returns historical simulations with F = 0.
- progress Logical. If TRUE, updates progress bar through shiny::incProgress. Used in conjunction with Shiny apps.
- maxiterF Integer, the number of iterations to solve for F in the projections from the specified TAC. Default is 300.
- tolF Numeric, the tolerance for the catch relative to the TAC when solving for F in the projections. Default is 1e-4.
- HZN Integer, the number of generations to solve for B_low. Default is 2. See getBlow().
- Bfrac Numeric, proportion of SBMSY to solve for B_low. Default is 0.5. See getBlow().

VOI 179

• skipdata Logical. If TRUE, skips conditioning on data in MOM@cpars[[p]][[f]]\$Data. Only used in multiMSE().

- HermEq Logical, whether the equilibrium population age structures in the multi-OM is generated from the hermaphroditism vector (intended for use in salmonMSE). Default is TRUE. Only used in multiMSE().
- HistRel Logical, whether to perform the historical reconstruction with inter-stock relationships in MOM@Rel. Default is TRUE. Only used in multiMSE().

Examples

```
## Not run:
validcpars() # all valid cpars
validcpars("Obs", FALSE) # invalid Obs cpars
## End(Not run)
```

VOI

Calculate Value Of Information

Description

A function that relates operating model parameters and parameters of the observation model to yield (by default). A user can also specific their own utility values (Ut) which is arranged in a matrix of nsim rows and nMP columns.

Usage

```
VOI(
   MSEobj,
   ncomp = 6,
   nbins = 8,
   maxrow = 8,
   Ut = NA,
   Utnam = "Utility",
   plot = TRUE
)
```

Arguments

MSEobj An object of class MSE

ncomp Maximum number of variables to examine per MP

nbins Number of percentile bins for sampled parameters of the operating model or observation model, which is used for calculating variability in utility across the

sampled range of each parameter

180 VOI2

maxrow maximum number of MPs per plot

Ut A matrix of user-specified utility values of nsim rows and nMPs columns

Utnam The name of the utility measure for plotting

plot Logical. Show the plot?

Author(s)

T. Carruthers

Calculate Value Of Information 2

Description

A function that relates operating model parameters and parameters of the observation model to relative yield (yield over last 5 years of projection relative to a 'best F' scenario that maximizes yield).

Usage

```
VOI2(MSEobj, ncomp = 6, nbins = 4, Ut = NA, Utnam = "yield", lay = F)
```

Arguments

MSEobj	An object of class MSE
ncomp	Maximum number of observation variables to examine per MP
nbins	Number of bins for sampled observation variables used for calculating variability in utility across the sampled range of each parameter
Ut	A matrix of user-specified utility values of nsim rows and nMPs columns
Utnam	The name of the utility measure for plotting
lay	Controls whether labels are in lay terms or not

Note

VOI2 assumes that relative cost for each type of improvement in data is linearly related to the number of samples (e.g. nCAAobs) or square function of improved precision and bias e.g.: relative cost= 1/(newCV/oldCV)^2

Author(s)

VOIplot 181

VOIplot

Yet another Value of Information Plot

Description

A function that relates parameters of the observation model and the operating model parameters to yield.

Usage

```
VOIplot(
   MSEobj,
   MPs = NA,
   nvars = 5,
   nMP = 4,
   Par = c("Obs", "OM"),
   YVar = c("Y", "B"),
   doPlot = TRUE,
   incStat = FALSE,
   availMP = NULL,
   acceptMP = NULL,
   incNames = TRUE,
   labcex = 0.8,
   quants = c(0.05, 0.95)
)
```

Arguments

MSEobj	An object of class MSE
MPs	The MPs to plot. If NA it will plot the first nMP from MSEobj
nvars	The number of observation or operating model parameters to plot (number of columns)
nMP	The maximum number of MPs to plot (number of rows)
Par	Plot Operating Model (OM) or Observation (Obs) parameters?
YVar	Variable for Y-Axis: Yield (Y) or Biomass (B) (relative to BMSY)
doPlot	Output the plot?
incStat	Include a print out of statistic describing the curviness of the line?
availMP	Optional character string of MPs that are available. These names are colored black
acceptMP	Optional character string of MPs that are acceptable. These names are colored green if they are also in availMP
incNames	Include the names?
labcex	Character size of the label
quants	Quantiles to calculate

182 WHAM2OM

Value

A list of all the information included in the plot

Author(s)

A. Hordyk

WHAM20M

Takes a fitted SAM model and samples historical population and fishing dynamics from the MLE fit and variance-covariance matrix.

Description

Takes a fitted SAM model and samples historical population and fishing dynamics from the MLE fit and variance-covariance matrix. Maturity-at-age-year, Mortality-at-age-year and weight-at-age-year are identical among simulations and are a direct copy of the matrices in the WHAM fitting object.

Usage

```
WHAM2OM(
  obj,
  nsim = 3,
 proyears = 30,
  interval = 2,
 Name = NULL,
 WLa = 1,
 WLb = 3,
 WAAind = 1,
 Obs = MSEtool::Imprecise_Unbiased,
  Imp = MSEtool::Perfect_Imp,
  nyr_par_mu = 3,
 LowerTri = 2,
  plusgroup = T,
  altinit = 0,
  fixq1 = T,
  report = FALSE,
  silent = FALSE,
)
```

Arguments

```
obj a SAM output object

nsim Positive integer. The number of simulations.

proyears Positive integer. The number of projection years for MSE.
```

WHAM2OM 183

interval	Positive integer. The interval at which management procedures will update the management advice in runMSE, e.g., 1 = annual updates.
Name	Character string. The name of the operating model.
WLa	positive real number or array [sim, ages, year]. The default weight-length parameter a $(W=aL^b)$
WLb	positive real number or array [sim, ages, year]. The default weight-length parameter b (W=aL^b) $$
WAAind	positive integer. The index of the WHAM weight-at-age array input\$data\$waa to be assumed as the weight-at-age for the operating model
0bs	The observation model (class Obs). This function only updates the catch and index observation error.
Imp	The implementation model (class Imp). This function does not update implementation parameters.
nyr_par_mu	Positive integer. The number of recent years that natural mortality, age vulner- ability, weight, length and maturity parameters are averaged over for defining future projection conditions.
LowerTri	Integer. The number of recent years for which model estimates of recruitment are ignored (not reliably estimated by the assessment)
plusgroup	Logical. Does the assessment assume that the oldest age class is a plusgroup?
altinit	Integer. Various assumptions for how to set up the initial numbers. 0: standard, 1: no plus group, 2: temporary fix for MSEtool plus group initialization
fixq1	Logical. Should q be fixed (ie assume the F-at-age array faa is accurate?
report	Logical, if TRUE, a diagnostic will be reported showing the matching of the OM reconstructed numbers at age vs the assessment.
silent	Whether to silence messages to the console.
•••	$Additional\ arguments, including\ R0\ (unfished\ recruitment), phi0\ (unfished\ spawners\ per\ recruit\ associated\ with\ R0\ and\ h\ for\ calculating\ stock\ recruit\ parameters),$

Details

Use a seed for the random number generator to sample future recruitment.

Value

An object of class OM.

Author(s)

T. Carruthers

See Also

Assess2OM

184 writeCSV

	-
worm	nlot
WOIIII	DIOL

Biomass wormplot

Description

A worm plot for plotting the likelihood of meeting biomass targets in future years.

Usage

```
wormplot(MSEobj, Bref = 0.5, LB = 0.25, UB = 0.75)
```

Arguments

MSEobj	Object of class MSE, output of the runMSE function
Bref	The reference fraction of BMSY (to evaluate the probability of exceeding this level)
LB	The lower bound probability that separates red (bad) and yellow (O.K.) colored segments $ \begin{tabular}{ll} \end{tabular} \begin{tabular}{l$
UB	The upper bound probability that separates yellow (O.K.) and green (good) colored segments $$

Details

Returns a matrix of nMPs rows and proyears columns which is the fraction of simulations for which biomass was above Bref.

Author(s)

T. Carruthers

wri	+ ^	CSV
wıı		'() V

Internal function to write CSVs for objects

Description

Used internally in the DLMtool package to write CSV files from an existing DLMtool object

Usage

```
writeCSV(
  inobj,
  tmpfile = NULL,
  objtype = c("Stock", "Fleet", "Obs", "Imp", "Data", "OM")
)
```

XL2Data 185

Arguments

inobj A object of class Stock, Fleet, Obs, Imp, Data, or OM tmpfile The full file path and name for the saved CSV file

objtype The class corresonding to the inobj

Author(s)

A. Hordyk

XL2Data

Import a Data object from Excel file

Description

Import a Data object from Excel file

Usage

```
XL2Data(name, dec = c(".", ","), sheet = 1, silent = FALSE)
```

Arguments

name Name of the data file, with or without file extension. Include full file path if not

in working directory

dec the character used in the file for decimal points.

sheet Sheet number if importing Data from XL file

silent Logical. Hide messages?

Value

An object of class 'Data'

Author(s)

A. Hordyk

Examples

```
## Not run:
MyData <- XL2Data("MyData.xlsx")
## End(Not run)</pre>
```

186 XL2OM

XL2Fleet

Import Fleet Object from Excel file

Description

Imports a Fleet Object from a correctly formatted Excel file.

Usage

```
XL2Fleet(name = NULL, cpars = NULL, msg = TRUE)
```

Arguments

name Name of the OM Excel file. Provide full file path if not in current directory.

cpars An optional list of custom parameters (single parameters are a vector nsim long,

time series are a matrix nsim rows by nyears columns)

msg Should messages be printed?

Details

An error message will alert if any slots are missing values, or if the Excel file is missing the required tabs.

Value

An object of class Fleet

Author(s)

A. Hordyk

XL20M

Load OM from Excel file

Description

Imports an OM from a correctly formatted Excel file. Create the Excel spreadsheet template using OMinit and document each slot in the corresponding text file.

Usage

```
XL20M(name = NULL, cpars = NULL, msg = TRUE)
```

XL2Stock 187

Arguments

name Name of the OM Excel file. Provide full file path if not in current directory.

cpars An optional list of custom parameters (single parameters are a vector nsim long,

time series are a matrix nsim rows by nyears columns)

msg Should messages be printed?

Details

An error message will alert if any slots are missing values, or if the Excel file is missing the required tabs.

Value

An object of class OM

Author(s)

A. Hordyk

Examples

```
## Not run:
OMinit('myOM', templates=list(Stock='Herring', Fleet='Generic_Fleet', Obs='Generic_Obs',
Imp='Perfect_Imp'), overwrite=TRUE)
myOM <- XL2OM('myOM.xlsx')
## End(Not run)</pre>
```

XL2Stock

Import Stock Object from Excel file

Description

Imports a Stock Object from a correctly formatted Excel file.

Usage

```
XL2Stock(name = NULL, cpars = NULL, msg = TRUE)
```

Arguments

name	Name of the OM Excel file. Provide full file path if not in current directory.
cpars	An optional list of custom parameters (single parameters are a vector nsim long, time series are a matrix nsim rows by nyears columns)

msg Should messages be printed?

Details

An error message will alert if any slots are missing values, or if the Excel file is missing the required tabs

Value

An object of class Stock

Author(s)

A. Hordyk

Index

* ~~	initialize-methods, 69	
initialize-methods, 69	* other	
* classes	initialize-methods, 69	
Data-class, 30	* possible	
Fleet-class, 53	initialize-methods, 69	
Hist-class, 64		
Imp-class, 67	AAVE (PerformanceMetric), 109	
MMSE-class, 87	AAVY (PerformanceMetric), 109	
MOM-class, 89	addMPs (checkMSE), 23	
MSE-class, 93	Albacore, 6	
Obs-class, 99	Albacore_TwoFleet, 7	
OM-class, 104	applyMMP, 7	
PMobj-class, 124	applyMP, 8	
Rec-class, 129	ASAP2Data (ASAP2OM), 9	
Stock-class, 159	ASAP20M, 9, 15	
* datasets	Assess2MOM, 10	
Albacore, 6	Assess20M, 10, 12, 12, 74, 183	
Albacore_TwoFleet, 7	Atlantic_mackerel, 15	
Atlantic_mackerel, 15	avail, 16, <i>17</i> , 22	
DataDescription, 34	Awatea20M, 17	
DataSlots, 36	DAMONOM 10	
DecE_Dom, 38	BAM2MOM, 18	
FleetDescription, 55	BAM20M (BAM2MOM), 18	
Generic_Obs, 57	Blue_shark (Albacore), 6 Bluefin_tuna (Albacore), 6	
HistDescription, 67	Bluefin_tuna_WAtl (Albacore), 6	
ImpDescription, 69	boxplot.Data, 19	
LHdatabase, 81	Butterfish (Albacore), 6	
MSEDescription, 94	butter (13) (Albacore), 0	
ObsDescription, 103	calcRefYield, 20	
OMDescription, 105	CALsimp, 20	
Overages, 109	Can, <i>17</i> , 21, <i>134</i>	
ReqData, 133	Cant, 17, 134	
SimulatedData, 149	Cant (Can), 21	
StockDescription, 163	CheckDuplicate, 22	
Taxa_Table, 169	checkHerm (Herm-int), 63	
testOM, 170	CheckMPs, 22	
* keyword(s)	checkMSE, 23	
initialize-methods, 69	CheckOM, 24	
* methods	China_rockfish(Atlantic_mackerel), 15	

ChkYrs, 110	doRec, 49
Choose, 25	dynGet(), <i>61</i>
ChooseEffort (Choose), 25	
ChooseM (Choose), 25	Emp, 50
ChooseSelect (Choose), 25	Example_datafile (Atlantic_mackerel), 15
Cobia (Atlantic_mackerel), 15	expandHerm (Herm-int), 63
CombineMMP, 26	
Converge, 26	Fease, 52
Cos_thresh_tab, 28	fetch.file.names(iSCAM), 70
COSEWIC_Blow (runCOSEWIC), 134	FlatE_Dom(DecE_Dom), 38
COSEWIC_Dplot (runCOSEWIC), 134	FlatE_HDom(DecE_Dom), 38
COSEWIC_Hplot (runCOSEWIC), 134	FlatE_NDom(DecE_Dom), 38
COSEWIC_Pplot (runCOSEWIC), 134	Fleet-class, 53
COSEWIC_report (runCOSEWIC), 134	Fleet-class-objects (DecE_Dom), 38
COSEWIC_tab (runCOSEWIC), 134	FleetDescription, 55
COSEWIC_tab_formatted (runCOSEWIC), 134	FMSYref, 56
cparscheck, 28	FMSYref50 (FMSYref), 56
Cplot, 29	FMSYref75 (FMSYref), 56
curEref (FMSYref), 56	
	<pre>Generic_DecE (DecE_Dom), 38</pre>
Data, 8, 22, 57, 134	<pre>Generic_FlatE (DecE_Dom), 38</pre>
Data-class, 30	<pre>Generic_Fleet (DecE_Dom), 38</pre>
Data-class-objects (Atlantic_mackerel),	<pre>Generic_IncE (DecE_Dom), 38</pre>
15	Generic_Obs, 57
Data2csv, 34	get(), 61
Data_x1, 37	getBlow(), 178
DataDescription, 34	getclass, 58
DataDir, 35	getDataList, 59
DataInit, 35	getfirstlev, 59
DataSlots, 36	getmov2, 60
DecE_Dom, 38	getMP, 61
DecE_HDom (DecE_Dom), 38	getnIVs, 61
DecE_NDom (DecE_Dom), 38	getsel, 62
DF0_bar, 39	<pre>Gulf_blue_tilefish (Atlantic_mackerel),</pre>
DFO_hist, 40	15
DFO_plot, 40	
DFO_plot2, 41	hconv, 62
DFO_proj, 41	Herm-int, 63
DFO_quant, 42	Herring (Albacore), 6
DFO_report, 43	Hist, <i>148</i> , <i>158</i>
DFO_spider, 43	Hist-class, 64
DFO_tab, 44	hist2,66
DFO_tab_formatted, 44	HistDescription, 67
DLMDataDir, 45	
DLMdiag (Can), 21	Imp, <i>11</i>
dnormal, 46	Imp-class, 67
doHCR, 46	<pre>Imp-class-objects (Overages), 109</pre>
doIfreq,47	ImpDescription, 69
Dom, 48	<pre>Imprecise_Biased (Generic_Obs), 57</pre>

<pre>Imprecise_Unbiased (Generic_Obs), 57</pre>	makemov2, 83, <i>145</i>
<pre>IncE_HDom (DecE_Dom), 38</pre>	makeRel, 84
<pre>IncE_NDom (DecE_Dom), 38</pre>	makeTransparent, 86
initialize (initialize-methods), 69	ML2D, 86
initialize, Data-method	MMSE, <i>112</i>
(initialize-methods), 69	MMSE-class, 87
initialize, DLM_general-method	MOM, 10, 12, 82, 113, 150, 155, 158, 164
(initialize-methods), 69	MOM-class, 89
initialize, Fease-method	MOM-class-objects (Albacore_TwoFleet), 7
(initialize-methods), 69	MOM_agg_fleets (SS2MOM), 155
initialize, Fleet-method	movestockCPP, 91
(initialize-methods), 69	movfit_Rcpp, 91
initialize, MSE-method	MPCalcsNAs, 92
(initialize-methods), 69	
initialize, Obs-method	MPtype, 92, 134
(initialize-methods), 69	MSE, 148
initialize, OM-method	MSE-class, 93
(initialize-methods), 69	MSEDescription, 94
initialize Method	MSEextra, 95
(initialize-methods), 69	MSYCalcs, 95
initialize-methods, 69	multiData, 96
	multiDataS, 97
Input, 70	multidebug, 97
iSCAM, 70	multiMSE, <i>11</i> , <i>12</i> , <i>84</i> , <i>157</i> , <i>164</i>
iSCAM2Data (iSCAM2OM), 72	multiMSE(SimulateMOM), 149
iSCAM20M, 15, 72, 72	multiMSE(), <i>179</i>
iSCAMcomps, 74	
iSCAMinds, 75	Needed, <i>134</i>
2.2. alaka 76	Needed (Can), 21
join_plots, 76	NFref (FMSYref), 56
joinData, 24, 75	NIL, 98
joinHist, 76	NOAA_plot, 99
joinHist (checkMSE), 23	NOAA_plot2 (TradePlot), 172
joinMSE, 76, 148	<u>-</u> i
joinMSE (checkMSE), 23	0bs, <i>11</i>
W 1 + 77	Obs-class, 99
Kplot, 77	Obs-class-objects (Generic_Obs), 57
	ObsDescription, 103
Lag_Data, 78	OM, 10, 15, 82, 144, 146, 147, 155, 158, 164,
ldim, 79	183
LH20M, 79	
LHdatabase, 81	OM-class, 104
load.iscam.files, 72	OM-class-objects (testOM), 170 OMDescription, 105
load.iscam.files(iSCAM), 70	• •
Low_Effort_Non_Target (DecE_Dom), 38	OMdoc, 105
LTY (PerformanceMetric), 109	OMexample, 106
	OMinit, 107
Mackerel (Albacore), 6	optCPU, 108
makeMOM, 82	ourReefFish (Atlantic_mackerel), 15
makemov, 83, 144	Overages, 109

P10 (PerformanceMetric), 109	read.mcmc(iSCAM), 70
P100 (PerformanceMetric), 109	read.par.file(iSCAM),70
P50 (PerformanceMetric), 109	read.projection.file(iSCAM), 70
Perfect_Imp (Overages), 109	read.report.file(iSCAM),70
Perfect_Info(Generic_Obs), 57	RealFease, 129
PerformanceMetric, 109	Rec, 49, 56
PGK (PerformanceMetric), 109	Rec-class, 129
plot, MOM, missing-method (plot. MOM), 113	<pre>Red_snapper (Atlantic_mackerel), 15</pre>
plot.Data, 111	Replace, 130
plot.Fleet (plot.pars), 114	replic8, 131
plot.Hist (plot.pars), 114	Report, 132
plot.Imp(plot.pars), 114	ReqData, 133
plot.MMSE, 112	Required, 93, 133
plot.MOM, 113	Rockfish (Albacore), 6
plot.MSE, 113	runCOSEWIC, 134
plot.Obs(plot.pars), 114	runInMP, 136
plot.OM(plot.pars), 114	runMP, 137
plot.pars, 114	runMSE, <i>14</i> , <i>158</i> , <i>183</i>
plot.Stock (plot.pars), 114	runMSE (Simulate), 147
plot_mov (simmov), 144	· //
plot_SS2MOM (SS2MOM), 155	select_MP, 138
plot_SS20M (SS2MOM), 155	Sense, 138
plotFun, 118	setup, <i>108</i> , 139
plotmulti, 119	show(show-MSEtool), 141
plotOFL, 120	show, Data-method (show-MSEtool), 141
plotquant, 120	show, Hist-method (show-MSEtool), 141
plotRel, 121	show, MMSE-method (show-MSEtool), 141
PMLimit, 122	show, MSE-method (show-MSEtool), 141
PMObj (PMLimit), 122	show, OM-method (show-MSEtool), 141
PMobj-class, 124	show, $PMobj-method, 140$
PNOF (PerformanceMetric), 109	show, Rec-method, 140
Porgy (Albacore), 6	show-MSEtool, 141
Pplot, 125	SIL, 141
Pplot2, 125	simCAA, 142
Precise_Biased (Generic_Obs), 57	simCAL, 143
Precise_Unbiased (Generic_Obs), 57	simmov, <i>83</i> , 144
predict.Rel (makeRel), 84	simmov2, <i>83</i> , <i>84</i> , 145
predictLH (LH2OM), 79	Simulate, 147
print.Rel (makeRel), 84	simulate.Rel(makeRel),84
Project (Simulate), 147	SimulatedData, 149
ProjectMOM (SimulateMOM), 149	SimulateMOM, 149
PWhisker, 127	<pre>Simulation_1 (Atlantic_mackerel), 15</pre>
	SketchFun, 151
quantile_plot, 128	smoothy, 151
	Snapper (Albacore), 6
R0conv (hconv), 62	Sole (Albacore), 6
read.control.file(iSCAM), 70	Splot, 152
read.data.file(iSCAM),70	SRalphaconv (hconv), 62
read.mcmc, 73	SRbetaconv (hconv), 62

SS2Data, 153, 158 SS2DataMOM, 154, 158 SS2MOM, 12, 155, 155 SS2OM, 15, 154 SS2OM (SS2MOM), 155 SS_output, 154, 155, 158 SSBrefplot, 159 SSMOM2OM (SS2MOM), 155 Stock-class, 159 Stock-class-objects (Albacore), 6 StockDescription, 163 str, 141 STY (PerformanceMetric), 109 Sub, 163, 165 SubCpars, 148, 163, 164, 165 SubCpars, MOM-method (SubCpars), 164 SubCpars, OM-method (SubCpars), 164 SubOM, 163, 165, 165 subsetHerm (Herm-int), 63 summary, Data-method, 166 summary, MMSE-method, 166 summary, MSE-method, 167	VOI2, 180 VOIplot, 181 VPA2OM, 17 VPA2OM (Assess2OM), 12 WHAM2OM, 15, 182 wormplot, 184 writeCSV, 184 XL2Data, 185 XL2Fleet, 186 XL2OM, 186 XL2Stock, 187 Yield (PerformanceMetric), 109
TAC, 167 TACfilter, 168 Target_All_Fish (DecE_Dom), 38 Targeting_Small_Fish (DecE_Dom), 38 Taxa_Table, 169 TEG, 169 testOM, 170 Thresh_tab, 170 tinyErr, 171 tinyErr, OM-method (tinyErr), 171 Toothfish (Albacore), 6 Tplot (TradePlot), 172 Tplot2 (TradePlot), 172 Tplot3 (TradePlot), 172 TradePlot, 172 try(), 61 tune_MP, 174 Turing, 175 TuringMOM (Turing), 175 updateMSE (checkMSE), 23 Uses, 177 validcpars, 177 validcpars(), 89, 104 VOI, 179	