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PNAR-package Poisson Network Autoregressive Models

Description

Quasi likelihood-based methods for estimating linear and log-linear Poisson Network Autoregres-
sion models with p lags and covariates. Tools for testing the linearity versus several non-linear
alternatives. Tools for simulation of multivariate count distributions, from linear and non-linear
PNAR models, by using a specific copula construction. References include:

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

Details
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Package: PNAR
Type: Package
Version: 1.7
Date: 2024-09-05
License: GPL(>=2)

Note

Disclaimer: Dr Mirko Armillotta and Konstantinos Fokianos wrote the initial functions. Dr Tsagris
modified them, created the package and he is the maintainer.

We would to like to acknowledge Manos Papadakis for his help with the "htest" class object and S3
methods (print() and summary() functions).

Author(s)

Michail Tsagris, Mirko Armillotta and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

adja Generation of a network from the Stochastic Block Model

Description

This function generates a network from the Stochastic Block Model with K blocks.

Usage

adja(N, K, alpha, directed = FALSE)
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Arguments

N The number of nodes on the network.

K The number of blocks. Each block has dimension N/K. K should be chosen
such that N is divisible by K.

alpha The network density. A value in [0, 1] defining the frequency of connections in
the network.

directed Logical scalar, whether to generate a directed network or not. If TRUE a directed
network is generated.

Details

For each pair of nodes it performs a Bernoulli trial with values 1 "draw an edge", 0 "otherwise".
The probabilities of these trials are bigger if the two nodes are in the same block, lower otherwise,
and they are specified based on the number of nodes on the network N and network density alpha:
Probability to draw an edge for a pair of nodes in the same block: α ∗ N−0.3. Probability to draw
an edge for a pair of nodes in different blocks: α ∗N−1.

Value

A row-normalized non-negative matrix describing the network. The main diagonal entries of the
matrix are zeros, all the other entries are non-negative and the sum of elements over the rows equals
one.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Faust, K. and S. Wasserman (1992). Blockmodels: Interpretation and evaluation. Social Networks,
14, 5–61.

See Also

adja_gnp

Examples

W <- adja(N = 20, K = 5, alpha = 0.1)
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adja_gnp Generation of a network from the Erdos-Renyi model

Description

This function generates a network from the Erdos-Renyi model.

Usage

adja_gnp(N, alpha, directed = FALSE)

Arguments

N The number of nodes on the network.

alpha The network density. A value in [0, 1] defining the frequency of connections in
the network.

directed Logical scalar, whether to generate a directed network. If TRUE a directed
network is generated.

Details

For each pair of nodes it performs a Bernoulli trial with values 1 "draw an edge", 0 "otherwise".
Each trial has the same probability of having an edge; this is equal to α ∗N−0.3, specified based on
the number of nodes on the network N and the network density alpha.

Value

A row-normalized non-negative matrix describing the network. The main diagonal entries of the
matrix are zeros, all the other entries are non-negative and the maximum sum of elements over the
rows equals one.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Erdos, P. and A. Renyi (1959). On random graphs. Publicationes Mathematicae, 6, 290–297.

See Also

adja

Examples

W <- adja_gnp(N = 20, alpha= 0.1)
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crime Chicago crime dataset

Description

Monthly number of burglaries on the south side of Chicago (552 blocks) during 2010-2015 (72
temporal observations).

Usage

crime

Format

A time series object ("ts" class) with multivariate time series, a matrix with 72 rows and 552
columns.

Source

Clark and Dixon (2021), available at https://github.com/nick3703/Chicago-Data.

References

Clark, N. J. and P. M. Dixon (2021). A class of spatially correlated self-exciting statistical models.
Spatial Statistics, 43, 1–18.

See Also

crime_W, lin_estimnarpq, log_lin_estimnarpq

Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq( crime, crime_W, p = 1)
mod2 <- log_lin_estimnarpq( crime, crime_W, p = 1)

https://github.com/nick3703/Chicago-Data
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crime_W Network matrix for Chicago crime dataset

Description

Non-negative row-normized adjacency matrix describing the network structure between Chicago
census blocks.

Usage

crime_W

Format

A matrix with 552 rows and 552 columns.

Source

Clark and Dixon (2021), available at https://github.com/nick3703/Chicago-Data.

References

Clark, N. J. and P. M. Dixon (2021). A class of spatially correlated self-exciting statistical models.
Spatial Statistics, 43, 1–18.

See Also

crime, lin_estimnarpq, log_lin_estimnarpq

Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 1)
mod2 <- log_lin_estimnarpq(crime, crime_W, p = 1)

getN Count the number of events within a specified time

Description

This function counts the number of events within a specified time.

Usage

getN(x, tt = 1)

https://github.com/nick3703/Chicago-Data
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Arguments

x A matrix of (positive) inter-event times.

tt A positive time.

Value

The number of events within time tt (possibly 0), for each column of x.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

See Also

rcopula, poisson.MODpq, poisson.MODpq.log

Examples

x <- rcopula(n = 100, N = 50, rho = 0.3)
getN(x)

global_optimise_LM_stnarpq

Optimization of the score test statistic for the ST-PNAR(p) model

Description

Global optimization of the linearity test statistic for the Smooth Transition Poisson Network Au-
toregressive model of order p with q covariates (ST-PNAR(p)) with respect to the nuisance scale
parameter γ.

Usage

global_optimise_LM_stnarpq(gama_L = NULL, gama_U = NULL, len = 10, b, y, W,
p, d, Z = NULL, tol = 1e-9)

Arguments

gama_L The lower value of the γ values to consider. Use NULL if there is not informa-
tion about its value. See the details for default computation.

gama_U The upper value of the γ values to consider. Use NULL if there is not informa-
tion about its value. See the details for default computation.

len The number of increments to consider for the γ parameter.

b The estimated parameters from the linear model, in the following order: (inter-
cept, network parameters, autoregressive parameters, covariates). The length of
the vector should be 2p+ 1 + q, where q denotes the number of covariates.
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y A TT ×N time series object or a TT ×N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.
d The lag parameter of non-linear variable (should be between 1 and p).
Z An N × q matrix of covariates (one for each column), where q is the number of

covariates in the model. Note that they must be non-negative.
tol Tolerance level for the optimizer.

Details

The function optimizes the quasi score test statistic, under the null assumption of linearity, for
testing linearity of Poisson Network Autoregressive model of order p against the following ST-
PNAR(p) model, with respect to the unknown nuisance parameter (γ). For each node of the network
i = 1, ..., N over the time sample t = 1, ..., TT

λi,t = β0 +

p∑
h=1

(β1hXi,t−h + β2hYi,t−h + αhe
−γX2

i,t−dXi,t−h) +

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W .
The sequence λi,t is the expectation of Yi,t, conditional to its past values.

The null hypothesis of the test is defined as H0 : α1 = ... = αp = 0, versus the alternative that at
least one among αh is not 0. The test statistic has the form

LM(γ) = S
′
(θ̂, γ)Σ−1(θ̂, γ)S(θ̂, γ)

where

S(θ̂, γ) =

TT∑
t=1

N∑
i=1

(
Yi,t

λi,t(θ̂, γ)
− 1

)
∂λi,t(θ̂, γ)

∂α

is the partition of the quasi score related to the vector of non-linear parameters α = (α1, ..., αp),
evaluated at the estimated parameters θ̂ under the null assumption H0 (linear model) and Σ(θ̂, γ) is
the variance of S(θ̂, γ).

The optimization employes the Brent algorithm (Brent, 1973) applied in the interval from gama_L
to gama_U. To be sure that the global optimum is found, the optimization is performed at (len-1)
consecutive equidistant sub-intervals and then the maximum over them is taken as global optimum.

The values of gama_L and gama_U are computed internally as gama_L= − log(0.9)/X2 and gama_U
= − log(0.1)/X2, where X is the overall mean of Xi,t over the nodes i = 1, ..., N and times
t = 1, ..., TT . Since the non-linear function e−γX2

i,t−d ranges between 0 and 1, by considering X
to be a representative value for the network mean, gama_U and gama_L would be the values of γ
leading the non-linear switching function to be 0.1 and 0.9, respectively, so that in the optimization
procedure the extremes of the function domain are excluded. Alternatively, their value can be
supplied by the user. For details see Armillotta and Fokianos (2023, Sec. 4-5).
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Value

A list including:

gama The optimum value of the γ parameter.

supLM The value of the objective function at the optimum.

int A vector with the extremes points of sub-intervals.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

Brent, R. (1973) Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs
N.J.

See Also

score_test_stnarpq_j, global_optimise_LM_tnarpq,score_test_tnarpq_j

Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 1)
b <- mod1$coefs[, 1]
global_optimise_LM_stnarpq(b = b, y = crime, W = crime_W, p = 1, d = 1)

global_optimise_LM_tnarpq

Optimization of the score test statistic for the T-PNAR(p) model

Description

Global optimization of the linearity test statistic for the Threshold Poisson Network Autoregressive
model of order p with q covariates (T-PNAR(p)) with respect to the nuisance threshold parameter
γ.
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Usage

global_optimise_LM_tnarpq(gama_L = NULL, gama_U = NULL, len = 10, b, y, W,
p, d, Z = NULL, tol = 1e-9)

Arguments

gama_L The lower value of the γ values to consider. Use NULL if there is not informa-
tion about its value.. See the details for default computation.

gama_U The upper value of the γ values to consider. Use NULL if there is not informa-
tion about its value.. See the details for default computation.

len The number of increments to consider for the γ parameter.

b The estimated parameters from the linear model, in the following order: (in-
tercept, network parameters, autoregressive parameters, covariates). The di-
mension of the vector should be 2p + 1 + q, where q denotes the number of
covariates.

y A TT ×N time series object or a TT ×N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

d The lag parameter of non-linear variable (should be between 1 and p).

Z An N x q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

tol Tolerance level for the optimizer.

Details

The function optimizes the quasi score test statistic, under the null assumption of linearity, for
testing linearity of Poisson Network Autoregressive model of order p against the following T-
PNAR(p) model, with respect to the unknown nuisance parameter (γ). For each node of the network
i = 1, ..., N over the time sample t = 1, ..., TT

λi,t = β0+

p∑
h=1

[β1hXi,t−h + β2hYi,t−h + (α0 + α1hXi,t−h + α2hYi,t−h)I(Xi,t−d ≤ γ)]+

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W ,
and I() is the indicator function. The sequence λi,t is the expectation of Yi,t, conditional to its past
values.

The null hypothesis of the test is defined as H0 : α0 = α11 = ... = α2p = 0, versus the alternative
that at least one among αs,h is not 0, for s = 0, 1, 2. The test statistic has the form

LM(γ) = S
′
(θ̂, γ)Σ−1(θ̂, γ)S(θ̂, γ)
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where

S(θ̂, γ) =

TT∑
t=1

N∑
i=1

(
Yi,t

λi,t(θ̂, γ)
− 1

)
∂λi,t(θ̂, γ)

∂α

is the partition of the quasi score related to the vector of non-linear parameters α = (α0, ..., α2p),
evaluated at the estimated parameters θ̂ under the null assumption H0 (linear model) and Σ(θ̂, γ) is
the variance of S(θ̂, γ).

The optimization employes the Brent algorithm (Brent, 1973) applied in the interval from gama_L
to gama_U. To be sure that the global optimum is found, the optimization is performed at (len-1)
consecutive equidistant sub-intervals and then the maximum over them is taken as global optimum.

The values of gama_L and gama_U are computed internally as the mean over i = 1, ..., N of 20%
and 80% quantile of the empirical distribution of the network mean Xi,t for t = 1, ..., TT . In this
way the optimization is performed for values of γ such that the indicator function I(Xi,t−d ≤ γ)
is not always close to 0 or 1. Alternatively, their value can be supplied by the user. For details see
Armillotta and Fokianos (2023, Sec. 4-5).

Value

A list including:

gama The optimum value of the γ parameter.

supLM The value of the objective function at the optimum.

int A vector with the extremes points of sub-intervals.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

Brent, R. (1973) Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs
N.J.

See Also

score_test_tnarpq_j, global_optimise_LM_stnarpq,score_test_stnarpq_j
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Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 2)
b <- mod1$coefs[, 1]
global_optimise_LM_tnarpq(b = b, y = crime, W = crime_W, p = 2, d = 1)

lin_estimnarpq Estimation of the linear Poisson NAR(p) model model with p lags and
q covariates (PNAR(p))

Description

Estimation of the linear Poisson Network Autoregressive model of order p with q covariates (PNAR(p)).

Usage

lin_estimnarpq(y, W, p, Z = NULL, uncons = FALSE, init = NULL,
xtol_rel = 1e-8, maxeval = 100)

Arguments

y A TT ×N time series object or a TT ×N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

uncons logical, if TRUE an unconstrained optimization is run (default is FALSE).

init A vector of starting values for the optimization algorithm. If this is NULL, the
function computes them internally.

xtol_rel The stopping tolerance of the optimization algorithm.

maxeval The maximum number of evalutions the optimization algorithm will perform.

Details

This function performs constrained estimation of the linear Poisson NAR(p) model with q non-
negative valued covariates, for each node of the network i = 1, ..., N over the time sample t =
1, ..., TT , defined as

λi,t = β0 +

p∑
h=1

(β1hXi,t−h + β2hYi,t−h) +

q∑
l=1

δlZi,l,
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where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W .
The sequence λi,t is the expecation of Yi,t, conditional to its past values. The parameter β0 is the
intercept of the model, β1h are the network coefficients, β2h are the autoregressive parameters, and
δl are the coefficients assocciated to the covariates Zi,l.

The estimation of the parameters of the model is performed by Quasi Maximum Likelihood Esti-
mation (QMLE), maximizing the following quasi log-likelihood

l(θ) =

TT∑
t=1

N∑
i=1

[Yi,t log λi,t(θ)− λi,t(θ)]

with respect to the vector of unknown parameters θ described above. The coefficients are defined
only in the non-negative real line.

By default, the optimization is constrained in the stationary region where
∑p

h=1(β1h + β2h) < 1;
this can be removed by setting uncons = TRUE. However, the model estimates might be inconsistent
if the estimated parameters lie outside the stationary region.

The ordinary least squares estimates are employed as starting values of the optimization procedure.
Robust standard errors and z-tests are also returned.

Value

A list with attribute class "PNAR" including:

coefs A matrix with the estimated QMLE coefficients, their standard errors their Z-test
statistics and the relevant p-values computed via the standard normal approxi-
mation.

score The value of the quasi score function at the optimization point. It should be
close to 0 if the optimization is successful.

loglik The value of the maximized quasi log-likelihood.

ic A vector with the Akaike information criterion (AIC), the Bayesian information
criterion (BIC) and the Quasi information criterion (QIC).

Alternatively, these can be printed via the function summary.PNAR.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269..
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See Also

log_lin_estimnarpq

Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 2)
summary(mod1)

lin_ic_plot Scatter plot of information criteria versus the number of lags in the
linear Poisson NAR(p) model model with p lags and q covariates
(PNAR(p))

Description

Scatter plot of information criteria versus the number of lags in the linear Poisson Network Autore-
gressive model of order p with q covariates (PNAR(p)).

Usage

lin_ic_plot(y, W, p = 1:10, Z = NULL, uncons = FALSE, ic = "QIC")

Arguments

y A TT x N time series object or a TT x N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N x N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p A vector with integer numbers, the range of lags in the model, for which the
AIC, BIC and QIC will be computed.

Z An N x q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

uncons Logical, if TRUE an unconstrained optimization without stationarity constraints
is performed (default is FALSE).

ic The information criterion you want to plot, "QIC" (default value), "AIC" or
"BIC".

Details

The function computes the AIC, BIC or QIC for a range of lag orders of the linear Poisson Network
Autoregressive model of order p with q covariates (PNAR(p)).
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Value

A scatter plot with the lag order versus either QIC (default), AIC or BIC, and a vector with their
values, for each lag order.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

lin_estimnarpq, log_lin_ic_plot

Examples

data(crime)
data(crime_W)
lin_ic_plot(crime, crime_W, p = 1:3)

lin_narpq_init Starting values for the linear Poisson NAR(p) model model with p lags
and q covariates (PNAR(p))

Description

Starting values for the linear Poisson Network Autoregressive model of order p with q covariates
(PNAR(p)).

Usage

lin_narpq_init(y, W, p, Z = NULL)
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Arguments

y A TT x N time series object or a TT x N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N x N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

Z An N x q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

Details

The function computes starting values to be used in the function lin_estimnarpq. These are simply
the ordinary least squares estimators with a correction. If any of the the resulting coefficients is
negative they become equal to 0.001.

Value

A vector with the initial values.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

lin_estimnarpq

Examples

data(crime)
data(crime_W)
x0 <- lin_narpq_init(crime, crime_W, p = 2)
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log_lin_estimnarpq Estimation of the log-linear Poisson NAR(p) model with p lags and q
covariates (log-PNAR(p))

Description

Estimation of the log-linear Poisson Network Autoregressive model of order p with q covariates
(log-PNAR(p)).

Usage

log_lin_estimnarpq(y, W, p, Z = NULL, uncons = FALSE, init = NULL,
xtol_rel = 1e-8, maxeval = 100)

Arguments

y A TT x N time series object or a TT x N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N x N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

Z An N x q matrix of covariates (one for each column), where q is the number of
covariates in the model.

uncons logical, if TRUE an unconstrained optimization is performed (default is FALSE).

init A vector of starting values for the optimization algorithm. If this is NULL, the
function computes them internally.

xtol_rel The stopping tolerance of the optimization algorithm.

maxeval The maximum number of evalutions the optimization algorithm will perform.

Details

This function performs a constrained estimation of the linear Poisson NAR(p) model with q non-
negative valued covariates, for each node of the network i = 1, ..., N over the time sample t =
1, ..., TT , defined as

νi,t = β0 +

p∑
h=1

(β1hXi,t−h + β2hYi,t−h) +

q∑
l=1

δlZi,l,

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i con-
nections, with the weights of the mean being Wij , the single element of the network matrix W . The
sequence νi,t is the log of the expectation of Yi,t, conditional to its past values. The parameter β0 is
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the intercept of the model, β1h are the network coefficients, β2h are the autoregressive parameters,
and δl are the coefficients assocciated to the covariates Zi,l.

The estimation of the parameters of the model is performed by Quasi Maximum Likelihood Esti-
mation (QMLE), maximizing the following quasi log-likelihood

l(θ) =

TT∑
t=1

N∑
i=1

[
Yi,tνi,t(θ)− eνi,t(θ)

]
with respect to the vector of unknown parameters θ described above.

By default, the optimization is constrained in the stationary region where
∑p

h=1(|β1h|+ |β2h|) < 1;
this can be removed by setting uncons = TRUE. However, the model estimates might be inconsistent
if the estimated parameters lie outside the stationary region.

The ordinary least squares estimates are employed as starting values of the optimization procedure.
Robust standard errors and z-tests are also returned.

Value

A list with attribute class "PNAR" including:

coefs A matrix with the estimated QMLE coefficients, their standard errors, their Z-
test statistics and the relevant p-values computed via the standard normal ap-
proximation.

score The value of the quasi score function at the optimization point. It should be
close to 0 if the optimization is successful.

loglik The value of the maximized quasi log-likelihood.

ic A vector with the Akaike information criterion (AIC), the Bayesian information
criterion (BIC) and the Quasi information criterion (QIC).

Alternatively, these can be printed via the function summary.PNAR.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

lin_estimnarpq
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Examples

data(crime)
data(crime_W)
mod1 <- log_lin_estimnarpq(crime, crime_W, p = 2)
summary(mod1)

log_lin_ic_plot Scatter plot of information criteria versus the number of lags in the
log-linear Poisson NAR(p) model with p lags and q covariates (log-
PNAR(p))

Description

Scatter plot of information criteria versus the number of lags in log-linear Poisson Network Autore-
gressive model of order p with q covariates (log-PNAR(p)).

Usage

log_lin_ic_plot(y, W, p = 1:10, Z = NULL, uncons = FALSE, ic = "QIC")

Arguments

y A TT x N time series object or a TT x N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N x N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p A vector with integer numbers, the range of lags in the model, for which the
AIC, BIC and QIC will be computed.

Z An N x q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

uncons Logical, if TRUE an unconstrained optimization without stationarity constraints
is performed (default is FALSE).

ic The information criterion you want to plot, "QIC" (default value), "AIC" or
"BIC".

Details

The function computes the AIC, BIC or QIC for a range of lag orders of the log-linear Poisson
Network Autoregressive model of order p with q covariates (PNAR(p)).

Value

A scatter plot with the lag order versus either QIC (default), AIC or BIC, and a vector with their
values, for each lag order.
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Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

log_lin_estimnarpq, lin_ic_plot

Examples

data(crime)
data(crime_W)
log_lin_ic_plot(crime, crime_W, p = 1:3)

log_lin_narpq_init Starting values for the log-linear Poisson NAR(p) model with p lags
and q covariates (log-PNAR(p))

Description

Starting values for the log-linear Poisson Network Autoregressive model of order p with q covariates
(log-PNAR(p)).

Usage

log_lin_narpq_init(y, W, p, Z = NULL)

Arguments

y A TT x N time series object or a TT x N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N x N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

Z An N x q matrix of covariates (one for each column), where q is the number of
covariates in the model.
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Details

This function computes initial values for the log-linear Poisson Network Autoregressive model of
order p with q covariates (log-PNAR(p)) with stationarity conditions. These initial values are simply
the ordinary least squares estimators with a correction.

Value

A vector with the initial values.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

log_lin_estimnarpq

Examples

data(crime)
data(crime_W)
mod1 <- log_lin_narpq_init(crime, crime_W, p = 2)

poisson.MODpq Generation of counts from a linear Poisson NAR(p) model with q co-
variates (PNAR(p))

Description

Generation of multivariate count time series from a linear Poisson Network Autoregressive model
of order p with q covariates (PNAR(p)).

Usage

poisson.MODpq(b, W, p, Z = NULL, TT, N, copula = "gaussian",
corrtype = "equicorrelation", rho, dof = 1)
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Arguments

b The coefficients of the model, in the following order: (intercept, network pa-
rameters, autoregressive parameters, covariates). The dimension of the vector
should be 2p+ 1 + q, where q denotes the number of covariates.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

TT The temporal sample size.

N The number of nodes on the network.

copula Which copula function to use? The choices are "gaussian", "t", or "clayton".

rho The value of the copula parameter (ρ). A scalar in [−1, 1] for elliptical copulas
(Gaussian, t), a value greater than or equal to -1 for Clayton copula.

corrtype Used only for elliptical copulas. The type of correlation matrix employed for the
copula; it will either be the "equicorrelation" or "toeplitz". The "equicorrelation"
option generates a correlation matrix where all the off-diagonal entries equal ρ.
The "toeplitz" option generates a correlation matrix whose generic off-diagonal
(i, j)-element is ρ|i−j|.

dof The degrees of freedom for Student’s t copula.

Details

This function generates counts from a linear Poisson NAR(p) model, where q non time-varying co-
variates are allowed as well. The counts are simulated from Yt = Nt(λt), where Nt is a sequence of
N -dimensional IID Poisson count processes, with intensity 1, and whose structure of dependence is
modelled through a copula construction C(ρ) on their associated exponential waiting times random
variables. For details see Armillotta and Fokianos (2024, Sec. 2.1-2.2).

The sequence λi,t is the expectation of Yi,t, conditional to its past values and it is generated by
means of the following PNAR(p) model. For each node of the network i = 1, ..., N over the time
sample t = 1, ..., TT

λi,t = β0 +

p∑
h=1

(β1hXi,t−h + β2hYi,t−h) +

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix
W . The parameter β0 is the intercept of the model, β1h are the network coefficients, β2h are the
autoregressive parameters, and δl are the coefficients assocciated to the covariates Zi,l.
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Value

A list including:

p2R The Toeplitz correlation matrix, if employed in the copula or NULL else.

lambda A TT × N time series object matrix of simulated Poisson means for N time
series over TT .

y A TT ×N time series object matrix of simulated counts for N time series over
TT .

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

Fokianos, K., Stove, B., Tjostheim, D., and P. Doukhan (2020). Multivariate count autoregression.
Bernoulli, 26(1), 471–499.

See Also

poisson.MODpq.log, poisson.MODpq.nonlin,poisson.MODpq.stnar, poisson.MODpq.tnar

Examples

W <- adja( N = 20, K = 5, alpha= 0.5)
y <- poisson.MODpq( b = c(0.5, 0.3, 0.2), W = W, p = 1, Z = NULL,
TT = 1000, N = 20, copula = "gaussian",
corrtype = "equicorrelation", rho = 0.5)$y

poisson.MODpq.log Generation of multivariate count time series from a log-linear Poisson
NAR(p) model with q covariates (log-PNAR(p))

Description

Generation of counts from a log-linear Poisson Network Autoregressive model of order p with q
covariates (log-PNAR(p)).
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Usage

poisson.MODpq.log(b, W, p, Z = NULL, TT, N, copula = "gaussian",
corrtype = "equicorrelation", rho, dof = 1)

Arguments

b The coefficients of the model, in the following order: (intercept, network pa-
rameters, autoregressive parameters, covariates). The dimension of the vector
should be 2p+ 1 + q, where q denotes the number of covariates.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one.The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.
Z An N × q matrix of covariates (one for each column), where q is the number of

covariates in the model.
TT The temporal sample size.
N The number of nodes on the network.
copula Which copula function to use? The "gaussian", "t", or "clayton".
rho The the value of the copula parameter (ρ). A scalar in [−1, 1] for elliptical

copulas (Gaussian, t), a value greater or equal to -1 for Clayton copula.
corrtype Used only for elliptical copulas. The type of correlation matrix employed for the

copula; it will either be the "equicorrelation" or "toeplitz". The "equicorrelation"
option generates a correlation matrix where all the off-diagonal entries equal ρ.
The "toeplitz" option generates a correlation matrix whose generic off-diagonal
(i, j)-element is ρ|i−j|.

dof The degrees of freedom for Student’s t copula.

Details

This function generates counts from a log-linear Poisson NAR(p) model, where q non time-varying
covariates are allowed as well. The counts are simulated from Yt = Nt(e

νt), where Nt is a se-
quence of N -dimensional IID Poisson count processes, with intensity 1, and whose structure of
dependence is modelled through a copula construction C(ρ) on their associated exponential wait-
ing times random variables. For details see Armillotta and Fokianos (2024, Sec. 2.1-2.2).

The sequence νt is the log of the expecation of Yt, conditional to its past values and it is generated
by means of the following log-PNAR(p) model. For each node of the network i = 1, ..., N over the
time sample t = 1, ..., TT

νi,t = β0 +

p∑
h=1

(β1hXi,t−h + β2hYi,t−h) +

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix
W . The parameter β0 is the intercept of the model, β1h are the network coefficients, β2h are the
autoregressive parameters, and δl are the coefficients assocciated to the covariates Zi,l.
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Value

A list including:

p2R The Toeplitz correlation matrix, if employed in the copula or NULL else.

log_lambda A TT ×N time series object matrix of simulated Poisson log-means for N time
series over TT .

y A TT ×N time series object matrix of simulated counts for N time series over
TT .

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

Fokianos, K., Stove, B., Tjostheim, D., and P. Doukhan (2020). Multivariate count autoregression.
Bernoulli, 26(1), 471–499.

See Also

poisson.MODpq, poisson.MODpq.nonlin,poisson.MODpq.stnar, poisson.MODpq.tnar

Examples

W <- adja( N = 20, K = 5, alpha= 0.5)
y <- poisson.MODpq.log( b = c(0.5, 0.3, 0.2), W = W, p = 1,
Z = NULL, TT = 1000, N = 20, copula = "gaussian",
corrtype = "equicorrelation", rho = 0.5)$y

poisson.MODpq.nonlin Generation of multivariate count time series from a non-linear Inter-
cept Drift Poisson NAR(p) model with q covariates (ID-PNAR(p))

Description

Generation of counts from a non-linear Intercept Drift Poisson Network Autoregressive model of
order p with q covariates (ID-PNAR(p)).
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Usage

poisson.MODpq.nonlin(b, W, gama, p, d, Z = NULL, TT, N, copula = "gaussian",
corrtype = "equicorrelation", rho, dof = 1)

Arguments

b The linear coefficients of the model, in the following order: (intercept, network
parameters, autoregressive parameters, covariates). The dimension of the vector
should be 2p+ 1 + q, where q denotes the number of covariates.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

gama A scalar non-linear intercept drift parameter.

p The number of lags in the model.

d The lag parameter of non-linear variable (should be between 1 and p).

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

TT The temporal sample size.

N The number of nodes on the network.

copula Which copula function to use? The "gaussian", "t", or "clayton".

rho The value of the copula parameter (ρ). A scalar in [−1, 1] for elliptical copulas
(Gaussian, t), a value greater than or equal to -1 for Clayton copula.

corrtype Used only for elliptical copulas. The type of correlation matrix employed for the
copula; it will either be the "equicorrelation" or "toeplitz". The "equicorrelation"
option generates a correlation matrix where all the off-diagonal entries equal ρ.
The "toeplitz" option generates a correlation matrix whose generic off-diagonal
(i, j)-element is ρ|i−j|.

dof The degrees of freedom for Student’s t copula.

Details

This function generates counts from a non-linear Intercept Drift Poisson NAR(p) model, where q
non time-varying covariates are allowed as well. The counts are simulated from Yt = Nt(λt), where
Nt is a sequence of N -dimensional IID Poisson count processes, with intensity 1, and whose struc-
ture of dependence is modelled through a copula construction C(ρ) on their associated exponential
waiting times random variables. For details see Armillotta and Fokianos (2024, Sec. 2.1-2.2). The
sequence λi,t is the expecation of Yi,t, conditional to its past values and it is generated by means of
the following ID-PNAR(p) model. For each node of the network i = 1, ..., N over the time sample
t = 1, ..., TT

λi,t =
β0

(1 +Xi,t−d)γ
+

p∑
h=1

(β1hXi,t−h + β2hYi,t−h) +

q∑
l=1

δlZi,l
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where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W .

The parameter β0 is the intercept of the model, β1h are the network coefficients, β2h are the au-
toregressive parameters, γ is the non-linear coefficient associated with the intercept drift, and δl
are the coefficients assocciated with the covariates Zi,l. The coefficient d is considered as an extra
parameter defining the lag of the network effect in the non-linear part of the model and is left to be
set by the user. For details on ID-PNAR models see Armillotta and Fokianos (2023, Sec. 2).

Value

A list including:

p2R The Toeplitz correlation matrix, if employed in the copula or NULL else.

lambda A TT × N time series object matrix of simulated Poisson means for N time
series over TT .

y A TT ×N time series object matrix of simulated counts for N time series over
TT .

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

poisson.MODpq, poisson.MODpq.log,poisson.MODpq.stnar, poisson.MODpq.tnar

Examples

W <- adja( N = 20, K = 5, alpha= 0.5)
y <- poisson.MODpq.nonlin( b = c(0.5, 0.3, 0.2), W = W, gama = 1, p = 1,
d = 1, Z = NULL, TT = 1000, N = 20, copula = "gaussian",
corrtype = "equicorrelation", rho = 0.5)$y
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poisson.MODpq.stnar Generation of counts from a non-linear Smooth Transition Poisson
NAR(p) model with q covariates (ST-PNAR(p))

Description

Generation of multivariate count time series from a non-linear Smooth Transition Poisson Network
Autoregressive model of order p with q covariates (ST-PNAR(p)).

Usage

poisson.MODpq.stnar(b, W, gama, a, p, d, Z = NULL, TT, N, copula = "gaussian",
corrtype = "equicorrelation", rho, dof = 1)

Arguments

b The linear coefficients of the model, in the following order: (intercept, network
parameters, autoregressive parameters, covariates). The dimension of the vector
should be 2p+ 1 + q, where q denotes the number of covariates.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

gama The scalar nuisance smoothing parameter.

a Vector of non-linear parameters. The dimension of the vector should be p.

p The number of lags in the model.

d The lag parameter of non-linear variable (should be between 1 and p).

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

TT The temporal sample size.

N The number of nodes on the network.

copula Which copula function to use? The choices are "gaussian", "t", or "clayton".

rho The value of the copula parameter (ρ). A scalar in [−1, 1] for elliptical copulas
(Gaussian, t), a value greater than or equal to -1 for Clayton copula.

corrtype Used only for elliptical copulas. The type of correlation matrix employed for the
copula; it will either be the "equicorrelation" or "toeplitz". The "equicorrelation"
option generates a correlation matrix where all the off-diagonal entries equal ρ.
The "toeplitz" option generates a correlation matrix whose generic off-diagonal
(i, j)-element is ρ|i−j|.

dof The degrees of freedom for Student’s t copula.
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Details

This function generates counts from a non-linear Smooth Transition Poisson NAR(p) model, where
q non time-varying covariates are allowed as well. The counts are simulated from Yt = Nt(λt),
where Nt is a sequence of N -dimensional IID Poisson count processes, with intensity 1, and whose
structure of dependence is modelled through a copula construction C(ρ) on their associated ex-
ponential waiting times random variables. For details see Armillotta and Fokianos (2024, Sec.
2.1-2.2).

The sequence λi,t is the expecation of Yi,t, conditional to its past values and it is generated by
means of the following ST-PNAR(p) model. For each node of the network i = 1, ..., N over the
time sample t = 1, ..., TT

λi,t = β0 +

p∑
h=1

(β1hXi,t−h + β2hYi,t−h + αhe
−γX2

i,t−dXi,t−h) +

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W .

The parameter β0 is the intercept of the model, β1h are the network coefficients, β2h are the autore-
gressive parameters, αh are the non-linear smooth transition parameters, γ is the nuisance smooth-
ing parameter, and δl are the coefficients assocciated to the covariates Zi,l. The coefficient d is
considered as an extra parameter defining the lag of the network effect in the non-linear part of the
model and is left to be set by the user. For details on ST-PNAR models see Armillotta and Fokianos
(2023, Sec. 2).

Value

A list including:

p2R The Toeplitz correlation matrix, if employed in the copula or NULL else.

lambda A TT × N time series object matrix of simulated Poisson means for N time
series over TT .

y A TT ×N time series object matrix of simulated counts for N time series over
TT .

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.
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See Also

poisson.MODpq, poisson.MODpq.log,poisson.MODpq.nonlin, poisson.MODpq.tnar

Examples

W <- adja( N = 20, K = 5, alpha= 0.5)
y <- poisson.MODpq.stnar( b = c(0.5, 0.3, 0.2), W = W, gama = 0.2, a = 0.4,
p = 1, d = 1, Z = NULL, TT = 1000, N = 20, copula = "gaussian",
corrtype = "equicorrelation", rho = 0.5)$y

poisson.MODpq.tnar Generation of counts from a non-linear Threshold Poisson NAR(p)
model with q covariates (T-PNAR(p))

Description

Generation of multivariate count time series from a non-linear Threshold Poisson network Autore-
gressive model of order p with q covariates (T-PNAR(p)).

Usage

poisson.MODpq.tnar(b, W, gama, a, p, d, Z = NULL, TT, N, copula = "gaussian",
corrtype = "equicorrelation", rho, dof = 1)

Arguments

b The linear coefficients of the model, in the following order: (intercept, network
parameters, autoregressive parameters, covariates). The dimension of the vector
should be 2p+ 1 + q, where q denotes the number of covariates.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

gama The scalar nuisance threshold parameter.

a Vector of non-linear parameters. The dimension of the vector should be 2p+ 1.

p The number of lags in the model.

d The lag parameter of non-linear variable (should be between 1 and p).

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

TT The temporal sample size.

N The number of nodes on the network.

copula Which copula function to use? The "gaussian", "t", or "clayton".
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rho The value of the copula parameter (ρ). A scalar in [−1, 1] for elliptical copulas
(Gaussian, t), a value greater than or equal to -1 for Clayton copula.

corrtype Used only for elliptical copulas. The type of correlation matrix employed for the
copula; it will either be the "equicorrelation" or "toeplitz". The "equicorrelation"
option generates a correlation matrix where all the off-diagonal entries equal ρ.
The "toeplitz" option generates a correlation matrix whose generic off-diagonal
(i, j)-element is ρ|i−j|.

dof The degrees of freedom for Student’s t copula.

Details

This function generates counts from a non-linear Threshold Poisson NAR(p) model, where q non
time-varying covariates are allowed as well. The counts are simulated from Yt = Nt(λt), where Nt

is a sequence of N -dimensional IID Poisson count processes, with intensity 1, and whose structure
of dependence is modelled through a copula construction C(ρ) on their associated exponential
waiting times random variables. For details see Armillotta and Fokianos (2024, Sec. 2.1-2.2).

The sequence λi,t is the expecation of Yi,t, conditional to its past values and it is generated by
means of the following T-PNAR(p) model. For each node of the network i = 1, ..., N over the time
sample t = 1, ..., TT

λi,t = β0+

p∑
h=1

[β1hXi,t−h + β2hYi,t−h + (α0 + α1hXi,t−h + α2hYi,t−h)I(Xi,t−d ≤ γ)]+

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W ,
and I() is the indicator function.

The parameter β0 is the intercept of the model, β1h are the network coefficients, β2h are the autore-
gressive parameters, the α vector of non-linear parameters is divided as follows: α0 is the intercept,
α1h are the network coefficients, α2h are the autoregressive parameters; γ is the nuisance threshold
parameter, and δl are the coefficients assocciated to the covariates Zi,l. The coefficient d is consid-
ered as an extra parameter defining the lag of the network effect in the non-linear part of the model
and is left to be set by the user. For details on T-PNAR models see Armillotta and Fokianos (2023,
Sec. 2).

Value

A list including:

p2R The Toeplitz correlation matrix, if employed in the copula or NULL else.

lambda A TT × N time series object matrix of simulated Poisson means for N time
series over TT .

y A TT ×N time series object matrix of simulated counts for N time series over
TT .

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.
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References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

poisson.MODpq, poisson.MODpq.log,poisson.MODpq.nonlin, poisson.MODpq.stnar

Examples

W <- adja( N = 20, K = 5, alpha= 0.5)
y <- poisson.MODpq.tnar( b = c(0.5, 0.3, 0.2), W = W, gama = 1,
a = c(0.2, 0.2, 0.2), p = 1, d = 1, Z = NULL, TT = 1000, N = 20,
copula = "gaussian", corrtype = "equicorrelation", rho = 0.5)$y

rcopula Random number generation of copula functions

Description

Random number generation of copula functions.

Usage

rcopula(n, N, copula = "gaussian", corrtype = "equicorrelation",
rho, dof = 1, cholR = NULL)

Arguments

n The number of random values to generate.

N The number of variables for which random valeus will be generated.

copula Which copula function to use? The "gaussian", "t", or "clayton".

rho The the value of the copula parameter (ρ). A scalar in [−1, 1] for elliptical
copulas (Gaussian, t), a value greater than or equal to -1 for Clayton copula.

corrtype Used only for elliptical copulas. The type of correlation matrix employed for the
copula; it will either be the "equicorrelation" or "toeplitz". The "equicorrelation"
option generates a correlation matrix where all the off-diagonal entries equal ρ.
The "toeplitz" option generates a correlation matrix whose generic off-diagonal
(i, j)-element is ρ|i−j|.

dof The degrees of freedom for Student’s t copula.

cholR An alternative input for elliptic copulas, providing directly the Cholesky decom-
position for a specific correlation matrix to be passed, otherwise leave it NULL.
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Details

This function generates random copula values from Gaussian, Student’s t, or Clayton copulas based
on a single copula paremeter and different correlation structures.

Value

An n×N matrix with the simulated copula values.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Nelsen, Roger B. (1999). An Introduction to Copulas, Springer.

See Also

getN, poisson.MODpq, poisson.MODpq.log

Examples

u <- rcopula(n = 100, N = 50, rho = 0.3)

score_test_nonlinpq_h0

Linearity test against non-linear ID-PNAR(p) model

Description

Quasi score test for testing linearity of Poisson Network Autoregressive model of order p against
the non-linear Intercep Drift (ID) version (ID-PNAR(p)).

Usage

score_test_nonlinpq_h0(b, y, W, p, d, Z = NULL)

Arguments

b The estimated parameters from the linear PNAR model, in the following order:
(intercept, network parameters, autoregressive parameters, covariates). The di-
mension of the vector should be 2p + 1 + q, where q denotes the number of
covariates.

y A TT ×N time series object or a TT ×N numerical matrix with the N multi-
variate count time series over TT time periods.
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W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

d The lag parameter of non-linear variable (should be between 1 and p).

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

Details

The function computes the quasi score test for testing linearity of Poisson Network Autoregressive
model of order p against the following ID-PNAR(p) model. For each node of the network i =
1, ..., N over the time sample t = 1, ..., TT

λi,t =
β0

(1 +Xi,t−d)γ
+

p∑
h=1

(β1hXi,t−h + β2hYi,t−h) +

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W .
The sequence λi,t is the expectation of Yi,t conditional to its past values.

The null hypothesis of the test is defined as H0 : γ = 0, versus the alternative H1 : γ > 0. The test
statistic has the form

LM = S
′
(θ̂)Σ−1(θ̂)S(θ̂),

where

S(θ̂) =

TT∑
t=1

N∑
i=1

(
Yi,t

λi,t(θ̂)
− 1

)
∂λi,t(θ̂)

∂γ

is the partition of the quasi score related to the non-linear parameter γ, evaluated at the estimated
parameters θ̂ under the null assumption H0 (linear model), and Σ(θ̂) is the variance of S(θ̂). Under
H0, the test asymptotically follows the χ2 distribution with 1 degree of freedom. For details see
Armillotta and Fokianos (2023, Sec. 4).

Value

A list with attribute class "htest" including:

statistic The value of the χ2 test statistic.

parameter The degrees of freedom of the χ2 distribution. This is always 1.

p.value The p-value of the χ2 test statistic.

null.value The value of the γ parameter, which is equal to 0 under the null hypothesis.

alternative The alternative hypothesis, γ has to be greater than 0.

method The name of the test.

data.name Information on the arguments used.

Alternatively, these can be printed via the function summary.nonlin.
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Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

score_test_stnarpq_j, score_test_tnarpq_j,lin_estimnarpq

Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 2)
ca <- mod1$coefs[, 1]
score_test_nonlinpq_h0(ca, crime, crime_W, p = 2, d = 1)

score_test_stnarpq_DV Bound p-value for testing for smooth transition effects on PNAR(p)
model

Description

Computation of Davies bound p-value for the sup-type test for testing linearity of Poisson Network
Autoregressive model of order p (PNAR(p)) versus the non-linear Smooth Transition alternative
(ST-PNAR(p)).

Usage

score_test_stnarpq_DV(b, y, W, p, d, Z = NULL, gama_L = NULL,
gama_U = NULL, len = 100)

Arguments

b The estimated parameters from the linear model, in the following order: (in-
tercept, network parameters, autoregressive parameters, covariates). The di-
mension of the vector should be 2p + 1 + q, where q denotes the number of
covariates.

y A TT ×N time series object or a TT ×N numerical matrix with the N multi-
variate count time series over TT time periods.
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W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

d The lag parameter of non-linear variable (should be between 1 and p).

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

gama_L The lower value of the nuisance parameter γ to consider. Use NULL if there is
not information about its value. See the details for default computation.

gama_U The upper value of the nuisance parameter γ to consider. Use NULL if there is
not information about its value. See the details for default computation.

len The length of the grid of values of γ values to consider.

Details

The function computes an upper-bound for the p-value of the sup-type test for testing linearity of
Poisson Network Autoregressive model of order p (PNAR(p)) versus the following Smooth Tran-
sition alternative (ST-PNAR(p)). For each node of the network i = 1, ..., N over the time sample
t = 1, ..., TT

λi,t = β0 +

p∑
h=1

(β1hXi,t−h + β2hYi,t−h + αhe
−γX2

i,t−dXi,t−h) +

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W .
The sequence λi,t is the expectation of Yi,t, conditional to its past values.

The null hypothesis of the test is defined as H0 : α1 = ... = αp = 0, versus the alternative that at
least one among αh is not 0. The test statistic has the form

LM(γ) = S
′
(θ̂, γ)Σ−1(θ̂, γ)S(θ̂, γ),

where

S(θ̂, γ) =

TT∑
t=1

N∑
i=1

(
Yi,t

λi,t(θ̂, γ)
− 1

)
∂λi,t(θ̂, γ)

∂α

is the partition of the quasi score related to the vector of non-linear parameters α = (α1, ..., αp),
evaluated at the estimated parameters θ̂ under the null assumption H0 (linear model), and Σ(θ̂, γ) is
the variance of S(θ̂, γ). Since the test statistic depends on an unknown nuisance parameter (γ), the
supremum of the statistic is considered in the test, supγ LM(γ). The function computes the bound
of the p-value, suggested by Davies (1987), for the test statistic supγ LM(γ), with scalar nuisance
parameter γ, as follows.

P (χ2
k ≥ M) + VM1/2(k−1) e

−M/22−k/2

Γ(k/2)
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where M is the maximum of the test statistic LM(γ), computed by the available sample, over a
grid of values for the nuisance parameter γF = (γL, γ1, ..., γl, γU ); k is the number of non-linear
parameters tested. So the first summand of the bound is just the p-value of a chi-square test with
k degrees of freedom. The second summand is a correction term depending on V , which is the
approximated total variation computed as

V = |LM1/2(γ1)−LM1/2(γL)|+ |LM1/2(γ2)−LM1/2(γ1)|+ ...+ |LM1/2(γU )−LM1/2(γl)|.

The feasible bound allows to approximate the p-values of the sup-type test in a straightforward way,
by adding to the tail probability of a chi-square distribution a correction term which depends on the
total variation of the process. For details see Armillotta and Fokianos (2023, Sec. 5).

The values of gama_L and gama_U are computed internally as gama_L= − log(0.9)/X2 and gama_U
= − log(0.1)/X2, where X is the overall mean of Xi,t over the nodes i = 1, ..., N and times
t = 1, ..., TT . Since the non-linear function e−γX2

i,t−d ranges between 0 and 1, by considering X
to be a representative value for the network mean, gama_U and gama_L would be the values of γ
leading the non-linear switching function to be 0.1 and 0.9, respectively, so that in the optimization
procedure the extremes of the function domain are excluded. Alternatively, their values can be
supplied by the user.

Value

A list including:

DV The Davies bound of p-values for sup test.

supLM The value of the sup test statistic in the sample y.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only under the
alternative. Biometrika 74, 33–43.

See Also

score_test_stnarpq_j, global_optimise_LM_stnarpq
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Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 1)
ca <- mod1$coefs[, 1]
score_test_stnarpq_DV(ca, crime, crime_W, p = 1, d = 1)

score_test_stnarpq_j Bootstrap test for smooth transition effects on PNAR(p) model

Description

Computation of bootstrap p-value for the sup-type test for testing linearity of Poisson Network
Autoregressive model of order p (PNAR(p)) versus the non-linear Smooth Transition alternative
(ST-PNAR(p)).

Usage

score_test_stnarpq_j(supLM, b, y, W, p, d, Z = NULL, J = 499,
gama_L = NULL, gama_U = NULL, tol = 1e-9, ncores = 1, seed = NULL)

Arguments

supLM The optimized value of the test statistic. See the function global_optimise_LM_stnarpq.

b The estimated parameters from the linear model, in the following order: (in-
tercept, network parameters, autoregressive parameters, covariates). The di-
mension of the vector should be 2p + 1 + q, where q denotes the number of
covariates.

y A TT ×N time series object or a TT ×N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

d The lag parameter of non-linear variable (should be between 1 and p).

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

J The number of bootstrap samples to draw.

gama_L The lower value of the nuisance parameter γ to consider. Use NULL if there is
not information about its value. See the details for default computation.

gama_U The upper value of the nuisance parameter γ to consider. Use NULL if there is
not information about its value. See the details for default computation.
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tol Tolerance level for the optimizer.

ncores Number of cores to use for parallel computing. By default the number of cores
is set to 1 (no parallel computing). Note: If for some reason the parallel does
not work then load the doParallel package yourseleves.

seed To replicate the results use a seed for the generator, an integer number.

Details

The function computes a bootstrap p-value for the sup-type test for testing linearity of Poisson
Network Autoregressive model of order p (PNAR(p)) versus the following Smooth Transition alter-
native (ST-PNAR(p)). For each node of the network i = 1, ..., N over the time sample t = 1, ..., TT

λi,t = β0 +

p∑
h=1

(β1hXi,t−h + β2hYi,t−h + αhe
−γX2

i,t−dXi,t−h) +

q∑
l=1

δlZi,l,

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W .
The sequence λi,t is the expectation of Yi,t, conditional to its past values.

The null hypothesis of the test is defined as H0 : α1 = ... = αp = 0, versus the alternative that at
least one among αh is not 0. The test statistic has the form

LM(γ) = S
′
(θ̂, γ)Σ−1(θ̂, γ)S(θ̂, γ)

where

S(θ̂, γ) =

TT∑
t=1

N∑
i=1

(
Yi,t

λi,t(θ̂, γ)
− 1

)
∂λi,t(θ̂, γ)

∂α

is the partition of the quasi score related to the vector of non-linear parameters α = (α1, ..., αp),
evaluated at the estimated parameters θ̂ under the null assumption H0 (linear model), and Σ(θ̂, γ)

is the variance of S(θ̂, γ).

Since the test statistic depends on an unknown nuisance parameter (γ), the supremum of the statistic
is considered in the test, supγ LM(γ). This value can be computed for the available sample by using
the function global_optimise_LM_stnarpq and should be supplied here as an input supLM.

The function performs the bootstrap resampling of the test statistic supγ LM(γ) by employing
Gaussian perturbations of the score S(θ̂, γ). For details see Armillotta and Fokianos (2023, Sec. 5).

The values of gama_L and gama_U are computed internally as gama_L= − log(0.9)/X2 and gama_U
= − log(0.1)/X2, where X is the overall mean of Xi,t over the nodes i = 1, ..., N and times
t = 1, ..., TT . Since the non-linear function e−γX2

i,t−d ranges between 0 and 1, by considering X
to be a representative value for the network mean, gama_U and gama_L would be the values of γ
leading the non-linear switching function to be 0.1 and 0.9, respectively, so that in the optimization
procedure the extremes of the function domain are excluded. Alternatively, their value can be
supplied by the user.

Note: For large datasets the function may require few minutes to run. Parallel computing is sug-
gested to speed up the computations.



score_test_tnarpq_j 41

Value

A list including:

pJ The bootstrap p-value of the sup test.

cpJ The adjusted version of bootstrap p-value of the sup test.

gamaj The optimal values of the γ parameter for score test boostrap replications.

supLMj The values of perturbed test statistic at the optimum point gamaj.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

score_test_stnarpq_DV, global_optimise_LM_stnarpq,score_test_tnarpq_j

Examples

# load data
data(crime)
data(crime_W)
#estimate linear PNAR model
mod1 <- lin_estimnarpq(crime, crime_W, p = 2)
b <- mod1$coefs[, 1]

g <- global_optimise_LM_stnarpq(b = b, y = crime, W = crime_W, p = 2, d = 1)
supg <- g$supLM
score_test_stnarpq_j(supLM = supg, b = b, y = crime, W = crime_W, p = 2, d = 1, J = 5)

score_test_tnarpq_j Bootstrap test for threshold effects on PNAR(p) model

Description

Computation of bootstrap p-value for the sup-type test for testing linearity of Poisson Network Au-
toregressive model of order p (PNAR(p)) versus the non-linear Threshold alternative (T-PNAR(p)).
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Usage

score_test_tnarpq_j(supLM, b, y, W, p, d, Z = NULL, J = 499,
gama_L = NULL, gama_U = NULL, tol = 1e-9, ncores = 1, seed = NULL)

Arguments

supLM The optimized value of the test statistic. See the function global_optimise_LM_tnarpq.

b The estimated parameters from the linear model, in the following order: (in-
tercept, network parameters, autoregressive parameters, covariates). The di-
mension of the vector should be 2p + 1 + q, where q denotes the number of
covariates.

y A TT ×N time series object or a TT ×N numerical matrix with the N multi-
variate count time series over TT time periods.

W The N ×N row-normalized non-negative adjacency matrix describing the net-
work. The main diagonal entries of the matrix should be zeros, all the other
entries should be non-negative and the maximum sum of elements over the rows
should equal one. The function row-normalizes the matrix if a non-normalized
adjacency matrix is provided.

p The number of lags in the model.

d The lag parameter of non-linear variable (should be between 1 and p).

Z An N × q matrix of covariates (one for each column), where q is the number of
covariates in the model. Note that they must be non-negative.

J The number of bootstrap samples to draw.

gama_L The lower value of the nuisance parameter γ to consider. Use NULL if there is
not information about its value. See the details for default computation.

gama_U The upper value of the nuisance parameter γ to consider. Use NULL if there is
not information about its value. See the details for default computation.

tol Tolerance level for the optimizer.

ncores Number of cores to use for parallel computing. By default the number of cores
is set to 1 (no parallel computing). Note: If for some reason the parallel does
not work then load the doParallel package yourseleves.

seed To replicate the results use a seed for the generator, an integer number.

Details

The function computes a bootstrap p-value for the sup-type test for testing linearity of Poisson
Network Autoregressive model of order p (PNAR(p)) versus the following Threshold alternative
(T-PNAR(p)). For each node of the network i = 1, ..., N over the time sample t = 1, ..., TT

λi,t = β0+

p∑
h=1

[β1hXi,t−h + β2hYi,t−h + (α0 + α1hXi,t−h + α2hYi,t−h)I(Xi,t−d ≤ γ)]+

q∑
l=1

δlZi,l

where Xi,t =
∑N

j=1 WijYj,t is the network effect, i.e. the weighted average impact of node i
connections, with the weights of the mean being Wij , the single element of the network matrix W .
The sequence λi,t is the expectation of Yi,t, conditional to its past values.
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The null hypothesis of the test is defined as H0 : α0 = α11 = ... = α2p = 0, versus the alternative
that at least one among αs,h is not 0, for s = 0, 1, 2. The test statistic has the form

LM(γ) = S
′
(θ̂, γ)Σ−1(θ̂, γ)S(θ̂, γ)

where

S(θ̂, γ) =

TT∑
t=1

N∑
i=1

(
Yi,t

λi,t(θ̂, γ)
− 1

)
∂λi,t(θ̂, γ)

∂α

is the partition of the quasi score related to the vector of non-linear parameters α = (α0, ..., α2p),
evaluated at the estimated parameters θ̂ under the null assumption H0 (linear model), and Σ(θ̂, γ)

is the variance of S(θ̂, γ).

Since the test statistic depends on an unknown nuisance parameter (γ), the supremum of the statistic
is considered in the test, supγ LM(γ). This value can be computed for the available sample by using
the function global_optimise_LM_tnarpq and should be supplied here as an input supLM.

The function performs the bootstrap resampling of the test statistic supγ LM(γ) by employing
Gaussian perturbations of the score S(θ̂, γ). For details see Armillotta and Fokianos (2023, Sec. 5).

The values of gama_L and gama_U are computed internally as the mean over i = 1, ..., N of 20%
and 80% quantiles of the empirical distribution of the network mean Xi,t for t = 1, ..., TT . In this
way the optimization is performed for values of γ such that the indicator function I(Xi,t−d ≤ γ)
is not always close to 0 or 1. Alternatively, their value can be supplied by the user. For details see
Armillotta and Fokianos (2023, Sec. 4-5).

Note: For large datasets the function may require few minutes to run. Parallel computing is sug-
gested to speed up the computations.

Value

A list including:

pJ The bootstrap p-value of the sup test.

cpJ The adjusted version of bootstrap p-value of the sup test.

gamaj The optimal values of the γ parameter for score test boostrap replications.

supLMj The values of perturbed test statistic at the optimum point gamaj.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics,
51(6): 2526–2552.

Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series
Analysis, 45(4): 584–612.

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.
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See Also

global_optimise_LM_tnarpq,global_optimise_LM_stnarpq, score_test_stnarpq_j

Examples

# load data
data(crime)
data(crime_W)
#estimate linear PNAR model
mod1 <- lin_estimnarpq(crime, crime_W, p = 2)
b <- mod1$coefs[, 1]

g <- global_optimise_LM_tnarpq(b = b, y = crime, W = crime_W, p = 2, d = 1)
supg <- g$supLM
score_test_tnarpq_j(supLM = supg, b = b, y = crime, W = crime_W, p = 2, d = 1, J = 5)

summary.DV S3 methods for extracting the results of the bound p-value for testing
for smooth transition effects on PNAR(p) model

Description

S3 methods for extracting the results of the bound p-value for testing for smooth transition effects
on PNAR(p) model.

Usage

## S3 method for class 'DV'
summary(object, ...)
## S3 method for class 'summary.DV'
print(x, ...)
## S3 method for class 'DV'
print(x, ...)

Arguments

object An object containing the results of the function score_test_stnarpq_DV.

x An object containing the results of the function score_test_stnarpq_DV.

... Extra arguments the user can pass.

Details

The functions print the output of the bound p-value for testing for smooth transition effects on
PNAR(p) model.
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Value

The functions print the results of the function score_test_stnarpq_DV.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only under the
alternative. Biometrika 74, 33–43.

See Also

score_test_stnarpq_DV

Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 1)
ca <- mod1$coefs[, 1]
a <- score_test_stnarpq_DV(ca, crime, crime_W, p = 1, d = 1)
print(a)
summary(a)

summary.nonlin S3 methods for extracting the results of the non-linear hypothesis test

Description

S3 methods for extracting the results of the non-linear hypothesis test.

Usage

## S3 method for class 'nonlin'
summary(object, ...)
## S3 method for class 'summary.nonlin'
print(x, ...)
## S3 method for class 'nonlin'
print(x, ...)

Arguments

object An object containing the results of the function score_test_nonlinpq_h0.
x An object containing the results of the function score_test_nonlinpq_h0.
... Extra arguments the user can pass.
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Details

The functions print the output of the non-linear hypothesis test.

Value

The functions print the results of the function score_test_nonlinpq_h0.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

score_test_nonlinpq_h0

Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 2)
ca <- mod1$coefs[, 1]
a <- score_test_nonlinpq_h0(ca, crime, crime_W, p = 2, d = 1)
print(a)
summary(a)

summary.PNAR S3 methods for extracting the results of the estimation functions

Description

S3 methods for extracting the results of the estimation functions.

Usage

## S3 method for class 'PNAR'
summary(object, ...)
## S3 method for class 'summary.PNAR'
print(x, ...)
## S3 method for class 'PNAR'
print(x, ...)
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Arguments

object An object containing the results of the estimation function lin_estimnarpq or
log_lin_estimnarpq.

x An object containing the results of the estimation function lin_estimnarpq or
log_lin_estimnarpq.

... Extra arguments the user can pass.

Details

These functions print the output of the estimation functions.

Value

The print.PNAR() function prints the coefficients of the model. The summary.PNAR() function
prints the output in the lm() style.

Author(s)

Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.

References

Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15/4: 255–269.

See Also

log_lin_estimnarpq

Examples

data(crime)
data(crime_W)
mod1 <- lin_estimnarpq(crime, crime_W, p = 2)
mod1
print(mod1)
summary(mod1)
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