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CDM Parameter estimation for cognitive diagnosis models (CDMs) by
MMLE/EM or MMLE/BM algorithm.

Description

A function to estimate parameters for cognitive diagnosis models by MMLE/EM (de la Torre, 2009;
de la Torre, 2011) or MMLE/BM (Ma & Jiang, 2020) algorithm.The function imports various func-
tions from the GDINA package, parameter estimation for Cognitive Diagnostic Models was per-
formed and extended. The CDM function not only accomplishes parameter estimation for most
commonly used models ( GDINA, DINA, DINO, ACDM, LLM, or rRUM) but also facilitates parameter
estimation for the LCDM model (Henson, Templin, & Willse, 2008; Tu et al., 2022). Furthermore, it
incorporates Bayes modal estimation (BM; Ma & Jiang, 2020) to obtain more reliable estimation
results, especially in small sample sizes. The monotonic constraints are able to be satisfied.

https://haijiangqin.com/Qval/
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Usage

CDM(
Y,
Q,
model = "GDINA",
method = "EM",
mono.constraint = TRUE,
maxitr = 2000,
verbose = 1

)

Arguments

Y A required N × I matrix or data.frame consisting of the responses of N individuals
to × I items. Missing values need to be coded as NA.

Q A required binary I × K containing the attributes not required or required, 0 or
1, to master the items. The ith row of the matrix is a binary indicator vector
indicating which attributes are not required (coded by 0) and which attributes
are required (coded by 1) to master item i.

model Type of model to be fitted; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM",
"LLM", or "rRUM". Default = "GDINA".

method Type of mtehod to estimate CDMs’ parameters; one out of "EM", "BM". Default
= "EM" However, "BM" is only avaible when method = "GDINA".

mono.constraint

Logical indicating whether monotonicity constraints should be fulfilled in esti-
mation. Default = TRUE.

maxitr A vector for each item or nonzero category, or a scalar which will be used for all
items to specify the maximum number of EM or BM cycles allowed. Default =
2000.

verbose Can be 0, 1 or 2, indicating to print no information, information for current
iteration, or information for all iterations. Default = 1.

Details

CDMs are statistical models that fully integrates cognitive structure variables, which define the
response probability of subjects on questions by assuming the mechanism of action between at-
tributes. In the dichotomous test, this probability is the probability of answering correctly. Accord-
ing to the specificity or generality of CDM assumptions, it can be divided into reduced CDM and
saturated CDM.

Reduced CDMs possess special and strong assumptions about the mechanisms of attribute inter-
actions, leading to clear interactions between attributes. Representative reduced models include
the Deterministic Input, Noisy and Gate (DINA) model (Haertel, 1989; Junker & Sijtsma, 2001;
de la Torre & Douglas, 2004), the Deterministic Input, Noisy or Gate (DINO) model (Templin &
Henson, 2006), and the Additive Cognitive Diagnosis Model (A-CDM; de la Torre, 2011), the re-
duced Reparametrized Unified Model (r-RUM; Hartz, 2002), among others. Compared to reduced
models, saturated models do not have strict assumptions about the mechanisms of attribute inter-
actions. When appropriate constraints are applied, they can be transformed into various reduced



4 CDM

models (Henson et al., 2008; de la Torre, 2011), such as the Log-Linear Cognitive Diagnosis Model
(LCDM; Henson et al., 2009) and the general Deterministic Input, Noisy and Gate model (G-DINA;
de la Torre, 2011).

The LCDM (Log-Linear Cognitive Diagnosis Model) is a saturated CDM fully proposed within
the framework of cognitive diagnosis. Unlike simplified models that only discuss the main effects
of attributes, it also considers the interactions between attributes, thus having more generalized
assumptions about attributes. Its definition of the probability of correct response is as follows:

P (Xpi = 1|αl) =
exp(λi0 + λT

i h(qi, αl))

1 + exp(λi0 + λT
i h(qi, αl))

λT
i h(qi, αl) = λi0+

K∗∑
k=1

λikαlkqik+

K∗−1∑
k=1

K∗∑
k′=k+1

λikλik′αlkαlk′qikqik′+· · ·+λ12···K∗

K∗∏
k=1

αlkqik

Where, P (Xpi = 1|αl) represents the probability of a subject with attribute mastery pattern αl,
where l = 1, 2, · · · , L and L = 2K

∗
, correctly answering item i. Here, K∗ denotes the number of

attributes in the collapsed q-vector, λi0 is the intercept parameter, and λi = (λi1, λi2, · · · , λi12, · · · , λi12···K∗)
represents the effect vector of the attributes. Specifically, λik is the main effect of attribute k, λikk′

is the interaction effect between attributes k and k′, and λj12···K represents the interaction effect of
all attributes.

The general Deterministic Input, Noisy and Gate model (G-DINA), proposed by de la Torre (2011),
is a saturated model that offers three types of link functions: identity link, log link, and logit link,
which are defined as follows:

P (Xpi = 1|αl) = δi0 +

K∗∑
k=1

δikαlk +

K∗−1∑
k=1

K∗∑
k′=k+1

δikδik′αlkαlk′ + · · ·+ δ12···K∗

K∗∏
k=1

αlk

log(P (Xpi = 1|αl)) = vi0 +

K∗∑
k=1

vikαlk +

K∗−1∑
k=1

K∗∑
k′=k+1

vikvik′αlkαlk′ + · · ·+ v12···K∗

K∗∏
k=1

αlk

logit(P (Xpi = 1|αl)) = λi0 +

K∗∑
k=1

λikαlk +

K∗−1∑
k=1

K∗∑
k′=k+1

λikλik′αlkαlk′ + · · ·+ λ12···K∗

K∗∏
k=1

αlk

Where δi0, vi0, and λi0 are the intercept parameters for the three link functions, respectively; δik,
vik, and λik are the main effect parameters of αlk for the three link functions, respectively; δikk′ ,
vikk′ , and λikk′ are the interaction effect parameters between αlk and αlk′ for the three link func-
tions, respectively; and δi12···K∗ , vi12···K∗ , and λi12···K∗ are the interaction effect parameters of
αl1· · ·αlK∗ for the three link functions, respectively. It can be observed that when the logit link is
adopted, the G-DINA model is equivalent to the LCDM model.

Specifically, the A-CDM can be formulated as:

P (Xpi = 1|αl) = δi0 +

K∗∑
k=1

δikαlk

The RRUM, can be written as:

log(P (Xpi = 1|αl)) = λi0 +

K∗∑
k=1

λikαlk
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The item response function for LLM can be given by:

logit(P (Xpi = 1|αl)) = λi0 +

K∗∑
k=1

λikαlk

In the DINA model, every item is characterized by two key parameters: guessing (g) and slip (s).
Within the traditional framework of DINA model parameterization, a latent variable η, specific to
individual p who has the attribute mastery pattern αl and item i, is defined as follows:

ηli =

K∏
k=1

αqik
lk

If individual p who has the attribute mastery pattern αl has acquired every attribute required by item
i, ηpi is given a value of 1. If not, ηpi is set to 0. The DINA model’s item response function can be
concisely formulated as such:

P (Xpi = 1|αl) = (1− sj)
ηlig

(1−ηli)
j = δi0 + δi12···K

K∗∏
k=1

αlk

In contrast to the DINA model, the DINO model suggests that an individual can correctly respond
to an item if they have mastered at least one of the item’s measured attributes. Additionally, like
the DINA model, the DINO model also accounts for parameters related to guessing and slipping.
Therefore, the main difference between DINO and DINA lies in their respective ηpi formulations.
The DINO model can be given by:

ηli = 1−
K∏

k=1

(1− αlk)
qlk

Value

An object of class CDM.obj is a list containing the following components:

analysis.obj An GDINA object gained from GDINA package or an list after BM algorithm,
depending on which estimation is used.

alpha Individuals’ attribute parameters caculated by EAP method (Huebner & Wang,
2011)

P.alpha.Xi Individual posterior

alpha.P Individuals’ marginal mastery probabilities matrix (Tu et al., 2022)

P.alpha Attribute prior weights for calculating marginalized likelihood in the last itera-
tion

model.fit Some basic model-fit indeces, including Deviance, npar, AIC, BIC

Author(s)

Haijiang Qin <Haijiang133@outlook.com>
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See Also
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Examples

################################################################
# Example 1 #
# fit using MMLE/EM to fit the GDINA models #
################################################################
set.seed(123)

library(Qval)

## generate Q-matrix and data to fit
K <- 5
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I <- 30
example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ,

model = "GDINA", distribute = "horder")

## using MMLE/EM to fit GDINA model
example.CDM.obj <- CDM(example.data$dat, example.Q, model = "GDINA",

method = "EM", maxitr = 2000, verbose = 1)

################################################################
# Example 2 #
# fit using MMLE/BM to fit the DINA #
################################################################
set.seed(123)

library(Qval)

## generate Q-matrix and data to fit
K <- 5
I <- 30
example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ,

model = "DINA", distribute = "horder")

## using MMLE/EM to fit GDINA model
example.CDM.obj <- CDM(example.data$dat, example.Q, model = "GDINA",

method = "BM", maxitr = 1000, verbose = 2)

################################################################
# Example 3 #
# fit using MMLE/EM to fit the ACDM #
################################################################
set.seed(123)

library(Qval)

## generate Q-matrix and data to fit
K <- 5
I <- 30
example.Q <- sim.Q(K, I)
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IQ <- list(
P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ,

model = "ACDM", distribute = "horder")

## using MMLE/EM to fit GDINA model
example.CDM.obj <- CDM(example.data$dat, example.Q, model = "ACDM",

method = "EM", maxitr = 2000, verbose = 1)

fit Calculate data fit indeces

Description

Calculate relative fit indices (-2LL, AIC, BIC, CAIC, SABIC) and absolute fit indices (M2 test)
using the testfit function in the GDINA package.

Usage

fit(Y, Q, model = "GDINA")

Arguments

Y A required N × I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values should be coded as NA.

Q A required binary I × K matrix containing the attributes not required or required
, coded as 0 or 1, to master the items. The ith row of the matrix is a binary
indicator vector indicating which attributes are not required (coded as 0) and
which attributes are required (coded as 1) to master item i.

model Type of model to be fitted; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM",
"LLM", or "rRUM". Default = "GDINA".

Value

An object of class list. The list contains various fit indices:

npar The number of parameters.

-2LL The Deviance.

AIC The Akaike information criterion.

BIC The Bayesian information criterion.

CAIC The consistent Akaike information criterion.
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SABIC The Sample size Adjusted BIC.

M2 A vector consisting of M2 statistic, degrees of freedom, significance level, and
RMSEA2 (Liu, Tian, & Xin, 2016).

SRMSR The standardized root mean squared residual (SRMSR; Ravand & Robitzsch,
2018).

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

Khaldi, R., Chiheb, R., & Afa, A.E. (2018). Feed-forward and Recurrent Neural Networks for
Time Series Forecasting: Comparative Study. In: Proceedings of the International Conference on
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Computing Machinery, New York, NY, USA, Article 18, 1–6. DOI: 10.1145/3230905.3230946.

Liu, Y., Tian, W., & Xin, T. (2016). An application of M2 statistic to evaluate the fit of cognitive di-
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Ravand, H., & Robitzsch, A. (2018). Cognitive diagnostic model of best choice: a study of reading
comprehension. Educational Psychology, 38, 1255–1277. DOI: 10.1080/01443410.2018.1489524.

Examples

set.seed(123)

library(Qval)

## generate Q-matrix and data to fit
K <- 5
I <- 30
example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA", distribute = "horder")

## calculate fit indices
fit.indices <- fit(Y = example.data$dat, Q = example.Q, model = "GDINA")
print(fit.indices)

get.Mmatrix Calculate M matrix

Description

Calculate M matrix for stauted CDMs (de la Torre, 2011).
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Usage

get.Mmatrix(K = NULL, pattern = NULL)

Arguments

K The number of attributes. Can be NULL if pattern is passed to the function
and is not NULL.

pattern The knowledge state matrix containing all possible attribute mastery pattern.
Can be gained from @seealso attributepattern. Also can be NULL if K is
passed to the function and is not NULL.

Value

An object of class matrix.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179-199.
DOI: 10.1007/s11336-011-9207-7.

Examples

library(Qval)

example.Mmatrix <- get.Mmatrix(K = 5)

get.priority Priority of Attribute

Description

This function will provide the priorities of attributes for all items.

Usage

get.priority(Y = NULL, Q = NULL, CDM.obj = NULL, model = "GDINA")
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Arguments

Y A required N × I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values need to be coded as NA.

Q A required binary I × K containing the attributes not required or required, 0 or
1, to master the items. The ith row of the matrix is a binary indicator vector
indicating which attributes are not required (coded by 0) and which attributes
are required (coded by 1) to master item i.

CDM.obj An object of class CDM.obj. When it is not NULL, it enables rapid verification
of the Q-matrix without the need for parameter estimation. @seealso CDM.

model Type of model to fit; can be "GDINA", "LCDM", "DINA", "DINO" , "ACDM", "LLM",
or "rRUM". Default = "GDINA". @seealso CDM.

Details

The calculation of priorities is straightforward: the priority of an attribute is the regression coeffi-
cient obtained from a LASSO multinomial logistic regression, with the attribute as the independent
variable and the response data from the subjects as the dependent variable. The formula is as fol-
lows:

log[
P (Xπ = 1|Λp)

P (Xπ = 0|Λp)
] = logit[P (Xπ = 1|Λp)] = βi0 + βi1Λp1 + . . .+ βikΛpk + . . .+ βiKΛpK

The LASSO loss function can be expressed as:

llasso(Xi|Λ) = l(Xi|Λ)− λ|βi|

The priority for attribute i is defined as: priorityi = [βi1, . . . , βik, . . . , βiK ]

Value

A matrix containing all attribute priorities.

Examples

set.seed(123)
library(Qval)

## generate Q-matrix and data
K <- 5
I <- 20
IQ <- list(

P0 = runif(I, 0.1, 0.3),
P1 = runif(I, 0.7, 0.9)

)

Q <- sim.Q(K, I)
data <- sim.data(Q = Q, N = 500, IQ = IQ, model = "GDINA", distribute = "horder")
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MQ <- sim.MQ(Q, 0.1)

CDM.obj <- CDM(data$dat, MQ)

priority <- get.priority(data$dat, Q, CDM.obj)
head(priority)

get.PVAF Calculate PV AF

Description

The function is able to caculate the proportion of variance accounted for (PV AF ) for all items after
fitting CDM or directly.

Usage

get.PVAF(Y = NULL, Q = NULL, CDM.obj = NULL, model = "GDINA")

Arguments

Y A required N × I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values should be coded as NA.

Q A required binary I × K matrix containing the attributes not required or required,
coded as 0 or 1, to master the items. The ith row of the matrix is a binary
indicator vector indicating which attributes are not required (coded as 0) and
which attributes are required (coded as 1) to master item i.

CDM.obj An object of class CDM.obj. Can can be NULL, but when it is not NULL, it
enables rapid verification of the Q-matrix without the need for parameter esti-
mation. @seealso CDM.

model Type of model to be fitted; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM",
"LLM", or "rRUM". Default = "GDINA".

Details

The intrinsic essence of the GDI index (as denoted by ζ2) is the weighted variance of all 2K∗

attribute mastery patterns’ probabilities of correctly responding to item i, which can be computed
as:

ζ2 =

2K∑
l=1

πl(P (Xpi = 1|αl)− Pmean
i )

2

where πl represents the prior probability of mastery pattern l; Pmean
i =

∑2K

k=1 πlP (Xpi = 1|αl)
is the weighted average of the correct response probabilities across all attribute mastery patterns.
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When the q-vector is correctly specified, the calculated ζ2 should be maximized, indicating the
maximum discrimination of the item.

Theoretically, ζ2 is larger when qi is either specified correctly or over-specified, unlike when qi

is under-specified, and that when qi is over-specified, ζ2 is larger than but close to the value of
qi when specified correctly. The value of ζ2 continues to increase slightly as the number of over-
specified attributes increases, until qi becomes qi1:K . Thus, ζ2/ζ2max is computed to indicate the
proportion of variance accounted for by qi , called the PV AF .

Value

An object of class matrix, which consisted of PV AF for each item and each possible attribute
mastery pattern.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

de la Torre, J., & Chiu, C. Y. (2016). A General Method of Empirical Q-matrix Validation. Psy-
chometrika, 81(2), 253-273. DOI: 10.1007/s11336-015-9467-8.

See Also

validation

Examples

library(Qval)

set.seed(123)

## generate Q-matrix and data
K <- 3
I <- 20
example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA", distribute = "horder")

## calculate PVAF directly
PVAF <-get.PVAF(Y = example.data$dat, Q = example.Q)
print(PVAF)

## caculate PVAF after fitting CDM
example.CDM.obj <- CDM(example.data$dat, example.Q, model="GDINA")
PVAF <-get.PVAF(CDM.obj = example.CDM.obj)
print(PVAF)
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get.R2 Calculate McFadden pseudo-Rˆ2

Description

The function is able to calculate the McFadden pseudo-R2 (R2) for all items after fitting CDM or
directly.

Usage

get.R2(Y = NULL, Q = NULL, CDM.obj = NULL, model = "GDINA")

Arguments

Y A required N × I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values should be coded as NA.

Q A required binary I × K matrix containing the attributes not required or required,
coded as 0 or 1, to master the items. The ith row of the matrix is a binary
indicator vector indicating which attributes are not required (coded as 0) and
which attributes are required (coded as 1) to master item i.

CDM.obj An object of class CDM.obj. Can can be NULL, but when it is not NULL, it
enables rapid verification of the Q-matrix without the need for parameter esti-
mation. @seealso CDM.

model Type of model to fit; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM", "LLM",
or "rRUM". Default = "GDINA".

Details

The McFadden pseudo-R2 ( McFadden in 1974) serves as a definitive model-fit index, quantify-
ing the proportion of variance explained by the observed responses. Comparable to the squared
multiple-correlation coefficient in linear statistical models, this coefficient of determination finds its
application in logistic regression models. Specifically, in the context of the CDM, where probabili-
ties of accurate item responses are predicted for each examinee, the McFadden pseudo-R2 provides
a metric to assess the alignment between these predictions and the actual responses observed. Its
computation is straightforward, following the formula:

R2
i = 1− log(Lim

log(Li0)

where log(Lim is the log-likelihood of the model, and log(Li0) is the log-likelihood of the null
model. If there were N examinees taking a test comprising I items, then log(Lim) would be
computed as:

log(Lim) =

N∑
p

log

2K
∗∑

l=1

π(α∗
l |Xp)Pi(α

∗
l )

Xpi(1− Pi(α
∗
l ))

1−Xpi
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where π(α∗
l |Xp) is the posterior probability of examinee p with attribute profle α∗

l when their
response vector is Xp, and Xpi is examinee p’s response to item i. Let Xmean

i be the average prob-
ability of correctly responding to item i across all N examinees; then log(Li0 could be computed
as:

log(Li0) =

N∑
p

logXmean
i

Xpi(1−Xmean
i )

1−Xpi

Value

An object of class matrix, which consisted of R2 for each item and each possible attribute mastery
pattern.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka
(Ed.), Frontiers in economics (pp.105–142). Academic Press.

Najera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2021). Balancing ft and parsimony
to improve Q-matrix validation. British Journal of Mathematical and Statistical Psychology, 74,
110–130. DOI: 10.1111/bmsp.12228.

Qin, H., & Guo, L. (2023). Using machine learning to improve Q-matrix validation. Behavior
Research Methods. DOI: 10.3758/s13428-023-02126-0.

See Also

validation

Examples

library(Qval)

set.seed(123)

## generate Q-matrix and data
K <- 3
I <- 20
example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA", distribute = "horder")

## calculate PVAF directly
PVAF <-get.PVAF(Y = example.data$dat, Q = example.Q)
print(PVAF)
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## caculate PVAF after fitting CDM
example.CDM.obj <- CDM(example.data$dat, example.Q, model="GDINA")
PVAF <-get.PVAF(CDM.obj = example.CDM.obj)
print(PVAF)

get.Rmatrix Restriction matrix

Description

This function returns the restriction matrix (de la Torre, 2011; Ma & de la Torre, 2020) based on
two q-vectors, where the two q-vectors can only differ by one attribute.

Usage

get.Rmatrix(Q.i, Q.i.k)

Arguments

Q.i A q-vector

Q.i.k Another q-vector

Value

A restriction matrix

References

de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179-199.
DOI: 10.1007/s11336-011-9207-7.

Ma, W., & de la Torre, J. (2020). An empirical Q-matrix validation method for the sequential
generalized DINA model. British Journal of Mathematical and Statistical Psychology, 73(1), 142-
163. DOI: 10.1111/bmsp.12156.

Examples

Q.i <- c(1, 1, 0)
Q.i.k <- c(1, 1, 1)

Rmatrix <- get.Rmatrix(Q.i, Q.i.k)

print(Rmatrix)
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parallel_iter A tool for the β Method

Description

This function performs a single iteration of the β method for A item’s validation. It is designed to
be used in parallel computing environments to speed up the validation process of the β method. The
function is a utility function for validation, and it should not be called independently by the user.

Usage

parallel_iter(
i,
Y,
P.alpha.Xi,
P.alpha,
pattern,
ri,
Ni,
Q.pattern.ini,
model,
criter,
search.method,
P_GDINA,
Q.beta,
L,
K,
alpha.P,
get.MLRlasso,
priority

)

Arguments

i Item number that need to be validated.

Y Observed data matrix for validation.

P.alpha.Xi Individual posterior

P.alpha Attribute prior weights.

pattern The attribute mastery pattern matrix.

ri A vector that contains the numbers of examinees in each knowledge state who
correctly answered item i.

Ni A vector that contains the total numbers of examinees in each knowledge state.

Q.pattern.ini Initial pattern number for the model.

model Model object used for fitting (e.g., GDINA).
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criter Fit criterion ("AIC", "BIC", "CAIC", or "SABIC").

search.method Search method for model selection ("beta", "ESA", "SSA", or "PAA").

P_GDINA Function to calculate probabilities for GDINA model.

Q.beta Q-matrix for validation.

L Number of latent pattern.

K Number of attributes.

alpha.P Individuals’ marginal mastery probabilities matrix (Tu et al., 2022)

get.MLRlasso Function for Lasso regression with multiple linear regression.

priority Vector of priorities for PAA method search.

Value

An object of class validation is a list containing the following components:

fit.index.pre The previous fit index value after applying the selected search method.

fit.index.cur The current fit index value after applying the selected search method.

Q.pattern.cur The pattern that corresponds to the optimal model configuration for the current
iteration.

priority The priority vector used in the PAA method, if applicable.

plot.Hull Hull Plot

Description

This function can provide the Hull plot. The points suggested by the Hull method are marked in
red.

Usage

## S3 method for class 'Hull'
plot(x, i, ...)

Arguments

x A list containing all the information needed to plot the Hull plot. It can be
gotten from the validation object when method = "Hull".

i A numeric, which represents the item you want to plot Hull curve.

... Additional arguments to be passed to the plotting function.

Value

None. This function is used for side effects (plotting).
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Examples

set.seed(123)
library(Qval)

## generate Q-matrix and data
K <- 5
I <- 20
IQ <- list(

P0 = runif(I, 0.1, 0.3),
P1 = runif(I, 0.7, 0.9)

)

Q <- sim.Q(K, I)
data <- sim.data(Q = Q, N = 500, IQ = IQ, model = "GDINA", distribute = "horder")
MQ <- sim.MQ(Q, 0.1)

CDM.obj <- CDM(data$dat, MQ)

############### ESA ###############
Hull.obj <- validation(data$dat, MQ, CDM.obj, method = "Hull", search.method = "ESA")
Hull.fit <- Hull.obj$Hull.fit

## plot Hull curve for item 5
plot(Hull.fit, 5)

############### PAA ###############
Hull.obj <- validation(data$dat, MQ, CDM.obj, method = "Hull", search.method = "PAA")
Hull.fit <- Hull.obj$Hull.fit

## plot Hull curve for item 5
plot(Hull.fit, 5)

sim.data generate response data

Description

randomly generate response data matrix according to certen conditions, including attributes distri-
bution, item quality, sample size, Q-matrix and cognitive diagnosis models (CDMs).

Usage

sim.data(
Q = NULL,
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N = NULL,
IQ = list(P0 = NULL, P1 = NULL),
model = "GDINA",
distribute = "uniform",
control = NULL,
verbose = TRUE

)

Arguments

Q The Q-matrix. A random 30 × 5 Q-matrix (sim.Q) will be used if NULL.

N Sample size. Default = 500.

IQ A List contains tow I-length vectors: P0 and P1.

model Type of model to be fitted; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM",
"LLM", or "rRUM".

distribute Attribute distributions; can be "uniform" for the uniform distribution, "mvnorm"
for the multivariate normal distribution (Chiu, Douglas, & Li, 2009) and "horder"
for the higher-order distribution (Tu et al., 2022).

control A list of control parameters with elements:

• sigma A positive-definite symmetric matrix specifying the variance-covariance
matrix when distribute = "mvnorm". Default = 0.5 (Chiu, Douglas, & Li,
2009).

• cutoffs A vector giving the cutoff for each attribute when distribute =
"mvnorm". Default = k/(1 +K) (Chiu, Douglas, & Li, 2009).

• theta A vector of length N representing the higher-order ability for each
examinee. By default, generate randomly from the normal distribution (Tu
et al, 2022).

• a The slopes for the higher-order model when distribute = "horder".
Default = 1.5 (Tu et al, 2022).

• b The intercepts when distribute = "horder". By default, select equally
spaced values between -1.5 and 1.5 according to the number of attributes
(Tu et al, 2022).

verbose Logical indicating to print information or not. Default is TRUE

Value

Object of class simGDINA. An simGDINA object gained by simGDINA function form GDINA package.
Elements that can be extracted using method extract include:

dat An N × I simulated item response matrix.

Q The Q-matrix.

attribute An N × K matrix for inviduals’ attribute patterns.

catprob.parm A list of non-zero category success probabilities for each latent group.

delta.parm A list of delta parameters.
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higher.order.parm

Higher-order parameters.

mvnorm.parm Multivariate normal distribution parameters.

LCprob.parm A matrix of item/category success probabilities for each latent class.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

References

Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster Analysis for Cognitive Diagnosis: Theory and
Applications. Psychometrika, 74(4), 633-665. DOI: 10.1007/s11336-009-9125-0.

Tu, D., Chiu, J., Ma, W., Wang, D., Cai, Y., & Ouyang, X. (2022). A multiple logistic regression-
based (MLR-B) Q-matrix validation method for cognitive diagnosis models:A confirmatory ap-
proach. Behavior Research Methods. DOI: 10.3758/s13428-022-01880-x.

Examples

################################################################
# Example 1 #
# generate data follow the uniform distrbution #
################################################################
library(Qval)

set.seed(123)

K <- 5
I <- 10
Q <- sim.Q(K, I)

IQ <- list(
P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)

data <- sim.data(Q = Q, N = 10, IQ=IQ, model = "GDINA", distribute = "uniform")

print(data$dat)

################################################################
# Example 2 #
# generate data follow the mvnorm distrbution #
################################################################
set.seed(123)
K <- 5
I <- 10
Q <- sim.Q(K, I)

IQ <- list(
P0 = runif(I, 0.0, 0.2),
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P1 = runif(I, 0.8, 1.0)
)

example_cutoffs <- sample(qnorm(c(1:K)/(K+1)), ncol(Q))
data <- sim.data(Q = Q, N = 10, IQ=IQ, model = "GDINA", distribute = "mvnorm",

control = list(sigma = 0.5, cutoffs = example_cutoffs))

print(data$dat)

#################################################################
# Example 3 #
# generate data follow the horder distrbution #
#################################################################
set.seed(123)
K <- 5
I <- 10
Q <- sim.Q(K, I)

IQ <- list(
P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)

example_theta <- rnorm(10, 0, 1)
example_b <- seq(-1.5,1.5,length.out=K)
data <- sim.data(Q = Q, N = 10, IQ=IQ, model = "GDINA", distribute = "horder",

control = list(theta = example_theta, a = 1.5, b = example_b))

print(data$dat)

sim.MQ Simulate mis-specifications

Description

simulate certen rate mis-specifications in the Q-matrix.

Usage

sim.MQ(Q, rate, verbose = TRUE)

Arguments

Q The Q-matrix (sim.Q) that need to simulate mis-specifications.

rate The pecentage of mis-specifications in theQ.

verbose Logical indicating to print information or not. Default is TRUE
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Value

An object of class matrix.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>

Examples

library(Qval)

set.seed(123)

Q <- sim.Q(5, 10)
print(Q)

MQ <- sim.MQ(Q, 0.1)
print(MQ)

sim.Q generate a random Q-matrix

Description

generate a I * K Q-matrix randomly, which consisted of one-attribute q-vectors (0.5), two-attribute
q-vectors (0.25), and three-attribute q-vectors (0.25). This function ensures that the generated Q-
matrix contains at least two identity matrices as a priority.

Usage

sim.Q(K, I)

Arguments

K The number of attributes of each item.

I The number of items.

Value

An object of class matrix.

Author(s)

Haijiang Qin <Haijiang133@outlook.com>
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References

Najera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2021). Balancing fit and parsimony to im-
prove Q-matrix validation. Br J Math Stat Psychol, 74 Suppl 1, 110-130. DOI: 10.1111/bmsp.12228.

Examples

library(Qval)

set.seed(123)

Q <- sim.Q(5, 10)
print(Q)

validation Perform Q-matrix validation methods

Description

This function uses generalized Q-matrix validation methods to validate the Q-matrix, including
commonly used methods such as GDI (de la Torre, & Chiu, 2016; Najera, Sorrel, & Abad, 2019;
Najera et al., 2020), Wald (Ma, & de la Torre, 2020), Hull (Najera et al., 2021), and MLR-B (Tu et
al., 2022). It supports different iteration methods (test level or item level; Najera et al., 2020; Najera
et al., 2021; Tu et al., 2022) and can apply various attribute search methods (ESA, SSA, PAA; de la
Torre, 2008; Terzi, & de la Torre, 2018). More see details.

Usage

validation(
Y,
Q,
CDM.obj = NULL,
par.method = "EM",
mono.constraint = TRUE,
model = "GDINA",
method = "GDI",
search.method = "PAA",
maxitr = 1,
iter.level = "test",
eps = 0.95,
alpha.level = 0.05,
criter = NULL,
verbose = TRUE

)
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Arguments

Y A required N × I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values need to be coded as NA.

Q A required binary I × K containing the attributes not required or required, 0 or
1, to master the items. The ith row of the matrix is a binary indicator vector
indicating which attributes are not required (coded by 0) and which attributes
are required (coded by 1) to master item i.

CDM.obj An object of class CDM.obj. When it is not NULL, it enables rapid verification
of the Q-matrix without the need for parameter estimation. @seealso CDM.

par.method Type of mtehod to estimate CDMs’ parameters; one out of "EM", "BM". Default
= "EM" However, "BM" is only avaible when method = "GDINA".

mono.constraint

Logical indicating whether monotonicity constraints should be fulfilled in esti-
mation. Default = TRUE.

model Type of model to fit; can be "GDINA", "LCDM", "DINA", "DINO" , "ACDM", "LLM",
or "rRUM". Default = "GDINA". @seealso CDM.

method The methods to validata Q-matrix, can be "GDI", "Wald", "Hull", "MLR-B"
and "beta". The "model" must be "GDINA" when method = "Wald". Please
note that the β method has different meanings when applying different search
algorithms. For more details, see section ’Search algorithm’ below. Default =
"GDI". See details.

search.method Character string specifying the search method to use during validation.

"ESA" for exhaustive search algorithm. Can not for the 'Wald' method.
"SSA" for sequential search algorithm (see de la Torre, 2008; Terzi & de la

Torre, 2018). This option can be used when the. It will be equal to "forward"
when method = "Wald".

"PAA" for priority attribute algorithm.
"stepwise" only for the "Wald" method

"beta" only for the "beta" method

maxitr Number of max iterations. Default = 1.

iter.level Can be "item" level, "test.att" or "test" level. Default = "test" and
"test.att" can not for "Wald" and "MLR-B". See details.

eps Cut-off points of PV AF , will work when the method is "GDI" or "Wald". De-
fault = 0.95. See details.

alpha.level alpha level for the wald test. Default = 0.05

criter The kind of fit-index value. When method = "Hull", it can be R^2 for R2
McFadden

@seealso get.R2 or 'PVAF' for the proportion of variance accounted for (PV AF )
@seealso get.PVAF. When method = "beta", it can be 'AIC', 'BIC', 'CAIC'
or 'SABIC'. Default = "PVAF" for 'Hull' and default = "AIC" for 'beta'. See
details.

verbose Logical indicating to print iterative information or not. Default is TRUE
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Value

An object of class validation is a list containing the following components:

Q.orig The original Q-matrix that maybe contains some mis-specifications and need to
be validate.

Q.sug The Q-matrix that suggested by certain validation method.

process A matrix that contains the modification process of each question during each
iteration. Each row represents an iteration, and each column corresponds to the
q-vector index of the respective question. The order of the indices is consistent
with the row numbering in the matrix generated by the @seealso attributepattern
function in the GDINA package.

priority An I × K matrix that contains the priority of every attribute for each item. Only
when the search.method is "PAA", the value is availble. See details.

Hull.fit A list containing all the information needed to plot the Hull plot, which is
available only when method = "Hull".

iter The number of iteration.

time.cost The time that CPU cost to finish the function.

The GDI method

The GDI method (de la Torre & Chiu, 2016), as the first Q-matrix validation method applicable
to saturated models, serves as an important foundation for various mainstream Q-matrix validation
methods.

The method calculates the proportion of variance accounted for (PV AF ; @seealso get.PVAF) for
all possible q-vectors for each item, selects the q-vector with a PV AF just greater than the cut-off
point (or Epsilon, EPS) as the correction result, and the variance ζ2 is the generalized discriminating
index (GDI; de la Torre & Chiu, 2016). Therefore, the GDI method is also considered as a general-
ized extension of the delta method (de la Torre, 2008), which also takes maximizing discrimination
as its basic idea. In the GDI method, ζ2 is defined as the weighted variance of the correct response
probabilities across all mastery patterns, that is:

ζ2 =

2K∑
l=1

πl(P (Xpi = 1|αl)− Pmean
i )

2

where πl represents the prior probability of mastery pattern l; Pmean
i =

∑K
k=1 πlP (Xpi = 1|αl)

is the weighted average of the correct response probabilities across all attribute mastery patterns.
When the q-vector is correctly specified, the calculated ζ2 should be maximized, indicating the
maximum discrimination of the item. However, in reality, ζ2 continues to increase when the q-
vector is over-specified, and the more attributes that are over-specified, the larger ζ2 becomes.
The q-vector with all attributes set to 1 (i.e., q1:K) has the largest ζ2 (de la Torre, 2016). This is
because an increase in attributes in the q-vector leads to an increase in item parameters, resulting
in greater differences in correct response probabilities across attribute patterns and, consequently,
increased variance. However, this increase in variance is spurious. Therefore, de la Torre et al.
calculated PV AF = ζ2

ζ2
1:K

to describe the degree to which the discrimination of the current q-
vector explains the maximum discrimination. They selected an appropriate PV AF cut-off point to
achieve a balance between q-vector fit and parsimony. According to previous studies, the PV AF
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cut-off point is typically set at 0.95 (Ma & de la Torre, 2020; Najera et al., 2021). Najera et al.
(2019) proposed using multinomial logistic regression to predict a more appropriate cut-off point
for PV AF . The cut-off point is denoted as eps, and the predicted regression equation is as follows:

log

(
eps

1− eps

)
= logit(eps) = −0.405 + 2.867 · IQ+ 4.840× 104 ·N − 3.316× 103 · I

Where IQ represents the question quality, calculated as the negative difference between the prob-
ability of an examinee with all attributes answering the question correctly and the probability of
an examinee with no attributes answering the question correctly (IQ = −{P (1)− [1− P (0)]}),
and N and I represent the number of examinees and the number of questions, respectively.

The Wald method

The Wald method (Ma & de la Torre, 2020) combines the Wald test with PV AF to correct the Q-
matrix at the item level. Its basic logic is as follows: when correcting item i, the single attribute that
maximizes the PV AF value is added to a vector with all attributes set to 0 (i.e., q = (0, 0, . . . , 0))
as a starting point. In subsequent iterations, attributes in this vector are continuously added or
removed through the Wald test. The correction process ends when the PV AF exceeds the cut-
off point or when no further attribute changes occur. The Wald statistic follows an asymptotic χ2

distribution with a degree of freedom of 2K
∗ − 1.

The calculation method is as follows:

Wald = [R× Pi(α)]
′
(R×Vi ×R)−1 [R× Pi(α)]

R represents the restriction matrix; Pi(α) denotes the vector of correct response probabilities for
item i; Vi is the variance-covariance matrix of the correct response probabilities for item i, which
can be obtained by multiplying the Mi matrix (de la Torre, 2011) with the variance-covariance
matrix of item parameters Σi, i.e., Vi = Mi × Σi. The Σi can be derived by inverting the
information matrix. Using the the empirical cross-product information matrix (de la Torre, 2011) to
calculate Σi.

Mi is a 2K
∗
2K

∗
matrix that represents the relationship between the parameters of item i and the at-

tribute mastery patterns. The rows represent different mastery patterns, while the columns represent
different item parameters.

The Hull method

The Hull method (Najera et al., 2021) addresses the issue of the cut-off point in the GDI method
and demonstrates good performance in simulation studies. Najera et al. applied the Hull method
for determining the number of factors to retain in exploratory factor analysis (Lorenzo-Seva et al.,
2011) to the retention of attribute quantities in the q-vector, specifically for Q-matrix validation.
The Hull method aligns with the GDI approach in its philosophy of seeking a balance between fit
and parsimony. While GDI relies on a preset, arbitrary cut-off point to determine this balance, the
Hull method utilizes the most pronounced elbow in the Hull plot to make this judgment. The the
most pronounced elbow is determined using the following formula:

st =
(fk − fk−1)/(npk − npk−1)

(fk+1 − fk)/(npk+1 − npk)
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where fk represents the fit-index value (can be PV AF @seealso get.PVAF or R2 @seealso get.R2)
when the q-vector contains k attributes, similarly, fk−1 and fk+1 represent the fit-index value when
the q-vector contains k−1 and k+1 attributes, respectively. npk denotes the number of parameters
when the q-vector has k attributes, which is 2k for a saturated model. Likewise, npk−1 and npk+1

represent the number of parameters when the q-vector has k − 1 and k + 1 attributes, respectively.
The Hull method calculates the st index for all possible q-vectors and retains the q-vector with the
maximum st index as the corrected result. Najera et al. (2021) removed any concave points from
the Hull plot, and when only the first and last points remained in the plot, the saturated q-vector was
selected.

The MLR-B method

The MLR-B method proposed by Tu et al. (2022) differs from the GDI, Wald and Hull method
in that it does not employ PV AF . Instead, it directly uses the marginal probabilities of attribute
mastery for subjects to perform multivariate logistic regression on their observed scores. This ap-
proach assumes all possible q-vectors and conducts 2K − 1 regression modelings. After proposing
regression equations that exclude any insignificant regression coefficients, it selects the q-vector
corresponding to the equation with the minimum AIC fit as the validation result. The performance
of this method in both the LCDM and GDM models even surpasses that of the Hull method, making
it an efficient and reliable approach for Q-matrix correction.

The β method

The β method (Li & Chen, 2024) addresses the Q-matrix validation problem from the perspective
of signal detection theory. Signal detection theory posits that any stimulus is a signal embedded in
noise, where the signal always overlaps with noise. The β method treats the correct q-vector as the
signal and other possible q-vectors as noise. The goal is to identify the signal from the noise, i.e.,
to correctly identify the q-vector. For a question i with the q-vector of the c-th type, the β index is
computed as follows:

βjc =

2K∑
l=1

∣∣∣∣rlinl
Pic(αl)−

(
1− rli

nl

)
[1− Pic(αl)]

∣∣∣∣ = 2K∑
l=1

∣∣∣∣rlinl
− [1− Pic(αl)]

∣∣∣∣
In the formula, rli represents the number of examinees in knowledge state l who correctly answered
item i, while nl is the total number of examinees in knowledge state l. Pic(αl) denotes the probabil-
ity that an examinee in knowledge state l answers item i correctly when the q-vector for item i is of
the c-th type. In fact, rli

nl
is the observed probability that an examinee in knowledge state l answers

item i correctly, and βjc represents the difference between the actual proportion of correct answers
for item i in each knowledge state and the expected probability of answering the item incorrectly
in that state. Therefore, to some extent, βjc can be considered as a measure of discriminability, and
the β method posits that the correct q-vector maximizes βjc, i.e.:

qi = argmax
q

(
βjc : q ∈

{
qic, c = 1, 2, . . . , 2K − 1

})
Therefore, essentially, βjc is an index similar to GDI. Both increase as the number of attributes
in the q-vector increases. Unlike the GDI method, the β method does not continue to compute
βjc/βj[11...1] but instead uses the minimum AIC value to determine whether the attributes in the
q-vector are sufficient. In Package Qval, parLapply will be used to accelerate the β method.
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Please note that the β method has different meanings when applying different search algorithms.
For more details, see section ’Search algorithm’ below.

Iterative procedure

The iterative procedure that one item modification at a time is item level iteration ("item") in
(Najera et al., 2020, 2021), while the iterative procedure that the entire Q-matrix is modified at each
iteration is test level iteration ("test") (Najera et al., 2020; Tu et al., 2022).

The steps of the item level iterative procedure algorithm are as follows:

Step1 Fit the CDM according to the item responses and the provisional Q-matrix (Q0).

Step2 Validate the provisional Q-matrix and gain a suggested Q-matrix (Q1).

Step3 for each item, PV AF0i as the PV AF of the provisional q-vector specified in Q0, and
PV AF1i as the PV AF of the suggested q-vector in Q1.

Step4 Calculate all items’ ∆PV AFi, defined as ∆PV AFi = |PV AF1i − PV AF0i|
Step5 Define the hit item as the item with the highest ∆PV AFi.

Step6 Update Q0 by changing the provisional q-vector by the suggested q-vector of the hit item.

Step7 Iterate over Steps 1 to 6 until
∑I

i=1 ∆PV AFi = 0

When the Q-matrix validation method is 'MLR-B', 'Hull' when criter = 'R2' or 'beta', PV AF
is not used. In this case, the criterion for determining which question’s index will be replaced is
AIC, R2or AIC, respectively.

test.level = 'test.att' will use a method called the test-attribute iterative procedure (Najera et
al., 2021), which modifies all items in each iteration while following the principle of minimizing
changes in the number of attributes.

The steps of the test level iterative procedure algorithm are as follows:

Step1 Fit the CDM according to the item responses and the provisional Q-matrix (Q0).

Step2 Validate the provisional Q-matrix and gain a suggested Q-matrix (Q1).

Step3 Check whether Q1 = Q0. If TRUE, terminate the iterative algorithm. If FALSE, Update Q0

as Q1.

Step4 Iterate over Steps 1 and 3 until one of conditions as follows is satisfied: 1. Q1 = Q0; 2.
Reach the max iteration (maxitr); 3. Q1 does not satisfy the condition that an attribute is
measured by one item at least.

Search algorithm

Three search algorithms are available: Exhaustive Search Algorithm (ESA), Sequential Search Al-
gorithm (SSA), and Priority Attribute Algorithm (PAA). ESA is a brute-force algorithm. When
validating the q-vector of a particular item, it traverses all possible q-vectors and selects the most
appropriate one based on the chosen Q-matrix validation method. Since there are 2K−1 possible
q-vectors with K attributes, ESA requires 2K−1 searches.

SSA reduces the number of searches by adding one attribute at a time to the q-vector in a stepwise
manner. Therefore, in the worst-case scenario, SSA requires K(K − 1)/2 searches. The detailed
steps are as follows:
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Step 1 Define an empty q-vector q0 = [00...0] of length K, where all elements are 0.
Step 2 Examine all single-attribute q-vectors, which are those formed by changing one of the 0s in

q0 to 1. According to the criteria of the chosen Q-matrix validation method, select the optimal
single-attribute q-vector, denoted as q1.

Step 3 Examine all two-attribute q-vectors, which are those formed by changing one of the 0s in
q1 to 1. According to the criteria of the chosen Q-matrix validation method, select the optimal
two-attribute q-vector, denoted as q2.

Step 4 Repeat this process until qK is found, or the stopping criterion of the chosen Q-matrix
validation method is met.

PAA is a highly efficient and concise algorithm that evaluates whether each attribute needs to be
included in the q-vector based on the priority of the attributes. @seealso get.priority. Therefore,
even in the worst-case scenario, PAA only requires K searches. The detailed process is as follows:

Step 1 Using the applicable CDM (e.g. the G-DINA model) to estimate the model parameters and
obtain the marginal attribute mastery probabilities matrix Λ

Step 2 Use LASSO regression to calculate the priority of each attribute in the q-vector for item i

Step 3 Check whether each attribute is included in the optimal q-vector based on the attribute
priorities from high to low seriatim and output the final suggested q-vector according to the
criteria of the chosen Q-matrix validation method.

It should be noted that the Wald method proposed by Ma & de la Torre (2020) uses a "stepwise"
search approach. This approach involves incrementally adding or removing 1 from the q-vector and
evaluating the significance of the change using the Wald test: 1. If removing a 1 results in non-
significance (indicating that the 1 is unnecessary), the 1 is removed from the q-vector; otherwise,
the q-vector remains unchanged. 2. If adding a 1 results in significance (indicating that the 1
is necessary), the 1 is added to the q-vector; otherwise, the q-vector remains unchanged. The
process stops when the q-vector no longer changes or when the PVAF reaches the preset cut-off
point (i.e., 0.95). Stepwise are unique search approach of the Wald method, and users should
be aware of this. Since stepwise is inefficient and differs significantly from the extremely high
efficiency of PAA, Package Qval also provides PAA for q-vector search in the Wald method. When
applying the PAA version of the Wald method, the search still examines whether each attribute is
necessary (by checking if the Wald test reaches significance after adding the attribute) according to
attribute priority. The search stops when no further necessary attributes are found or when the PVAF
reaches the preset cut-off point (i.e., 0.95). The "forward" search approach is another search method
available for the Wald method, which is equivalent to 'SSA'. When 'Wald' uses search.method =
'SSA', it means that the Wald method is employing the forward search approach. Its basic process
is the same as 'stepwise', except that it does not remove elements from the q-vector. Therefore,
the "forward" search approach is essentially SSA.

Please note that, since the β method essentially selects q-vectors based on AIC, even without using
the iterative process, the β method requires multiple parameter estimations to obtain the AIC values
for different q-vectors. Therefore, the β method is more time-consuming and computationally
intensive compared to the other methods. Li and Chen (2024) introduced a specialized search
approach for the β method, which is referred to as the β search (search.method = 'beta'). The
number of searches required is 2K−2 +K + 1, and the specific steps are as follows:

Step 1 For item i, sequentially examine the β values for each single-attribute q-vector, select the
largest βmost and the smallest βleast, along with the corresponding attributes kmost and kleast.
(K searches)
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Step 2 Then, add all possible q-vectors (a total of 2K − 1) containing attribute kmost and not con-
taining kleast to the search space Si (a total of 2K−2)), and unconditionally add the saturated
q-vector [11 . . . 1] to Si to ensure that it is tested.

Step 3 Select the q-vector with the minimum AIC from Si as the final output of the β method. (The
remaining 2K−2 + 1 searches)

The Qval package also provides three search methods, ESA, SSA, and PAA, for the β method.
When the β method applies these three search methods, Q-matrix validation can be completed
without calculating any β values, as the β method essentially uses AIC for selecting q-vectors. For
example, when applying ESA, the β method does not need to perform Step 1 of the β search and
only needs to include all possible q-vectors (a total of 2K −1) in Si, then outputs the corresponding
q-vector based on the minimum AIC. When applying SSA or PAA, the β method also does not
require any calculation of β values. In this case, the β method is consistent with the Q-matrix
validation process described by Chen et al. (2013) using relative fit indices. Therefore, when the
β method does not use β search, it is equivalent to the method of Chen et al. (2013). To better
implement Chen et al. (2013)’s Q-matrix validation method using relative fit indices, the Qval
package also provides BIC, CAIC, and SABIC as alternatives to validate q-vectors, in addition
to AIC.
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Examples

################################################################
# Example 1 #
# The GDI method to validate Q-matrix #
################################################################
set.seed(123)

library(Qval)

## generate Q-matrix and data
K <- 4
I <- 20
example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ,

model = "GDINA", distribute = "horder")

## simulate random mis-specifications
example.MQ <- sim.MQ(example.Q, 0.1)

## using MMLE/EM to fit CDM model first
example.CDM.obj <- CDM(example.data$dat, example.MQ)

## using the fitted CDM.obj to avoid extra parameter estimation.
Q.GDI.obj <- validation(example.data$dat, example.MQ, example.CDM.obj, method = "GDI")

## also can validate the Q-matrix directly
Q.GDI.obj <- validation(example.data$dat, example.MQ)

## item level iteration
Q.GDI.obj <- validation(example.data$dat, example.MQ, method = "GDI",

iter.level = "item", maxitr = 150)
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## search method
Q.GDI.obj <- validation(example.data$dat, example.MQ, method = "GDI",

search.method = "ESA")

## cut-off point
Q.GDI.obj <- validation(example.data$dat, example.MQ, method = "GDI",

eps = 0.90)

## check QRR
print(zQRR(example.Q, Q.GDI.obj$Q.sug))

################################################################
# Example 2 #
# The Wald method to validate Q-matrix #
################################################################
set.seed(123)

library(Qval)

## generate Q-matrix and data
K <- 4
I <- 20
example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA",

distribute = "horder")

## simulate random mis-specifications
example.MQ <- sim.MQ(example.Q, 0.1)

## using MMLE/EM to fit CDM first
example.CDM.obj <- CDM(example.data$dat, example.MQ)

## using the fitted CDM.obj to avoid extra parameter estimation.
Q.Wald.obj <- validation(example.data$dat, example.MQ, example.CDM.obj, method = "Wald")

## also can validate the Q-matrix directly
Q.Wald.obj <- validation(example.data$dat, example.MQ, method = "Wald")

## check QRR
print(zQRR(example.Q, Q.Wald.obj$Q.sug))
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################################################################
# Example 3 #
# The Hull method to validate Q-matrix #
################################################################
set.seed(123)

library(Qval)

## generate Q-matrix and data
K <- 4
I <- 20
example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA",

distribute = "horder")

## simulate random mis-specifications
example.MQ <- sim.MQ(example.Q, 0.1)

## using MMLE/EM to fit CDM first
example.CDM.obj <- CDM(example.data$dat, example.MQ)

## using the fitted CDM.obj to avoid extra parameter estimation.
Q.Hull.obj <- validation(example.data$dat, example.MQ, example.CDM.obj, method = "Hull")

## also can validate the Q-matrix directly
Q.Hull.obj <- validation(example.data$dat, example.MQ, method = "Hull")

## change PVAF to R2 as fit-index
Q.Hull.obj <- validation(example.data$dat, example.MQ, method = "Hull", criter = "R2")

## check QRR
print(zQRR(example.Q, Q.Hull.obj$Q.sug))

################################################################
# Example 4 #
# The MLR-B method to validate Q-matrix #
################################################################
set.seed(123)

library(Qval)

## generate Q-matrix and data
K <- 4
I <- 20
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example.Q <- sim.Q(K, I)
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA",

distribute = "horder")

## simulate random mis-specifications
example.MQ <- sim.MQ(example.Q, 0.1)

## using MMLE/EM to fit CDM first
example.CDM.obj <- CDM(example.data$dat, example.MQ)

## using the fitted CDM.obj to avoid extra parameter estimation.
Q.MLR.obj <- validation(example.data$dat, example.MQ, example.CDM.obj, method = "MLR-B")

## also can validate the Q-matrix directly
Q.MLR.obj <- validation(example.data$dat, example.MQ, method = "MLR-B")

## check QRR
print(zQRR(example.Q, Q.MLR.obj$Q.sug))

Wald.test Wald.test for two q-vecotrs

Description

This function flexibly provides the Wald test for any two q-vectors of a given item in the Q-matrix,
but requires that the two q-vectors differ by only one attribute. Additionally, this function needs to
accept a CDM.obj.

Usage

Wald.test(CDM.obj, Q.i, Q.i.k, i = 1)

Arguments

CDM.obj An object of class CDM.obj. @seealso CDM.

Q.i A q-vector

Q.i.k Another q-vector

i the item you focusing on
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Details

Wald = [R× Pi(α)]
′
(R×Vi ×R)−1 [R× Pi(α)]

Value

An object of class list containing the following components:

Wald.statistic The statistic of the Wald test.

p.value The p value

Examples

set.seed(123)

K <- 3
I <- 20
N <- 500
IQ <- list(

P0 = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)

)
Q <- sim.Q(K, I)
data <- sim.data(Q = Q, N = N, IQ = IQ, model = "GDINA", distribute = "horder")

CDM.obj <- CDM(data$dat, Q)

Q.i <- c(1, 0, 0)
Q.i.k <- c(1, 1, 0)

## Discuss whether there is a significant difference when
## the q-vector of the 2nd item in the Q-matrix is Q.i or Q.i.k.
Wald.test.obj <- Wald.test(CDM.obj, Q.i, Q.i.k, i=2)

print(Wald.test.obj)

zOSR Caculate over-specifcation rate (OSR)

Description

Caculate over-specifcation rate (OSR)

Usage

zOSR(Q.true, Q.sug)
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Arguments

Q.true The true Q-matrix.

Q.sug The Q-matrix that has being validated.

Details

The OSR is defned as:

OSR =

∑I
i=1

∑K
k=1 I(q

t
ik < qsik)

IK

where qtik denotes the kth attribute of item i in the true Q-matrix (Q.true), qsik denotes kth attribute
of item i in the suggested Q-matrix(Q.sug), and I(·) is the indicator function.

Value

A numeric (OSR index).

Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
OSR <- zOSR(example.Q1, example.Q2)
print(OSR)

zQRR Caculate Q-matrix recovery rate (QRR)

Description

Caculate Q-matrix recovery rate (QRR)

Usage

zQRR(Q.true, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.sug A The Q-matrix that has being validated.
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Details

The Q-matrix recovery rate (QRR) provides information on overall performance, and is defned as:

QRR =

∑I
i=1

∑K
k=1 I(q

t
ik = qsik)

IK

where qtik denotes the kth attribute of item i in the true Q-matrix (Q.true), qsik denotes kth attribute
of item i in the suggested Q-matrix(Q.sug), and I(·) is the indicator function.

Value

A numeric (QRR index).

Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
QRR <- zQRR(example.Q1, example.Q2)
print(QRR)

zTNR Calculate true negative rate (TNR)

Description

Calculate true negative rate (TNR)

Usage

zTNR(Q.true, Q.orig, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.orig The Q-matrix need to be validated.

Q.sug The Q-matrix that has being validated.
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Details

TNR is defined as the proportion of correct elements which are correctly retained:

TNR =

∑I
i=1

∑K
k=1 I(q

t
ik = qsik|qtik ̸= qoik)∑I

i=1

∑K
k=1 I(q

t
ik ̸= qoik)

where qtik denotes the kth attribute of item i in the true Q-matrix (Q.true), qoik denotes kth attribute
of item i in the original Q-matrix(Q.orig), qsik denotes kth attribute of item i in the suggested
Q-matrix(Q.sug), and I(·) is the indicator function.

Value

A numeric (TNR index).

Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
example.Q3 <- sim.MQ(example.Q1, 0.05)
TNR <- zTNR(example.Q1, example.Q2, example.Q3)

print(TNR)

zTPR Caculate true-positive rate (TPR)

Description

Caculate true-positive rate (TPR)

Usage

zTPR(Q.true, Q.orig, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.orig The Q-matrix need to be validated.

Q.sug The Q-matrix that has being validated.
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Details

TPR is defned as the proportion of correct elements which are correctly retained:

TPR =

∑I
i=1

∑K
k=1 I(q

t
ik = qsik|qtik = qoik)∑I

i=1

∑K
k=1 I(q

t
ik = qoik)

where qtik denotes the kth attribute of item i in the true Q-matrix (Q.true), qoik denotes kth attribute
of item i in the original Q-matrix(Q.orig), qsik denotes kth attribute of item i in the suggested
Q-matrix(Q.sug), and I(·) is the indicator function.

Value

A numeric (TPR index).

Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
example.Q3 <- sim.MQ(example.Q1, 0.05)
TPR <- zTPR(example.Q1, example.Q2, example.Q3)

print(TPR)

zUSR Caculate under-specifcation rate (USR)

Description

Caculate under-specifcation rate (USR)

Usage

zUSR(Q.true, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.sug A The Q-matrix that has being validated.
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Details

The USR is defned as:

USR =

∑I
i=1

∑K
k=1 I(q

t
ik > qsik)

IK

where qtik denotes the kth attribute of item i in the true Q-matrix (Q.true), qsik denotes kth attribute
of item i in the suggested Q-matrix(Q.sug), and I(·) is the indicator function.

Value

A numeric (USR index).

Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
USR <- zUSR(example.Q1, example.Q2)
print(USR)

zVRR Caculate vector recovery ratio (VRR)

Description

Caculate vector recovery ratio (VRR)

Usage

zVRR(Q.true, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.sug A The Q-matrix that has being validated.

Details

The VRR shows the ability of the validation method to recover q-vectors, and is determined by

V RR =

∑I
i=1 I(q

t
i = qs

i )

I

where qt
i denotes the q-vector of item i in the true Q-matrix (Q.true), qs

i denotes the q-vector of
item i in the suggested Q-matrix(Q.sug), and I(·) is the indicator function.
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Value

A numeric (VRR index).

Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
VRR <- zVRR(example.Q1, example.Q2)
print(VRR)
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