
Package ‘emmeans’
January 31, 2025

Type Package

Title Estimated Marginal Means, aka Least-Squares Means

Version 1.10.7

Date 2025-01-30

Depends R (>= 4.1.0)

Imports estimability (>= 1.4.1), graphics, methods, numDeriv, stats,
utils, mvtnorm

Suggests bayesplot, bayestestR, biglm, brms, car, coda (>= 0.17),
compositions, ggplot2, lattice, logspline, mediation, mgcv,
multcomp, multcompView, nlme, ordinal (>= 2014.11-12), pbkrtest
(>= 0.4-1), lme4, lmerTest (>= 2.0.32), MASS, MuMIn, rsm,
knitr, rmarkdown, sandwich, scales, splines, testthat, tibble,
xtable (>= 1.8-2)

Enhances CARBayes, coxme, gee, geepack, MCMCglmm, MCMCpack, mice,
nnet, pscl, rstanarm, sommer, survival

URL https://rvlenth.github.io/emmeans/,https://rvlenth.github.io/emmeans/

BugReports https://github.com/rvlenth/emmeans/issues

LazyData yes

ByteCompile yes

Description Obtain estimated marginal means (EMMs) for many linear, generalized
linear, and mixed models. Compute contrasts or linear functions of EMMs,
trends, and comparisons of slopes. Plots and other displays.
Least-squares means are discussed, and the term ``estimated marginal means''
is suggested, in Searle, Speed, and Milliken (1980) Population marginal means
in the linear model: An alternative to least squares means, The American
Statistician 34(4), 216-221 <doi:10.1080/00031305.1980.10483031>.

License GPL-2 | GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

1

https://rvlenth.github.io/emmeans/
https://rvlenth.github.io/emmeans/
https://github.com/rvlenth/emmeans/issues
https://doi.org/10.1080/00031305.1980.10483031

2 Contents

NeedsCompilation no

Author Russell V. Lenth [aut, cre, cph],
Balazs Banfai [ctb],
Ben Bolker [ctb],
Paul Buerkner [ctb],
Iago Giné-Vázquez [ctb],
Maxime Herve [ctb],
Maarten Jung [ctb],
Jonathon Love [ctb],
Fernando Miguez [ctb],
Julia Piaskowski [ctb],
Hannes Riebl [ctb],
Henrik Singmann [ctb]

Maintainer Russell V. Lenth <russell-lenth@uiowa.edu>

Repository CRAN

Date/Publication 2025-01-31 05:50:02 UTC

Contents
emmeans-package . 3
as.list.emmGrid . 4
as.mcmc.emmGrid . 6
auto.noise . 8
cld.emmGrid . 9
comb_facs . 11
contrast . 14
contrast-methods . 18
eff_size . 21
emm . 23
emmeans . 25
emmGrid-class . 28
emmip . 30
emmobj . 34
emm_example . 35
emm_list . 36
emm_options . 37
emtrends . 41
extending-emmeans . 43
feedlot . 49
fiber . 50
hpd.summary . 51
joint_tests . 52
lsmeans . 55
make.tran . 56
MOats . 59
models . 60

emmeans-package 3

mvcontrast . 61
mvregrid . 62
neuralgia . 63
nutrition . 64
oranges . 65
pigs . 66
plot.emmGrid . 67
pwpm . 69
pwpp . 70
qdrg . 72
rbind.emmGrid . 75
ref_grid . 77
regrid . 84
str.emmGrid . 86
summary.emmGrid . 87
ubds . 94
untidy . 95
update.emmGrid . 96
xtable.emmGrid . 100

Index 102

emmeans-package Estimated marginal means (aka Least-squares means)

Description

This package provides methods for obtaining estimated marginal means (EMMs, also known as
least-squares means) for factor combinations in a variety of models. Supported models include
[generalized linear] models, models for counts, multivariate, multinomial and ordinal responses,
survival models, GEEs, and Bayesian models. For the latter, posterior samples of EMMs are pro-
vided. The package can compute contrasts or linear combinations of these marginal means with
various multiplicity adjustments. One can also estimate and contrast slopes of trend lines. Some
graphical displays of these results are provided.

Overview

Vignettes A number of vignettes are provided to help the user get acquainted with the emmeans
package and see some examples.

Concept Estimated marginal means (see Searle et al. 1980 are popular for summarizing linear
models that include factors. For balanced experimental designs, they are just the marginal
means. For unbalanced data, they in essence estimate the marginal means you would have
observed that the data arisen from a balanced experiment. Earlier developments regarding
these techniques were developed in a least-squares context and are sometimes referred to as
“least-squares means”. Since its early development, the concept has expanded far beyond
least-squares settings.

4 as.list.emmGrid

Reference grids The implementation in emmeans relies on our own concept of a reference grid,
which is an array of factor and predictor levels. Predictions are made on this grid, and esti-
mated marginal means (or EMMs) are defined as averages of these predictions over zero or
more dimensions of the grid. The function ref_grid explicitly creates a reference grid that
can subsequently be used to obtain least-squares means. The object returned by ref_grid is
of class "emmGrid", the same class as is used for estimated marginal means (see below).
Our reference-grid framework expands slightly upon Searle et al.’s definitions of EMMs, in
that it is possible to include multiple levels of covariates in the grid.

Models supported As is mentioned in the package description, many types of models are sup-
ported by the package. See vignette("models", "emmeans") for full details. Some models may
require other packages be installed in order to access all of the available features. For models
not explicitly supported, it may still be possible to do basic post hoc analyses of them via the
qdrg function.

Estimated marginal means The emmeans function computes EMMs given a fitted model (or a pre-
viously constructed emmGrid object), using a specification indicating what factors to include.
The emtrends function creates the same sort of results for estimating and comparing slopes
of fitted lines. Both return an emmGrid object.

Summaries and analysis The summary.emmGrid method may be used to display an emmGrid ob-
ject. Special-purpose summaries are available via confint.emmGrid and test.emmGrid, the
latter of which can also do a joint test of several estimates. The user may specify by vari-
ables, multiplicity-adjustment methods, confidence levels, etc., and if a transformation or link
function is involved, may reverse-transform the results to the response scale.

Contrasts and comparisons The contrast method for emmGrid objects is used to obtain con-
trasts among the estimates; several standard contrast families are available such as deviations
from the mean, polynomial contrasts, and comparisons with one or more controls. Another
emmGrid object is returned, which can be summarized or further analyzed. For convenience,
a pairs.emmGrid method is provided for the case of pairwise comparisons.

Graphs The plot.emmGrid method will display side-by-side confidence intervals for the esti-
mates, and/or “comparison arrows” whereby the *P* values of pairwise differences can be
observed by how much the arrows overlap. The emmip function displays estimates like an
interaction plot, multi-paneled if there are by variables. These graphics capabilities require
the lattice package be installed.

MCMC support When a model is fitted using MCMC methods, the posterior chains(s) of param-
eter estimates are retained and converted into posterior samples of EMMs or contrasts thereof.
These may then be summarized or plotted like any other MCMC results, using tools in, say
coda or bayesplot.

multcomp interface The as.glht function and glht method for emmGrids provide an interface to
the glht function in the multcomp package, thus providing for more exacting simultaneous
estimation or testing. The package also provides an emm function that works as an alternative
to mcp in a call to glht.

as.list.emmGrid Convert to and from emmGrid objects

../doc/models.html

as.list.emmGrid 5

Description

These are useful utility functions for creating a compact version of an emmGrid object that may
be saved and later reconstructed, or for converting old ref.grid or lsmobj objects into emmGrid
objects.

Usage

S3 method for class 'emmGrid'
as.list(x, model.info.slot = FALSE, ...)

as.emm_list(object, ...)

as.emmGrid(object, ...)

Arguments

x An emmGrid object

model.info.slot

Logical value: Include the model.info slot? Set this to TRUE if you want to
preserve the original call and information needed by the submodel option. If
FALSE, only the nesting information (if any) is saved

... In as.emmGrid, additional arguments passed to update.emmGrid before return-
ing the object. This argument is ignored in as.list.emmGrid

object Object to be converted to class emmGrid. It may be a list returned by as.list.emmGrid,
or a ref.grid or lsmobj object created by emmeans’s predecessor, the lsmeans
package. An error is thrown if object cannot be converted.

Details

An emmGrid object is an S4 object, and as such cannot be saved in a text format or saved without
a lot of overhead. By using as.list, the essential parts of the object are converted to a list format
that can be easily and compactly saved for use, say, in another session or by another user. Providing
this list as the arguments for emmobj allows the user to restore a working emmGrid object.

Value

as.list.emmGrid returns an object of class list.

as.emm_list returns an object of class emm_list.

as.emmGrid returns an object of class emmGrid. However, in fact, both as.emmGrid and as.emm_list
check for an attribute in object to decide whether to return an emmGrid or emm_list) object.

See Also

emmobj

6 as.mcmc.emmGrid

Examples

pigs.lm <- lm(log(conc) ~ source + factor(percent), data = pigs)
pigs.sav <- as.list(ref_grid(pigs.lm))

pigs.anew <- as.emmGrid(pigs.sav)
emmeans(pigs.anew, "source")

as.mcmc.emmGrid Support for MCMC-based estimation

Description

When a model is fitted using Markov chain Monte Carlo (MCMC) methods, its reference grid
contains a post.beta slot. These functions transform those posterior samples to posterior samples
of EMMs or related contrasts. They can then be summarized or plotted using, e.g., functions in the
coda package.

Usage

S3 method for class 'emmGrid'
as.mcmc(x, names = TRUE, sep.chains = TRUE, likelihood,
NE.include = FALSE, ...)

S3 method for class 'emm_list'
as.mcmc(x, which = 1, ...)

S3 method for class 'emmGrid'
as.mcmc.list(x, names = TRUE, ...)

S3 method for class 'emm_list'
as.mcmc.list(x, which = 1, ...)

Arguments

x An object of class emmGrid

names Logical scalar or vector specifying whether variable names are appended to lev-
els in the column labels for the as.mcmc or as.mcmc.list result – e.g., column
names of treat A and treat B versus just A and B. When there is more than one
variable involved, the elements of names are used cyclically.

sep.chains Logical value. If TRUE, and there is more than one MCMC chain available, an
mcmc.list object is returned by as.mcmc, with separate EMMs posteriors in
each chain.

likelihood Character value or function. If given, simulations are made from the corre-
sponding posterior predictive distribution. If not given, we obtain the posterior
distribution of the parameters in object. See Prediction section below.

as.mcmc.emmGrid 7

NE.include Logical value. If TRUE, non-estimable columns are kept but returned as columns
of NA values (this may create errors or warnings in subsequent analyses using,
say, coda). If FALSE, non-estimable columns are dropped, and a warning is
issued. (If all are non-estimable, an error is thrown.)

... arguments passed to other methods

which item in the emm_list to use

Value

An object of class mcmc or mcmc.list.

Details

When the object’s post.beta slot is non-trivial, as.mcmc will return an mcmc or mcmc.list ob-
ject that can be summarized or plotted using methods in the coda package. In these functions,
post.beta is transformed by post-multiplying it by t(linfct), creating a sample from the poste-
rior distribution of LS means. In as.mcmc, if sep.chains is TRUE and there is in fact more than one
chain, an mcmc.list is returned with each chain’s results. The as.mcmc.list method is guaranteed
to return an mcmc.list, even if it comprises just one chain.

Prediction

When likelihood is specified, it is used to simulate values from the posterior predictive distribu-
tion corresponding to the given likelihood and the posterior distribution of parameter values. Denote
the likelihood function as f(y|θ, ϕ), where y is a response, θ is the parameter estimated in object,
and ϕ comprises zero or more additional parameters to be specified. If likelihood is a function,
that function should take as its first argument a vector of θ values (each corresponding to one row
of object@grid). Any ϕ values should be specified as additional named function arguments, and
passed to likelihood via This function should simulate values of y.

A few standard likelihoods are available by specifying likelihood as a character value. They are:

"normal" The normal distribution with mean θ and standard deviation specified by additional ar-
gument sigma

"binomial" The binomial distribution with success probability theta, and number of trials speci-
fied by trials

"poisson" The Poisson distribution with mean theta (no additional parameters)

"gamma" The gamma distribution with scale parameter θ and shape parameter specified by shape

Examples

if(requireNamespace("coda"))
emm_example("as.mcmc-coda")
Use emm_example("as.mcmc-coda", list = TRUE) # to see just the code

8 auto.noise

auto.noise Auto Pollution Filter Noise

Description

Three-factor experiment comparing pollution-filter noise for two filters, three sizes of cars, and two
sides of the car.

Usage

auto.noise

Format

A data frame with 36 observations on the following 4 variables.

noise Noise level in decibels (but see note) - a numeric vector.

size The size of the vehicle - an ordered factor with levels S, M, L.

type Type of anti-pollution filter - a factor with levels Std and Octel

side The side of the car where measurement was taken – a factor with levels L and R.

Details

The data are from a statement by Texaco, Inc., to the Air and Water Pollution Subcommittee of
the Senate Public Works Committee on June 26, 1973. Mr. John McKinley, President of Texaco,
cited an automobile filter developed by Associated Octel Company as effective in reducing pollu-
tion. However, questions had been raised about the effects of filters on vehicle performance, fuel
consumption, exhaust gas back pressure, and silencing. On the last question, he referred to the data
included here as evidence that the silencing properties of the Octel filter were at least equal to those
of standard silencers.

Note

While the data source claims that noise is measured in decibels, the values are implausible. I
believe that these measurements are actually in tenths of dB (centibels?). Looking at the values
in the dataset, note that every measurement ends in 0 or 5, and it is reasonable to believe that
measurements are accurate to the nearest half of a decibel.

Source

The dataset was obtained from the Data and Story Library (DASL) at Carnegie-Mellon University.
Apparently it has since been removed. The original dataset was altered by assigning meaningful
names to the factors and sorting the observations in random order as if this were the run order of
the experiment.

cld.emmGrid 9

Examples

(Based on belief that noise/10 is in decibel units)
noise.lm <- lm(noise/10 ~ size * type * side, data = auto.noise)

Interaction plot of predictions
emmip(noise.lm, type ~ size | side)

Confidence intervals
plot(emmeans(noise.lm, ~ size | side*type))

cld.emmGrid Compact letter displays

Description

A method for multcomp::cld() is provided for users desiring to produce compact-letter displays
(CLDs). This method uses the Piepho (2004) algorithm (as implemented in the multcompView
package) to generate a compact letter display of all pairwise comparisons of estimated marginal
means. The function obtains (possibly adjusted) P values for all pairwise comparisons of means,
using the contrast function with method = "pairwise". When a P value exceeds alpha, then the
two means have at least one letter in common.

Usage

S3 method for class 'emmGrid'
cld(object, details = FALSE, sort = TRUE, by,
alpha = 0.05, Letters = c("1234567890", LETTERS, letters),
reversed = decreasing, decreasing = FALSE, signif.sets = FALSE,
delta = 0, ...)

S3 method for class 'emm_list'
cld(object, ..., which = 1)

Arguments

object An object of class emmGrid

details Logical value determining whether detailed information on tests of pairwise
comparisons is displayed

sort Logical value determining whether the EMMs are sorted before the comparisons
are produced. When TRUE, the results are displayed according to reversed.

by Character value giving the name or names of variables by which separate fam-
ilies of comparisons are tested. If NULL, all means are compared. If missing,
the object’s by.vars setting, if any, is used.

alpha Numeric value giving the significance level for the comparisons

10 cld.emmGrid

Letters Character vector of letters to use in the display. Any strings of length greater
than 1 are expanded into individual characters

reversed, decreasing
Logical value (passed to multcompView::multcompLetters.) If TRUE, the or-
der of use of the letters is reversed. Either reversed or decreasing may be
specified, thus providing compatibility with both multcompView::multcompLetters(...,
reversed, ...) and multcomp::cld(..., decreasing, ...). In addition, if
both sort and reversed are TRUE, the sort order of results is reversed.

signif.sets Logical value. If FALSE (and delta = 0), a ‘traditional’ compact-letter display
is constructed with groupings representing sets of estimates that are not statis-
tically different. If TRUE, the criteria are reversed so that two estimates sharing
the same symbol test as significantly different. See also delta.

delta Numeric value passed to test.emmGrid. If this is positive, it is used as an equiv-
alence threshold in the TOST procedure for two-sided equivalence testing. In
the resulting compact letter display, two estimates share the same grouping let-
ter only if they are found to be statistically equivalent – that is, groupings reflect
actual findings of equivalence rather than failure to find a significant difference.
When delta is nonzero, signif.sets is ignored.

... Arguments passed to contrast (for example, an adjust method)

which Which element of the emm_list object to process (If length exceeds one, only
the first one is used)

Value

A summary_emm object showing the estimated marginal means plus an additional column labeled
.group (when signif.sets = FALSE), .signif.set (when signif.sets = TRUE), or .equiv.set
(when delta > 0).

Note

We warn that the default display encourages a poor practice in interpreting significance tests. Such
CLDs are misleading because they visually group means with comparisons P > alpha as though
they are equal, when in fact we have only failed to prove that they differ. A better alternative if one
wants to show groupings is to specify an equivalence threshold delta; then groupings will be based
on actual findings of equivalence. Another way to display actual findings is to set signif.sets =
TRUE, so that estimates in the same group are those found to be statistically different. Obviously,
these different options require different interpretations of the results; the annotations and the label
given the final column help guide how to assess the results.

As further alternatives, consider pwpp (graphical display of P values) or pwpm (matrix display).

References

Piepho, Hans-Peter (2004) An algorithm for a letter-based representation of all pairwise compar-
isons, Journal of Computational and Graphical Statistics, 13(2), 456-466.

comb_facs 11

Examples

if(requireNamespace("multcomp"))
emm_example("cld-multcomp")
Use emm_example("cld-multcomp", list = TRUE) # to just list the code

comb_facs Manipulate factors in a reference grid

Description

These functions manipulate the levels of factors comprising a reference grid by combining factor
levels, splitting a factor’s levels into combinations of newly-defined factors, creating a grouping
factor in which factor(s) levels are nested, or permuting the order of levels of a factor

Usage

comb_facs(object, facs, newname = paste(facs, collapse = "."),
drop = FALSE, ...)

split_fac(object, fac, newfacs, ...)

add_grouping(object, newname, refname, newlevs, ...)

add_submodels(object, ..., newname = "model")

permute_levels(object, fac, pos)

Arguments

object An object of class emmGrid

facs Character vector. The names of the factors to combine

newname Character name of grouping factor to add (different from any existing factor in
the grid)

drop Logical value. If TRUE, any levels of the new factor that are dropped if all oc-
currences in the newly reconstructed object have weight zero. If FALSE, all
levels are retained. (This argument is ignored if there is no .wgt. column in
object@grid.)

... arguments passed to other methods

fac The name of a factor that is part of the grid in object

newfacs A named list with the names of new factors and their levels. The names must
not already exist in the object, and the product of the lengths of the levels must
equal the number of levels of fac.

refname Character name(s) of the reference factor(s)

12 comb_facs

newlevs Character vector or factor of the same length as that of the (combined) levels for
refname. The grouping factor newname will have the unique values of newlevs
as its levels. The order of levels in newlevs is the same as the order of the level
combinations produced by expand.grid applied to the levels of refname – that
is, the first factor’s levels change the fastest and the last one’s vary the slowest.

pos Integer vector consisting of some permutation of the sequence 1:k, where k is
the number of levels of fac. This determines which position each level of fac
will occupy after the levels are permuted; thus, if the levels of fac are A,B,C,D,
and pos = c(3,1,2,4), then the permuted levels will be B,C,A,D.

Value

A modified object of class emmGrid

The comb_facs function

comb_facs combines the levels of factors into a single factor in the reference grid (similar to
interaction). This new factor replaces the factors that comprise it.

Additional note: The choice of whether to drop levels or not can make a profound difference. If
the goal is to combine factors for use in joint_tests, we advise against drop = TRUE because
that might change the weights used in deriving marginal means. If combining factors in a nested
structure, dropping unused cases can considerably reduce the storage required.

The split_fac function

The levels in newfacs are expanded via expand.grid into combinations of levels, and the factor
fac is replaced by those factor combinations. Unlike add_grouping, this creates a crossed, rather
than a nested structure. Note that the order of factor combinations is systematic with the levels of
first factor in newfacs varying the fastest; and those factor combinations are assigned respectively
to the levels of fac as displayed in str(object).

The add_grouping function

This function adds a grouping factor to an existing reference grid or other emmGrid object, such
that the levels of one or more existing factors (call them the reference factors) are mapped to a
smaller number of levels of the new grouping factor. The reference factors are then nested in a
new grouping factor named newname, and a new nesting structure refname %in% newname. This
facilitates obtaining marginal means of the grouping factor, and contrasts thereof.

Additional notes: By default, the levels of newname will be ordered alphabetically. To dictate a
different ordering of levels, supply newlevs as a factor having its levels in the desired order.

When refname specifies more than one factor, this can fundamentally (and permanently) change
what is meant by the levels of those individual factors. For instance, in the gwrg example below,
there are two levels of wool nested in each prod; and that implies that we now regard these as four
different kinds of wool. Similarly, there are five different tensions (L, M, H in prod 1, and L, M in
prod 2).

comb_facs 13

The add_submodels function

This function updates object with a named list of submodels specified in These are rbinded
together and the corresponding rows for each submodel are assigned a factor named newname with
levels equal to the names in This facilitates comparing estimates obtained from different
submodels. For this to work, the underlying model object must be of a class supported by the
submodel argument of update.emmGrid.

The permute_levels function

This function permutes the levels of fac. The returned object has the same factors, same by vari-
ables, but with the levels of fac permuted. The order of the columns in object@grid may be
altered.

NOTE: fac must not be nested in another factor. permute_levels throws an error when fac is
nested.

NOTE: Permuting the levels of a numeric predictor is tricky. For example, if you want to dis-
play the new ordering of levels in emmip(), you must add the arguments style = "factor" and
nesting.order = TRUE.

Examples

mtcars.lm <- lm(mpg ~ factor(vs)+factor(cyl)*factor(gear), data = mtcars)
(v.c.g <- ref_grid(mtcars.lm))
(v.cg <- comb_facs(v.c.g, c("cyl", "gear")))

One use is obtaining a single test for the joint contributions of two factors:
joint_tests(v.c.g)

joint_tests(v.cg)

undo the 'comb_facs' operation:
split_fac(v.cg, "cyl.gear", list(cyl = c(4, 6, 8), gear = 3:5))

IS.glm <- glm(count ~ spray, data = InsectSprays, family = poisson)
IS.emm <- emmeans(IS.glm, "spray")
IS.new <- split_fac(IS.emm, "spray", list(A = 1:2, B = c("low", "med", "hi")))
str(IS.new)

fiber.lm <- lm(strength ~ diameter + machine, data = fiber)
(frg <- ref_grid(fiber.lm))

Suppose the machines are two different brands
brands <- factor(c("FiberPro", "FiberPro", "Acme"), levels = c("FiberPro", "Acme"))
(gfrg <- add_grouping(frg, "brand", "machine", brands))

emmeans(gfrg, "machine")

emmeans(gfrg, "brand")

More than one reference factor
warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)

14 contrast

gwrg <- add_grouping(ref_grid(warp.lm),
"prod", c("tension", "wool"), c(2, 1, 1, 1, 2, 1))

level combinations: LA MA HA LB MB HB

emmeans(gwrg, ~ wool * tension) # some NAs due to impossible combinations

emmeans(gwrg, "prod")

Using 'add_submodels' to compare adjusted and unadjusted means
fibint.lm <- lm(strength ~ machine * diameter, data = fiber)
fibsub <- add_submodels(emmeans(fibint.lm, "machine"),

full = ~ ., additive = ~ . - machine:diameter, unadj = ~ machine)
emmeans(fibsub, pairwise ~ model | machine, adjust = "none")

Permuting factor levels...
str(v.c.g)
str(permute_levels(v.c.g, "cyl", c(2,3,1)))

contrast Contrasts and linear functions of EMMs

Description

These methods provide for follow-up analyses of emmGrid objects: Contrasts, pairwise compar-
isons, tests, and confidence intervals. They may also be used to compute arbitrary linear functions
of predictions or EMMs.

Usage

contrast(object, ...)

S3 method for class 'emmGrid'
contrast(object, method = "eff", interaction = FALSE, by,
offset = NULL, scale = NULL, name = "contrast",
options = get_emm_option("contrast"), type, adjust, simple,
combine = FALSE, ratios = TRUE, parens, enhance.levels = TRUE, wts,
...)

S3 method for class 'emmGrid'
pairs(x, reverse = FALSE, ...)

S3 method for class 'emmGrid'
coef(object, ...)

S3 method for class 'emmGrid'
weights(object, ...)

contrast 15

Arguments

object An object of class emmGrid

... Additional arguments passed to other methods

method Character value giving the root name of a contrast method (e.g. "pairwise" –
see emmc-functions). Alternatively, a function of the same form, or a named
list of coefficients (for a contrast or linear function) that must each conform
to the number of results in each by group. In a multi-factor situation, the factor
levels are combined and treated like a single factor.

interaction Character vector, logical value, or list. If this is specified, method is ignored.
See the “Interaction contrasts” section below for details.

by Character names of variable(s) to be used for “by” groups. The contrasts or
joint tests will be evaluated separately for each combination of these variables.
If object was created with by groups, those are used unless overridden. Use by
= NULL to use no by groups at all.

offset, scale Numeric vectors of the same length as each by group. The scale values, if
supplied, multiply their respective linear estimates, and any offset values are
added. Scalar values are also allowed. (These arguments are ignored when
interaction is specified.)

name Character name to use to override the default label for contrasts used in table
headings or subsequent contrasts of the returned object.

options If non-NULL, a named list of arguments to pass to update.emmGrid, just after
the object is constructed.

type Character: prediction type (e.g., "response") – added to options

adjust Character: adjustment method (e.g., "bonferroni") – added to options

simple Character vector or list: Specify the factor(s) not in by, or a list thereof. See the
section below on simple contrasts.

combine Logical value that determines what is returned when simple is a list. See the
section on simple contrasts.

ratios Logical value determining how log and logit transforms are handled. These
transformations are exceptional cases in that there is a valid way to back-transform
contrasts: differences of logs are logs of ratios, and differences of logits are odds
ratios. If ratios = TRUE and summarized with type = "response", contrast
results are back-transformed to ratios whenever we have true contrasts (coef-
ficients sum to zero). For other transformations, there is no natural way to
back-transform contrasts, so even when summarized with type = "response",
contrasts are computed and displayed on the linear-predictor scale. Similarly,
if ratios = FALSE, log and logit transforms are treated in the same way as any
other transformation.

parens character or NULL. If a character value, the labels for levels being contrasted
are parenthesized if they match the regular expression in parens[1] (via grep).
The default is emm_option("parens"). Optionally, parens may contain second
and third elements specifying what to use for left and right parentheses (default
"(" and ")"). Specify parens = NULL or parens = "a^" (which won’t match
anything) to disable all parenthesization.

16 contrast

enhance.levels character or logical. If character, the levels of the named factors that are con-
trasted are enhanced by appending the name of the factor; e.g., if a factor
named "trt" has levels A and B, a trt comparison is labeled trtA - trtB. If
enhance.levels is logical, then if TRUE (the default), only factors with numeric
levels are enhanced; and of course if FALSE, no levels are enhanced. The levels
of by variables are not enhanced, and any names of factors that don’t exist are
silently ignored. To enhance the labels beyond what is done here, change them
directly via levels<-.

wts The wts argument for some contrast methods. You should omit this argument
unless you want unequal wts. Otherwise we recommend specifying wts = NA
which instructs that wts be obtained from object, separately for each by group.
If numerical wts are specified, they must conform to the number of levels in
each by group, and those same weights are used in each group.

x An emmGrid object
reverse Logical value - determines whether to use "pairwise" (if TRUE) or "revpairwise"

(if FALSE).

Value

contrast and pairs return an object of class emmGrid. Its grid will correspond to the levels of the
contrasts and any by variables. The exception is that an emm_list object is returned if simple is a
list and combine is FALSE.

coef returns a data.frame containing the "parent" object’s grid, along with columns named c.1,
c.2, ... containing the contrast coefficients used to produce the linear functions embodied in the
object. coef() only returns coefficients if object is the result of a call to contrast(), and the
parent object is the object that was handed to contrast. This is most useful for understanding
interaction contrasts.

weights returns the weights stored for each row of object, or a vector of 1s if no weights are
saved.

Pairs method

The call pairs(object) is equivalent to contrast(object, method = "pairwise"); and pairs(object,
reverse = TRUE) is the same as contrast(object, method = "revpairwise").

Interaction contrasts

When interaction is specified, interaction contrasts are computed. Specifically contrasts are gen-
erated for each factor separately, one at a time; and these contrasts are applied to the object (the
first time around) or to the previous result (subsequently). (Any factors specified in by are skipped.)
The final result comprises contrasts of contrasts, or, equivalently, products of contrasts for the fac-
tors involved. Any named elements of interaction are assigned to contrast methods; others are
assigned in order of appearance in object@levels. The contrast factors in the resulting emmGrid
object are ordered the same as in interaction.

interaction may be a character vector or list of valid contrast methods (as documented for the
method argument). If the vector or list is shorter than the number needed, it is recycled. Alterna-
tively, if the user specifies contrast = TRUE, the contrast specified in method is used for all factors
involved.

contrast 17

Simple contrasts

simple is essentially the complement of by: When simple is a character vector, by is set to all the
factors in the grid except those in simple. If simple is a list, each element is used in turn as simple,
and assembled in an "emm_list". To generate all simple main effects, use simple = "each" (this
works unless there actually is a factor named "each"). Note that a non-missing simple will cause
by to be ignored.

Ordinarily, when simple is a list or "each", the return value is an emm_list object with each entry
in correspondence with the entries of simple. However, with combine = TRUE, the elements are all
combined into one family of contrasts in a single emmGrid object using rbind.emmGrid.. In that
case, the adjust argument sets the adjustment method for the combined set of contrasts.

Note

When object has a nesting structure (this can be seen via str(object)), then any grouping factors
involved are forced into service as by variables, and the contrasts are thus computed separately in
each nest. This in turn may lead to an irregular grid in the returned emmGrid object, which may not
be valid for subsequent emmeans calls.

Examples

warp.lm <- lm(breaks ~ wool*tension, data = warpbreaks)
(warp.emm <- emmeans(warp.lm, ~ tension | wool))

contrast(warp.emm, "poly") # inherits 'by = "wool"' from warp.emm

Custom contrast coefs (we already have wool as 'by' thus 3 means to contrast)
contrast(warp.emm, list(mid.vs.ends = c(-1,2,-1)/2, lo.vs.hi = c(1,0,-1)))

pairs(warp.emm)

Effects (dev from mean) of the 6 factor combs, with enhanced levels:
contrast(warp.emm, "eff", by = NULL,

enhance.levels = c("wool", "tension"))

pairs(warp.emm, simple = "wool") # same as pairs(warp.emm, by = "tension")

Do all "simple" comparisons, combined into one family
pairs(warp.emm, simple = "each", combine = TRUE)

Not run:

Note that the following are NOT the same:
contrast(warp.emm, simple = c("wool", "tension"))
contrast(warp.emm, simple = list("wool", "tension"))
The first generates contrasts for combinations of wool and tension
(same as by = NULL)
The second generates contrasts for wool by tension, and for
tension by wool, respectively.

End(Not run)

18 contrast-methods

An interaction contrast for tension:wool
tw.emm <- contrast(warp.emm, interaction = c(tension = "poly", wool = "consec"),

by = NULL)
tw.emm # see the estimates
coef(tw.emm) # see the contrast coefficients

Use of scale and offset
an unusual use of the famous stack-loss data...
mod <- lm(Water.Temp ~ poly(stack.loss, degree = 2), data = stackloss)
(emm <- emmeans(mod, "stack.loss", at = list(stack.loss = 10 * (1:4))))
Convert results from Celsius to Fahrenheit:
confint(contrast(emm, "identity", scale = 9/5, offset = 32))

contrast-methods Contrast families

Description

Functions with an extension of .emmc provide for named contrast families. One of the standard ones
documented here may be used, or the user may write such a function.

Usage

pairwise.emmc(levs, exclude = integer(0), include, ...)

revpairwise.emmc(levs, exclude = integer(0), include, ...)

tukey.emmc(levs, reverse = FALSE, ...)

poly.emmc(levs, max.degree = min(6, k - 1), ...)

trt.vs.ctrl.emmc(levs, ref = 1, reverse = FALSE, exclude = integer(0),
include, ...)

trt.vs.ctrl1.emmc(levs, ref = 1, ...)

trt.vs.ctrlk.emmc(levs, ref = length(levs), ...)

dunnett.emmc(levs, ref = 1, ...)

eff.emmc(levs, exclude = integer(0), include, wts = rep(1, length(levs)),
...)

del.eff.emmc(levs, exclude = integer(0), include, wts = rep(1,
length(levs)), ...)

consec.emmc(levs, reverse = FALSE, exclude = integer(0), include, ...)

contrast-methods 19

mean_chg.emmc(levs, reverse = FALSE, exclude = integer(0), include, ...)

wtcon.emmc(levs, wts, cmtype = "GrandMean", ...)

identity.emmc(levs, exclude = integer(0), include, ...)

Arguments

levs Vector of factor levels

exclude integer vector of indices, or character vector of levels to exclude from consider-
ation. These levels will receive weight 0 in all contrasts. Character levels must
exactly match elements of levs.

include integer or character vector of levels to include (the complement of exclude).
An error will result if the user specifies both exclude and include.

... Additional arguments, passed to related methods as appropriate

reverse Logical value to determine the direction of comparisons

max.degree Integer specifying the maximum degree of polynomial contrasts

ref Integer(s) or character(s) specifying which level(s) to use as the reference. Char-
acter values must exactly match elements of levs (including any enhancements
– see examples)

wts Optional weights to use with eff.emmc and del.eff.emmc contrasts. These
default to equal weights. If exclude or include are specified, wts may be
either the same length as levs or the length of the included levels. In the former
case, weights for any excluded levels are set to zero. wts has no impact on the
results unless there are at least three levels included in the contrast.

cmtype the type argument passed to contrMat

Details

Each standard contrast family has a default multiple-testing adjustment as noted below. These
adjustments are often only approximate; for a more exacting adjustment, use the interfaces provided
to glht in the multcomp package.

pairwise.emmc, revpairwise.emmc, and tukey.emmc generate contrasts for all pairwise compar-
isons among estimated marginal means at the levels in levs. The distinction is in which direction
they are subtracted. For factor levels A, B, C, D, pairwise.emmc generates the comparisons A-B,
A-C, A-D, B-C, B-D, and C-D, whereas revpairwise.emmc generates B-A, C-A, C-B, D-A, D-B,
and D-C. tukey.emmc invokes pairwise.emmc or revpairwise.emmc depending on reverse. The
default multiplicity adjustment method is "tukey", which is only approximate when the standard
errors differ.

poly.emmc generates orthogonal polynomial contrasts, assuming equally-spaced factor levels. These
are derived from the poly function, but an ad hoc algorithm is used to scale them to integer coef-
ficients that are (usually) the same as in published tables of orthogonal polynomial contrasts. The
default multiplicity adjustment method is "none".

trt.vs.ctrl.emmc and its relatives generate contrasts for comparing one level (or the average
over specified levels) with each of the other levels. The argument ref should be the index(es)

20 contrast-methods

(not the labels) of the reference level(s). trt.vs.ctrl1.emmc is the same as trt.vs.ctrl.emmc
with a reference value of 1, and trt.vs.ctrlk.emmc is the same as trt.vs.ctrl with a reference
value of length(levs). dunnett.emmc is the same as trt.vs.ctrl. The default multiplicity
adjustment method is "dunnettx", a close approximation to the Dunnett adjustment. Note in all of
these functions, it is illegal to have any overlap between the ref levels and the exclude levels. If
any is found, an error is thrown.

consec.emmc and mean_chg.emmc are useful for contrasting treatments that occur in sequence.
For a factor with levels A, B, C, D, E, consec.emmc generates the comparisons B-A, C-B, and
D-C, while mean_chg.emmc generates the contrasts (B+C+D)/3 - A, (C+D)/2 - (A+B)/2, and D -
(A+B+C)/3. With reverse = TRUE, these differences go in the opposite direction.

eff.emmc and del.eff.emmc generate contrasts that compare each level with the average over all
levels (in eff.emmc) or over all other levels (in del.eff.emmc). These differ only in how they
are scaled. For a set of k EMMs, del.eff.emmc gives weight 1 to one EMM and weight -1/(k-
1) to the others, while eff.emmc gives weights (k-1)/k and -1/k respectively, as in subtracting the
overall EMM from each EMM. The default multiplicity adjustment method is "fdr". This is a
Bonferroni-based method and is slightly conservative; see p.adjust.

wtcon.emmc generates weighted contrasts based on the function contrMat function in the mult-
comp package, using the provided type as documented there. If the user provides wts, they have
to conform to the length of levs; however, if wts is not specified, contrast will fill-in what is re-
quired, and usually this is safer (especially when by != NULL which usually means that the weights
are different in each by group).

identity.emmc simply returns the identity matrix (as a data frame), minus any columns specified
in exclude. It is potentially useful in cases where a contrast function must be specified, but none is
desired.

Value

A data.frame, each column containing contrast coefficients for levs. The "desc" attribute is used
to label the results in emmeans, and the "adjust" attribute gives the default adjustment method for
multiplicity.

Note

Caution is needed in cases where the user alters the ordering of results (e.g., using the the "[...]"
operator), because the contrasts generated depend on the order of the levels provided. For example,
suppose trt.vs.ctrl1 contrasts are applied to two by groups with levels ordered (Ctrl, T1, T2)
and (T1, T2, Ctrl) respectively, then the contrasts generated will be for (T1 - Ctrl, T2 - Ctrl) in the
first group and (T2 - T1, Ctrl - T1) in the second group, because the first level in each group is used
as the reference level.

Examples

warp.lm <- lm(breaks ~ wool*tension, data = warpbreaks)
warp.emm <- emmeans(warp.lm, ~ tension | wool)
contrast(warp.emm, "poly")
contrast(warp.emm, "trt.vs.ctrl", ref = "M")
Not run:
Same when enhanced labeling is used:

eff_size 21

contrast(warp.emm, "trt.vs.ctrl",
enhance.levels = "tension", ref = "tensionM")

End(Not run)

Comparisons with grand mean
contrast(warp.emm, "eff")
Comparisons with a weighted grand mean
contrast(warp.emm, "eff", wts = c(2, 5, 3))

Compare only low and high tensions
Note pairs(emm, ...) calls contrast(emm, "pairwise", ...)
pairs(warp.emm, exclude = 2)
(same results using exclude = "M" or include = c("L","H") or include = c(1,3))

Setting up a custom contrast function
helmert.emmc <- function(levs, ...) {

M <- as.data.frame(contr.helmert(levs))
names(M) <- paste(levs[-1],"vs earlier")
attr(M, "desc") <- "Helmert contrasts"
M

}
contrast(warp.emm, "helmert")
Not run:
See what is used for polynomial contrasts with 6 levels
emmeans:::poly.emmc(1:6)

End(Not run)

eff_size Calculate Cohen effect sizes and confidence bounds thereof

Description

Standardized effect sizes are typically calculated using pairwise differences of estimates, divided
by the SD of the population providing the context for those effects. This function calculates effect
sizes from an emmGrid object, and confidence intervals for them, accounting for uncertainty in both
the estimated effects and the population SD.

Usage

eff_size(object, sigma, edf, method = "pairwise", ...)

Arguments

object an emmGrid object, typically one defining the EMMs to be contrasted. If instead,
class(object) == "emm_list", such as is produced by emmeans(model, pairwise
~ treatment), a message is displayed; the contrasts already therein are used;
and method is replaced by "identity".

sigma numeric scalar, value of the population SD.

22 eff_size

edf numeric scalar that specifies the equivalent degrees of freedom for the sigma.
This is a way of specifying the uncertainty in sigma, in that we regard our es-
timate of sigma^2 as being proportional to a chi-square random variable with
edf degrees of freedom. (edf should not be confused with the df argument that
may be passed via ... to specify the degrees of freedom to use in t statistics and
confidence intervals.)

method the contrast method to use to define the effects. This is passed to contrast after
the elements of object are scaled.

... Additional arguments passed to contrast

Details

Any by variables specified in object will remain in force in the returned effects, unless overridden
in the optional arguments.

For models having a single random effect, such as those fitted using lm; in that case, the stats::sigma
and stats::df.residual functions may be useful for specifying sigma and edf. For models with
more than one random effect, sigma may be based on some combination of the random-effect vari-
ances.

Specifying edf can be rather unintuitive but is also relatively uncritical; but the smaller the value,
the wider the confidence intervals for effect size. The value of sqrt(2/edf) can be interpreted as
the relative accuracy of sigma; for example, with edf = 50,

√
(2/50) = 0.2, meaning that sigma is

accurate to plus or minus 20 percent. Note in an example below, we tried two different edf values
as kind of a bracketing/sensitivity-analysis strategy. A value of Inf is allowable, in which case you
are assuming that sigma is known exactly. Obviously, this narrows the confidence intervals for the
effect sizes – unrealistically if in fact sigma is unknown.

Value

an emmGrid object containing the effect sizes

Computation

This function uses calls to regrid to put the estimated marginal means (EMMs) on the log scale.
Then an extra element is added to this grid for the log of sigma and its standard error (where
we assume that sigma is uncorrelated with the log EMMs). Then a call to contrast subtracts
log{sigma} from each of the log EMMs, yielding values of log(EMM/sigma). Finally, the results
are re-gridded back to the original scale and the desired contrasts are computed using method. In
the log-scaling part, we actually rescale the absolute values and keep track of the signs.

Note

The effects are always computed on the scale of the linear-predictor; any response transformation
or link function is completely ignored. If you wish to base the effect sizes on the response scale, it
is not enough to replace object with regrid(object), because this back-transformation changes
the SD required to compute effect sizes.

Paired data: Be careful with paired-data situations, where Cohen’s d is typically referenced to the
SD of the paired differences rather than the residual SD. You may need to enlarge sigma by a factor
of sqrt(2) to obtain comparable results with other software.

emm 23

Disclaimer: There is substantial disagreement among practitioners on what is the appropriate
sigma to use in computing effect sizes; or, indeed, whether any effect-size measure is appropri-
ate for some situations. The user is completely responsible for specifying appropriate parameters
(or for failing to do so).

Cohen effect sizes do not even exist for generalized linear models or other models lacking an addi-
tive residual error term.

The examples here illustrate a sobering message that effect sizes are often not nearly as accurate as
you may think.

Examples

fiber.lm <- lm(strength ~ diameter + machine, data = fiber)

emm <- emmeans(fiber.lm, "machine")
eff_size(emm, sigma = sigma(fiber.lm), edf = df.residual(fiber.lm))

or equivalently:
eff_size(pairs(emm), sigma(fiber.lm), df.residual(fiber.lm), method = "identity")

Mixed model example:
if (require(nlme)) withAutoprint({

Oats.lme <- lme(yield ~ Variety + factor(nitro),
random = ~ 1 | Block / Variety,
data = Oats)

Combine variance estimates
VarCorr(Oats.lme)
(totSD <- sqrt(214.4724 + 109.6931 + 162.5590))
I figure edf is somewhere between 5 (Blocks df) and 51 (Resid df)
emmV <- emmeans(Oats.lme, ~ Variety)
eff_size(emmV, sigma = totSD, edf = 5)
eff_size(emmV, sigma = totSD, edf = 51)

}, spaced = TRUE)

emm Support for multcomp::glht

Description

These functions and methods provide an interface between emmeans and the multcomp::glht
function for simultaneous inference provided by the multcomp package.

Usage

emm(...)

24 emm

as.glht(object, ...)

S3 method for class 'emmGrid'
as.glht(object, ...)

Arguments

... In emm, the specs, by, and contr arguments you would normally supply to
emmeans. Only specs is required. Otherwise, arguments are passed to other
methods. You may also include a which argument; see Details.

object An object of class emmGrid or emm_list

Value

emm returns an object of an intermediate class for which there is a multcomp::glht method.

as.glht returns an object of class glht or glht_list according to whether object is of class
emmGrid or emm_list. See Details below for more on glht_lists.

Details for emm

emm is meant to be called only from "glht" as its second (linfct) argument. It works similarly to
multcomp::mcp, except with specs (and optionally by and contr arguments) provided as in a call
to emmeans.

If the specifications in ... would result in a list (i.e., an emm_list object), then by default, only the
last element of that list is passed to glht. However, if ... contains a which argument consisting
of integer values, the list elements with those indexes are selected and combined and passed on
to glht. No checking is done on whether the indexes are valid, and the keyword which must be
spelled-out.

Details for as.glht

When no by variable is in force, we obtain a glht object; otherwise it is a glht_list. The latter
is defined in emmeans, not multcomp, and is simply a list of glht objects. Appropriate con-
venience methods coef, confint, plot, summary, and vcov are provided, which simply apply the
corresponding glht methods to each member.

Note

The multivariate-t routines used by glht require that all estimates in the family have the same
integer degrees of freedom. In cases where that is not true, a message is displayed that shows what
df is used. The user may override this via the df argument.

Examples

if(require(multcomp, quietly = TRUE))
emm_example("glht-multcomp")
Use emm_example("glht-multcomp", list = TRUE) # to see just the code

emmeans 25

emmeans Estimated marginal means (Least-squares means)

Description

Compute estimated marginal means (EMMs) for specified factors or factor combinations in a linear
model; and optionally, comparisons or contrasts among them. EMMs are also known as least-
squares means.

Usage

emmeans(object, specs, by = NULL, fac.reduce = function(coefs) apply(coefs,
2, mean), contr, options = get_emm_option("emmeans"), weights, offset, ...,
tran)

Arguments

object An object of class emmGrid; or a fitted model object that is supported, such as
the result of a call to lm or lmer. Many fitted-model objects are supported; see
vignette("models", "emmeans") for details.

specs A character vector specifying the names of the predictors over which EMMs
are desired. specs may also be a formula or a list (optionally named) of valid
specs. Use of formulas is described in the Overview section below. Note: We
recommend against using two-sided formulas; see the note below for contr.

by A character vector specifying the names of predictors to condition on.

fac.reduce A function that combines the rows of a matrix into a single vector. This imple-
ments the “marginal averaging” aspect of EMMs. The default is the mean of
the rows. Typically if it is overridden, it would be some kind of weighted mean
of the rows. If fac.reduce is nonlinear, bizarre results are likely, and EMMs
will not be interpretable. NOTE: If the weights argument is non-missing,
fac.reduce is ignored.

contr A character value or list specifying contrasts to be added. See contrast.
Note: contr is ignored when specs is a formula. Note 2:: We recommend
against using this argument; obtaining means and obtaining contrasts are two
different things, and it is best to do them in separate steps, using the contrast
function for the contrasts.

options If non-NULL, a named list of arguments to pass to update.emmGrid, just after
the object is constructed. (Options may also be included in ...; see the ‘options’
section below.)

weights Character value, numeric vector, or numeric matrix specifying weights to use
in averaging predictions. See “Weights” section below. Also, if object is not
already a reference grid, weights (if it is character) is passed to ref_grid as
wt.nuis in case nuisance factors are specified. We can override this by spec-
ifying wt.nuis explicitly. This more-or-less makes the weighting of nuisance
factors consistent with that of primary factors.

../doc/models.html

26 emmeans

offset Numeric vector or scalar. If specified, this adds an offset to the predictions,
or overrides any offset in the model or its reference grid. If a vector of length
differing from the number of rows in the result, it is subsetted or cyclically
recycled.

... When object is not already a "emmGrid" object, these arguments are passed to
ref_grid. Common examples are at, cov.reduce, data, type, regrid, df,
nesting, and vcov.. Model-type-specific options (see vignette("models",
"emmeans")), commonly mode, may be used here as well. In addition, if the
model formula contains references to variables that are not predictors, you must
provide a params argument with a list of their names. These arguments may
also be used in lieu of options. See the ‘Options’ section below.

tran Placeholder to prevent it from being included in If non-missing, it is added
to ‘options‘. See the ‘Options’ section.

Details

Users should also consult the documentation for ref_grid, because many important options for
EMMs are implemented there, via the ... argument.

Value

When specs is a character vector or one-sided formula, an object of class "emmGrid". A num-
ber of methods are provided for further analysis, including summary.emmGrid, confint.emmGrid,
test.emmGrid, contrast.emmGrid, and pairs.emmGrid. When specs is a list or a formula
having a left-hand side, the return value is an emm_list object, which is simply a list of emmGrid
objects.

Overview

Estimated marginal means or EMMs (sometimes called least-squares means) are predictions from
a linear model over a reference grid; or marginal averages thereof. The ref_grid function identi-
fies/creates the reference grid upon which emmeans is based.

For those who prefer the terms “least-squares means” or “predicted marginal means”, functions
lsmeans and pmmeans are provided as wrappers. See wrappers.

If specs is a formula, it should be of the form ~ specs, ~ specs | by, contr ~ specs, or contr ~
specs | by. The formula is parsed and the variables therein are used as the arguments specs, by,
and contr as indicated. The left-hand side is optional (and we don’t recommend it), but if specified
it should be the name of a contrast family (e.g., pairwise). Operators like * or : are needed in the
formula to delineate names, but otherwise are ignored.

In the special case where the mean (or weighted mean) of all the predictions is desired, specify
specs as ~ 1 or "1".

A number of standard contrast families are provided. They can be identified as functions having
names ending in .emmc – see the documentation for emmc-functions for details – including how
to write your own .emmc function for custom contrasts.

../doc/models.html
../doc/models.html

emmeans 27

Weights

If weights is a vector, its length must equal the number of predictions to be averaged to obtain each
EMM. If a matrix, each row of the matrix is used in turn, wrapping back to the first row as needed.
When in doubt about what is being averaged (or how many), first call emmeans with weights =
"show.levels".

If weights is a string, it should partially match one of the following:

"equal" Use an equally weighted average.

"proportional" Weight in proportion to the frequencies (in the original data) of the factor com-
binations that are averaged over.

"outer" Weight in proportion to each individual factor’s marginal frequencies. Thus, the weights
for a combination of factors are the outer product of the one-factor margins

"cells" Weight according to the frequencies of the cells being averaged.

"flat" Give equal weight to all cells with data, and ignore empty cells.

"show.levels" This is a convenience feature for understanding what is being averaged over. In-
stead of a table of EMMs, this causes the function to return a table showing the levels that are
averaged over, in the order that they appear.

Outer weights are like the ’expected’ counts in a chi-square test of independence, and will yield
the same results as those obtained by proportional averaging with one factor at a time. All except
"cells" uses the same set of weights for each mean. In a model where the predicted values are
the cell means, cell weights will yield the raw averages of the data for the factors involved. Using
"flat" is similar to "cells", except nonempty cells are weighted equally and empty cells are
ignored.

Counterfactuals

Counterfactual reference grids (see the documentation for ref_grid) contain pairs of imputed and
actual factor levels, and are handled in a special way. For starters, the weights argument is ignored
and we always use "cells" weights. Our understanding is that if factors A, B are specified as coun-
terfactuals, the marginal means for A should still be the same as if A were the only counterfactual.
Accordingly, in computing these marginal means, we exclude all cases where B != actual_B, be-
cause if A were the only counterfactual, B will stay at its actual level. We also take special pains
to "remember" information about actual and imputed levels of counterfactuals so that appropriate
results are obtained when emmeans is applied to a previous emmeans result.

Offsets

Unlike in ref_grid, an offset need not be scalar. If not enough values are supplied, they are
cyclically recycled. For a vector of offsets, it is important to understand that the ordering of results
goes with the first name in specs varying fastest. If there are any by factors, those vary slower
than all the primary ones, but the first by variable varies the fastest within that hierarchy. See the
examples.

28 emmGrid-class

Options and ...

Arguments that could go in options may instead be included in ..., typically, arguments such as
type, infer, etc. that in essence are passed to summary.emmGrid. Arguments in both places are
overridden by the ones in

There is a danger that ... arguments could partially match those used by both ref_grid and
update.emmGrid, creating a conflict. If these occur, usually they can be resolved by providing
complete (or at least longer) argument names; or by isolating non-ref_grid arguments in options;
or by calling ref_grid separately and passing the result as object. See a not-run example below.

Also, when specs is a two-sided formula, or contr is specified, there is potential confusion con-
cerning which ... arguments apply to the means, and which to the contrasts. When such confusion
is possible, we suggest doing things separately (a call to emmeans with no contrasts, followed by a
call to contrast). We treat adjust as a special case: it is applied to the emmeans results only if
there are no contrasts specified, otherwise it is passed only to contrast.

See Also

ref_grid, contrast, vignette("models", "emmeans")

Examples

warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
emmeans (warp.lm, ~ wool | tension)
or equivalently emmeans(warp.lm, "wool", by = "tension")

'adjust' argument ignored in emmeans, passed to contrast part...
emmeans (warp.lm, poly ~ tension | wool, adjust = "sidak")

'adjust' argument NOT ignored ...
emmeans (warp.lm, ~ tension | wool, adjust = "sidak")

Not run:
Offsets: Consider a silly example:
emmeans(warp.lm, ~ tension | wool, offset = c(17, 23, 47)) @ grid
note that offsets are recycled so that each level of tension receives
the same offset for each wool.
But using the same offsets with ~ wool | tension will probably not
be what you want because the ordering of combinations is different.

End(Not run)

emmGrid-class The emmGrid class

../doc/models.html

emmGrid-class 29

Description

The emmGrid class encapsulates linear functions of regression parameters, defined over a grid of pre-
dictors. This includes reference grids and grids of marginal means thereof (aka estimated marginal
means). Objects of class ‘emmGrid‘ may be used independently of the underlying model object.
Instances are created primarily by ref_grid and emmeans, and several related functions.

Slots

model.info list. Contains the elements call (the call that produced the model), terms (its terms
object), and xlev (factor-level information)

roles list. Contains at least the elements predictors, responses, and multresp. Each is a
character vector of names of these variables.

grid data.frame. Contains the combinations of the variables that define the reference grid. In
addition, there is an auxiliary column named ".wgt." holding the observed frequencies or
weights for each factor combination (excluding covariates). If the model has one or more
offset() calls, there is an another auxiliary column named ".offset.". Auxiliary columns
are not considered part of the reference grid. (However, any variables included in offset calls
are in the reference grid.)

levels list. Each entry is a character vector with the distinct levels of each variable in the reference
grid. Note that grid is obtained by applying the function expand.grid to this list

matlevs list. Like levels but has the levels of any matrices in the original dataset. Matrix columns
are always concatenated and treated as a single variable for purposes of the reference grid

linfct matrix. Each row consists of the linear function of the regression coefficients for predicting
its corresponding element of the reference grid. The rows of this matrix go in one-to-one
correspondence with the rows of grid, and the columns with elements of bhat.

bhat numeric. The regression coefficients. If there is a multivariate response, the matrix of coef-
ficients is flattened to a single vector, and linfct and V redefined appropriately. Important:
bhat must include any NA values produced as a result of collinearity in the predictors. These
are taken care of later in the estimability check.

nbasis matrix. The basis for the non-estimable functions of the regression coefficients. Every
EMM will correspond to a linear combination of rows of linfct, and that result must be
orthogonal to all the columns of nbasis in order to be estimable. If everything is estimable,
nbasis should be a 1 x 1 matrix of NA.

V matrix. The symmetric variance-covariance matrix of bhat

dffun function having two arguments. dffun(k, dfargs) should return the degrees of freedom
for the linear function sum(k*bhat), or NA if unavailable

dfargs list. Used to hold any additional information needed by dffun.

misc list. Additional information used by methods. These include at least the following: estName
(the label for the estimates of linear functions), and the default values of infer, level, and
adjust to be used in the summary.emmGrid method. Elements in this slot may be modified if
desired using the update.emmGrid method.

post.beta matrix. A sample from the posterior distribution of the regression coefficients, if
MCMC methods were used; or a 1 x 1 matrix of NA otherwise. When it is non-trivial, the
as.mcmc.emmGrid method returns post.beta %*% t(linfct), which is a sample from the
posterior distribution of the EMMs.

30 emmip

Methods

All methods for these objects are S3 methods except for show. They include [.emmGrid, as.glht.emmGrid,
as.mcmc.emmGrid, as.mcmc.list.emmGrid (see coda), cld.emmGrid (see multcomp), coef.emmGrid,
confint.emmGrid, contrast.emmGrid, pairs.emmGrid, plot.emmGrid, predict.emmGrid, print.emmGrid,
rbind.emmGrid, show.emmGrid, str.emmGrid, summary.emmGrid, test.emmGrid, update.emmGrid,
vcov.emmGrid, and xtable.emmGrid

emmip Interaction-style plots for estimated marginal means

Description

Creates an interaction plot of EMMs based on a fitted model and a simple formula specification.

Usage

emmip(object, formula, ...)

Default S3 method:
emmip(object, formula, type, CIs = FALSE, PIs = FALSE,

style, engine = get_emm_option("graphics.engine"), plotit = TRUE,
nesting.order = FALSE, ...)

emmip_ggplot(emms, style = "factor", dodge = 0.1, xlab = labs$xlab,
ylab = labs$ylab, tlab = labs$tlab, facetlab = "label_context", scale,
dotarg = list(shape = "circle"), linearg = list(linetype = "solid"),
CIarg = list(lwd = 2, alpha = 0.5), PIarg = list(lwd = 1.25, alpha =
0.33), col, ...)

emmip_lattice(emms, style = "factor", xlab = labs$xlab, ylab = labs$ylab,
tlab = labs$tlab, pch = c(1, 2, 6, 7, 9, 10, 15:20), lty = 1,
col = NULL, ...)

Arguments

object An object of class emmGrid, or a fitted model of a class supported by the em-
means package

formula Formula of the form trace.factors ~ x.factors | by.factors. The EMMs
are plotted against x.factor for each level of trace.factors. by.factors
is optional, but if present, it determines separate panels. Each element of this
formula may be a single factor in the model, or a combination of factors using
the * operator.

... Additional arguments passed to emmeans (when object is not already an emmGrid
object), predict.emmGrid, emmip_ggplot, or emmip_lattice.

emmip 31

type As in predict.emmGrid, this determines whether we want to inverse-transform
the predictions (type = "response") or not (any other choice). The default is
"link", unless the "predict.type" option is in force; see emm_options. In
addition, the user may specify type = "scale" to create a transformed scale for
the vertical axis based on object’s response transformation or link function.

CIs Logical value. If TRUE, confidence intervals (or HPD intervals for Bayesian
models) are added to the plot (works only with engine = "ggplot").

PIs Logical value. If TRUE, prediction intervals are added to the plot (works only
with engine = "ggplot"). This is allowed only if the underlying model fam-
ily is "gaussian". If both CIs and PIs are TRUE, the prediction intervals will
be somewhat longer, lighter, and thinner than the confidence intervals. Addi-
tional parameters to predict.emmGrid (e.g., sigma) may be passed via
For Bayesian models, PIs require frequentist = TRUE and a value for sigma.

style Optional character value. This has an effect only when the horizontal variable is
a single numeric variable. If style is unspecified or "numeric", the horizontal
scale will be numeric and curves are plotted using lines (and no symbols). With
style = "factor", the horizontal variable is treated as the levels of a factor
(equally spaced along the horizontal scale), and curves are plotted using lines
and symbols. When the horizontal variable is character or factor, or a combina-
tion of more than one predictor, "factor" style is always used.

engine Character value matching "ggplot" (default), "lattice", or "none". The
graphics engine to be used to produce the plot. These require, respectively,
the ggplot2 or lattice package to be installed. Specifying "none" is equivalent
to setting plotit = FALSE.

plotit Logical value. If TRUE, a graphical object is returned; if FALSE, a data.frame is
returned containing all the values used to construct the plot.

nesting.order Logical value. If TRUE, factors that are nested are presented in order according
to their nesting factors, even if those nesting factors are not present in formula.
If FALSE, only the variables in formula are used to order the variables.

emms A data.frame created by calling emmip with plotit = FALSE. Certain variables
and attributes are expected to exist in this data frame; see the section detailing
the rendering functions.

dodge Numerical amount passed to ggplot2::position_dodge by which points and
intervals are offset so they do not collide.

xlab, ylab, tlab Character labels for the horizontal axis, vertical axis, and traces (the different
curves), respectively. The emmip function generates these automatically and
provides therm via the labs attribute, but the user may override these if desired.

facetlab Labeller for facets (when by variables are in play). Use "label_value" to show
just the factor levels, or "label_both" to show both the factor names and factor
levels. The default of "label_context" decides which based on how many by
factors there are. See the documentation for ggplot2::label_context.

scale If not missing, an object of class scales::trans specifying a (usually) nonlin-
ear scaling for the vertical axis. For example, scales = scales::log_trans()
specifies a logarithmic scale. For fine-tuning purposes, additional arguments to
ggplot2::scale_y_continuous may be included in

32 emmip

dotarg list of arguments passed to geom_point to customize appearance of points

linearg list of arguments passed to geom_line to customize appearance of lines

CIarg, PIarg lists of arguments passed to geom_linerange to customize appearance of in-
tervals. (Note: the linetype aesthetic defaults to "solid" under the hood)

col With emmip_ggplot, this adds color = col (not colour) to all of the *arg lists.
This is intended for setting a common color for everything, such as a black-and-
white plot. With emmip_lattice, col specifies the colors to use for each group,
recycled as needed. If not specified, the default trellis colors are used.

pch (Lattice only) The plotting characters to use for each group (i.e., levels of trace.factors).
They are recycled as needed.

lty (Lattice only) The line types to use for each group. Recycled as needed.

Value

If plotit = FALSE, a data.frame (actually, a summary_emm object) with the table of EMMs that
would be plotted. The variables plotted are named xvar and yvar, and the trace factor is named
tvar. This data frame has an added "labs" attribute containing the labels xlab, ylab, and tlab
for these respective variables. The confidence limits are also included, renamed LCL and UCL.

If plotit = TRUE, the function returns an object of class "ggplot" or a "trellis", depending on
engine.

Details

If object is a fitted model, emmeans is called with an appropriate specification to obtain estimated
marginal means for each combination of the factors present in formula (in addition, any arguments
in ... that match at, trend, cov.reduce, or fac.reduce are passed to emmeans). Otherwise, if
object is an emmGrid object, its first element is used, and it must contain one estimate for each
combination of the factors present in formula.

Rendering functions

The functions emmip_ggplot and emmip_lattice are called when plotit == TRUE to render the
plots; but they may also be called later on an object saved via plotit = FALSE (or engine =
"none"). The functions require that emms contains variables xvar, yvar, and tvar, and attributes
"labs" and "vars". Confidence intervals are plotted if variables LCL and UCL exist; and prediction
intervals are plotted if LPL and UPL exist. Finally, it must contain the variables named in attr(emms,
"vars").

In emmip_ggplot, colors, linetypes, and shapes are all assigned to groups (according to tvar) unless
overridden. So, for example, one may have different symbols for each group by simply specifying
dotarg = list().

Note

Conceptually, this function is equivalent to interaction.plot where the summarization function
is thought to return the EMMs.

emmip 33

See Also

emmeans, interaction.plot.

Examples

#--- Three-factor example
noise.lm = lm(noise ~ size * type * side, data = auto.noise)

Separate interaction plots of size by type, for each side
emmip(noise.lm, type ~ size | side)

One interaction plot, using combinations of size and side as the x factor
... with added confidence intervals and some formatting changes
emmip(noise.lm, type ~ side * size, CIs = TRUE,

CIarg = list(lwd = 1, alpha = 1, color = "cyan"),
dotarg = list(color = "black"))

Create a black-and-white version of above with different linetypes
(Let the linetypes and symbols default to the palette)
emmip(noise.lm, type ~ side * size, CIs = TRUE, col = "black",

linearg = list(), dotarg = list(size = 2), CIarg = list(alpha = 1)) +
ggplot2::theme_bw()

One interaction plot using combinations of type and side as the trace factor
emmip(noise.lm, type * side ~ size)

Individual traces in panels
emmip(noise.lm, ~ size | type * side)

Example for the 'style' argument
fib.lm = lm(strength ~ machine * sqrt(diameter), data = fiber)
fib.rg = ref_grid(fib.lm, at = list(diameter = c(3.5, 4, 4.5, 5, 5.5, 6)^2))
emmip(fib.rg, machine ~ diameter) # curves (because diameter is numeric)
emmip(fib.rg, machine ~ diameter, style = "factor") # points and lines

For an example using extra ggplot2 code, see 'vignette("messy-data")',
in the section on nested models.

Options with transformations or link functions
neuralgia.glm <- glm(Pain ~ Treatment * Sex + Age, family = binomial(),

data = neuralgia)

On link scale:
emmip(neuralgia.glm, Treatment ~ Sex)

On response scale:
emmip(neuralgia.glm, Treatment ~ Sex, type = "response")

With transformed axis scale and custom scale divisions
emmip(neuralgia.glm, Treatment ~ Sex, type = "scale",

breaks = seq(0.10, 0.90, by = 0.10))

34 emmobj

emmobj Construct an emmGrid object from scratch

Description

This allows the user to incorporate results obtained by some analysis into an emmGrid object, en-
abling the use of emmGrid methods to perform related follow-up analyses.

Usage

emmobj(bhat, V, levels, linfct = diag(length(bhat)), df = NA, dffun,
dfargs = list(), post.beta = matrix(NA), nesting = NULL, ...)

Arguments

bhat Numeric. Vector of regression coefficients

V Square matrix. Covariance matrix of bhat

levels Named list or vector. Levels of factor(s) that define the estimates defined by
linfct. If not a list, we assume one factor named "level"

linfct Matrix. Linear functions of bhat for each combination of levels.

df Numeric value or function with arguments (x, dfargs). If a number, that is
used for the degrees of freedom. If a function, it should return the degrees of
freedom for sum(x*bhat), with any additional parameters in dfargs.

dffun Overrides df if specified. This is a convenience to match the slot names of the
returned object.

dfargs List containing arguments for df. This is ignored if df is numeric.

post.beta Matrix whose columns comprise a sample from the posterior distribution of the
regression coefficients (so that typically, the column averages will be bhat). A
1 x 1 matrix of NA indicates that such a sample is unavailable.

nesting Nesting specification as in ref_grid. This is ignored if model.info is supplied.

... Arguments passed to update.emmGrid

Details

The arguments must be conformable. This includes that the length of bhat, the number of columns
of linfct, and the number of columns of post.beta must all be equal. And that the product of
lengths in levels must be equal to the number of rows of linfct. The grid slot of the returned
object is generated by expand.grid using levels as its arguments. So the rows of linfct should
be in corresponding order.

The functions qdrg and emmobj are close cousins, in that they both produce emmGrid objects. When
starting with summary statistics for an existing grid, emmobj is more useful, while qdrg is more
useful when starting from an unsupported fitted model.

emm_example 35

Value

An emmGrid object

See Also

qdrg, an alternative that is useful when starting with a fitted model not supported in emmeans.

Examples

Given summary statistics for 4 cells in a 2 x 2 layout, obtain
marginal means and comparisons thereof. Assume heteroscedasticity
and use the Satterthwaite method
levels <- list(trt = c("A", "B"), dose = c("high", "low"))
ybar <- c(57.6, 43.2, 88.9, 69.8)
s <- c(12.1, 19.5, 22.8, 43.2)
n <- c(44, 11, 37, 24)
se2 = s^2 / n
Satt.df <- function(x, dfargs)

sum(x * dfargs$v)^2 / sum((x * dfargs$v)^2 / (dfargs$n - 1))

expt.rg <- emmobj(bhat = ybar, V = diag(se2),
levels = levels, linfct = diag(c(1, 1, 1, 1)),
df = Satt.df, dfargs = list(v = se2, n = n), estName = "mean")

plot(expt.rg)

(trt.emm <- emmeans(expt.rg, "trt"))
(dose.emm <- emmeans(expt.rg, "dose"))

rbind(pairs(trt.emm), pairs(dose.emm), adjust = "mvt")

emm_example Run or list additional examples

Description

This function exists so as to provide cleaner-looking examples in help files when it must be run
conditionally on another package. Typically we want to run the code (run = TRUE is the default), or
otherwise just list it on the console (list = TRUE).

Usage

emm_example(name, run = !list, list = FALSE, ...)

Arguments

name Character name of file to run. We look for a file with this name (with ".R"
appended) in the system files provided with emmeans.

run Logical choosing whether or not to run the example code
list Logical choosing whether or not to list the example code
... Used only by the developer

36 emm_list

Examples

List an example
emm_example("qdrg-biglm", list = TRUE)

Run an example
if (require(biglm))

emm_example("qdrg-biglm")

emm_list The emm_list class

Description

An emm_list object is simply a list of emmGrid objects. Such a list is returned, for example, by
emmeans with a two-sided formula or a list as its specs argument. Several methods for this class
are provided, as detailed below. Typically, these methods just quietly do the same thing as their
emmGrid methods, using the first element of the list. You can specify which to select a different
element, or just run the corresponding emmGrid method on object[[k]].

Usage

S3 method for class 'emm_list'
contrast(object, ..., which = 1)

S3 method for class 'emm_list'
pairs(x, ..., which = 1)

S3 method for class 'emm_list'
test(object, ..., which = seq_along(object))

S3 method for class 'emm_list'
confint(object, ..., which = seq_along(object))

S3 method for class 'emm_list'
plot(x, ..., which = 1)

S3 method for class 'emm_list'
coef(object, ..., which = 2)

S3 method for class 'emm_list'
str(object, ...)

S3 method for class 'emm_list'
summary(object, ..., which = seq_along(object))

S3 method for class 'emm_list'

emm_options 37

print(x, ...)

S3 method for class 'emm_list'
as.data.frame(x, ...)

S3 method for class 'summary_eml'
as.data.frame(x, row.names = NULL, optional = FALSE,
which, ...)

Arguments

object, x an object of class emm_list

... additional arguments passed to corresponding emmGrid method

which integer vector specifying which elements to select.

row.names, optional
Required arguments of as.data.frame, ignored

Value

a list of objects returned by the corresponding emmGrid method (thus, often, another emm_list
object). However, if which has length 1, the one result is not wrapped in a list.

summary.emm_list returns an object of class summary_eml, which is a list of summary_emm objects.

The as.data.frame methods return a single data frame via as.data.frame(rbind(x)). See also
rbind.emm_list and as.data.frame.emmGrid

Note

The plot method uses only the first element of which; the others are ignored.

No export option is provided for printing an emm_list (see print.emmGrid). If you wish to export
these objects, you must do so separately for each element in the list.

emm_options Set or change emmeans options

Description

Use emm_options to set or change various options that are used in the emmeans package. These
options are set separately for different contexts in which emmGrid objects are created, in a named
list of option lists.

38 emm_options

Usage

emm_options(..., disable)

get_emm_option(x, default = emm_defaults[[x]])

with_emm_options(..., expr)

emm_defaults

Arguments

... Option names and values (see Details)
disable If non-missing, this will reset all options to their defaults if disable tests TRUE

(but first save them for possible later restoration). Otherwise, all previously
saved options are restored. This is important for bug reporting; please see the
section below on reproducible bugs. When disable is specified, the other argu-
ments are ignored.

x Character value - the name of an option to be queried
default Value to return if x is not found
expr Expression to evaluate. If missing, the last element of ... is used.

Format

An object of class list of length 22.

Details

emmeans’s options are stored as a list in the system option "emmeans". Thus, emm_options(foo =
bar) is the same as options(emmeans = list(..., foo = bar)) where ... represents any previ-
ously existing options. The list emm_defaults contains the default values in case the corresponding
element of system option emmeans is NULL.

Currently, the following main list entries are supported:

ref_grid A named list of defaults for objects created by ref_grid. This could affect other
objects as well. For example, if emmeans is called with a fitted model object, it calls ref_grid
and this option will affect the resulting emmGrid object.

emmeans A named list of defaults for objects created by emmeans or emtrends.
contrast A named list of defaults for objects created by contrast.emmGrid or pairs.emmGrid.
summary A named list of defaults used by the methods summary.emmGrid, predict.emmGrid,

test.emmGrid, confint.emmGrid, and emmip. The only option that can affect the latter four
is "predict.method".

allow.na.levs A logical value that if TRUE (the default), allows NA to be among the levels of a
factor. Older versions of emmeans did not allow this. So if problems come up (say in a messy
dataset that includes incomplete cases), try setting this to FALSE.

sep A character value to use as a separator in labeling factor combinations. Such labels are po-
tentially used in several places such as contrast and plot.emmGrid when combinations of
factors are compared or plotted. The default is " ".

emm_options 39

parens Character vector that determines which labels are parenthesized when they are contrasted.
The first element is a regular expression, and the second and third elements are used as left
and right parentheses. See details for the parens argument in contrast. The default will
parenthesize labels containing the four arithmetic operators, using round parentheses.

cov.keep The default value of cov.keep in ref_grid. Defaults to "2", i.e., two-level covariates
are treated like factors.

graphics.engine A character value matching c("ggplot", "lattice"), setting the default en-
gine to use in emmip and plot.emmGrid. Defaults to "ggplot".

msg.interaction A logical value controlling whether or not a message is displayed when emmeans
averages over a factor involved in an interaction. It is probably not appropriate to do this, un-
less the interaction is weak. Defaults to TRUE.

msg.nesting A logical value controlling whether or not to display a message when a nesting struc-
ture is auto-detected. The existence of such a structure affects computations of EMMs. Some-
times, a nesting structure is falsely detected – namely when a user has omitted some main
effects but included them in interactions. This does not change the model fit, but it produces
a different parameterization that is picked up when the reference grid is constructed. Defaults
to TRUE.

rg.limit An integer value setting a limit on the number of rows in a newly constructed reference
grid. This is checked based on the number of levels of the factors involved; but it excludes
the levels of any multivariate responses because those are not yet known. The reference grid
consists of all possible combinations of the predictors, and this can become huge if there
are several factors. An error is thrown if this limit is exceeded. One can use the nuisance
argument of ref_grid to collapse on nuisance factors, thus making the grid smaller. Defaults
to 10,000.

simplify.names A logical value controlling whether to simplify (when possible) names in the
model formula that refer to datasets – for example, should we simplify a predictor name like
“data$trt” to just “trt”? Defaults to TRUE.

opt.digits A logical value controlling the precision with which summaries are printed. If TRUE
(default), the number of digits displayed is just enough to reasonably distinguish estimates
from the ends of their confidence intervals; but always at least 3 digits. If FALSE, the system
value getOption("digits") is used.

back.bias.adj A logical value controlling whether we try to adjust bias when back-transforming.
If FALSE, we use naive back transformation. If TRUE and sigma is available and valid, a
second-order adjustment is applied to estimate the mean on the response scale. A warning is
issued if no valid sigma is available

enable.submodel A logical value. If TRUE, enables support for selected model classes to imple-
ment the submodel option. If FALSE, this support is disabled. Setting this option to FALSE
could save excess memory consumption.

Some other options have more specific purposes:

estble.tol Tolerance for determining estimability in rank-deficient cases. If absent, the value in
emm_defaults$estble.tol) is used.

save.ref_grid Logical value of TRUE if you wish the latest reference grid created to be saved in
.Last.ref_grid. The default is FALSE.

Options for lme4::lmerMod models Options lmer.df, disable.pbkrtest, pbkrtest.limit, disable.lmerTest,
and lmerTest.limit options affect how degrees of freedom are computed for lmerMod ob-
jects produced by the lme4 package). See that section of the "models" vignette for details.

40 emm_options

Value

emm_options returns the current options (same as the result of ‘getOption("emmeans")’) – invis-
ibly, unless called with no arguments.

get_emm_option returns the currently stored option for x, or its default value if not found.

with_emm_options() temporarily sets the options in ..., then evaluates try(expr) and returns
the result.

Reproducible bugs

Most options set display attributes and such that are not likely to be associated with bugs in the code.
However, some other options (e.g., cov.keep) are essentially configuration settings that may affect
how/whether the code runs, and the settings for these options may cause subtle effects that may be
hard to reproduce. Therefore, when sending a bug report, please create a reproducible example and
make sure the bug occurs with all options set at their defaults. This is done by preceding it with
emm_options(disable = TRUE).

By the way, disable works like a stack (LIFO buffer), in that disable = TRUE is equivalent to
emm_options(saved.opts = emm_options()) and emm_options(disable = FALSE) is equivalent
to options(emmeans = get_emm_option("saved.opts")). To completely erase all options, use
options(emmeans = NULL)

See Also

update.emmGrid

Examples

Not run:
emm_options(ref_grid = list(level = .90),

contrast = list(infer = c(TRUE,FALSE)),
estble.tol = 1e-6)

Sets default confidence level to .90 for objects created by ref.grid
AS WELL AS emmeans called with a model object (since it creates a
reference grid). In addition, when we call 'contrast', 'pairs', etc.,
confidence intervals rather than tests are displayed by default.

End(Not run)

Not run:
emm_options(disable.pbkrtest = TRUE)
This forces use of asymptotic methods for lmerMod objects.
Set to FALSE or NULL to re-enable using pbkrtest.

End(Not run)

See tolerance being used for determining estimability
get_emm_option("estble.tol")

Not run:
Set all options to their defaults
emm_options(disable = TRUE)

emtrends 41

... and perhaps follow with code for a minimal reproducible bug,
which may include emm_options() clls if they are pertinent ...

restore options that had existed previously
emm_options(disable = FALSE)

End(Not run)

Illustration of how 'opt.digits' affects the results of print()
Note that the returned value is printed with the default setting (opt.digits = TRUE)
pigs.lm <- lm(inverse(conc) ~ source, data = pigs)
with_emm_options(opt.digits = FALSE, print(emmeans(pigs.lm, "source")))

emtrends Estimated marginal means of linear trends

Description

The emtrends function is useful when a fitted model involves a numerical predictor x interacting
with another predictor a (typically a factor). Such models specify that x has a different trend
depending on a; thus, it may be of interest to estimate and compare those trends. Analogous to the
emmeans setting, we construct a reference grid of these predicted trends, and then possibly average
them over some of the predictors in the grid.

Usage

emtrends(object, specs, var, delta.var = 0.001 * rng, max.degree = 1, ...)

Arguments

object A supported model object (not a reference grid)

specs Specifications for what marginal trends are desired – as in emmeans. If specs is
missing or NULL, emmeans is not run and the reference grid for specified trends
is returned.

var Character value giving the name of a variable with respect to which a difference
quotient of the linear predictors is computed. In order for this to be useful, var
should be a numeric predictor that interacts with at least one factor in specs.
Then instead of computing EMMs, we compute and compare the slopes of the
var trend over levels of the specified other predictor(s). As in EMMs, marginal
averages are computed for the predictors in specs and by. See also the “Gener-
alizations” section below.

delta.var The value of h to use in forming the difference quotient (f(x + h) − f(x))/h.
Changing it (especially changing its sign) may be necessary to avoid numerical
problems such as logs of negative numbers. The default value is 1/1000 of the
range of var over the dataset.

42 emtrends

max.degree Integer value. The maximum degree of trends to compute (this is capped at
5). If greater than 1, an additional factor degree is added to the grid, with
corresponding numerical derivatives of orders 1, 2, ..., max.degree as the
estimates.

... Additional arguments passed to ref_grid or emmeans as appropriate. See De-
tails.

Details

The function works by constructing reference grids for object with various values of var, and
then calculating difference quotients of predictions from those reference grids. Finally, emmeans
is called with the given specs, thus computing marginal averages as needed of the difference quo-
tients. Any ... arguments are passed to the ref_grid and emmeans; examples of such optional
arguments include optional arguments (often mode) that apply to specific models; ref_grid op-
tions such as data, at, cov.reduce, mult.names, nesting, or transform; and emmeans options
such as weights (but please avoid trend or offset.

Value

An emmGrid or emm_list object, according to specs. See emmeans for more details on when a list
is returned.

Generalizations

Instead of a single predictor, the user may specify some monotone function of one variable, e.g.,
var = "log(dose)". If so, the chain rule is applied. Note that, in this example, if object contains
log(dose) as a predictor, we will be comparing the slopes estimated by that model, whereas spec-
ifying var = "dose" would perform a transformation of those slopes, making the predicted trends
vary depending on dose.

Note

In earlier versions of emtrends, the first argument was named model rather than object. (The
name was changed because of potential mis-matching with a mode argument, which is an option for
several types of models.) For backward compatibility, model still works provided all arguments are
named.

It is important to understand that trends computed by emtrends are not equivalent to polynomial
contrasts in a parallel model where var is regarded as a factor. That is because the model object
here is assumed to fit a smooth function of var, and the estimated trends reflect local behavior at
particular value(s) of var; whereas when var is modeled as a factor and polynomial contrasts are
computed, those contrasts represent the global pattern of changes over all levels of var.

See the pigs.poly and pigs.fact examples below for an illustration. The linear and quadratic
trends depend on the value of percent, but the cubic trend is constant (because that is true of a
cubic polynomial, which is the underlying model). The cubic contrast in the factorial model has the
same P value as for the cubic trend, again because the cubic trend is the same everywhere.

See Also

emmeans, ref_grid

extending-emmeans 43

Examples

fiber.lm <- lm(strength ~ diameter*machine, data=fiber)
Obtain slopes for each machine ...
(fiber.emt <- emtrends(fiber.lm, "machine", var = "diameter"))
... and pairwise comparisons thereof
pairs(fiber.emt)

Suppose we want trends relative to sqrt(diameter)...
emtrends(fiber.lm, ~ machine | diameter, var = "sqrt(diameter)",

at = list(diameter = c(20, 30)))

Obtaining a reference grid
mtcars.lm <- lm(mpg ~ poly(disp, degree = 2) * (factor(cyl) + factor(am)), data = mtcars)

Center trends at mean disp for each no. of cylinders
mtcTrends.rg <- emtrends(mtcars.lm, var = "disp",

cov.reduce = disp ~ factor(cyl))
summary(mtcTrends.rg) # estimated trends at grid nodes
emmeans(mtcTrends.rg, "am", weights = "prop")

Higher-degree trends ...

pigs.poly <- lm(conc ~ poly(percent, degree = 3), data = pigs)
emt <- emtrends(pigs.poly, ~ degree | percent, "percent", max.degree = 3,

at = list(percent = c(9, 13.5, 18)))
note: 'degree' is an extra factor created by 'emtrends'

summary(emt, infer = c(TRUE, TRUE))

Compare above results with poly contrasts when 'percent' is modeled as a factor ...
pigs.fact <- lm(conc ~ factor(percent), data = pigs)
emm <- emmeans(pigs.fact, "percent")

contrast(emm, "poly")
Some P values are comparable, some aren't! See Note in documentation

extending-emmeans Support functions for model extensions

Description

This documents some functions and methods that may be useful to package developers wishing to
add support for emmeans for their model objects.A user or package developer may add emmeans
support for a model class by writing recover_data and emm_basis methods for that class. (Users
in need for a quick way to obtain results for a model that is not supported may be better served by the
qdrg function.) There are several other exported functions that may be useful. See the "xtending"
vignette for more details.

44 extending-emmeans

Usage

recover_data(object, ...)

S3 method for class 'call'
recover_data(object, trms, na.action, data = NULL,
params = "pi", frame, pwts, addl.vars, ...)

emm_basis(object, trms, xlev, grid, ...)

.recover_data(object, ...)

.emm_basis(object, trms, xlev, grid, ...)

.emm_register(classes, pkgname)

.std.link.labels(fam, misc)

.combine.terms(...)

.aovlist.dffun(k, dfargs)

.cmpMM(X, weights = rep(1, nrow(X)), assign = attr(X$qr, "assign"))

.get.excl(levs, exc, inc)

.get.offset(terms, grid)

.my.vcov(object, vcov. = .statsvcov, ...)

.all.vars(expr, retain = c("\\$", "\\[\\[", "\\]\\]", "'", "\""),
...)

.diag(x, nrow, ncol)

.num.key(levs, key)

.emm_vignette(css = system.file("css", "clean-simple.css", package =
"emmeans"), highlight = NULL, ...)

.hurdle.support(cmu, cshape, cp0, cmean, zmu, zshape, zp0)

.zi.support(zmu, zshape, zp0)

Arguments

object An object of the same class as is supported by a new method.

... Additional parameters that may be supported by the method.

extending-emmeans 45

trms The terms component of object (typically with the response deleted, e.g. via
delete.response)

na.action Integer vector of indices of observations to ignore; or NULL if none

data Data frame. Usually, this is NULL. However, if non-null, this is used in place of
the reconstructed dataset. It must have all of the predictors used in the model,
and any factor levels must match those used in fitting the model.

params Character vector giving the names of any variables in the model formula that
are not predictors. For example, a spline model may involve a local variable
knots that is not a predictor, but its value is needed to fit the model. Names
of parameters not actually used are harmless, and the default value "pi" (the
only numeric constant in base R) is provided in case the model involves it. An
example involving splines may be found at https://github.com/rvlenth/
emmeans/issues/180.

frame Optional data.frame. Many model objects contain the model frame used when
fitting the model. In cases where there are no predictor transformations, this
model frame has all the original predictor values and so is usable for recovering
the data. Thus, if frame is non-missing and data is NULL, a check is made
on trms and if there are no function calls, we use data = frame. This can be
helpful because it provides a modicum of security against the possibility that the
original data used when fitting the model has been altered or removed.

pwts Optional vector of prior weights. Typically, this may be obtained from the fitted
model via weights(model). If this is provided, it is used to set weights as long
as it is non-NULL and the same length as the number of rows of the data.

addl.vars Character value or vector specifying additional predictors to include in the ref-
erence grid. These must be names of variables that exist, or you will get an
error. This may be useful if you need to do additional computations later on that
depend on these variables; e.g., bias adjustments for random slopes of variables
not among the fixed predictors.

xlev Named list of factor levels (excluding ones coerced to factors in the model for-
mula)

grid A data.frame (provided by ref_grid) containing the predictor settings needed
in the reference grid

classes Character names of one or more classes to be registered. The package must
contain the functions recover_data.foo and emm_basis.foo for each class
foo listed in classes.

pkgname Character name of package providing the methods (usually should be the second
argument of .onLoad)

fam Result of call to family(object)

misc A list intended for the @misc slot of an emmGrid object

k, dfargs Arguments to .aovlist.dffun, which is made available as a convenience to
developers providing support similar to that provided for aovlist objects

X, weights, assign
Arguments for .cmpMM, which compacts a model matrix X into a much smaller
matrix that has the same row space. Specifically, it returns the R portion of

https://github.com/rvlenth/emmeans/issues/180
https://github.com/rvlenth/emmeans/issues/180

46 extending-emmeans

its QR decomposition. If X is already of class qr, it is used directly. weights
should be the weights used in the model fit, and assign is used for unravelling
any pivoting done by qr.

levs, key The .num.key function returns the numeric indices of the levels in levs to the
set of all levels in key

exc, inc Arguments for .get.excl which is useful in writing .emmc functions for gen-
erating contrast coefficients, and supports arguments exclude or include for
excluding or specifying which levels to use.

terms A terms component

vcov. Function or matrix that returns a suitable covariance matrix. The default is
.statsvcov which is stats::vcov. The .my.vcov function should be called
in place of vcov, and it supports the user being able to specify a different matrix
or function via the optional vcov. argument.

expr, retain Arguments for .all.vars, which is an alternative to all.vars that has special
provisions for retaining the special characters in retain, thus allowing model
specifications like y ~ data$trt * df[["dose"]]

x, nrow, ncol Arguments for .diag, which is an alternative to diag that lacks its idiosyncrasy
of returning an identity matrix when x is of length 1.

css, package, highlight
Arguments for .emm_vignette, which is a clean and simple alternative to such
as html_document for use as the output style of a Markdown file. All the vi-
gnettes in the emmeans package use this output style.

cmu, zmu In .hurdle.support and .zi.support, these specify a vector of back-transformed
estimates for the count and zero model, respectively

cshape, zshape Shape parameter for the count and zero model, respectively

cp0, zp0 Function of (mu, shape) for computing Prob(Y = 0) for the count and zero
model, respectively

cmean Function of (mu, shape) for computing the mean of the count model. Typically,
this just returns mu

Value

The recover_data method must return a data.frame containing all the variables that appear
as predictors in the model, and attributes "call", "terms", "predictors", and "responses".
(recover_data.call will provide these attributes.)

The emm_basis method should return a list with the following elements:

X The matrix of linear functions over grid, having the same number of rows as grid and the
number of columns equal to the length of bhat.

bhat The vector of regression coefficients for fixed effects. This should include any NAs that result
from rank deficiencies.

nbasis A matrix whose columns form a basis for non-estimable functions of beta, or a 1x1 matrix
of NA if there is no rank deficiency.

V The estimated covariance matrix of bhat.

extending-emmeans 47

dffun A function of (k, dfargs) that returns the degrees of freedom associated with sum(k *
bhat).

dfargs A list containing additional arguments needed for dffun.

.recover_data and .emm_basis are hidden exported versions of recover_data and emm_basis,
respectively. They run in emmeans’s namespace, thus providing access to all existing methods.

.std.link.llabels returns a modified version of misc with the appropriate information included
corresponding to the information in fam

combine.terms returns a terms object resulting from combining all the terms or formulas in

.get.offset returns the values, based on grid, of any offset component in terms

.hurdle.support returns a matrix with 3 rows containing the estimated mean responses and the
differentials wrt cmu and zmu, resp.

.zi.support returns a matrix with 2 rows containing the estimated probabilities of 0 and the dif-
ferentials wrt mu. See the section on hurdle and zero-inflated models.

Details

To create a reference grid, the ref_grid function needs to reconstruct the data used in fitting the
model, and then obtain a matrix of linear functions of the regression coefficients for a given grid of
predictor values. These tasks are performed by calls to recover_data and emm_basis respectively.
A vignette giving details and examples is available via vignette("xtending", "emmeans")

To extend emmeans’s support to additional model types, one need only write S3 methods for these
two functions. The existing methods serve as helpful guidance for writing new ones. Most of
the work for recover_data can be done by its method for class "call", providing the terms
component and na.action data as additional arguments. Writing an emm_basis method is more
involved, but the existing methods (e.g., emmeans:::emm_basis.lm) can serve as models. Certain
recover_data and emm_basis methods are exported from emmeans. (To find out, do methods("recover_data").)
If your object is based on another model-fitting object, it may be that all that is needed is to call one
of these exported methods and perhaps make modifications to the results. Contact the developer if
you need others of these exported.

If the model has a multivariate response, bhat needs to be “flattened” into a single vector, and X and
V must be constructed consistently.

In models where a non-full-rank result is possible (often, you can tell by seeing if there is a
singular.ok argument in the model-fitting function), summary.emmGrid and its relatives check
the estimability of each prediction, using the nonest.basis function in the estimability package.

The models already supported are detailed in the "models" vignette. Some packages may provide
additional emmeans support for its object classes.

Communication between methods

If the recover_data method generates information needed by emm_basis, that information may be
incorporated by creating a "misc" attribute in the returned recovered data. That information is then
passed as the misc argument when ref_grid calls emm_basis.

../doc/xtending.html
../doc/models.html

48 extending-emmeans

Optional hooks

Some models may need something other than standard linear estimates and standard errors. If so,
custom functions may be pointed to via the items misc$estHook, misc$vcovHook and misc$postGridHook.
If just the name of the hook function is provided as a character string, then it is retrieved using get.

The estHook function should have arguments ‘(object, do.se, tol,...)’ where object is the
emmGrid object, do.se is a logical flag for whether to return the standard error, and tol is the
tolerance for assessing estimability. It should return a matrix with 3 columns: the estimates, stan-
dard errors (NA when do.se==FALSE), and degrees of freedom (NA for asymptotic). The number
of rows should be the same as ‘object@linfct’. The vcovHook function should have arguments
‘(object, tol, ...)’ as described. It should return the covariance matrix for the estimates. Fi-
nally, postGridHook, if present, is called at the very end of ref_grid; it takes one argument, the
constructed object, and should return a suitably modified emmGrid object.

Registering S3 methods for a model class

The .emm_register function is provided as a convenience to conditionally register your S3 meth-
ods for a model class, recover_data.foo and emm_basis.foo, where foo is the class name. Your
package should implement an .onLoad function and call .emm_register if emmeans is installed.
See the example.

Support for Hurdle and Zero-inflated models

The functions .hurdle.support and .zi.support help facilitate calculations needed to estimate
the mean response (count model and zero model combined) of these models. .hurdle.support
returns a matrix of three rows. The first is the estimated mean for a hurdle model, and the 2nd and
3rd rows are differentials for the count and zero models, which needed for delta-method calcula-
tions. To use these, regard the @linfct slot as comprising two sets of columns, for the count and
zero models respectively. To do the delta method calculations, multiply the rows of the count part
by its differentials times link$mu.eta evcaluated at that part of the linear predictor. Do the same
for the zero part, using its differentials and mu.eta. If the resulting matrix is A, then the covariance
of the mean response is AVA’ where Vis the @V slot of the object.

The function zi.support works the same way, only it is much simpler, and is used to estimate the
probability of 0 and its differential for either part of a zero-inflated model or hurdle model.

See the code for emm_basis.zeroinfl and emm_basis.hurdle for how these are used with models
fitted by the pscl package.

Note

Without an explicit data argument, recover_data returns the current version of the dataset. If the
dataset has changed since the model was fitted, then this will not be the data used to fit the model. It
is especially important to know this in simulation studies where the data are randomly generated or
permuted, and in cases where several datasets are processed in one step (e.g., using dplyr). In those
cases, users should be careful to provide the actual data used to fit the model in the data argument.

See Also

Vignette on extending emmeans

../doc/xtending.html

feedlot 49

Examples

Not run:
#--- If your package provides recover_data and emm_grid methods for class 'mymod',
#--- put something like this in your package code -- say in zzz.R:

.onLoad <- function(libname, pkgname) {
if (requireNamespace("emmeans", quietly = TRUE))

emmeans::.emm_register("mymod", pkgname)
}

End(Not run)

feedlot Feedlot data

Description

This is an unbalanced analysis-of-covariance example, where one covariate is affected by a factor.
Feeder calves from various herds enter a feedlot, where they are fed one of three diets. The weight
of the animal at entry is the covariate, and the weight at slaughter is the response.

Usage

feedlot

Format

A data frame with 67 observations and 4 variables:

herd a factor with levels 9 16 3 32 24 31 19 36 34 35 33, designating the herd that a feeder calf
came from.

diet a factor with levels Low Medium High: the energy level of the diet given the animal.

swt a numeric vector: the weight of the animal at slaughter.

ewt a numeric vector: the weight of the animal at entry to the feedlot.

Details

The data arise from a Western Regional Research Project conducted at New Mexico State Univer-
sity. Calves born in 1975 in commercial herds entered a feedlot as yearlings. Both diets and herds
are of interest as factors. The covariate, ewt, is thought to be dependent on herd due to differ-
ent genetic backgrounds, breeding history, etc. The levels of herd ordered to similarity of genetic
background.

Note: There are some empty cells in the cross-classification of herd and diet.

Source

Urquhart NS (1982) Adjustment in covariates when one factor affects the covariate. Biometrics 38,
651-660.

50 fiber

Examples

feedlot.lm <- lm(swt ~ ewt + herd*diet, data = feedlot)

Obtain EMMs with a separate reference value of ewt for each
herd. This reproduces the last part of Table 2 in the reference
emmeans(feedlot.lm, ~ diet | herd, cov.reduce = ewt ~ herd)

fiber Fiber data

Description

Fiber data from Montgomery Design (8th ed.), p.656 (Table 15.10). Useful as a simple analysis-of-
covariance example.

Usage

fiber

Format

A data frame with 15 observations and 3 variables:

machine a factor with levels A B C. This is the primary factor of interest.

strength a numeric vector. The response variable.

diameter a numeric vector. A covariate.

Details

The goal of the experiment is to compare the mean breaking strength of fibers produced by the
three machines. When testing this, the technician also measured the diameter of each fiber, and this
measurement may be used as a concomitant variable to improve precision of the estimates.

Source

Montgomery, D. C. (2013) Design and Analysis of Experiments (8th ed.). John Wiley and Sons,
ISBN 978-1-118-14692-7.

Examples

fiber.lm <- lm(strength ~ diameter + machine, data=fiber)
ref_grid(fiber.lm)

Covariate-adjusted means and comparisons
emmeans(fiber.lm, pairwise ~ machine)

hpd.summary 51

hpd.summary Summarize an emmGrid from a Bayesian model

Description

This function computes point estimates and HPD intervals for each factor combination in object@emmGrid.
While this function may be called independently, it is called automatically by the S3 method
summary.emmGrid when the object is based on a Bayesian model. (Note: the level argument,
or its default, is passed as prob).

Usage

hpd.summary(object, prob, by, type, point.est = median, delta,
bias.adjust = get_emm_option("back.bias.adj"), sigma, ...)

Arguments

object an emmGrid object having a non-missing post.beta slot

prob numeric probability content for HPD intervals (note: when not specified, the
current level option is used; see emm_options)

by factors to use as by variables

type prediction type as in summary.emmGrid

point.est function to use to compute the point estimates from the posterior sample for
each grid point

delta Numeric equivalence threshold (on the linear predictor scale regardless of type).
See the section below on equivalence testing.

bias.adjust Logical value for whether to adjust for bias in back-transforming (type = "response").
This requires a value of sigma to exist in the object or be specified.

sigma Error SD assumed for bias correction (when type = "response". If not spec-
ified, object@misc$sigma is used, and a warning if it is not found or invalid.
Note: sigma may be a vector, as long as it conforms to the number of observa-
tions in the posterior sample.

... required but not used

Value

an object of class summary_emm

Equivalence testing note

If delta is positive, two columns labeled p.equiv and odds.eq are appended to the summary.
p.equiv is the fraction of posterior estimates having absolute values less than delta. The odds.eq
column is just p.equiv converted to an odds ratio; so it is the posterior odds of equivalence.

A high value of p.equiv is evidence in favor of equivalence. It can be used to obtain something
equivalent (in spirit) to the frequentist Schuirmann (TOST) procedure, whereby we would conclude

52 joint_tests

equivalence at significance level α if the (1 − 2α) confidence interval falls entirely in the interval
[−δ, δ]. Similarly in the Bayesian context, an equally strong argument for equivalence is obtained
if p.equiv exceeds 1− 2α.

A closely related quantity is the ROPE (region of practical equivalence), obtainable via bayestestR::rope(object,
range = c(-delta, delta)). Its value is approximately 100 * p.equiv / 0.95 if the default ci =
0.95 is used. See also bayestestR’s issue #567.

Finally, a Bayes factor for equivalence is obtainable by dividing odds.eq by the prior odds of
equivalence, assessed or elicited separately.

See Also

summary.emmGrid

Examples

if(require("coda"))
emm_example("hpd.summary-coda")
Use emm_example("hpd.summary-coda", list = TRUE) # to see just the code

joint_tests Compute joint tests of the terms in a model

Description

This function produces an analysis-of-variance-like table based on linear functions of predictors in
a model or emmGrid object. Specifically, the function constructs, for each combination of factors
(or covariates reduced to two or more levels), a set of (interaction) contrasts via contrast, and then
tests them using test with joint = TRUE. Optionally, one or more of the predictors may be used as
by variable(s), so that separate tables of tests are produced for each combination of them.

Usage

joint_tests(object, by = NULL, show0df = FALSE, showconf = TRUE,
cov.reduce = make.meanint(1), ...)

make.meanint(delta)

meanint(x)

make.symmint(ctr, delta)

symmint(ctr)

https://github.com/easystats/bayestestR/issues/567

joint_tests 53

Arguments

object a fitted model, emmGrid, or emm_list. If the latter, its first element is used.

by character names of by variables. Separate sets of tests are run for each combi-
nation of these.

show0df logical value; if TRUE, results with zero numerator degrees of freedom are dis-
played, if FALSE they are skipped

showconf logical value. When we have models with estimability issues (e.g., missing
cells), then with showconf = TRUE, we test any remaining effects that are not
purely due to contrasts of a single term. If found, they are labeled (confounded).
See vignette("xplanations") for more information.

cov.reduce a function. If object is a fitted model, it is replaced by ref_grid(object,
cov.reduce = cov.reduce, ...). For this purpose, the functions meanint and
symmint are available for returning an interval around the mean or around zero,
respectively. Se the section below on covariates.

... additional arguments passed to ref_grid and emmeans

delta, ctr arguments for make.meanint and make.symmint

x argument for meanint and symmint

Details

In models with only factors, no covariates, these tests correspond to “type III” tests a la SAS, as
long as equal-weighted averaging is used and there are no estimability issues. When covariates
are present and they interact with factors, the results depend on how the covariate is handled in
constructing the reference grid. See the section on covariates below. The point that one must
always remember is that joint_tests always tests contrasts among EMMs, in the context of the
reference grid, whereas type III tests are tests of model coefficients – which may or may not have
anything to do with EMMs or contrasts.

Value

a summary_emm object (same as is produced by summary.emmGrid). All effects for which there
are no estimable contrasts are omitted from the results. There may be an additional row named
(confounded) which accounts for additional degrees of freedom for effects not accounted for in
the preceding rows.

The returned object also includes an "est.fcns" attribute, which is a named list containing the
linear functions associated with each joint test. Each row of these is standardized to have length 1.
No estimable functions are included for confounded effects.

make.meanint returns the function function(x) mean(x) + delta * c(-1, 1), and make.symmint(ctr,
delta) returns the function function(x) ctr + delta * c(-1, 1) (which does not depend on x).
The cases with delta = 1, meanint = make.meanint(1) and symmint(ctr) = make.symmint(ctr,
1) are retained for back-compatibility reasons. These functions are available primarily for use with
cov.reduce.

54 joint_tests

Dealing with covariates

A covariate (or any other predictor) must have more than one value in the reference grid in order
to test its effect and be included in the results. Therefore, when object is a model, we default to
cov.reduce = meanint which sets each covariate at a symmetric interval about its mean. But when
object is an existing reference grid, it often has only one value for covariates, in which case they
are excluded from the joint tests.

Covariates present further complications in that their values in the reference grid can affect the joint
tests of other effects. When covariates are centered around their means (the default), then the tests
we obtain can be described as joint tests of covariate-adjusted means; and that is our intended use
here. However, some software such as SAS and car::Anova adopt the convention of centering
covariates around zero; and for that purpose, one can use cov.reduce = symmint(0) when calling
with a model object (or in constructing a reference grid). However, adjusted means with covariates
set at or around zero do not make much sense in the context of interpreting estimated marginal
means, unless the covariate means really are zero.

See the examples below with the toy dataset.

See Also

test

Examples

pigs.lm <- lm(log(conc) ~ source * factor(percent), data = pigs)

(jt <- joint_tests(pigs.lm)) ## will be same as type III ANOVA

Estimable functions associated with "percent"
attr(jt, "est.fcns") $ "percent"

joint_tests(pigs.lm, weights = "outer") ## differently weighted

joint_tests(pigs.lm, by = "source") ## separate joint tests of 'percent'

Comparisons with type III tests in SAS
toy = data.frame(

treat = rep(c("A", "B"), c(4, 6)),
female = c(1, 0, 0, 1, 0, 0, 0, 1, 1, 0),
resp = c(17, 12, 14, 19, 28, 26, 26, 34, 33, 27))

toy.fac = lm(resp ~ treat * factor(female), data = toy)
toy.cov = lm(resp ~ treat * female, data = toy)
(These two models have identical fitted values and residuals)

-- SAS output we'd get with toy.fac --
Source DF Type III SS Mean Square F Value Pr > F
treat 1 488.8928571 488.8928571 404.60 <.0001
female 1 78.8928571 78.8928571 65.29 0.0002
treat*female 1 1.7500000 1.7500000 1.45 0.2741
#
-- SAS output we'd get with toy.cov --
Source DF Type III SS Mean Square F Value Pr > F

lsmeans 55

treat 1 252.0833333 252.0833333 208.62 <.0001
female 1 78.8928571 78.8928571 65.29 0.0002
female*treat 1 1.7500000 1.7500000 1.45 0.2741

joint_tests(toy.fac)
joint_tests(toy.cov) # female is regarded as a 2-level factor by default

Treat 'female' as a numeric covariate (via cov.keep = 0)
... then tests depend on where we center things

Center around the mean
joint_tests(toy.cov, cov.keep = 0, cov.reduce = make.meanint(delta = 1))
Center around zero (like SAS's results for toy.cov)
joint_tests(toy.cov, cov.keep = 0, cov.reduce = make.symmint(ctr = 0, delta = 1))
Center around 0.5 (like SAS's results for toy.fac)
joint_tests(toy.cov, cov.keep = 0, cov.reduce = range)

Example with empty cells and confounded effects
low3 <- unlist(attr(ubds, "cells")[1:3])
ubds.lm <- lm(y ~ A*B*C, data = ubds, subset = -low3)

Show overall joint tests by C:
ref_grid(ubds.lm, by = "C") |> contrast("consec") |> test(joint = TRUE)

Break each of the above into smaller components:
joint_tests(ubds.lm, by = "C")

lsmeans Wrappers for alternative naming of EMMs

Description

These are wrappers for emmeans and related functions to provide backward compatibility, or for
users who may prefer to use other terminology than “estimated marginal means” – namely “least-
squares means”. These functions also provide the functionality formerly provided by the lsmeans
package, which is now just a front-end for emmeans.

Usage

lsmeans(...)

lstrends(...)

lsmip(...)

lsm(...)

lsmobj(...)

56 make.tran

lsm.options(...)

get.lsm.option(x, default = emm_defaults[[x]])

Arguments

... Arguments passed to the corresponding emxxxx function
x Character name of desired option
default default value to return if x not found

Details

For each function with lsxxxx in its name, the same function named emxxxx is called. Any estimator
names or list items beginning with “em” are replaced with “ls” before the results are returned

Value

The result of the call to emxxxx, suitably modified.

get.lsm.option and lsm.options remap options from and to corresponding options in the em-
means options system.

See Also

emmeans, emtrends, emmip, emm, emmobj, emm_options, get_emm_option

Examples

pigs.lm <- lm(log(conc) ~ source + factor(percent), data = pigs)
lsmeans(pigs.lm, "source")

make.tran Response-transformation extensions

Description

The make.tran function creates the needed information to perform transformations of the response
variable, including inverting the transformation and estimating variances of back-transformed pre-
dictions via the delta method. make.tran is similar to make.link, but it covers additional trans-
formations. The result can be used as an environment in which the model is fitted, or as the tran
argument in update.emmGrid (when the given transformation was already applied in an existing
model).

Usage

make.tran(type = c("genlog", "power", "boxcox", "sympower", "asin.sqrt",
"atanh", "bcnPower", "scale"), alpha = 1, beta = 0, param, y, inner, ...)

inverse(y)

make.tran 57

Arguments

type The name of a standard transformation supported by stat::make.link, or of a
special transformation described under Details.

alpha, beta Numeric parameters needed for special transformations.
param If non-missing, this specifies either alpha or c(alpha, beta) (provided for

backward compatibility). Also, for the same reason, if alpha is of length more
than 1, it is taken as param.

y A numeric response variable used (and required) with type = "scale", where
scale(y) determines alpha and beta.

inner another transformation. See the section on compound transformations
... Additional arguments passed to other functions/methods

Value

A list having at least the same elements as those returned by make.link. The linkfun component
is the transformation itself. Each of the functions is associated with an environment where any
parameter values are defined.

inverse returns the reciprocal of its argument. It allows the "inverse" link to be auto-detected as
a response transformation.

Details

The make.tran function returns a suitable list of functions for several popular transformations.
Besides being usable with update, the user may use this list as an enclosing environment in fitting
the model itself, in which case the transformation is auto-detected when the special name linkfun
(the transformation itself) is used as the response transformation in the call. See the examples below.

The primary purpose of make.tran is to support transformations that require additional parameters,
specified as alpha and beta; these are the onse shown in the argument-matching list. However,
standard transformations supported by stats::make.link are also supported. In the following
discussion of ones requiring parameters, we use α and β to denote alpha and beta, and y to denote
the response variable. The type argument specifies the following transformations:

"genlog" Generalized logarithmic transformation: logβ(y+α), where y > −α. When β = 0 (the
default), we use loge(y + α)

"power" Power transformation: (y − β)α, where y > β. When α = 0, log(y − β) is used instead.
"boxcox" The Box-Cox transformation (unscaled by the geometric mean): ((y − β)α − 1)/α,

where y > β. When α = 0, log(y − β) is used.
"sympower" A symmetrized power transformation on the whole real line: |y − β|α · sign(y − β).

There are no restrictions on y, but we require α > 0 in order for the transformation to be
monotone and continuous.

"asin.sqrt" Arcsin-square-root transformation: sin−1(y/α)1/2. Typically, alpha will be either
1 (default) or 100.

"atanh" Arctanh transformation: tanh−1(y/α). Typically, alpha will be either 1 (default) or 100.
"bcnPower" Box-Cox with negatives allowed, as described for the bcnPower function in the car

package. It is defined as the Box-Cox transformation (zα − 1)/α of the variable z = y +
(y2 + β2)1/2. Note that this requires both parameters and that beta > 0.

58 make.tran

"scale" This one is a little different than the others, in that alpha and beta are ignored; instead,
they are determined by calling scale(y, ...). The user should give as y the response variable
in the model to be fitted to its scaled version.

Note that with the "power", "boxcox", or "sympower" transformations, the argument beta spec-
ifies a location shift. In the "genpower" transformation, beta specifies the base of the logarithm
– however, quirkily, the default of beta = 0 is taken to be the natural logarithm. For example,
make.tran(0.5, 10) sets up the log10(y + 1

2) transformation. In the "bcnPower" transformation,
beta must be specified as a positive value.

For purposes of back-transformation, the ‘sqrt(y) + sqrt(y+1)’ transformation is treated exactly
the same way as ‘2*sqrt(y)’, because both are regarded as estimates of 2

√
µ.

Cases where make.tran may not be needed

For standard transformations with no parameters, we usually don’t need to use make.tran; just the
name of the transformation is all that is needed. The functions emmeans, ref_grid, and related ones
automatically detect response transformations that are recognized by examining the model formula.
These are log, log2, log10, log1p, sqrt, logit, probit, cauchit, cloglog; as well as (for a
response variable y) asin(sqrt(y)), asinh(sqrt(y)), atanh(y), and sqrt(y) + sqrt(y+1). In
addition, any constant multiple of these (e.g., 2*sqrt(y)) is auto-detected and appropriately scaled
(see also the tran.mult argument in update.emmGrid).

A few additional transformations may be specified as character strings and are auto-detected: "identity",
"1/mu^2", "inverse", "reciprocal", "log10", "log2", "asin.sqrt", "asinh.sqrt", and "atanh".

Compound transformations

A transformation that is a function of another function can be created by specifying inner for the
other function. For example, the transformation 1/

√
y can be created either by make.tran("inverse",

inner = "sqrt") or by make.tran("power",-0.5). In principle, transformations can be com-
pounded to any depth. Also, if type is "scale", y is replaced by inner$linkfun(y), because that
will be the variable that is scaled.

Note

The genlog transformation is technically unneeded, because a response transformation of the form
log(y + c) is now auto-detected by ref_grid.

We modify certain make.link results in transformations where there is a restriction on valid pre-
diction values, so that reasonable inverse predictions are obtained, no matter what. For example, if
a sqrt transformation was used but a predicted value is negative, the inverse transformation is zero
rather than the square of the prediction. A side effect of this is that it is possible for one or both
confidence limits, or even a standard error, to be zero.

Examples

Fit a model using an oddball transformation:
bctran <- make.tran("boxcox", 0.368)
warp.bc <- with(bctran,

lm(linkfun(breaks) ~ wool * tension, data = warpbreaks))
Obtain back-transformed LS means:

MOats 59

emmeans(warp.bc, ~ tension | wool, type = "response")

Using a scaled response...
Case where it is auto-detected:
mod <- lm(scale(yield[, 1]) ~ Variety, data = MOats)
emmeans(mod, "Variety", type = "response")

Case where scaling is not auto-detected -- and what to do about it:
copt <- options(contrasts = c("contr.sum", "contr.poly"))
mod.aov <- aov(scale(yield[, 1]) ~ Variety + Error(Block), data = MOats)
emm.aov <- suppressWarnings(emmeans(mod.aov, "Variety", type = "response"))

Scaling was not retrieved, but we can do:
emm.aov <- update(emm.aov, tran = make.tran("scale", y = MOats$yield[, 1]))
emmeans(emm.aov, "Variety", type = "response")

Compound transformations
The following amount to the same thing:
t1 <- make.tran("inverse", inner = "sqrt")
t2 <- make.tran("power", -0.5)

options(copt)

Not run:
An existing model 'mod' was fitted with a y^(2/3) transformation...

ptran = make.tran("power", 2/3)
emmeans(mod, "treatment", tran = ptran)

End(Not run)

pigs.lm <- lm(inverse(conc) ~ source + factor(percent), data = pigs)
emmeans(pigs.lm, "source", type = "response")

MOats Oats data in multivariate form

Description

This is the Oats dataset provided in the nlme package, but it is rearranged as one multivariate
observation per plot.

Usage

MOats

Format

A data frame with 18 observations and 3 variables

60 models

Variety a factor with levels Golden Rain, Marvellous, Victory

Block an ordered factor with levels VI < V < III < IV < II < I

yield a matrix with 4 columns, giving the yields with nitrogen concentrations of 0, .2, .4, and .6.

Details

These data arise from a split-plot experiment reported by Yates (1935) and used as an example in
Pinheiro and Bates (2000) and other texts. Six blocks were divided into three whole plots, randomly
assigned to the three varieties of oats. The whole plots were each divided into 4 split plots and
randomized to the four concentrations of nitrogen.

Source

The dataset Oats in the nlme package.

References

Pinheiro, J. C. and Bates D. M. (2000) Mixed-Effects Models in S and S-PLUS, Springer, New York.
(Appendix A.15)

Yates, F. (1935) Complex experiments, Journal of the Royal Statistical Society Suppl. 2, 181-247

Examples

MOats.lm <- lm (yield ~ Block + Variety, data = MOats)
MOats.rg <- ref_grid (MOats.lm, mult.name = "nitro")
emmeans(MOats.rg, ~ nitro | Variety)

models Models supported in emmeans

Description

Documentation for models has been moved to a vignette. To access it, use vignette("models",
"emmeans").

../doc/models.html
../doc/models.html

mvcontrast 61

mvcontrast Multivariate contrasts

Description

This function displays tests of multivariate comparisons or contrasts. The contrasts are constructed
at each level of the variable in mult.name, and then we do a multivariate test that the vector of
estimates is equal to null (zero by default). The F statistic and degrees of freedom are determined
via the Hotelling distribution. that is, if there are m error degrees of freedom and multivariate
dimensionality d, then the resulting F statistic has degrees of freedom (d,m− d+ 1) as shown in
Hotelling (1931).

Usage

mvcontrast(object, method = "eff", mult.name = object@roles$multresp,
null = 0, by = object@misc$by.vars, adjust = c("sidak",
p.adjust.methods), show.ests = FALSE, ...)

Arguments

object An object of class emmGrid

method A contrast method, per contrast.emmGrid

mult.name Character vector of names of the factors whose levels define the multivariate
means to contrast. If the model itself has a multivariate response, that is what is
used. Otherwise, mult.name must be specified.

null Scalar or conformable vector of null-hypothesis values to test against

by Any by variable(s). These should not include the primary variables to be con-
trasted. For convenience, the by variable is nulled-out if it would result in no
primary factors being contrasted.

adjust Character value of a multiplicity adjustment method ("none" for no adjustment).
The available adjustment methods are more limited that in contrast, and any
default adjustment returned via method is ignored.

show.ests Logical flag determining whether the multivariate means are displayed

... Additional arguments passed to contrast

Value

An object of class summary_emm containing the multivariate test results; or a list of the estimates and
the tests if show.ests is TRUE. The test results include the Hotelling T 2 statistic, F ratios, degrees
of freedom, and P values.

62 mvregrid

Note

If some interactions among the primary and mult.name factors are absent, the covariance of the
multivariate means is singular; this situation is accommodated, but the result has reduced degrees
of freedom and a message is displayed. If there are other abnormal conditions such as non-estimable
results, estimates are shown as NA.

While designed primarily for testing contrasts, multivariate tests of the mean vector itself can be
implemented via method = "identity") (see the examples).

References

Hotelling, Harold (1931) "The generalization of Student’s ratio", Annals of Mathematical Statistics
2(3), 360–378. doi:10.1214/aoms/1177732979

Examples

MOats.lm <- lm(yield ~ Variety + Block, data = MOats)
MOats.emm <- emmeans(MOats.lm, ~ Variety | rep.meas)
mvcontrast(MOats.emm, "consec", show.ests = TRUE) # mult.name defaults to rep.meas

Test each mean against a specified null vector
mvcontrast(MOats.emm, "identity", name = "Variety",

null = c(80, 100, 120, 140), adjust = "none")
(Note 'name' is passed to contrast() and overrides default name "contrast")

'mult.name' need not refer to a multivariate response
mvcontrast(MOats.emm, "trt.vs.ctrl1", mult.name = "Variety")

mvregrid Multivariate regridding

Description

This function is similar to regrid except it performs a multivariate transformation. This is useful,
for instance, in multivariate models that have a compositional response.

Usage

mvregrid(object, newname = "component", newlevs = seq_len(ncol(newy)),
mult.name = names(levels)[length(levels)], fcn = paste0(tran, "Inv"),
...)

Arguments

object An emmGrid object

newname The name to give to the newly created multivariate factor

neuralgia 63

newlevs Character levels of the newly created factor (must conform to the number of
columns created by fcn)

mult.name The name of the multivariate factor to be transformed. By default, we use the
last factor

fcn The multivariate function to apply. If character, we look for it in the namespace
of the compositions package.

... Additional arguments passed to fcn

Details

If a multivariate response transformation was used in fitting the model, its name is auto-detected,
and in that case we need not specify fcn as long as its inverse can be found in the namespace of the
compositions package. (That package need not be installed unless fcn is a character value.) For
some such models, auto-detection process throws a warning message, especially if cbind is also
present in the model formula.

Currently, no bias-adjustment option is available.

Value

A new emmGrid object with the newly created factor as its last factor

Examples

if(requireNamespace("compositions"))
emm_example("mvregrid")
Use emm_example("mvregrid", list = TRUE) # to see just the code

neuralgia Neuralgia data

Description

These data arise from a study of analgesic effects of treatments of elderly patients who have neu-
ralgia. Two treatments and a placebo are compared. The response variable is whether the patient
reported pain or not. Researchers recorded the age and gender of 60 patients along with the duration
of complaint before the treatment began.

Usage

neuralgia

64 nutrition

Format

A data frame with 60 observations and 5 variables:

Treatment Factor with 3 levels A, B, and P. The latter is placebo

Sex Factor with two levels F and M

Age Numeric covariate – patient’s age in years

Duration Numeric covariate – duration of the condition before beginning treatment

Pain Binary response factor with levels No and Yes

Source

Cai, Weijie (2014) Making Comparisons Fair: How LS-Means Unify the Analysis of Linear Models,
SAS Institute, Inc. Technical paper 142-2014, page 12, http://support.sas.com/resources/
papers/proceedings14/SAS060-2014.pdf

Examples

Model and analysis shown in the SAS report:
neuralgia.glm <- glm(Pain ~ Treatment * Sex + Age, family = binomial(),

data = neuralgia)
pairs(emmeans(neuralgia.glm, ~ Treatment, at = list(Sex = "F")),

reverse = TRUE, type = "response", adjust = "bonferroni")

nutrition Nutrition data

Description

This observational dataset involves three factors, but where several factor combinations are missing.
It is used as a case study in Milliken and Johnson, Chapter 17, p.202. (You may also find it in the
second edition, p.278.)

Usage

nutrition

Format

A data frame with 107 observations and 4 variables:

age a factor with levels 1, 2, 3, 4. Mother’s age group.

group a factor with levels FoodStamps, NoAid. Whether or not the family receives food stamp
assistance.

race a factor with levels Black, Hispanic, White. Mother’s race.

gain a numeric vector (the response variable). Gain score (posttest minus pretest) on knowledge
of nutrition.

http://support.sas.com/resources/papers/proceedings14/SAS060-2014.pdf
http://support.sas.com/resources/papers/proceedings14/SAS060-2014.pdf

oranges 65

Details

A survey was conducted by home economists “to study how much lower-socioeconomic-level moth-
ers knew about nutrition and to judge the effect of a training program designed to increase their
knowledge of nutrition.” This is a messy dataset with several empty cells.

Source

Milliken, G. A. and Johnson, D. E. (1984) Analysis of Messy Data – Volume I: Designed Experi-
ments. Van Nostrand, ISBN 0-534-02713-7.

Examples

nutr.aov <- aov(gain ~ (group + age + race)^2, data = nutrition)

Summarize predictions for age group 3
nutr.emm <- emmeans(nutr.aov, ~ race * group, at = list(age="3"))

emmip(nutr.emm, race ~ group)

Hispanics seem exceptional; but this doesn't test out due to very sparse data
pairs(nutr.emm, by = "group")
pairs(nutr.emm, by = "race")

oranges Sales of oranges

Description

This example dataset on sales of oranges has two factors, two covariates, and two responses. There
is one observation per factor combination.

Usage

oranges

Format

A data frame with 36 observations and 6 variables:

store a factor with levels 1 2 3 4 5 6. The store that was observed.

day a factor with levels 1 2 3 4 5 6. The day the observation was taken (same for each store).

price1 a numeric vector. Price of variety 1.

price2 a numeric vector. Price of variety 2.

sales1 a numeric vector. Sales (per customer) of variety 1.

sales2 a numeric vector. Sales (per customer) of variety 2.

66 pigs

Source

This is (or once was) available as a SAS sample dataset.

References

Littell, R., Stroup W., Freund, R. (2002) SAS For Linear Models (4th edition). SAS Institute. ISBN
1-59047-023-0.

Examples

Example on p.244 of Littell et al.
oranges.lm <- lm(sales1 ~ price1*day, data = oranges)
emmeans(oranges.lm, "day")

Example on p.246 of Littell et al.
emmeans(oranges.lm, "day", at = list(price1 = 0))

A more sensible model to consider, IMHO (see vignette("interactions"))
org.mlm <- lm(cbind(sales1, sales2) ~ price1 * price2 + day + store,

data = oranges)

pigs Effects of dietary protein on free plasma leucine concentration in pigs

Description

A two-factor experiment with some observations lost

Usage

pigs

Format

A data frame with 29 observations and 3 variables:

source Source of protein in the diet (factor with 3 levels: fish meal, soybean meal, dried skim milk)

percent Protein percentage in the diet (numeric with 4 values: 9, 12, 15, and 18)

conc Concentration of free plasma leucine, in mcg/ml

Source

Windels HF (1964) PhD thesis, Univ. of Minnesota. (Reported as Problem 10.8 in Oehlert G
(2000) A First Course in Design and Analysis of Experiments, licensed under Creative Commons,
http://users.stat.umn.edu/~gary/Book.html.) Observations 7, 22, 23, 31, 33, and 35 have
been omitted, creating a more notable imbalance.

http://users.stat.umn.edu/~gary/Book.html

plot.emmGrid 67

Examples

pigs.lm <- lm(inverse(conc) ~ source + factor(percent), data = pigs)
emmeans(pigs.lm, "source")

plot.emmGrid Plot an emmGrid or summary_emm object

Description

Methods are provided to plot EMMs as side-by-side CIs, and optionally to display “comparison
arrows” for displaying pairwise comparisons.

Usage

S3 method for class 'emmGrid'
plot(x, y, type, CIs = TRUE, PIs = FALSE,
comparisons = FALSE, colors = c("black", "blue", "blue", "red"),
alpha = 0.05, adjust = "tukey", int.adjust = "none", intervals, ...)

S3 method for class 'summary_emm'
plot(x, y, horizontal = TRUE, CIs = TRUE, xlab, ylab,
layout, scale = NULL, colors = c("black", "blue", "blue", "red"),
intervals, plotit = TRUE, ...)

Arguments

x Object of class emmGrid or summary_emm

y (Required but ignored)

type Character value specifying the type of prediction desired (matching "linear.predictor",
"link", or "response"). See details under summary.emmGrid. In addition, the
user may specify type = "scale", in which case a transformed scale (e.g., a
log scale) is displayed based on the transformation or link function used. Ad-
ditional customization of this scale is available through including arguments to
ggplot2::scale_x_continuous in

CIs Logical value. If TRUE, confidence intervals are plotted for each estimate.

PIs Logical value. If TRUE, prediction intervals are plotted for each estimate. If
object is a Bayesian model, this requires the ... arguments to include frequentist
= TRUE and sigma = (some value). Note that the PIs option is not available with
summary_emm objects – only for emmGrid objects. Also, prediction intervals are
not available with engine = "lattice".

comparisons Logical value. If TRUE, “comparison arrows” are added to the plot, in such a way
that the degree to which arrows overlap reflects as much as possible the signifi-
cance of the comparison of the two estimates. (A warning is issued if this can’t
be done.) Note that comparison arrows are not available with ‘summary_emm‘
objects.

68 plot.emmGrid

colors Character vector of color names to use for estimates, CIs, PIs, and comparison
arrows, respectively. CIs and PIs are rendered with some transparency, and
colors are recycled if the length is less than four; so all plot elements are visible
even if a single color is specified.

alpha The significance level to use in constructing comparison arrows

adjust Character value: Multiplicity adjustment method for comparison arrows only.

int.adjust Character value: Multiplicity adjustment method for the plotted confidence in-
tervals only.

intervals If specified, it is used to set CIs. This is the previous argument name for CIs
and is provided for backward compatibility.

... Additional arguments passed to update.emmGrid, summary.emmGrid, predict.emmGrid,
or dotplot

horizontal Logical value specifying whether the intervals should be plotted horizontally or
vertically

xlab Character label for horizontal axis

ylab Character label for vertical axis

layout Numeric value passed to dotplot when engine == "lattice".

scale Object of class trans (in the scales package) to specify a nonlinear scale. This
is used in lieu of type = "scale" when plotting a summary_emm object created
with type = "response". This is ignored with other types of summaries.

plotit Logical value. If TRUE, a graphical object is returned; if FALSE, a data.frame is
returned containing all the values used to construct the plot.

Value

If plotit = TRUE, a graphical object is returned.

If plotit = FALSE, a data.frame with the table of EMMs that would be plotted. In the latter case,
the estimate being plotted is named the.emmean, and any factors involved have the same names as
in the object. Confidence limits are named lower.CL and upper.CL, prediction limits are named
lpl and upl, and comparison-arrow limits are named lcmpl and ucmpl. There is also a variable
named pri.fac which contains the factor combinations that are not among the by variables.

Details

If any by variables are in force, the plot is divided into separate panels. For "summary_emm" objects,
the ... arguments in plot are passed only to dotplot, whereas for "emmGrid" objects, the object
is updated using ... before summarizing and plotting.

In plots with comparisons = TRUE, the resulting arrows are only approximate, and in some cases
may fail to accurately reflect the pairwise comparisons of the estimates – especially when estimates
having large and small standard errors are intermingled in just the wrong way. Note that the maxi-
mum and minimum estimates have arrows only in one direction, since there is no need to compare
them with anything higher or lower, respectively. See the vignette("xplanations", "emmeans")
for details on how these are derived.

If adjust or int.adjust are not supplied, they default to the internal adjust setting saved in
pairs(x) and x respectively (see update.emmGrid).

../doc/xplanations.html#arrows

pwpm 69

Note

In order to play nice with the plotting functions, any variable names that are not syntactically correct
(e.g., contain spaces) are altered using make.names.

Examples

warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
warp.emm <- emmeans(warp.lm, ~ tension | wool)
plot(warp.emm)
plot(warp.emm, by = NULL, comparisons = TRUE, adjust = "mvt",

horizontal = FALSE, colors = "darkgreen")

Using a transformed scale
pigs.lm <- lm(log(conc + 2) ~ source * factor(percent), data = pigs)
pigs.emm <- emmeans(pigs.lm, ~ percent | source)
plot(pigs.emm, type = "scale", breaks = seq(20, 100, by = 10))

Based on a summary.
To get a transformed axis, must specify 'scale'; but it does not necessarily
have to be the same as the actual response transformation
pigs.ci <- confint(pigs.emm, type = "response")
plot(pigs.ci, scale = scales::log10_trans())

pwpm Pairwise P-value matrix (plus other statistics)

Description

This function presents results from emmeans and pairwise comparisons thereof in a compact way. It
displays a matrix (or matrices) of estimates, pairwise differences, and P values. The user may opt to
exclude any of these via arguments means, diffs, and pvals, respectively. To control the direction
of the pairwise differences, use reverse; and to control what appears in the upper and lower trian-
gle(s), use flip. Optional arguments are passed to contrast.emmGrid and/or summary.emmGrid,
making it possible to control what estimates and tests are displayed.

Usage

pwpm(emm, by, reverse = FALSE, pvals = TRUE, means = TRUE,
diffs = TRUE, flip = FALSE, digits, ...)

Arguments

emm An emmGrid object

by Character vector of variable(s) in the grid to condition on. These will create
different matrices, one for each level or level-combination. If missing, by is set
to emm@misc$by.vars. Grid factors not in by are the primary factors: whose
levels or level combinations are compared pairwise.

70 pwpp

reverse Logical value passed to pairs.emmGrid. Thus, FALSE specifies "pairwise"
comparisons (earlier vs. later), and TRUE specifies "revpairwise" comparisons
(later vs. earlier).

pvals Logical value. If TRUE, the pairwise differences of the EMMs are included in
each matrix according to flip.

means Logical value. If TRUE, the estimated marginal means (EMMs) from emm are
included in the matrix diagonal(s).

diffs Logical value. If TRUE, the pairwise differences of the EMMs are included in
each matrix according to flip.

flip Logical value that determines where P values and differences are placed. FALSE
places the P values in the upper triangle and differences in the lower, and TRUE
does just the opposite.

digits Integer. Number of digits to display. If missing, an optimal number of digits is
determined.

... Additional arguments passed to contrast.emmGrid and summary.emmGrid. You
should not include method here, because pairwise comparisons are always used.

Value

A matrix or ‘list‘ of matrices, one for each ‘by‘ level.

Note

If emm is the result of a Bayesian analysis, pwpm is based on a frequentist analysis

See Also

A graphical display of essentially the same results is available from pwpp

Examples

warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
warp.emm <- emmeans(warp.lm, ~ tension | wool)

pwpm(warp.emm)

use dot options to specify noninferiority tests
pwpm(warp.emm, by = NULL, side = ">", delta = 5, adjust = "none")

pwpp Pairwise P-value plot

Description

Constructs a plot of P values associated with pairwise comparisons of estimated marginal means.

pwpp 71

Usage

pwpp(emm, method = "pairwise", by, sort = TRUE, values = TRUE,
rows = ".", xlab, ylab, xsub = "", plim = numeric(0), add.space = 0,
aes, ...)

Arguments

emm An emmGrid object
method Character or list. Passed to contrast, and defines the contrasts to be dis-

played. Any contrast method may be used, provided that each contrast in-
cludes one coefficient of 1, one coefficient of -1, and the rest 0. That is, calling
contrast(object, method) produces a set of comparisons, each with one es-
timate minus another estimate.

by Character vector of variable(s) in the grid to condition on. These will create
different panels, one for each level or level-combination. Grid factors not in
by are the primary factors: whose levels or level combinations are compared
pairwise.

sort Logical value. If TRUE, levels of the factor combinations are ordered by their
marginal means. If FALSE, they appear in order based on the existing ordering
of the factor levels involved. Note that the levels are ordered the same way in
all panels, and in many cases this implies that the means in any particular panel
will not be ordered even when sort = TRUE.

values Logical value. If TRUE, the values of the EMMs are included in the plot. When
there are several side-by-side panels due to by variable(s), the labels showing
values start stealing a lot of space from the plotting area; in those cases, it may
be desirable to specify FALSE or use rows so that some panels are vertically
stacked.

rows Character vector of which by variable(s) are used to define rows of the panel
layout. Those variables in by not included in rows define columns in the array
of panels. A "." indicates that only one row is used, so all panels are stacked
side-by-side.

xlab Character label to use in place of the default for the P-value axis.
ylab Character label to use in place of the default for the primary-factor axis.
xsub Character label used as caption at the lower right of the plot.
plim numeric vector of value(s) between 0 and 1. These are included among the

observed p values so that the range of tick marks includes at least the range of
plim. Choosing plim = c(0,1) will ensure the widest possible range.

add.space Numeric value to adjust amount of space used for value labels. Positioning of
value labels is tricky, and depends on how many panels and the physical size
of the plotting region. This parameter allows the user to adjust the position.
Changing it by one unit should shift the position by about one character width
(right if positive, left if negative). Note that this interacts with aes$label below.

aes optional named list of lists. Entries considered are point, segment, and label,
and contents are passed to the respective ggplot2::geom_xxx() functions. These
affect rendering of points, line segments joining them, and value labels. Defaults
are point = list(size = 2), segment = list(), and label = list(size = 2.5).

72 qdrg

... Additional arguments passed to contrast and summary.emmGrid, as well as to
geom_segment and geom_label

Details

Factor levels (or combinations thereof) are plotted on the vertical scale, and P values are plotted on
the horizontal scale. Each P value is plotted twice – at vertical positions corresponding to the levels
being compared – and connected by a line segment. Thus, it is easy to visualize which P values are
small and large, and which levels are compared. In addition, factor levels are color-coded, and the
points and half-line segments appear in the color of the other level. The P-value scale is nonlinear,
so as to stretch-out smaller P values and compress larger ones. P values smaller than 0.0004 are
altered and plotted in a way that makes them more distinguishable from one another.

If xlab, ylab, and xsub are not provided, reasonable labels are created. xsub is used to note special
features; e.g., equivalence thresholds or one-sided tests.

Note

If emm is the result of a Bayesian analysis, the plot is based on summaries with frequentist =
TRUE.

The ggplot2 and scales packages must be installed in order for pwpp to work.

Additional plot aesthetics are available by adding them to the returned object; see the examples

See Also

A numerical display of essentially the same results is available from pwpm

Examples

pigs.lm <- lm(log(conc) ~ source * factor(percent), data = pigs)
emm = emmeans(pigs.lm, ~ percent | source)
pwpp(emm)
pwpp(emm, method = "trt.vs.ctrl1", type = "response", side = ">")

custom aesthetics:
my.aes <- list(point = list(shape = "square"),

segment = list(linetype = "dashed", color = "red"),
label = list(family = "serif", fontface = "italic"))

my.pal <- c("darkgreen", "blue", "magenta", "orange")
pwpp(emm, aes = my.aes) + ggplot2::scale_color_manual(values = my.pal)

qdrg Quick and dirty reference grid

Description

This function may make it possible to compute a reference grid for a model object that is otherwise
not supported.

qdrg 73

Usage

qdrg(formula, data, coef, vcov, df, mcmc, object, subset, weights, contrasts,
link, qr, ordinal, ...)

Arguments

formula Formula for the fixed effects

data Dataset containing the variables in the model

coef Fixed-effect regression coefficients (must conform to formula)

vcov Variance-covariance matrix of the fixed effects

df Error degrees of freedom

mcmc Posterior sample of fixed-effect coefficients

object Optional model object. This rarely works!; but if provided, we try to set other
arguments based on an expectation that ‘object‘ has a similar structure to ‘lm‘
objects. See Details.

subset Subset of data used in fitting the model

weights Weights used in fitting the model

contrasts List of contrasts specified in fitting the model

link Link function (character or list) used, if a generalized linear model. (Note: re-
sponse transformations are auto-detected from formula)

qr QR decomposition of the model matrix; used only if there are NAs in coef.

ordinal list with elements dim and mode. ordinal$dim (integer) is the number of lev-
els in an ordinal response. If ordinal is provided, the intercept terms are modi-
fied appropriate to predicting an ordinal response, as described in vignette("models"),
Section O, using ordinal$mode as the mode argument (if not provided, "latent"
is assumed). (All modes are supported except ‘scale‘) For this to work, we ex-
pect the first ordinal$dim - 1 elements of coef to be the estimated threshold
parameters, followed by the coefficients for the linear predictor.

... Optional arguments passed to ref_grid

Details

Usually, you need to provide either object; or formula, coef, vcov, data, and perhaps other pa-
rameters. It is usually fairly straightforward to figure out how to get these from the model object;
see the documentation for the model class that was fitted. Sometimes one or more of these quantities
contains extra parameters, and if so, you may need to subset them to make everything conformable.
For a given formula and data, you can find out what is needed via colnames(model.matrix(formula,
data)). (However, for an ordinal model, we expect the first ordinal.dim - 1 coefficients to re-
place (Intercept). And for a multivariate model, we expect coef to be a matrix with these row
names, and vcov to have as many rows and columns as the total number of elements of coef.)

If your model object follows fairly closely the conventions of an lm or glmobject, you may be able to
get by providing the model as object, and perhaps some other parameters to override the defaults.
When object is specified, it is used as detailed below to try to obtain the other arguments. The user
should ensure that the defaults shown below do indeed work. The default values for the arguments
are as follows:

74 qdrg

• formula: formula(object)

• data: recover_data.lm(object) is tried, and if an error is thrown, we also check object$data.

• coef: coef(object)

• vcov: vcov(object)

• df: Set to Inf if not available in df.residual(object)

• mcmc: object$sample

• subset: NULL (so that all observations in data are used)

• contrasts: object$contrasts

The functions qdrg and emmobj are close cousins, in that they both produce emmGrid objects. When
starting with summary statistics for an existing grid, emmobj is more useful, while qdrg is more
useful when starting from a fitted model.

Value

An emmGrid object constructed from the arguments

Rank deficiencies

Different model-fitting packages take different approaches when the model matrix is singular, but
qdrg tries to reconcile them by comparing the linear functions created by formula to coefs and
vcov. We may then use the estimability package to determine what quantities are estimable. For
reconciling to work properly, coef should be named and vcov should have dimnames. To dis-
able this name-matching action, remove the names from coef, e.g., by calling unname(). No
reconciliation is attempted in multivariate-response cases. For more details on estimability, see the
documentation in the estimability package.

Note

For backwards compatibility, an argument ordinal.dim is invisibly supported as part of ..., and
if present, sets ordinal = list(dim = ordinal.dim, mode = "latent")

See Also

emmobj for an alternative way to construct an emmGrid.

Examples

In these examples, use emm_example(..., list = TRUE) # to see just the code

if (require(biglm, quietly = TRUE))
emm_example("qdrg-biglm")

if(require(coda, quietly = TRUE) && require(lme4, quietly = TRUE))
emm_example("qdrg-coda")

if(require(ordinal, quietly = TRUE))
emm_example("qdrg-ordinal")

rbind.emmGrid 75

rbind.emmGrid Combine or subset emmGrid objects

Description

These functions provide methods for rbind and [that may be used to combine emmGrid objects
together, or to extract a subset of cases. The primary reason for doing this would be to obtain
multiplicity-adjusted results for smaller or larger families of tests or confidence intervals.

Usage

S3 method for class 'emmGrid'
rbind(..., deparse.level = 1, adjust = "bonferroni")

S3 method for class 'emmGrid'
e1 + e2

S3 method for class 'emmGrid'
x[i, adjust, drop.levels = TRUE, ...]

S3 method for class 'emmGrid'
head(x, n = 6, ...)

S3 method for class 'emmGrid'
tail(x, n = 6, ...)

S3 method for class 'emmGrid'
subset(x, subset, ...)

S3 method for class 'emm_list'
rbind(..., which, adjust = "bonferroni")

S3 method for class 'summary_emm'
rbind(..., which)

force_regular(object)

Arguments

... In rbind, object(s) of class emmGrid or summary_emm. In others, additional
arguments passed to other methods

deparse.level (required but not used)

adjust Character value passed to update.emmGrid

e1, e2, x, object Objects of class emmGrid

i Integer vector of indexes

76 rbind.emmGrid

drop.levels Logical value. If TRUE, the "levels" slot in the returned object is updated to
hold only the predictor levels that actually occur

n integer number of entries to include (or exclude if negative)

subset logical expression indicating which rows of the grid to keep

which Integer vector of subset of elements to use; if missing, all are combined

Value

A revised object of class emmGrid

The result of e1 + e2 is the same as rbind(e1, e2)

The rbind method for emm_list objects simply combines the emmGrid objects comprising the first
element of Note that the returned object is not yet summarized, so any adjust parameters
apply to the combined emmGrid.

The rbind method for summary_emm objects (or a list thereof) returns a single summary_emm ob-
ject. This combined object preserves any adjusted P values or confidence limits in the original
summaries, since those quantities have already been computed.

force_regular adds extra (invisible) rows to an emmGrid object to make it a regular grid (all
combinations of factors). This regular structure is needed by emmeans. An object can become
irregular by, for example, subsetting rows, or by obtaining contrasts of a nested structure.

Note

rbind throws an error if there are incompatibilities in the objects’ coefficients, covariance struc-
tures, etc. But they are allowed to have different factors; a missing level '.' is added to factors as
needed.

These functions generally reset by.vars to NULL; so if you want to keep any “by” variables, you
should follow-up with update.emmGrid.

Examples

warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
warp.rg <- ref_grid(warp.lm)

Do all pairwise comparisons within rows or within columns,
all considered as one faily of tests:
w.t <- pairs(emmeans(warp.rg, ~ wool | tension))
t.w <- pairs(emmeans(warp.rg, ~ tension | wool))
rbind(w.t, t.w, adjust = "mvt")
update(w.t + t.w, adjust = "fdr") ## same as above except for adjustment

Show only 3 of the 6 cases
summary(warp.rg[c(2, 4, 5)])

After-the-fact 'at' specification
subset(warp.rg, wool == "A") ## or warp.rg |> subset(wool == "A")

Working with 'emm_list' objects

ref_grid 77

mod <- lm(conc ~ source + factor(percent), data = pigs)
all <- emmeans(mod, list(src = pairwise ~ source, pct = consec ~ percent))
rbind(all, which = c(2, 4), adjust = "mvt")

Irregular object
tmp <- warp.rg[-1]
emmeans(tmp, "tension") # will fail because tmp is irregular
emmeans(force_regular(tmp), "tension") # will show some results

ref_grid Create a reference grid from a fitted model

Description

Using a fitted model object, determine a reference grid for which estimated marginal means are
defined. The resulting ref_grid object encapsulates all the information needed to calculate EMMs
and make inferences on them.

Usage

ref_grid(object, at, cov.reduce = mean,
cov.keep = get_emm_option("cov.keep"), mult.names, mult.levs,
options = get_emm_option("ref_grid"), data, df, type, regrid, nesting,
offset, sigma, counterfactuals, nuisance = character(0), non.nuisance,
wt.nuis = "equal", rg.limit = get_emm_option("rg.limit"), ...)

Arguments

object An object produced by a supported model-fitting function, such as lm. Many
models are supported. See vignette("models", "emmeans").

at Optional named list of levels for the corresponding variables

cov.reduce A function, logical value, or formula; or a named list of these. Each covariate
not specified in cov.keep or at is reduced according to these specifications. See
the section below on “Using cov.reduce and cov.keep”.

cov.keep Character vector: names of covariates that are not to be reduced; these are
treated as factors and used in weighting calculations. cov.keep may also in-
clude integer value(s), and if so, the maximum of these is used to set a threshold
such that any covariate having no more than that many unique values is auto-
matically included in cov.keep.

mult.names Character value: the name(s) to give to the pseudo-factor(s) whose levels delin-
eate the elements of a multivariate response. If this is provided, it overrides the
default name(s) used for class(object) when it has a multivariate response
(e.g., the default is "rep.meas" for "mlm" objects).

mult.levs A named list of levels for the dimensions of a multivariate response. If there
is more than one element, the combinations of levels are used, in expand.grid
order. The (total) number of levels must match the number of dimensions. If
mult.name is specified, this argument is ignored.

../doc/models.html

78 ref_grid

options If non-NULL, a named list of arguments to pass to update.emmGrid, just after
the object is constructed.

data A data.frame to use to obtain information about the predictors (e.g. factor
levels). If missing, then recover_data is used to attempt to reconstruct the
data. See the note with recover_data for an important precaution.

df Numeric value. This is equivalent to specifying options(df = df). See update.emmGrid.
type Character value. If provided, this is saved as the "predict.type" setting. See

update.emmGrid and the section below on prediction types and transformations.
regrid Character, logical, or list. If non-missing, the reference grid is reconstructed via

regrid with the argument transform = regrid. See the section below on pre-
diction types and transformations. Note: This argument was named transform
in version 1.7.2 and earlier. For compatibility with old code, transform is still
accepted if found among ..., as long as it doesn’t match tran.

nesting If the model has nested fixed effects, this may be specified here via a character
vector or named list specifying the nesting structure. Specifying nesting
overrides any nesting structure that is automatically detected. See the section
below on Recovering or Overriding Model Information.

offset Numeric scalar value (if a vector, only the first element is used). This may
be used to add an offset, or override offsets based on the model. A common
usage would be to specify offset = 0 for a Poisson regression model, so that
predictions from the reference grid become rates relative to the offset that had
been specified in the model.

sigma Numeric value to use for subsequent predictions or back-transformation bias
adjustments. If not specified, we use sigma(object), if available, and NULL
otherwise. Note: This applies only when the family is "gaussian"; for other
families, sigma is set to NA and cannot be overridden.

counterfactuals

counterfactuals specifies character names of counterfactual factors. If this is
non-missing, a reference grid is created consisting of combinations of counter-
factual levels and the actual levels of those same factors. This grid is always
converted to the response transformation scale and averaged over the actual fac-
tor levels. See the section below on counterfactuals.

nuisance, non.nuisance, wt.nuis
If nuisance is a vector of predictor names, those predictors are omitted from the
reference grid. Instead, the result will be as if we had averaged over the levels of
those factors, with either equal or proportional weights as specified in wt.nuis
(see the weights argument in emmeans). The factors in nuisance must not inter-
act with other factors, not even other nuisance factors. Specifying nuisance fac-
tors can save considerable storage and computation time, and help avoid exceed-
ing the maximum reference-grid size (get_emm_option("rg.limit")). (Note:
For certain models where the emm_basis method returns a re-gridded parame-
terization, nuisance factors cannot be used, and an error is thrown.)

rg.limit Integer limit on the number of reference-grid rows to allow (checked before any
multivariate responses are included).

... Optional arguments passed to summary.emmGrid, emm_basis, and recover_data,
such as params, vcov. (see Covariance matrix below), or options such as mode
for specific model types (see vignette("models", "emmeans")).

../doc/models.html

ref_grid 79

Details

To users, the ref_grid function itself is important because most of its arguments are in effect
arguments of emmeans and related functions, in that those functions pass their ... arguments to
ref_grid.

The reference grid consists of combinations of independent variables over which predictions are
made. Estimated marginal means are defined as these predictions, or marginal averages thereof.
The grid is determined by first reconstructing the data used in fitting the model (see recover_data),
or by using the data.frame provided in data. The default reference grid is determined by the
observed levels of any factors, the ordered unique values of character-valued predictors, and the
results of cov.reduce for numeric predictors. These may be overridden using at. See also the
section below on recovering/overriding model information.

Value

An object of the S4 class "emmGrid" (see emmGrid-class). These objects encapsulate everything
needed to do calculations and inferences for estimated marginal means, and contain nothing that
depends on the model-fitting procedure.

Using cov.reduce and cov.keep

The cov.keep argument was not available in emmeans versions 1.4.1 and earlier. Any covariates
named in this list are treated as if they are factors: all the unique levels are kept in the reference grid.
The user may also specify an integer value, in which case any covariate having no more than that
number of unique values is implicitly included in cov.keep. The default for cov.keep is set and
retrieved via the emm_options framework, and the system default is "2", meaning that covariates
having only two unique values are automatically treated as two-level factors. See also the Note
below on backward compatibility.

There is a subtle distinction between including a covariate in cov.keep and specifying its values
manually in at: Covariates included in cov.keep are treated as factors for purposes of weight-
ing, while specifying levels in at will not include the covariate in weighting. See the mtcars.lm
example below for an illustration.

cov.reduce may be a function, logical value, formula, or a named list of these. If a single function,
it is applied to each covariate. If logical and TRUE, mean is used. If logical and FALSE, it is equivalent
to including all covariates in cov.keep. Use of ‘cov.reduce = FALSE’ is inadvisable because it can
result in a huge reference grid; it is far better to use cov.keep.

If a formula (which must be two-sided), then a model is fitted to that formula using lm; then in the
reference grid, its response variable is set to the results of predict for that model, with the reference
grid as newdata. (This is done after the reference grid is determined.) A formula is appropriate
here when you think experimental conditions affect the covariate as well as the response.

To allow for situations where a simple lm() call as described above won’t be adequate, a formula
of the form ext ~ fcnname is also supported, where the left-hand side may be ext, extern, or
external (and must not be a predictor name) and the right-hand side is the name of an existing
function. The function is called with one argument, a data frame with columns for each variable
in the reference grid. The function is expected to use that frame as new data to be used to obtain
predictions for one or more models; and it should return a named list or data frame with replacement
values for one or more of the covariates.

80 ref_grid

If cov.reduce is a named list, then the above criteria are used to determine what to do with co-
variates named in the list. (However, formula elements do not need to be named, as those names
are determined from the formulas’ left-hand sides.) Any unresolved covariates are reduced using
"mean".

Any cov.reduce of cov.keep specification for a covariate also named in at is ignored.

Interdependent covariates

Care must be taken when covariate values depend on one another. For example, when a polynomial
model was fitted using predictors x, x2 (equal to x^2), and x3 (equal to x^3), the reference grid will
by default set x2 and x3 to their means, which is inconsistent. The user should instead use the at
argument to set these to the square and cube of mean(x). Better yet, fit the model using a formula
involving poly(x, 3) or I(x^2) and I(x^3); then there is only x appearing as a covariate; it will
be set to its mean, and the model matrix will have the correct corresponding quadratic and cubic
terms.

Matrix covariates

Support for covariates that appear in the dataset as matrices is very limited. If the matrix has but
one column, it is treated like an ordinary covariate. Otherwise, with more than one column, each
column is reduced to a single reference value – the result of applying cov.reduce to each column
(averaged together if that produces more than one value); you may not specify values in at; and
they are not treated as variables in the reference grid, except for purposes of obtaining predictions.

Recovering or overriding model information

Ability to support a particular class of object depends on the existence of recover_data and
emm_basis methods – see extending-emmeans for details. The call methods("recover_data")
will help identify these.

Data. In certain models, (e.g., results of glmer.nb), it is not possible to identify the original dataset.
In such cases, we can work around this by setting data equal to the dataset used in fitting the model,
or a suitable subset. Only the complete cases in data are used, so it may be necessary to exclude
some unused variables. Using data can also help save computing, especially when the dataset is
large. In any case, data must represent all factor levels used in fitting the model. It cannot be used
as an alternative to at. (Note: If there is a pattern of NAs that caused one or more factor levels to be
excluded when fitting the model, then data should also exclude those levels.)

Covariance matrix. By default, the variance-covariance matrix for the fixed effects is obtained
from object, usually via its vcov method. However, the user may override this via a vcov. argu-
ment, specifying a matrix or a function. If a matrix, it must be square and of the same dimension
and parameter order of the fixed effects. If a function, must return a suitable matrix when it is called
with arguments (object, ...). Be careful with possible unintended conflicts with arguments in
...; for example, sandwich::vcovHAC() has optional arguments adjust and weights that may
be intended for emmeans() but will also be passed to vcov.().

Nested factors. Having a nesting structure affects marginal averaging in emmeans in that it is done
separately for each level (or combination thereof) of the grouping factors. ref_grid tries to discern
which factors are nested in other factors, but it is not always obvious, and if it misses some, the user
must specify this structure via nesting; or later using update.emmGrid. The nesting argument

ref_grid 81

may be a character vector, a named list, or NULL. If a list, each name should be the name of a sin-
gle factor in the grid, and its entry a character vector of the name(s) of its grouping factor(s). nested
may also be a character value of the form "factor1 %in% (factor2*factor3)" (the parentheses
are optional). If there is more than one such specification, they may be appended separated by
commas, or as separate elements of a character vector. For example, these specifications are equiv-
alent: nesting = list(state = "country", city = c("state", "country"), nesting = "state
%in% country, city %in% (state*country)", and nesting = c("state %in% country", "city
%in% state*country").

Predictors with subscripts and data-set references

When the fitted model contains subscripts or explicit references to data sets, the reference grid may
optionally be post-processed to simplify the variable names, depending on the simplify.names op-
tion (see emm_options), which by default is TRUE. For example, if the model formula is data1$resp
~ data1$trt + data2[[3]] + data2[["cov"]], the simplified predictor names (for use, e.g., in the
specs for emmeans) will be trt, data2[[3]], and cov. Numerical subscripts are not simplified; nor
are variables having simplified names that coincide, such as if data2$trt were also in the model.

Please note that this simplification is performed after the reference grid is constructed. Thus, non-
simplified names must be used in the at argument (e.g., at = list(`data2["cov"]` = 2:4).

If you don’t want names simplified, use emm_options(simplify.names = FALSE).

Prediction types and transformations

Transformations can exist because of a link function in a generalized linear model, or as a response
transformation, or even both. In many cases, they are auto-detected, for example a model formula of
the form sqrt(y) ~ Even transformations containing multiplicative or additive constants, such
as 2*sqrt(y + pi) ~ ..., are auto-detected. A response transformation of y + 1 ~ ... is not auto-
detected, but I(y + 1) ~ ... is interpreted as identity(y + 1) ~ A warning is issued if it gets
too complicated. Complex transformations like the Box-Cox transformation are not auto-detected;
but see the help page for make.tran for information on some advanced methods.

There is a subtle difference between specifying ‘type = "response"’ and ‘regrid = "response"’.
While the summary statistics for the grid itself are the same, subsequent use in emmeans will yield
different results if there is a response transformation or link function. With ‘type = "response"’,
EMMs are computed by averaging together predictions on the linear-predictor scale and then back-
transforming to the response scale; while with ‘regrid = "response"’, the predictions are already
on the response scale so that the EMMs will be the arithmetic means of those response-scale pre-
dictions. To add further to the possibilities, geometric means of the response-scale predictions are
obtainable via ‘regrid = "log", type = "response"’. See also the help page for regrid.

Order-of-processing issues: The regrid argument, if present, is acted on immediately after the
reference grid is constructed, while some of the ... arguments may be used to update the object
at the very end. Thus, code like ref_grid(mod, tran = "sqrt", regrid = "response") will not
work correctly if the intention was to specify the response transformation, because the re-grid is
done before it processes tran = "sqrt". To get the intended result, do regrid(ref_grid(mod,
tran = "sqrt"), transform = "response").

82 ref_grid

Counterfactuals

If counterfactuals is specified, the rows of the entire dataset become part of the reference grid,
and the other reference levels are confined to those named in counterfactuals. In this type of
analysis (called G-computation), we substitute (or impute) each combination of counterfactual lev-
els into the entire dataset. Thus, predictions from this grid are those of each observation under each
of the counterfactual levels. For this to make sense, we require an assumption of exchangeability of
these levels.

This grid is always converted to the response scale, as G-computation on the linear-predictor scale
produces the same results as ordinary weighted EMMs. If we have counterfactual factors A, B,
the reference grid also includes factors actual_A, actual_B which are used to track which obser-
vations originally had the A, B levels before they were changed by the counterfactuals code. We
average the response-scale predictions for each combination of actual levels and imputed levels
(and multivariate levels, if any). See additional discussion of how emmeans handles counterfactuals
under that documentation.

Currently, counterfactuals are not supported when the reference grid requires post-processing (e.g.,
ordinal models with mode = "prob"). Cases where we have nested factor levels can be complicated
if mixed-in with counterfactuals, and we make no guarantees. Note that past implementations
included arguments wt.counter and avg.counter, which are now deprecated and are just ignored
if specified.

Optional side effect

If the save.ref_grid option is set to TRUE (see emm_options), The most recent result of ref_grid,
whether called directly or indirectly via emmeans, emtrends, or some other function that calls one
of these, is saved in the user’s environment as .Last.ref_grid. This facilitates checking what
reference grid was used, or reusing the same reference grid for further calculations. This automatic
saving is disabled by default, but may be enabled via ‘emm_options(save.ref_grid = TRUE)’.

Note

The system default for cov.keep causes models containing indicator variables to be handled differ-
ently than in emmeans version 1.4.1 or earlier. To replicate older analyses, change the default via
‘emm_options(cov.keep = character(0))’.

Some earlier versions of emmeans offer a covnest argument. This is now obsolete; if covnest is
specified, it is harmlessly ignored. Cases where it was needed are now handled appropriately via
the code associated with cov.keep.

See Also

Reference grids are of class emmGrid, and several methods exist for them – for example summary.emmGrid.
Reference grids are fundamental to emmeans. Supported models are detailed in vignette("models",
"emmeans"). See update.emmGrid for details of arguments that can be in options (or in ...).

Examples

fiber.lm <- lm(strength ~ machine*diameter, data = fiber)
ref_grid(fiber.lm)

../doc/models.html
../doc/models.html

ref_grid 83

ref_grid(fiber.lm, at = list(diameter = c(15, 25)))

Not run:
We could substitute the sandwich estimator vcovHAC(fiber.lm)
as follows:
summary(ref_grid(fiber.lm, vcov. = sandwich::vcovHAC))

End(Not run)

If we thought that the machines affect the diameters
(admittedly not plausible in this example), then we should use:
ref_grid(fiber.lm, cov.reduce = diameter ~ machine)

Model with indicator variables as predictors:
mtcars.lm <- lm(mpg ~ disp + wt + vs * am, data = mtcars)
(rg.default <- ref_grid(mtcars.lm))
(rg.nokeep <- ref_grid(mtcars.lm, cov.keep = character(0)))
(rg.at <- ref_grid(mtcars.lm, at = list(vs = 0:1, am = 0:1)))

Two of these have the same grid but different weights:
rg.default@grid
rg.at@grid

Using cov.reduce formulas...
Above suggests we can vary disp indep. of other factors - unrealistic
rg.alt <- ref_grid(mtcars.lm, at = list(wt = c(2.5, 3, 3.5)),

cov.reduce = disp ~ vs * wt)
rg.alt@grid

Alternative to above where we model sqrt(disp)
disp.mod <- lm(sqrt(disp) ~ vs * wt, data = mtcars)
disp.fun <- function(dat)

list(disp = predict(disp.mod, newdata = dat)^2)
rg.alt2 <- ref_grid(mtcars.lm, at = list(wt = c(2.5, 3, 3.5)),

cov.reduce = external ~ disp.fun)
rg.alt2@grid

Multivariate example
MOats.lm = lm(yield ~ Block + Variety, data = MOats)
ref_grid(MOats.lm, mult.names = "nitro")
Silly illustration of how to use 'mult.levs' to make comb's of two factors
ref_grid(MOats.lm, mult.levs = list(T=LETTERS[1:2], U=letters[1:2]))

Comparing estimates with and without counterfactuals
neuralgia.glm <- glm(Pain ~ Treatment + Sex + Age + Duration,

family = binomial(), data = neuralgia)
emmeans(neuralgia.glm, "Treatment", type = "response")

emmeans(neuralgia.glm, "Treatment", counterfactuals = "Treatment")

Using 'params'

84 regrid

require("splines")
my.knots = c(2.5, 3, 3.5)
mod = lm(Sepal.Length ~ Species * ns(Sepal.Width, knots = my.knots), data = iris)
my.knots is not a predictor, so need to name it in 'params'
ref_grid(mod, params = "my.knots")

regrid Reconstruct a reference grid with a new transformation or simulations

Description

The typical use of this function is to cause EMMs to be computed on a different scale, e.g., the
back-transformed scale rather than the linear-predictor scale. In other words, if you want back-
transformed results, do you want to average and then back-transform, or back-transform and then
average?

Usage

regrid(object, transform = c("response", "mu", "unlink", "none", "pass",
links), inv.link.lbl = "response", predict.type,
bias.adjust = get_emm_option("back.bias.adj"), sigma, N.sim,
sim = mvtnorm::rmvnorm, ...)

Arguments

object An object of class emmGrid

transform Character, list, or logical value. If "response", "mu", or TRUE, the inverse
transformation is applied to the estimates in the grid (but if there is both a
link function and a response transformation, "mu" back-transforms only the link
part); if "none" or FALSE, object is re-gridded so that its bhat slot contains
predict(object) and its linfct slot is the identity. Any internal transfor-
mation information is preserved. If transform = "pass", the object is not re-
gridded in any way (this may be useful in conjunction with N.sim).
If transform is a character value in links (which is the set of valid arguments
for the make.link function, excepting "identity"), or if transform is a list of
the same form as returned by make.links or make.tran, the results are formu-
lated as if the response had been transformed with that link function.

inv.link.lbl Character value. This applies only when transform is in links, and is used to
label the predictions if subsequently summarized with type = "response".

predict.type Character value. If provided, the returned object is updated with the given type
to use by default by summary.emmGrid (see update.emmGrid). This may be
useful if, for example, when one specifies transform = "log" but desires sum-
maries to be produced by default on the response scale.

bias.adjust Logical value for whether to adjust for bias in back-transforming (transform =
"response"). This requires a valid value of sigma to exist in the object or be
specified.

regrid 85

sigma Error SD assumed for bias correction (when transform = "response" and a
transformation is in effect). If not specified, object@misc$sigma is used, and a
warning is issued if it is not found.

N.sim Integer value. If specified and object is based on a frequentist model (i.e., does
not have a posterior sample), then a fake posterior sample is generated using the
function sim.

sim A function of three arguments (no names are assumed). If N.sim is supplied with
a frequentist model, this function is called with respective arguments N.sim,
object@bhat, and object@V. The default is the multivariate normal distribu-
tion.

... Ignored.

Details

The regrid function reparameterizes an existing ref.grid so that its linfct slot is the identity
matrix and its bhat slot consists of the estimates at the grid points. If transform is TRUE, the
inverse transform is applied to the estimates. Outwardly, when transform = "response", the result
of summary.emmGrid after applying regrid is identical to the summary of the original object using
‘type="response"’. But subsequent EMMs or contrasts will be conducted on the new scale –
which is the reason this function exists.

This function may also be used to simulate a sample of regression coefficients for a frequentist
model for subsequent use as though it were a Bayesian model. To do so, specify a value for N.sim
and a sample is simulated using the function sim. The grid may be further processed in accordance
with the other arguments; or if transform = "pass", it is simply returned with the only change
being the addition of the simulated sample.

Value

An emmGrid object with the requested changes

Degrees of freedom

In cases where the degrees of freedom depended on the linear function being estimated (e.g., Sat-
terthwaite method), the d.f. from the reference grid are saved, and a kind of “containment” method
is substituted in the returned object, whereby the calculated d.f. for a new linear function will be
the minimum d.f. among those having nonzero coefficients. This is kind of an ad hoc method,
and it can over-estimate the degrees of freedom in some cases. An annotation is displayed below
any subsequent summary results stating that the degrees-of-freedom method is inherited from the
previous method at the time of re-gridding.

Note

Another way to use regrid is to supply a regrid argument to ref_grid (either directly of indirectly
via emmeans), in which case its value is passed to regrid as transform. This is often a simpler
approach if the reference grid has not already been constructed.

86 str.emmGrid

Examples

pigs.lm <- lm(log(conc) ~ source + factor(percent), data = pigs)
rg <- ref_grid(pigs.lm)

This will yield EMMs as GEOMETRIC means of concentrations:
(emm1 <- emmeans(rg, "source", type = "response"))
pairs(emm1) ## We obtain RATIOS

This will yield EMMs as ARITHMETIC means of concentrations:
(emm2 <- emmeans(regrid(rg, transform = "response"), "source"))
pairs(emm2) ## We obtain DIFFERENCES
Same result, useful if we hadn't already created 'rg'
emm2 <- emmeans(pigs.lm, "source", regrid = "response")

Simulate a sample of regression coefficients
set.seed(2.71828)
rgb <- regrid(rg, N.sim = 200, transform = "pass")
emmeans(rgb, "source", type = "response") ## similar to emm1

str.emmGrid Miscellaneous methods for emmGrid objects

Description

Miscellaneous methods for emmGrid objects

Usage

S3 method for class 'emmGrid'
str(object, ...)

S3 method for class 'emmGrid'
print(x, ..., export = FALSE)

S3 method for class 'emmGrid'
vcov(object, ..., sep = get_emm_option("sep"))

Arguments

object An emmGrid object
... (required but not used)
x An emmGrid object
export Logical value. If FALSE, the object is printed. If TRUE, a list is invisibly returned,

which contains character elements named summary and annotations that may
be saved or displayed as the user sees fit. summary is a character matrix (or list of
such matrices, if a by variable is in effect). annotations is a character vector of
the annotations that would have been printed below the summary or summaries.

sep separator for pasting levels in creating row and column names for vcov() results

summary.emmGrid 87

Value

The vcov method returns a symmetric matrix of variances and covariances for predict.emmGrid(object,
type = "lp")

Examples

warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
warp.emm <- emmeans(warp.lm, ~ tension | wool)
vcov(warp.emm) |> zapsmall()

vcov(pairs(warp.emm), sep = "|") |> zapsmall()

summary.emmGrid Summaries, predictions, intervals, and tests for emmGrid objects

Description

These are the primary methods for obtaining numerical or tabular results from an emmGrid object.
summary.emmGrid is the general function for summarizing emmGrid objects. It also serves as the
print method for these objects; so for convenience, summary() arguments may be included in calls
to functions such as emmeans and contrast that construct emmGrid objects. Note that by default,
summaries for Bayesian models are diverted to hpd.summary.

Usage

S3 method for class 'emmGrid'
summary(object, infer, level, adjust, by,
cross.adjust = "none", type, df, calc, null, delta, side, frequentist,
bias.adjust = get_emm_option("back.bias.adj"), sigma, ...)

S3 method for class 'emmGrid'
confint(object, parm, level = 0.95, ...)

test(object, null, ...)

S3 method for class 'emmGrid'
test(object, null = 0, joint = FALSE, verbose = FALSE,
rows, by, status = FALSE, ...)

S3 method for class 'emmGrid'
predict(object, type, interval = c("none", "confidence",
"prediction"), level = 0.95,
bias.adjust = get_emm_option("back.bias.adj"), sigma, ...)

S3 method for class 'emmGrid'
as.data.frame(x, row.names = NULL, optional,
check.names = TRUE, destroy.annotations = FALSE, ...)

88 summary.emmGrid

S3 method for class 'summary_emm'
x[..., as.df = FALSE]

Arguments

object An object of class "emmGrid" (see emmGrid-class)

infer A vector of one or two logical values. The first determines whether confidence
intervals are displayed, and the second determines whether t tests and P values
are displayed. If only one value is provided, it is used for both.

level Numerical value between 0 and 1. Confidence level for confidence intervals, if
infer[1] is TRUE.

adjust Character value naming the method used to adjust p values or confidence limits;
or to adjust comparison arrows in plot. See the P-value adjustments section
below.

by Character name(s) of variables to use for grouping into separate tables. This
affects the family of tests considered in adjusted P values.

cross.adjust Character: p-value adjustment method to additionally apply across the by groups.
See the section on P-value adjustments for details.

type Character: type of prediction desired. This only has an effect if there is a
known transformation or link function. "response" specifies that the inverse
transformation be applied. "mu" (or equivalently, "unlink") is usually the
same as "response", but in the case where the model has both a link function
and a response transformation, only the link part is back-transformed. Other
valid values are "link", "lp", and "linear.predictor"; these are equiva-
lent, and request that results be shown for the linear predictor, with no back-
transformation. The default is "link", unless the "predict.type" option is
in force; see emm_options, and also the section below on transformations and
links.

df Numeric. If non-missing, a constant number of degrees of freedom to use in
constructing confidence intervals and P values (NA specifies asymptotic results).

calc Named list of character value(s) or formula(s). The expressions in char are eval-
uated and appended to the summary, just after the df column. The expression
may include any names up through df in the summary, any additional names in
object@grid (such as .wgt. or .offset.), or any earlier elements of calc.

null Numeric. Null hypothesis value(s), on the linear-predictor scale, against which
estimates are tested. May be a single value used for all, or a numeric vector of
length equal to the number of tests in each family (i.e., by group in the displayed
table).

delta Numeric value (on the linear-predictor scale). If zero, ordinary tests of signif-
icance are performed. If positive, this specifies a threshold for testing equiva-
lence (using the TOST or two-one-sided-test method), non-inferiority, or non-
superiority, depending on side. See Details for how the test statistics are de-
fined.

summary.emmGrid 89

side Numeric or character value specifying whether the test is left-tailed (-1, "-",
"<", "left", or "nonsuperiority"); right-tailed (1, "+", ">", "right", or
"noninferiority"); or two-sided (0, 2, "!=", "two-sided", "both", "equivalence",
or "="). See the special section below for more details.

frequentist Ignored except if a Bayesian model was fitted. If missing or FALSE, the object is
passed to hpd.summary. Otherwise, a logical value of TRUE will have it return a
frequentist summary.

bias.adjust Logical value for whether to adjust for bias in back-transforming (type = "response").
This requires a valid value of sigma to exist in the object or be specified.

sigma Error SD assumed for bias correction (when type = "response" and a trans-
formation is in effect), or for constructing prediction intervals. If not specified,
object@misc$sigma is used, and a warning is issued if it is not found or not
valid. Note: sigma may be a vector, but be careful that it correctly corresponds
(perhaps after recycling) to the order of the reference grid.

... Optional arguments such as scheffe.rank (see “P-value adjustments”). In
confint.emmGrid, predict.emmGrid, and test.emmGrid, these arguments are
passed to summary.emmGrid.

parm (Required argument for confint methods, but not used)

joint Logical value. If FALSE, the arguments are passed to summary.emmGrid with
infer=c(FALSE, TRUE). If joint = TRUE, a joint test of the hypothesis L beta
= null is performed, where L is object@linfct and beta is the vector of fixed
effects estimated by object@betahat. This will be either an F test or a chi-
square (Wald) test depending on whether degrees of freedom are available. See
also joint_tests.

verbose Logical value. If TRUE and joint = TRUE, a table of the effects being tested is
printed.

rows Integer values. The rows of L to be tested in the joint test. If missing, all rows
of L are used. If not missing, by variables are ignored.

status logical. If TRUE, a note column showing status flags (for rank deficiencies and
estimability issues) is displayed even when empty. If FALSE, the column is in-
cluded only if there are such issues.

interval Type of interval desired (partial matching is allowed): "none" for no inter-
vals, otherwise confidence or prediction intervals with given arguments, via
confint.emmGrid. Note: prediction intervals are not available unless the model
family is "gaussian".

x object of the given class

row.names passed to as.data.frame

optional required argument, but ignored in as.data.frame.emmGrid

check.names passed to data.frame

destroy.annotations

Logical value. If FALSE, an object of class summary_emm is returned (which
inherits from data.frame), but if displayed, details like confidence levels, P-
value adjustments, transformations, etc. are also shown. But unlike the result of
summary, the number of digits displayed is obtained from getOption("digits")

90 summary.emmGrid

rather than using the optimal digits algorithm we usually use. Thus, it is format-
ted more like a regular data frame, but with any annotations and groupings still
intact. If TRUE (not recommended), a “plain vanilla” data frame is returned,
based on row.names and check.names.

as.df Logical value. With x[..., as.df = TRUE], the result is object is coerced to a
data.frame before the subscripting is applied. With as.df = FALSE, the result
is returned as a summary_emm object when possible.

Details

confint.emmGrid is equivalent to summary.emmGrid with infer = c(TRUE, FALSE). The func-
tion test.emmGrid, when called with joint = FALSE, is equivalent to summary.emmGrid with
infer = c(FALSE, TRUE).

With joint = TRUE, test.emmGrid calculates the Wald test of the hypothesis linfct %*% bhat =
null, where linfct and bhat refer to slots in object (possibly subsetted according to by or rows).
An error is thrown if any row of linfct is non-estimable. It is permissible for the rows of linfct to
be linearly dependent, as long as null == 0, in which case a reduced set of contrasts is tested. Linear
dependence and nonzero null cause an error. The returned object has an additional "est.fcns"
attribute, which is a list of the linear functions associated with the joint test.

Value

summary.emmGrid, confint.emmGrid, and test.emmGrid return an object of class "summary_emm",
which is an extension of data.frame but with a special print method that displays it with custom
formatting. For models fitted using MCMC methods, the call is diverted to hpd.summary (with
prob set to level, if specified); one may alternatively use general MCMC summarization tools
with the results of as.mcmc.

predict returns a vector of predictions for each row of object@grid.

The as.data.frame method returns an object that inherits from "data.frame".

Defaults

The misc slot in object may contain default values for by, calc, infer, level, adjust, type,
null, side, and delta. These defaults vary depending on the code that created the object. The
update method may be used to change these defaults. In addition, any options set using ‘emm_options(summary
= ...)’ will trump those stored in the object’s misc slot.

Transformations and links

With type = "response", the transformation assumed can be found in ‘object@misc$tran’, and
its label, for the summary is in ‘object@misc$inv.lbl’. Any t or z tests are still performed on
the scale of the linear predictor, not the inverse-transformed one. Similarly, confidence intervals are
computed on the linear-predictor scale, then inverse-transformed.

Be aware that only univariate transformations and links are supported in this way. Some multivariate
transformations are supported by mvregrid.

summary.emmGrid 91

Bias adjustment when back-transforming

When bias.adjust is TRUE, then back-transformed estimates are adjusted by adding 0.5h′′(u)σ2,
where h is the inverse transformation and u is the linear predictor. This is based on a second-order
Taylor expansion. There are better or exact adjustments for certain specific cases, and these may be
incorporated in future updates.

Note: In certain models, e.g., those with non-gaussian families, sigma is initialized as NA, and so
by default, bias adjustment is skipped and a warning is issued. You may override this by spec-
ifying a value for sigma. However, with ordinary generalized linear models, bias adjustment is
inappropriate and you should not try to do it. With GEEs and GLMMs, you probably should not
use sigma(model), and instead you should create an appropriate value using the estimated random
effects, e.g., from VarCorr(model). An example is provided in the “transformations” vignette.

P-value adjustments

The adjust argument specifies a multiplicity adjustment for tests or confidence intervals. This
adjustment always is applied separately to each table or sub-table that you see in the printed output
(see rbind.emmGrid for how to combine tables). If there are non-estimable cases in a by group,
those cases are excluded before determining the adjustment; that means there could be different
adjustments in different groups.

The valid values of adjust are as follows:

"tukey" Uses the Studentized range distribution with the number of means in the family. (Avail-
able for two-sided cases only.)

"scheffe" Computes p values from the F distribution, according to the Scheffe critical value of√
rF (α; r, d), where d is the error degrees of freedom and r is the rank of the set of linear

functions under consideration. By default, the value of r is computed from object@linfct
for each by group; however, if the user specifies an argument matching scheffe.rank, its
value will be used instead. Ordinarily, if there are k means involved, then r = k − 1 for a
full set of contrasts involving all k means, and r = k for the means themselves. (The Scheffe
adjustment is available for two-sided cases only.)

"sidak" Makes adjustments as if the estimates were independent (a conservative adjustment in
many cases).

"bonferroni" Multiplies p values, or divides significance levels by the number of estimates. This
is a conservative adjustment.

"dunnettx" Uses our ownad hoc approximation to the Dunnett distribution for a family of esti-
mates having pairwise correlations of 0.5 (as is true when comparing treatments with a control
with equal sample sizes). The accuracy of the approximation improves with the number of si-
multaneous estimates, and is much faster than "mvt". (Available for two-sided cases only.)

"mvt" Uses the multivariate t distribution to assess the probability or critical value for the max-
imum of k estimates. This method produces the same p values and intervals as the default
summary or confint methods to the results of as.glht. In the context of pairwise compar-
isons or comparisons with a control, this produces “exact” Tukey or Dunnett adjustments,
respectively. However, the algorithm (from the mvtnorm package) uses a Monte Carlo
method, so results are not exactly repeatable unless the same random-number seed is used
(see set.seed). As the family size increases, the required computation time will become
noticeable or even intolerable, making the "tukey", "dunnettx", or others more attractive.

92 summary.emmGrid

"none" Makes no adjustments to the p values.

For tests, not confidence intervals, the Bonferroni-inequality-based adjustment methods in p.adjust
are also available (currently, these include "holm", "hochberg", "hommel", "bonferroni", "BH",
"BY", "fdr", and "none"). If a p.adjust.methods method other than "bonferroni" or "none"
is specified for confidence limits, the straight Bonferroni adjustment is used instead. Also, if an
adjustment method is not appropriate (e.g., using "tukey" with one-sided tests, or with results that
are not pairwise comparisons), a more appropriate method (usually "sidak") is substituted.

In some cases, confidence and p-value adjustments are only approximate – especially when the
degrees of freedom or standard errors vary greatly within the family of tests. The "mvt" method is
always the correct one-step adjustment, but it can be very slow. One may use as.glht with methods
in the multcomp package to obtain non-conservative multi-step adjustments to tests.

Warning: Non-estimable cases are included in the family to which adjustments are applied. You
may wish to subset the object using the [] operator to work around this problem.

The cross.adjust argument is a way of specifying a multiplicity adjustment across the by groups
(otherwise by default, each group is treated as a separate family in regards to multiplicity adjust-
ments). It applies only to p values. Valid options are one of the p.adjust.methods or "sidak".
This argument is ignored unless it is other than "none", there is more than one by group, and
they are all the same size. Under those conditions, we first use adjust to determine the within-
group adjusted p values. Imagine each group’s adjusted p values arranged in side-by-side columns,
thus forming a matrix with the number of columns equal to the number of by groups. Then we
use the cross.adjust method to further adjust the adjusted p values in each row of this matrix.
Note that an overall Bonferroni (or Sidak) adjustment is obtainable by specifying both adjust and
cross.adjust as "bonferroni" (or "sidak"). However, less conservative (but yet conservative)
overall adjustments are available when it is possible to use an “exact” within-group method (e.g.,
adjust = "tukey" for pairwise comparisons) and cross.adjust as a conservative adjustment.
[cross.adjust methods other than "none", "bonferroni", or "sidak" do not seem advisable,
but other p.adjust methods are available if you can make sense of them.]

Tests of significance, nonsuperiority, noninferiority, or equivalence

When delta = 0, test statistics are the usual tests of significance. They are of the form ‘(estimate
- null)/SE’. Notationally:

Significance H0 : θ = θ0 versus
H1 : θ < θ0 (left-sided), or
H1θ > θ0 (right-sided), or
H1 : θ ̸= θ0 (two-sided)
The test statistic is
t = (Q− θ0)/SE
where Q is our estimate of θ; then left, right, or two-sided p values are produced, depending
on side.

When delta is positive, the test statistic depends on side as follows.

Left-sided (nonsuperiority) H0 : θ ≥ θ0 + δ versus H1 : θ < θ0 + δ
t = (Q− θ0 − δ)/SE
The p value is the lower-tail probability.

summary.emmGrid 93

Right-sided (noninferiority) H0 : θ ≤ θ0 − δ versus H1 : θ > θ0 − δ
t = (Q− θ0 + δ)/SE
The p value is the upper-tail probability.

Two-sided (equivalence) H0 : |θ − θ0| ≥ δ versus H1 : |θ − θ0| < δ
t = (|Q− θ0| − δ)/SE
The p value is the lower-tail probability.
Note that t is the maximum of tnonsup and −tnoninf . This is equivalent to choosing the less
significant result in the two-one-sided-test (TOST) procedure.

Non-estimable cases

When the model is rank-deficient, each row x of object’s linfct slot is checked for estimability.
If sum(x*bhat) is found to be non-estimable, then the string NonEst is displayed for the estimate,
and associated statistics are set to NA. The estimability check is performed using the orthonormal
basis N in the nbasis slot for the null space of the rows of the model matrix. Estimability fails
when ||Nx||2/||x||2 exceeds tol, which by default is 1e-8. You may change it via emm_options
by setting estble.tol to the desired value.

See the warning above that non-estimable cases are still included when determining the family size
for P-value adjustments.

Warning about potential misuse of P values

Some in the statistical and scientific community argue that the term “statistical significance” should
be completely abandoned, and that criteria such as “p < 0.05” never be used to assess the importance
of an effect. These practices can be too misleading and are prone to abuse. See the “basics” vignette
for more discussion.

Note

In doing testing and a transformation and/or link is in force, any null and/or delta values specified
must always be on the scale of the linear predictor, regardless of the setting for ‘type‘. If type =
"response", the null value displayed in the summary table will be back-transformed from the value
supplied by the user. But the displayed delta will not be changed, because there (often) is not a
natural way to back-transform it.

When we have type = "response", and bias.adj = TRUE, the null value displayed in the output
is both back-transformed and bias-adjusted, leading to a rather non-intuitive-looking null value.
However, since the tests themselves are performed on the link scale, this is the response value at
which a *P* value of 1 would be obtained.

The default show method for emmGrid objects (with the exception of newly created reference grids)
is print(summary()). Thus, with ordinary usage of emmeans and such, it is unnecessary to call
summary unless there is a need to specify other than its default options.

If a data frame is needed, summary, confint, and test serve this need. as.data.frame routes to
summary by default; calling it with destroy.annotations = TRUE is not recommended for exactly
that reason. If you want to see more digits in the output, use print(summary(object), digits =
...); and if you always want to see more digits, use emm_options(opt.digits = FALSE).

../doc/basics.html#pvalues

94 ubds

See Also

hpd.summary

Examples

warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
warp.emm <- emmeans(warp.lm, ~ tension | wool)
warp.emm # implicitly runs 'summary'

confint(warp.emm, by = NULL, level = .90)

--
pigs.lm <- lm(log(conc) ~ source + factor(percent), data = pigs)
pigs.emm <- emmeans(pigs.lm, "percent", type = "response")
summary(pigs.emm) # (inherits type = "response")
summary(pigs.emm, calc = c(n = ".wgt.")) # Show sample size

For which percents is EMM non-inferior to 35, based on a 10% threshold?
Note the test is done on the log scale even though we have type = "response"
test(pigs.emm, null = log(35), delta = log(1.10), side = ">")

con <- contrast(pigs.emm, "consec")
test(con)

test(con, joint = TRUE)

default Scheffe adjustment - rank = 3
summary(con, infer = c(TRUE, TRUE), adjust = "scheffe")

Consider as some of many possible contrasts among the six cell means
summary(con, infer = c(TRUE, TRUE), adjust = "scheffe", scheffe.rank = 5)

Show estimates to more digits
print(test(con), digits = 7)

--
Cross-adjusting P values
prs <- pairs(warp.emm) # pairwise comparisons of tension, by wool
test(prs, adjust = "tukey", cross.adjust = "bonferroni")

Same comparisons taken as one big family (more conservative)
test(prs, adjust = "bonferroni", by = NULL)

ubds Unbalanced dataset

untidy 95

Description

This is a simulated unbalanced dataset with three factors and two numeric variables. There are
true relationships among these variables. This dataset can be useful in testing or illustrating messy-
data situations. There are no missing data, and there is at least one observation for every factor
combination; however, the "cells" attribute makes it simple to construct subsets that have empty
cells.

Usage

ubds

Format

A data frame with 100 observations, 5 variables, and a special "cells" attribute:

A Factor with levels 1, 2, and 3

B Factor with levels 1, 2, and 3

C Factor with levels 1, 2, and 3

x A numeric variable

y A numeric variable

In addition, attr(ubds, "cells") consists of a named list of length 27 with the row numbers for
each combination of A, B, C. For example, attr(ubds, "cells")[["213"]] has the row numbers
corresponding to levels A == 2, B == 1, C == 3. The entries are ordered by length, so the first entry
is the cell with the lowest frequency.

Examples

Omit the three lowest-frequency cells
low3 <- unlist(attr(ubds, "cells")[1:3])
messy.lm <- lm(y ~ (x + A + B + C)^3, data = ubds, subset = -low3)

untidy Dare to be un-"tidy"!

Description

Users who use emmeans functions as part of a pipeline – or post-process those results in some other
way – are likely missing some important information.

Details

Your best bet is to display the actual results without any post-processing. That’s because emmeans
and its relatives have their own summary and print methods that display annotations that may be
helpful in explaining what you have. If you just pipe the results into the next step, those annotations
are stripped away and you never see them. Statistical analysis is not just a workflow; it is a discipline
that involves care in interpreting intermediate results, and thinking before moving on.

96 update.emmGrid

Examples

neur.glm <- glm(Pain ~ Treatment + Sex + Age, family = binomial(),
data = neuralgia)

The actual results with annotations (e.g. ests are on logit scale):
emmeans(neur.glm, "Treatment")

Post-processed results lose the annotations
if(requireNamespace("tibble")) {

emmeans(neur.glm, "Treatment") |> tibble::as_tibble()
}

update.emmGrid Update an emmGrid object

Description

Objects of class emmGrid contain several settings that affect such things as what arguments to pass
to summary.emmGrid. The update method allows safer management of these settings than by direct
modification of its slots.

Usage

S3 method for class 'emmGrid'
update(object, ..., silent = FALSE)

S3 replacement method for class 'emmGrid'
levels(x) <- value

S3 method for class 'summary_emm'
update(object, by.vars, mesg, ...)

Arguments

object An emmGrid object

... Options to be set. These must match a list of known options (see Details)

silent Logical value. If FALSE (the default), a message is displayed if any options are
not matched. If TRUE, no messages are shown.

x an emmGrid object

value list or replacement levels. See the documentation for update.emmGrid with
the levels argument, as well as the section below on “Replaciong levels”

by.vars, mesg Attributes that can be altered in update.summary_emm

update.emmGrid 97

Value

an updated emmGrid object.

levels<- replaces the levels of the object in-place. See the section on replacing levels for details.

Details

The names in ... are partially matched against those that are valid, and if a match is found, it adds
or replaces the current setting. The valid names are

tran, tran2 (list or character) specifies the transformation which, when inverted, determines
the results displayed by summary.emmGrid, predict.emmGrid, or emmip when type="response".
The value may be the name of a standard transformation from make.link or additional ones
supported by name, such as "log2"; or, for a custom transformation, a list containing at least
the functions linkinv (the inverse of the transformation) and mu.eta (the derivative thereof).
The make.tran function returns such lists for a number of popular transformations. See the
help page of make.tran for details as well as information on the additional named transfor-
mations that are supported. tran2 is just like tran except it is a second transformation (i.e., a
response transformation in a generalized linear model).

tran.mult Multiple for tran. For example, for the response transformation ‘2*sqrt(y)’ (or
‘sqrt(y) + sqrt(y + 1)’, for that matter), we should have tran = "sqrt" and tran.mult
= 2. If absent, a multiple of 1 is assumed.

tran.offset Additive constant before a transformation is applied. For example, a response trans-
formation of log(y + pi) has tran.offset = pi. If no value is present, an offset of 0 is
assumed.

estName (character) is the column label used for displaying predictions or EMMs.

inv.lbl (character)) is the column label to use for predictions or EMMs when type="response".

by.vars (character) vector or NULL) the variables used for grouping in the summary, and also
for defining subfamilies in a call to contrast.

pri.vars (character vector) are the names of the grid variables that are not in by.vars. Thus, the
combinations of their levels are used as columns in each table produced by summary.emmGrid.

alpha (numeric) is the default significance level for tests, in summary.emmGrid as well as plot.emmGrid
when ‘CIs = TRUE’. Be cautious that methods that depend on specifying alpha are prone to
abuse. See the discussion in vignette("basics", "emmeans").

adjust (character)) is the default for the adjust argument in summary.emmGrid.

cross.adjust (character)) is the default for the cross.adjust argument in summary.emmGrid
(used for adjusting between groups).

famSize (integer) is the number of means involved in a family of inferences; used in Tukey adjust-
ment

infer (logical vector of length 2) is the default value of infer in summary.emmGrid.

level (numeric) is the default confidence level, level, in summary.emmGrid. Note: You must
specify all five letters of ‘level’ to distinguish it from the slot name ‘levels’.

df (numeric) overrides the default degrees of freedom with a specified single value.

calc (list) additional calculated columns. See summary.emmGrid.

null (numeric) null hypothesis for summary or test (taken to be zero if missing).

../doc/basics.html#pvalues

98 update.emmGrid

side (numeric or character) side specification for for summary or test (taken to be zero if miss-
ing).

sigma (numeric) Error SD to use in predictions and for bias-adjusted back-transformations

delta (numeric) delta specification for summary or test (taken to be zero if missing).

predict.type or type (character) sets the default method of displaying predictions in summary.emmGrid,
predict.emmGrid, and emmip. Valid values are "link" (with synonyms "lp" and "linear"),
or "response".

bias.adjust, frequentist (logical) These are used by summary if the value of these arguments
are not specified.

estType (character) is used internally to determine what adjust methods are appropriate. It
should match one of ‘c("prediction", "contrast", "pairs")’. As an example of why
this is needed, the Tukey adjustment should only be used for pairwise comparisons (estType
= "pairs"); if estType is some other string, Tukey adjustments are not allowed.

avgd.over (character) vector) are the names of the variables whose levels are averaged over
in obtaining marginal averages of predictions, i.e., estimated marginal means. Changing this
might produce a misleading printout, but setting it to character(0) will suppress the “aver-
aged over” message in the summary.

initMesg (character) is a string that is added to the beginning of any annotations that appear
below the summary.emmGrid display.

methDesc (character) is a string that may be used for creating names for a list of emmGrid objects.

nesting (Character or named list) specifies the nesting structure. See “Recovering or overrid-
ing model information” in the documentation for ref_grid. The current nesting structure is
displayed by str.emmGrid.

levels named list of new levels for the elements of the current emmGrid. The list name(s) are
used as new variable names, and if needed, the list is expanded using expand.grid. These
results replace current variable names and levels. This specification changes the levels,
grid, roles, and misc slots in the updated emmGrid, and resets pri.vars, by.vars, adjust,
famSize, and avgd.over. In addition, if there is nesting of factors, that may be altered; a
warning is issued if it involves something other than mere name changes. Note: All six letters
of levels is needed in order to distinguish it from level.

submodel formula or character value specifying a submodel (requires this feature being sup-
ported by underlying methods for the model class). When specified, the linfct slot is re-
placed by its aliases for the specified sub-model. Any factors in the sub-model that do not
appear in the model matrix are ignored, as are any interactions that are not in the main model,
and any factors associate with multivariate responses. The estimates displayed are then com-
puted as if the sub-model had been fitted. (However, the standard errors will be based on the
error variance(s) of the full model.) Note: The formula should refer only to predictor names,
excluding any function calls (such as factor or poly) that appear in the original model for-
mula. See the example.
The character values allowed should partially match "minimal" or "type2". With "minimal",
the sub-model is taken to be the one only involving the surviving factors in object (the
ones averaged over being omitted). Specifying "type2" is the same as "minimal" except
only the highest-order term in the submodel is retained, and all effects not containing it are
orthogonalized-out. Thus, in a purely linear situation such as an lm model, the joint test of the
modified object is in essence a type-2 test as in car::Anova.

update.emmGrid 99

Please note that it is possible (or even likely) that there will be disparity between the grid and
linfct slots when a submodel is used. This is because grid contains the claimed values of
the predictors and linfct contains aliases of them computed from the submodel.
For some objects such as generalized linear models, specifying submodel will typically not
produce the same estimates or type-2 tests as would be obtained by actually fitting a sepa-
rate model with those specifications. The reason is that those models are fitted by iterative-
reweighting methods, whereas the submodel calculations preserve the final weights used in
fitting the full model.

(any other slot name) If the name matches an element of slotNames(object) other than levels,
that slot is replaced by the supplied value, if it is of the required class (otherwise an error
occurs).
The user must be very careful in replacing slots because they are interrelated; for example, the
lengths and dimensions of grid, linfct, bhat, and V must conform.

Replacing levels

The levels<- method uses update.emmGrid to replace the levels of one or more factors. This
method allows selectively replacing the levels of just one factor (via subsetting operators), whereas
update(x, levels = list(...)) requires a list of all factors and their levels. If any factors are
to be renamed, we must replace all levels and include the new names in the replacements. See the
examples.

Method for summary_emm objects

This method exists so that we can change the way a summary is displayed, by changing the by
variables or the annotations.

Note

When it makes sense, an option set by update will persist into future results based on that object.
But some options are disabled as well. For example, a calc option will be nulled-out if contrast
is called, because it probably will not make sense to do the same calculations on the contrast results,
and in fact the variable(s) needed may not even still exist. factor(percent).

See Also

emm_options

Examples

Using an already-transformed response:
pigs.lm <- lm(log(conc) ~ source * factor(percent), data = pigs)

Reference grid that knows about the transformation
and asks to include the sample size in any summaries:
pigs.rg <- update(ref_grid(pigs.lm), tran = "log",

predict.type = "response",
calc = c(n = ~.wgt.))

emmeans(pigs.rg, "source")

100 xtable.emmGrid

Obtain estimates for the additive model
[Note that the submodel refers to 'percent', not 'factor(percent)']
emmeans(pigs.rg, "source", submodel = ~ source + percent)

Type II ANOVA
joint_tests(pigs.rg, submodel = "type2")

Changing levels of one factor
newrg <- pigs.rg
levels(newrg)$source <- 1:3
newrg

Unraveling a previously standardized covariate
zd = scale(fiber$diameter)
fibz.lm <- lm(strength ~ machine * zd, data = fiber)
(fibz.rg <- ref_grid(fibz.lm, at = list(zd = -2:2))) ### 2*SD range
lev <- levels(fibz.rg)
levels(fibz.rg) <- list (

machine = lev$machine,
diameter = with(attributes(zd),

`scaled:center` + `scaled:scale` * lev$zd))
fibz.rg

Compactify results with a by variable
update(joint_tests(pigs.rg, by = "source"), by = NULL)

xtable.emmGrid Using xtable for EMMs

Description

These methods provide support for the xtable package, enabling polished presentations of tabular
output from emmeans and other functions.

Usage

S3 method for class 'emmGrid'
xtable(x, caption = NULL, label = NULL, align = NULL,
digits = 4, display = NULL, auto = FALSE, ...)

S3 method for class 'summary_emm'
xtable(x, caption = NULL, label = NULL,
align = NULL, digits = 4, display = NULL, auto = FALSE, ...)

S3 method for class 'xtable_emm'
print(x, type = getOption("xtable.type", "latex"),
include.rownames = FALSE, sanitize.message.function = footnotesize, ...)

xtable.emmGrid 101

Arguments

x Object of class emmGrid

caption Passed to xtableList

label Passed to xtableList

align Passed to xtableList

digits Passed to xtableList

display Passed to xtableList

auto Passed to xtableList

... Arguments passed to summary.emmGrid

type Passed to print.xtable

include.rownames

Passed to print.xtable

sanitize.message.function

Passed to print.xtable

Details

The methods actually use xtableList, because of its ability to display messages such as those
for P-value adjustments. These methods return an object of class "xtable_emm" – an extension
of "xtableList". Unlike other xtable methods, the number of digits defaults to 4; and degrees
of freedom and t ratios are always formatted independently of digits. The print method uses
print.xtableList, and any ... arguments are passed there.

Value

The xtable methods return an xtable_emm object, for which its print method is print.xtable_emm
.

Examples

if(requireNamespace("xtable"))
emm_example("xtable")
Use emm_example("xtable", list = TRUE) # to just list the code

Index

∗ datasets
auto.noise, 8
emm_options, 37
feedlot, 49
fiber, 50
MOats, 59
neuralgia, 63
nutrition, 64
oranges, 65
pigs, 66
ubds, 94

+.emmGrid (rbind.emmGrid), 75
.all.vars (extending-emmeans), 43
.aovlist.dffun (extending-emmeans), 43
.cmpMM (extending-emmeans), 43
.combine.terms (extending-emmeans), 43
.diag (extending-emmeans), 43
.emm_basis (extending-emmeans), 43
.emm_register (extending-emmeans), 43
.emm_vignette (extending-emmeans), 43
.get.excl (extending-emmeans), 43
.get.offset (extending-emmeans), 43
.hurdle.support (extending-emmeans), 43
.my.vcov (extending-emmeans), 43
.num.key (extending-emmeans), 43
.recover_data (extending-emmeans), 43
.std.link.labels (extending-emmeans), 43
.zi.support (extending-emmeans), 43
[, 75
[.emmGrid, 30
[.emmGrid (rbind.emmGrid), 75
[.summary_emm (summary.emmGrid), 87

add_grouping (comb_facs), 11
add_submodels (comb_facs), 11
all.vars, 46
as.data.frame, 89
as.data.frame.emm_list (emm_list), 36
as.data.frame.emmGrid, 37

as.data.frame.emmGrid
(summary.emmGrid), 87

as.data.frame.summary_eml (emm_list), 36
as.emm_list (as.list.emmGrid), 4
as.emmGrid (as.list.emmGrid), 4
as.glht, 4, 91, 92
as.glht (emm), 23
as.glht.emmGrid, 30
as.list.emmGrid, 4
as.mcmc.emm_list (as.mcmc.emmGrid), 6
as.mcmc.emmGrid, 6, 29, 30
as.mcmc.list.emm_list

(as.mcmc.emmGrid), 6
as.mcmc.list.emmGrid, 30
as.mcmc.list.emmGrid (as.mcmc.emmGrid),

6
auto.noise, 8

cld.emm_list (cld.emmGrid), 9
cld.emmGrid, 9, 30
coef.emm_list (emm_list), 36
coef.emmGrid, 30
coef.emmGrid (contrast), 14
comb_facs, 11
confint.emm_list (emm_list), 36
confint.emmGrid, 4, 26, 30, 38, 89
confint.emmGrid (summary.emmGrid), 87
consec.emmc (contrast-methods), 18
contrast, 4, 9, 10, 14, 22, 25, 28, 38, 39, 52,

71, 87, 97
contrast-methods, 18
contrast.emm_list (emm_list), 36
contrast.emmGrid, 26, 30, 38, 61, 70
contrMat, 19, 20

data.frame, 46, 89, 90
del.eff.emmc (contrast-methods), 18
delete.response, 45
diag, 46
dotplot, 68

102

INDEX 103

dunnett.emmc (contrast-methods), 18

eff.emmc (contrast-methods), 18
eff_size, 21
emm, 4, 23, 56
emm_basis, 78
emm_basis (extending-emmeans), 43
emm_defaults (emm_options), 37
emm_example, 35
emm_list, 16, 17, 26, 36
emm_options, 31, 37, 51, 56, 79, 81, 82, 88,

93, 99
emmc-functions, 15
emmc-functions (contrast-methods), 18
emmeans, 4, 24, 25, 29, 30, 32, 33, 36, 38, 41,

42, 55, 56, 58, 78, 79, 81, 82, 85, 87,
93, 100

emmeans-package, 3
emmGrid, 17, 21, 22, 36, 82
emmGrid-class, 28, 88
emmip, 4, 30, 38, 39, 56, 97, 98
emmip_ggplot (emmip), 30
emmip_lattice (emmip), 30
emmobj, 5, 34, 34, 56, 74
emtrends, 4, 38, 41, 56, 82
expand.grid, 12, 29, 34, 77
extending-emmeans, 43, 80

feedlot, 49
fiber, 50
force_regular (rbind.emmGrid), 75

get, 48
get.lsm.option (lsmeans), 55
get_emm_option, 56
get_emm_option (emm_options), 37
glht-support (emm), 23
glht.emmGrid (emm), 23
glht.emmlf (emm), 23
glm, 73
glmer.nb, 80
grep, 15

head.emmGrid (rbind.emmGrid), 75
hpd.summary, 51, 87, 89, 90, 94

identity.emmc (contrast-methods), 18
interaction, 12
interaction.plot, 32, 33

inverse (make.tran), 56

joint_tests, 52, 89

levels<-.emmGrid (update.emmGrid), 96
lm, 22, 73, 79
lsm (lsmeans), 55
lsmeans, 55
lsmip (lsmeans), 55
lsmobj (lsmeans), 55
lstrends (lsmeans), 55

make.link, 56–58, 84, 97
make.meanint (joint_tests), 52
make.names, 69
make.symmint (joint_tests), 52
make.tran, 56, 81, 84, 97
mcmc, 7
mcmc-support (as.mcmc.emmGrid), 6
mcmc.list, 6, 7
mean_chg.emmc (contrast-methods), 18
meanint (joint_tests), 52
MOats, 59
modelparm.emmwrap (emm), 23
models, 60
mvcontrast, 61
mvregrid, 62, 90

neuralgia, 63
nonest.basis, 47
nutrition, 64

Oats, 60
offset, 29
oranges, 65

p.adjust, 20, 92
pairs.emm_list (emm_list), 36
pairs.emmGrid, 26, 30, 38, 70
pairs.emmGrid (contrast), 14
pairwise.emmc (contrast-methods), 18
permute_levels (comb_facs), 11
pigs, 66
plot.emm_list (emm_list), 36
plot.emmGrid, 4, 30, 38, 39, 67, 97
plot.summary_emm (plot.emmGrid), 67
poly, 19
poly.emmc (contrast-methods), 18
predict, 79
predict.emmGrid, 30, 31, 38, 68, 97, 98

104 INDEX

predict.emmGrid (summary.emmGrid), 87
print.emm_list (emm_list), 36
print.emmGrid, 30, 37
print.emmGrid (str.emmGrid), 86
print.xtable, 101
print.xtable_emm (xtable.emmGrid), 100
print.xtableList, 101
pwpm, 10, 69, 72
pwpp, 10, 70, 70

qdrg, 4, 35, 43, 72, 74
qr, 46

rbind, 75
rbind.emm_list, 37
rbind.emm_list (rbind.emmGrid), 75
rbind.emmGrid, 17, 30, 75, 91
rbind.summary_emm (rbind.emmGrid), 75
recover_data, 78, 79
recover_data (extending-emmeans), 43
ref_grid, 4, 26–29, 34, 38, 39, 42, 58, 73, 77,

85, 98
regrid, 22, 62, 78, 81, 84
revpairwise.emmc (contrast-methods), 18

set.seed, 91
split_fac (comb_facs), 11
str.emm_list (emm_list), 36
str.emmGrid, 30, 86, 98
subset.emmGrid (rbind.emmGrid), 75
summary.emm_list (emm_list), 36
summary.emmGrid, 4, 26, 28–30, 38, 47, 51,

53, 67, 68, 70, 72, 78, 82, 85, 87, 89,
96–98, 101

summary_emm, 10
symmint (joint_tests), 52

tail.emmGrid (rbind.emmGrid), 75
terms, 45
test, 52, 54
test (summary.emmGrid), 87
test.emm_list (emm_list), 36
test.emmGrid, 4, 10, 26, 30, 38
trt.vs.ctrl.emmc (contrast-methods), 18
trt.vs.ctrl1.emmc (contrast-methods), 18
trt.vs.ctrlk.emmc (contrast-methods), 18
tukey.emmc (contrast-methods), 18

ubds, 94

untidy, 95
update, 90
update.emmGrid, 5, 13, 15, 25, 29, 30, 34, 40,

56, 58, 68, 75, 76, 78, 80, 82, 84, 96
update.summary_emm (update.emmGrid), 96

vcov, 46, 80
vcov.emmGrid, 30
vcov.emmGrid (str.emmGrid), 86

weights.emmGrid (contrast), 14
with_emm_options (emm_options), 37
wrappers, 26
wrappers (lsmeans), 55
wtcon.emmc (contrast-methods), 18

xtable.emmGrid, 30, 100
xtable.summary_emm (xtable.emmGrid), 100
xtableList, 101

	emmeans-package
	as.list.emmGrid
	as.mcmc.emmGrid
	auto.noise
	cld.emmGrid
	comb_facs
	contrast
	contrast-methods
	eff_size
	emm
	emmeans
	emmGrid-class
	emmip
	emmobj
	emm_example
	emm_list
	emm_options
	emtrends
	extending-emmeans
	feedlot
	fiber
	hpd.summary
	joint_tests
	lsmeans
	make.tran
	MOats
	models
	mvcontrast
	mvregrid
	neuralgia
	nutrition
	oranges
	pigs
	plot.emmGrid
	pwpm
	pwpp
	qdrg
	rbind.emmGrid
	ref_grid
	regrid
	str.emmGrid
	summary.emmGrid
	ubds
	untidy
	update.emmGrid
	xtable.emmGrid
	Index

