
Package ‘footBayes’
January 9, 2025

Type Package

Title Fitting Bayesian and MLE Football Models

Version 1.0.0

Date 2025-01-09

Maintainer Leonardo Egidi <legidi@units.it>

License GPL-2

Description This is the first package allowing for the estimation,
visualization and prediction of the most well-known
football models: double Poisson, bivariate Poisson,
Skellam, student_t, diagonal-inflated bivariate Poisson, and
zero-inflated Skellam. The package allows Hamiltonian
Monte Carlo (HMC) estimation through the underlying Stan
environment and Maximum Likelihood estimation (MLE, for
'static' models only). The model construction relies on
the most well-known football references, such as
Dixon and Coles (1997) <doi:10.1111/1467-9876.00065>,
Karlis and Ntzoufras (2003) <doi:10.1111/1467-9884.00366> and
Egidi, Pauli and Torelli (2018) <doi:10.1177/1471082X18798414>.

URL https://github.com/leoegidi/footbayes

Encoding UTF-8

SystemRequirements pandoc (>= 1.12.3), pandoc-citeproc

Depends R (>= 3.1.0)

Imports rstan (>= 2.18.1), arm, reshape2, ggplot2, ggridges,
bayesplot, matrixStats, extraDistr, parallel, metRology, dplyr,
tidyr, numDeriv, magrittr, rlang

Suggests testthat, knitr (>= 1.37), rmarkdown (>= 2.10), loo

RoxygenNote 7.3.2

LazyData true

BuildManual yes

NeedsCompilation no

1

https://doi.org/10.1111/1467-9876.00065
https://doi.org/10.1111/1467-9884.00366
https://doi.org/10.1177/1471082X18798414
https://github.com/leoegidi/footbayes

2 btd_foot

Author Leonardo Egidi [aut, cre],
Roberto Macrì Demartino [aut],
Vasilis Palaskas. [aut]

Repository CRAN

Date/Publication 2025-01-09 15:20:02 UTC

Contents
btd_foot . 2
compare_foot . 5
england . 7
foot_abilities . 8
foot_prob . 9
foot_rank . 11
foot_round_robin . 12
italy . 13
mle_foot . 14
plot_btdPosterior . 15
plot_logStrength . 18
pp_foot . 19
print.btdFoot . 21
print.compareFoot . 22
print.stanFoot . 22
priors . 23
stan_foot . 25

Index 31

btd_foot Bayesian Bradley-Terry-Davidson Model

Description

Fits a Bayesian Bradley-Terry-Davidson model using Stan. Supports both static and dynamic rank-
ing models, allowing for the estimation of team strengths over time.

Usage

btd_foot(
data,
dynamic_rank = FALSE,
home_effect = FALSE,
prior_par = list(logStrength = normal(0, 3), logTie = normal(0, 0.3), home = normal(0,

5)),
rank_measure = "median",
...

)

btd_foot 3

Arguments

data A data frame containing the observations with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• match_outcome: Outcome (1 if home team beats away team, 2 for tie, and

3 if away team beats home team).

The data frame must not contain missing values.

dynamic_rank A logical value indicating whether a dynamic ranking model is used (default is
FALSE).

home_effect A logical value indicating the inclusion of a home effect in the model. (default
is FALSE).

prior_par A list specifying the prior distributions for the parameters of interest, using the
normal function:

• logStrength: Prior for the team log-strengths. Default is normal(0, 3).
• logTie: Prior for the tie parameter. Default is normal(0, 0.3).
• home: Prior for the home effect (home). Applicable only if home_effect =
TRUE. Default is normal(0, 5).

Only normal priors are allowed for this model.

rank_measure A character string specifying the method used to summarize the posterior distri-
butions of the team strengths. Options are:

• "median": Uses the median of the posterior samples (default).
• "mean": Uses the mean of the posterior samples.
• "map": Uses the Maximum A Posteriori estimate, calculated as the mode

of the posterior distribution.

... Additional arguments passed to stan (e.g., iter, chains, control).

Value

A list of class "btdFoot" containing:

• fit: The fitted stanfit object returned by stan.

• rank: A data frame with the rankings, including columns:

– periods: The time period.
– team: The team name.
– rank_points: The estimated strength of the team based on the chosen rank_measure.

• data: The input data.

• stan_data: The data list prepared for Stan.

• stan_code: The path to the Stan model code used.

• stan_args: The optional parameters passed to (...).

• rank_measure: The method used to compute the rankings.

4 btd_foot

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@phd.unipd.it>.

Examples

Not run:

library(dplyr)

data("italy")

italy_2020_2021 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2020" | Season == "2021") %>%
dplyr::mutate(match_outcome = dplyr::case_when(
hgoal > vgoal ~ 1, # Home team wins
hgoal == vgoal ~ 2, # Draw
hgoal < vgoal ~ 3 # Away team wins

)) %>%
dplyr::mutate(periods = dplyr::case_when(

dplyr::row_number() <= 190 ~ 1,
dplyr::row_number() <= 380 ~ 2,
dplyr::row_number() <= 570 ~ 3,
TRUE ~ 4

)) %>% # Assign periods based on match number
dplyr::select(periods, home_team = home,
away_team = visitor, match_outcome)

Dynamic Ranking Example with Median Rank Measure
fit_result_dyn <- btd_foot(

data = italy_2020_2021,
dynamic_rank = TRUE,
home_effect = TRUE,
prior_par = list(
logStrength = normal(0, 10),
logTie = normal(0, 5),
home = normal(0, 5)

),
rank_measure = "median",
iter = 1000,
cores = 2,
chains = 2

)

print(fit_result_dyn)

print(fit_result_dyn, pars = c("logStrength", "home"), teams = c("AC Milan", "AS Roma"))

Static Ranking Example with MAP Rank Measure
fit_result_stat <- btd_foot(

data = italy_2020_2021,
dynamic_rank = FALSE,

compare_foot 5

prior_par = list(
logStrength = normal(0, 10),
logTie = normal(0, 5),
home = normal(0, 5)

),
rank_measure = "map",
iter = 1000,
chains = 2

)

print(fit_result_stat)

End(Not run)

compare_foot Compare Football Models using Various Metrics

Description

Compares multiple football models or directly provided probability matrices based on specified
metrics (accuracy, Brier score, ranked probability score, Pseudo R2, average coverage probability),
using a test dataset. Additionally, computes the confusion matrices. The function returns an object
of class compareFoot.

Usage

compare_foot(
source,
test_data,
metric = c("accuracy", "brier", "ACP", "pseudoR2", "RPS"),
conf_matrix = FALSE

)

Arguments

source A named list containing either:

• Fitted model objects (of class stanFoot or stanfit), each representing a
football model.

• Matrices where each matrix contains the estimated probabilities for "Home
Win," "Draw," and "Away Win" in its columns.

test_data A data frame containing the test dataset, with columns:

• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

metric A character vector specifying the metrics to use for comparison. Options are:

6 compare_foot

• "accuracy": Computes the accuracy of each model.
• "brier": Computes the Brier score of each model.
• "RPS": Computes the ranked probability score (RPS) for each model.
• "ACP": Computes the average coverage probability (ACP) for each model.
• "pseudoR2": Computes the Pseudo R2, defined as the geometric mean of

the probabilities assigned to the actual results.

Default is c("accuracy", "brier", "ACP", "pseudoR2", "RPS"), computing
the specified metrics.

conf_matrix A logical value indicating whether to generate a confusion matrix comparing
predicted outcomes against actual outcomes for each model or probability ma-
trix. Default is FALSE.

Details

The function extracts predictions from each model or directly uses the provided probability matrices
and computes the chosen metrics on the test dataset. It also possible to compute confusion matrices.

Value

An object of class compare_foot_output, which is a list containing:

• metrics: A data frame containing the metric values for each model or probability matrix.

• confusion_matrix: Confusion matrices for each model or probability matrix.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@phd.unipd.it>

Examples

Not run:
library(dplyr)

data("italy")
italy_2000 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2000")

colnames(italy_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

Example with fitted models
fit_1 <- stan_foot(data = italy_2000,

model = "double_pois", predict = 18) # Double Poisson model
fit_2 <- stan_foot(data = italy_2000,

model = "biv_pois", predict = 18) # Bivariate Poisson model

italy_2000_test <- italy_2000[289:306,]

compare_results_models <- compare_foot(

england 7

source = list(double_poisson = fit_1,
bivariate_poisson = fit_2),

test_data = italy_2000_test,
metric = c("accuracy", "brier", "ACP", "pseudoR2", "RPS"),
conf_matrix = TRUE

)

print(compare_results_models)

End(Not run)

england English league results 1888-2022

Description

All results for English soccer games in the top 4 tiers from 1888/89 season to 2021/22 season.

Usage

england

Format

A data frame with 203956 rows and 12 variables:

Date Date of match

Season Season of match - refers to starting year

home Home team

visitor Visiting team

FT Full-time result

hgoal Goals scored by home team

vgoal Goals scored by visiting team

division Division: 1,2,3,4 or 3N (Old 3-North) or 3S (Old 3-South)

tier Tier of football pyramid: 1,2,3,4

totgoal Total goals in game

goaldif Goal difference in game home goals - visitor goals

result Result: H-Home Win, A-Away Win, D-Draw

8 foot_abilities

foot_abilities Plot football abilities from Stan and MLE models

Description

Depicts teams’ abilities either from the Stan models fitted via the stan_foot function or from MLE
models fitted via the mle_foot function.

Usage

foot_abilities(
object,
data,
type = c("attack", "defense", "both"),
teams = NULL,
...

)

Arguments

object An object either of class stanfit or stanFoot as given by stan_foot function,
or class list containing the Maximum Likelihood Estimates (MLE) for the
model parameters fitted with mle_foot.

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

type Type of ability in Poisson models: one among "defense", "attack" or "both".

teams An optional character vector specifying team names to include. If NULL, all
teams are included.

... Optional graphical parameters.

Value

Abilities plots for the selected teams: for Poisson models only, red denotes the attack, blue the
defense.

Author(s)

Leonardo Egidi <legidi@units.it>

foot_prob 9

Examples

Not run:
library(dplyr)

data("italy")
italy <- as_tibble(italy)

no dynamics, no prediction

italy_2000_2002 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season=="2000" | Season=="2001" | Season =="2002")

colnames(italy_2000_2002) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit1 <- stan_foot(data = italy_2000_2002,
model="double_pois") # double poisson

fit2 <- stan_foot(data = italy_2000_2002,
model="biv_pois") # bivariate poisson

fit3 <- stan_foot(data = italy_2000_2002,
model="skellam") # skellam

fit4 <- stan_foot(data = italy_2000_2002,
model="student_t") # student_t

foot_abilities(fit1, italy_2000_2002)
foot_abilities(fit2, italy_2000_2002)
foot_abilities(fit3, italy_2000_2002)
foot_abilities(fit4, italy_2000_2002)

seasonal dynamics, predict the last season

fit5 <-stan_foot(data = italy_2000_2002,
model = "biv_pois",
predict = 180,
dynamic_type = "seasonal") # bivariate poisson

foot_abilities(fit5, italy_2000_2002)

End(Not run)

foot_prob Plot football matches probabilities for out-of-sample football matches.

Description

The function provides a table containing the home win, draw and away win probabilities for a bunch
of out-of-sample matches as specified by stan_foot or mle_foot.

10 foot_prob

Usage

foot_prob(object, data, home_team, away_team)

Arguments

object An object either of class stanfit and stanFoot as given by stan_foot function
or list as given by mle_foot.

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

home_team The home team(s) for the predicted matches.

away_team The away team(s) for the predicted matches.

Details

For Bayesian models fitted via stan_foot the results probabilities are computed according to the
simulation from the posterior predictive distribution of future (out-of-sample) matches. For MLE
models fitted via the mle_foot the probabilities are computed by simulating from the MLE esti-
mates.

Value

A data.frame containing the number of out-of-sample matches specified through the argument
predict passed either in the mle_foot or in the stan_foot function. For Bayesian Poisson models
the function returns also the most likely outcome (mlo) and a posterior probability plot for the exact
results, where matches are sorted by the degree of favoritism. Specifically, matches are ordered
from those in which the favorite team has the highest posterior probability of winning to those
where the underdog is more likely to win.

Author(s)

Leonardo Egidi <legidi@units.it>

Examples

Not run:
library(tidyverse)
library(dplyr)

data("italy")
italy_2000 <- italy %>%
dplyr::select(Season, home, visitor, hgoal,vgoal) %>%
dplyr::filter(Season=="2000")

colnames(italy_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

foot_rank 11

fit <- stan_foot(data = italy_2000,
model="double_pois",
predict = 18) # double pois

foot_prob(fit, italy_2000, "Inter",
"Bologna FC")

foot_prob(fit, italy_2000) # all the out-of-sample matches

End(Not run)

foot_rank Rank and points predictions

Description

Posterior predictive plots and final rank table for football seasons.

Usage

foot_rank(
object,
data,
teams = NULL,
visualize = c("aggregated", "individual")

)

Arguments

object An object of class stanfit or stanFoot as given by stan_foot function.
data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

teams An optional character vector specifying team names to include. If NULL, all
teams are included.

visualize Type of plot, default is "aggregated".

Details

For Bayesian models fitted via stan_foot the final rank tables are computed according to the
simulation from the posterior predictive distribution of future (out-of-sample) matches. The dataset
should refer to one or more seasons from a given national football league (Premier League, Serie
A, La Liga, etc.).

12 foot_round_robin

Value

Final rank tables and plots with the predicted points for the selected teams as given by the models
fitted via the stan_foot function.

Author(s)

Leonardo Egidi <legidi@units.it>

Examples

Not run:
library(dplyr)

data("italy")
italy_1999_2000<- italy %>%
dplyr::select(Season, home, visitor, hgoal,vgoal) %>%
dplyr::filter(Season == "1999"|Season=="2000")

colnames(italy_1999_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit <- stan_foot(italy_1999_2000, "double_pois", iter = 200)
foot_rank(fit, italy_1999_2000)
foot_rank(fit, italy_1999_2000, visualize = "individual")

End(Not run)

foot_round_robin Round-robin for football leagues

Description

Posterior predictive probabilities for a football season in a round-robin format

Usage

foot_round_robin(object, data, teams = NULL)

Arguments

object An object of class stanfit or stanFoot as given by stan_foot function.
data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

teams An optional character vector specifying team names to include. If NULL, all
teams are included.

italy 13

Details

For Bayesian models fitted via stan_foot the round-robin table is computed according to the sim-
ulation from the posterior predictive distribution of future (out-of-sample) matches. The dataset
should refer to one or more seasons from a given national football league (Premier League, Serie
A, La Liga, etc.).

Value

Round-robin plot with the home-win posterior probabilities computed from the ppd of the fitted
model via the stan_foot function.

Author(s)

Leonardo Egidi <legidi@units.it>

Examples

Not run:
library(dplyr)

data("italy")
italy_1999_2000<- italy %>%
dplyr::select(Season, home, visitor, hgoal,vgoal) %>%
dplyr::filter(Season == "1999"|Season=="2000")

colnames(italy_1999_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit <- stan_foot(italy_1999_2000, "double_pois", predict = 45, iter = 200)

foot_round_robin(fit, italy_1999_2000)
foot_round_robin(fit, italy_1999_2000, c("Parma AC", "AS Roma"))

End(Not run)

italy Italy league results 1934-2022

Description

All results for Italian soccer games in the top tier from 1934/35 season to 2021/22 season.

Usage

italy

14 mle_foot

Format

A data frame with 27684 rows and 8 variables:

Date Date of match

Season Season of match - refers to starting year

home Home team

visitor Visiting team

FT Full-time result

hgoal Goals scored by home team

vgoal Goals scored by visiting team

tier Tier of football pyramid: 1

mle_foot Fit football models with Maximum Likelihood

Description

ML football modelling for the most famous models: double Poisson, bivariate Poisson, Skellam
and student t.

Usage

mle_foot(data, model, predict, ...)

Arguments

data A data frame, or a matrix containing the following mandatory items: season,
home team, away team, home goals, away goals.

model The type of model used to fit the data. One among the following: "double_pois",
"biv_pois", "skellam", "student_t".

predict The number of out-of-sample matches. If missing, the function returns the fit
for the training set only.

... Optional arguments for MLE fit algorithms.

Details

See documentation of stan_foot function for model details. MLE can be obtained only for static
models, with no time-dependence. Likelihood optimization is performed via the BFGS method of
the optim function.

Value

MLE and 95% profile likelihood deviance confidence intervals for the model’s parameters: attack,
defence, home effect and goals’ correlation.

plot_btdPosterior 15

Author(s)

Leonardo Egidi <legidi@units.it>

References

Baio, G. and Blangiardo, M. (2010). Bayesian hierarchical model for the prediction of football
results. Journal of Applied Statistics 37(2), 253-264.

Egidi, L., Pauli, F., and Torelli, N. (2018). Combining historical data and bookmakers’ odds in
modelling football scores. Statistical Modelling, 18(5-6), 436-459.

Gelman, A. (2014). Stan goes to the World Cup. From "Statistical Modeling, Causal Inference, and
Social Science" blog.

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate poisson models.
Journal of the Royal Statistical Society: Series D (The Statistician) 52(3), 381-393.

Karlis, D. and Ntzoufras,I. (2009). Bayesian modelling of football outcomes: Using the Skellam’s
distribution for the goal difference. IMA Journal of Management Mathematics 20(2), 133-145.

Owen, A. (2011). Dynamic Bayesian forecasting models of football match outcomes with estima-
tion of the evolution variance parameter. IMA Journal of Management Mathematics, 22(2), 99-113.

Examples

Not run:
require(tidyverse)
require(dplyr)

data("italy")
italy <- as_tibble(italy)
italy_2008<- italy %>%

dplyr::select(Season, home, visitor, hgoal,vgoal) %>%
dplyr::filter(Season=="2008")

mle_fit <- mle_foot(data = italy_2008,
model = "double_pois")

End(Not run)

plot_btdPosterior Plot Posterior Distributions for btdFoot Objects

Description

Plots for the posterior distributions of team log-strengths and other parameters with customizable
plot types and facets.

16 plot_btdPosterior

Usage

plot_btdPosterior(
x,
pars = "logStrength",
plot_type = "boxplot",
teams = NULL,
ncol = NULL,
scales = NULL,
...

)

Arguments

x An object of class btdFoot.

pars A character string specifying the parameter to plot. Choices are "logStrength",
"logTie", and "home". Default is "logStrength".

plot_type A character string specifying the type of plot. Choices are "boxplot" and
"density". Default is "boxplot".

teams An optional character vector specifying team names to include in the posterior
boxplots or density plots. If NULL, all teams are included.

ncol An optional integer specifying the number of columns in the facet wrap when
using a dynamic Bayesian Bradley-Terry-Davidson model. Default is 8.

scales An optional character string specifying the scales for the facets when using a
dynamic Bayesian Bradley-Terry-Davidson model. Options include "free",
"fixed", "free_x", and "free_y". Default is "free_x".

... Additional arguments passed to geom_boxplot(), geom_density_ridges(),
or other geoms for customization (e.g., size, alpha, color).

Details

• Dynamic Ranking: Faceted boxplots or density plots (including the 95% credible interval)
of posterior log-strengths by team and period.

• Static Ranking: Boxplots or density plots (including the 95% credible interval) of posterior
log-strengths for each team.

Value

A ggplot object representing the posterior distributions plot.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@phd.unipd.it>.

plot_btdPosterior 17

Examples

Not run:
library(dplyr)

Load example data
data("italy")

Prepare the data
italy_2020_2021_rank <- italy %>%

select(Season, home, visitor, hgoal, vgoal) %>%
filter(Season %in% c("2020", "2021")) %>%
mutate(match_outcome = case_when(
hgoal > vgoal ~ 1, # Home team wins
hgoal == vgoal ~ 2, # Draw
hgoal < vgoal ~ 3 # Away team wins

)) %>%
mutate(periods = case_when(

row_number() <= 190 ~ 1,
row_number() <= 380 ~ 2,
row_number() <= 570 ~ 3,
TRUE ~ 4

)) %>% # Assign periods based on match number
select(periods, home_team = home,

away_team = visitor, match_outcome)

Fit the Bayesian Bradley-Terry-Davidson model with dynamic ranking
fit_rank_dyn <- btd_foot(

data = italy_2020_2021_rank,
dynamic_rank = TRUE,
rank_measure = "median",
iter = 1000,
cores = 2,
chains = 2

)

Plot posterior distributions with default settings
plot_btdPosterior(fit_rank_dyn)

Plot posterior distributions for specific teams with customized facets
plot_btdPosterior(

fit_rank_dyn,
teams = c("AC Milan", "AS Roma", "Juventus", "Inter"),
ncol = 2

)

plot_btdPosterior(
fit_rank_dyn,
plot_type = "density",
teams = c("AC Milan", "AS Roma", "Juventus", "Inter"),
ncol = 2

)

18 plot_logStrength

End(Not run)

plot_logStrength Plot Rankings for btdFoot Objects

Description

Visualizes team rankings based on whether the ranking is dynamic or static.

Usage

plot_logStrength(x, teams = NULL, ...)

Arguments

x An object of class btdFoot.

teams An optional character vector specifying team names to include in the rankings
plot. If NULL, all teams are included.

... Additional arguments passed to geom_line(), geom_point(), and geom_segment()
for customization (e.g., size, alpha, color).

Details

• Dynamic Ranking: Plots Rank Points over Periods for each team with lines and points.

• Static Ranking: Plots Rank Points on the x-axis against Team Names on the y-axis with hori-
zontal lines and points.

Value

A ggplot object representing the rankings plot.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@phd.unipd.it>.

Examples

Not run:
library(dplyr)

data("italy")

italy_2020_2021_rank <- italy %>%
select(Season, home, visitor, hgoal, vgoal) %>%
filter(Season == "2020" | Season == "2021") %>%
mutate(match_outcome = case_when(
hgoal > vgoal ~ 1, # Home team wins

pp_foot 19

hgoal == vgoal ~ 2, # Draw
hgoal < vgoal ~ 3 # Away team wins

)) %>%
mutate(periods = case_when(

row_number() <= 190 ~ 1,
row_number() <= 380 ~ 2,
row_number() <= 570 ~ 3,
TRUE ~ 4

)) %>% # Assign periods based on match number
select(periods, home_team = home,

away_team = visitor, match_outcome)

fit_rank_dyn <- btd_foot(
data = italy_2020_2021_rank,
dynamic_rank = TRUE,
rank_measure = "median",
iter = 1000,
cores = 2,
chains = 2)

plot_logStrength(fit_rank_dyn)

plot_logStrength(fit_rank_dyn, teams = c("AC Milan", "AS Roma", "Juventus", "Inter"))

End(Not run)

pp_foot Posterior predictive checks for football models

Description

The function provides posterior predictive plots to check the adequacy of the Bayesian models as
returned by the stan_foot function.

Usage

pp_foot(object, data, type = c("aggregated", "matches"), coverage = 0.95)

Arguments

object An object of class stanfit or stanFoot as given by stan_foot function.

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).

20 pp_foot

• away_goals: Goals scored by the away team (integer >= 0).

type Type of plots, one among "aggregated" or "matches".

coverage Argument to specify the width 1 − α of posterior probability intervals. Default
is 0.95.

Value

Posterior predictive plots: when "aggregated" (default) is selected, the function returns a fre-
quency plot for some pre-selected goal-difference values, along with their correspondent Bayesian
p-values, computed as Pr(yrep ≥ y)|y), where yrep is a data replication from the posterior predic-
tive distribution (more details in Gelman et al., 2013). Bayesian p-values very close to 0 or 1 could
exhibit possible model misfits.

When "matches" is selected an ordered-frequency plot for all the goal-differences in the considered
matches is provided, along with the empirical Bayesian coverage at level 1− α.

Author(s)

Leonardo Egidi <legidi@units.it>

References

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian
data analysis. CRC press.

Examples

Not run:
library(dplyr)

data("italy")
italy_2000 <- italy %>%
dplyr::select(Season, home, visitor, hgoal,vgoal) %>%
dplyr::filter(Season=="2000")

colnames(italy_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit <- stan_foot(italy_2000, "double_pois", iter = 200)

pp_foot(fit, italy_2000)

End(Not run)

print.btdFoot 21

print.btdFoot Print Method for btdFoot Objects

Description

Provides detailed posterior summaries for the Bayesian Bradley-Terry-Davidson model parameters.

Usage

S3 method for class 'btdFoot'
print(
x,
pars = NULL,
teams = NULL,
digits = 3,
true_names = TRUE,
display = c("both", "rankings", "parameters"),
...

)

Arguments

x An object of class btdFoot.

pars Optional character vector specifying parameters to include in the summary (e.g.,
"logStrength", "logTie", "home", "log_lik", and "y_rep").

teams Optional character vector specifying team names whose logStrength parame-
ters should be displayed.

digits Number of digits to use when printing numeric values. Default is 3.

true_names Logical value indicating whether to display team names in parameter summaries.
Default is TRUE.

display Character string specifying which parts of the output to display. Options are
"both", "rankings", or "parameters". Default is "both".

... Additional arguments passed.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@phd.unipd.it>

22 print.stanFoot

print.compareFoot Print method for compareFoot objects

Description

Provides a formatted output when printing objects of class compareFoot, displaying the predictive
performance metrics and, if available, the confusion matrices for each model or probability matrix.

Usage

S3 method for class 'compareFoot'
print(x, digits = 3, ...)

Arguments

x An object of class compareFoot returned by compare_foot.

digits Number of digits to use when printing numeric values for the metrics. Default
is 3.

... Additional arguments passed to print.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@phd.unipd.it>

print.stanFoot Print Method for stanFoot Objects

Description

Provides detailed posterior summaries for the Stan football model parameters.

Usage

S3 method for class 'stanFoot'
print(x, pars = NULL, teams = NULL, digits = 3, true_names = TRUE, ...)

Arguments

x An object of class stanFoot.

pars Optional character vector specifying parameters to include in the summary. This
can be specific parameter names (e.g., "att", "def", "att_raw", "def_raw",
"home", "sigma_att", "sigma_def", "rho", and "beta"). If NULL, all param-
eters are included.

teams Optional character vector specifying team names whose "att", "def", "att_raw",
"def_raw" parameters should be displayed.

priors 23

digits Number of digits to use when printing numeric values. Default is 3.

true_names Logical value indicating whether to display team names in parameter summaries.
Default is TRUE.

... Additional arguments passed.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@phd.unipd.it>

priors Football priors distributions and options

Description

This prior specification is just a duplicate of some of the priors used by the rstanarm package.

These prior distributions can be passed to the stan_foot function, through the arguments prior
and prior_sd. See the vignette Prior Distributions for rstanarm Models for further details (to
view the priors used for an existing model see prior_summary). The default priors used in the
stan_foot modeling function are intended to be weakly informative in that they provide moderate
regularlization and help stabilize computation.

You can choose between: normal, cauchy, laplace, student_t.

Usage

normal(location = 0, scale = NULL, autoscale = TRUE)

student_t(df = 1, location = 0, scale = NULL, autoscale = TRUE)

cauchy(location = 0, scale = NULL, autoscale = TRUE)

laplace(location = 0, scale = NULL, autoscale = TRUE)

Arguments

location Prior location. In most cases, this is the prior mean, but for cauchy (which is
equivalent to student_t with df=1), the mean does not exist and location is
the prior median. The default value is 0.

scale Prior scale. The default depends on the family (see Details).

autoscale A logical scalar, defaulting to TRUE.

df Prior degrees of freedom. The default is 1 for student_t, in which case it is
equivalent to cauchy.

http://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/reference/prior_summary.stanreg.html

24 priors

Details

The details depend on the family of the prior being used:

Student t family: Family members:

• normal(location, scale)

• student_t(df, location, scale)

• cauchy(location, scale)

Each of these functions also takes an argument autoscale.
For the prior distribution for the intercept, location, scale, and df should be scalars. For the
prior for the other coefficients they can either be vectors of length equal to the number of coef-
ficients (not including the intercept), or they can be scalars, in which case they will be recycled
to the appropriate length. As the degrees of freedom approaches infinity, the Student t distribu-
tion approaches the normal distribution and if the degrees of freedom are one, then the Student t
distribution is the Cauchy distribution.
If scale is not specified it will default to 10 for the intercept and 2.5 for the other coefficients.
If the autoscale argument is TRUE (the default), then the scales will be further adjusted as de-
scribed above in the documentation of the autoscale argument in the Arguments section.

Laplace family: Family members:

• laplace(location, scale)

Each of these functions also takes an argument autoscale.
The Laplace distribution is also known as the double-exponential distribution. It is a symmetric
distribution with a sharp peak at its mean / median / mode and fairly long tails. This distribution
can be motivated as a scale mixture of normal distributions and the remarks above about the
normal distribution apply here as well.

Value

A named list to be used internally by the stan_foot model fitting function.

Author(s)

Leonardo Egidi <legidi@units.it>

References

Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y. (2008). A weakly informative default prior
distribution for logistic and other regression models. Annals of Applied Statistics. 2(4), 1360–1383.

See Also

The various vignettes for the rstanarm package also discuss and demonstrate the use of some of
the supported prior distributions.

stan_foot 25

stan_foot Fit football models with Stan

Description

Stan football modelling for the most famous models: double Poisson, bivariate Poisson, Skellam,
student t, diagonal-inflated bivariate Poisson and zero-inflated Skellam.

Usage

stan_foot(
data,
model,
predict = 0,
ranking,
dynamic_type,
prior_par = list(ability = normal(0, NULL), ability_sd = cauchy(0, 5), home = normal(0,

5)),
home_effect = TRUE,
norm_method = "none",
ranking_map = NULL,
...

)

Arguments

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

model A character string specifying the Stan model to fit. Options are:

• "double_pois": Double Poisson model.
• "biv_pois": Bivariate Poisson model.
• "skellam": Skellam model.
• "student_t": Student’s t model.
• "diag_infl_biv_pois": Diagonal-inflated bivariate Poisson model.
• "zero_infl_skellam": Zero-inflated Skellam model.

predict An integer specifying the number of out-of-sample matches for prediction. If
missing, the function fits the model to the entire dataset without making predic-
tions.

ranking An optional "btdFoot" class element or a data frame containing ranking points
for teams with the following columns:

26 stan_foot

• periods: Time periods corresponding to the rankings (integer >= 1).
• team: Team names matching those in data (character string).
• rank_points: Ranking points for each team (numeric).

dynamic_type A character string specifying the type of dynamics in the model. Options are:

• "weekly": Weekly dynamic parameters.
• "seasonal": Seasonal dynamic parameters.

prior_par A list specifying the prior distributions for the parameters of interest:

• ability: Prior distribution for team-specific abilities. Possible distribu-
tions are normal, student_t, cauchy, laplace. Default is normal(0,
NULL).

• ability_sd: Prior distribution for the team-specific standard deviations.
See the prior argument for more details. Default is cauchy(0, 5).

• home: Prior distribution for the home effect (home). Applicable only if
home_effect = TRUE. Only normal priors are allowed. Default is normal(0,
5).

See the rstanarm package for more details on specifying priors.

home_effect A logical value indicating the inclusion of a home effect in the model. (default
is TRUE).

norm_method A character string specifying the method used to normalize team-specific rank-
ing points. Options are:

• "none": No normalization (default).
• "standard": Standardization (mean 0, standard deviation 1).
• "mad": Median Absolute Deviation normalization.
• "min_max": Min-max scaling to [0,1].

ranking_map An optional vector mapping ranking periods to data periods. If not provided
and the number of ranking periods matches the number of data periods, a direct
mapping is assumed.

... Optional parameters passed to stan (e.g., iter, chains, cores, control).

Details

Let (yHn , yAn) denote the observed number of goals scored by the home and the away team in the
n-th game, respectively. A general bivariate Poisson model allowing for goals’ correlation (Karlis
& Ntzoufras, 2003) is the following:

Y H
n , Y A

n |λ1n, λ2n, λ3n ∼ BivPoisson(λ1n, λ2n, λ3n)

log(λ1n) = µ+ atthn
+ defan

log(λ2n) = attan + defhn

log(λ3n) = β0,

where the case λ3n = 0 reduces to the double Poisson model (Baio & Blangiardo, 2010). λ1n, λ2n

represent the scoring rates for the home and the away team, respectively, where: µ is the home
effect; the parameters attT and defT represent the attack and the defence abilities, respectively,

stan_foot 27

for each team T , T = 1, . . . , NT ; the nested indexes hn, an = 1, . . . , NT denote the home and the
away team playing in the n-th game, respectively. Attack/defence parameters are imposed a sum-to-
zero constraint to achieve identifiability and assigned some weakly-informative prior distributions:

attT ∼ N (µatt, σatt)

defT ∼ N (µdef , σdef),

with hyperparameters µatt, σatt, µdef , σdef .

Instead of using the marginal number of goals, another alternative is to modelling directly the score
difference (yHn − yAn). We can use the Poisson-difference distribution (or Skellam distribution) to
model goal difference in the n-th match (Karlis & Ntzoufras, 2009):

yHn − yAn |λ1n, λ2n ∼ PD(λ1n, λ2n),

and the scoring rates λ1n, λ2n are unchanged with respect to the bivariate/double Poisson model. If
we want to use a continue distribution, we can use a student t distribution with 7 degrees of freedom
(Gelman, 2014):

yHn − yAn ∼ t(7, abhn − aba(n), σy)

abt ∼ N (µ+ b× prior_scoret, sigmaab),

where abt is the overall ability for the t-th team, whereas prior_scoret is a prior measure of team’s
strength (for instance a ranking).

These model rely on the assumption of static parameters. However, we could assume dynamics in
the attach/defence abilities (Owen, 2011; Egidi et al., 2018) in terms of weeks or seasons through the
argument dynamic_type. In such a framework, for a given number of times 1, . . . , T , the models
above would be unchanged, but the priors for the abilities parameters at each time τ, τ = 2, . . . , T ,
would be:

attT,τ ∼ N (attT,τ−1, σatt)

defT,τ ∼ N (defT,τ−1, σdef),

whereas for τ = 1 we have:

attT,1 ∼ N (µatt, σatt)

defT,1 ∼ N (µdef , σdef).

Of course, the identifiability constraint must be imposed for each time τ .

The current version of the package allows for the fit of a diagonal-inflated bivariate Poisson and
a zero-inflated Skellam model in the spirit of (Karlis & Ntzoufras, 2003) to better capture draw
occurrences. See the vignette for further details.

28 stan_foot

Value

A list of class "stanFoot" containing:

• fit: The fitted stanfit object returned by stan.

• data: The input data.

• stan_data: The data list for Stan.

• stan_code: The Stan code of the underline model.

• stan_args: The optional parameters passed to (...).

Author(s)

Leonardo Egidi <legidi@units.it>, Roberto Macrì Demartino <roberto.macridemartino@phd.unipd.it>,
and Vasilis Palaskas <vasilis.palaskas94@gmail.com>.

References

Baio, G. and Blangiardo, M. (2010). Bayesian hierarchical model for the prediction of football
results. Journal of Applied Statistics 37(2), 253-264.

Egidi, L., Pauli, F., and Torelli, N. (2018). Combining historical data and bookmakers’ odds in
modelling football scores. Statistical Modelling, 18(5-6), 436-459.

Gelman, A. (2014). Stan goes to the World Cup. From "Statistical Modeling, Causal Inference, and
Social Science" blog.

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate poisson models.
Journal of the Royal Statistical Society: Series D (The Statistician) 52(3), 381-393.

Karlis, D. and Ntzoufras,I. (2009). Bayesian modelling of football outcomes: Using the Skellam’s
distribution for the goal difference. IMA Journal of Management Mathematics 20(2), 133-145.

Owen, A. (2011). Dynamic Bayesian forecasting models of football match outcomes with estima-
tion of the evolution variance parameter. IMA Journal of Management Mathematics, 22(2), 99-113.

Examples

Not run:
library(dplyr)

Example usage with ranking
data("italy")
italy <- as_tibble(italy)
italy_2021 <- italy %>%

select(Season, home, visitor, hgoal, vgoal) %>%
filter(Season == "2021")

teams <- unique(italy_2021$home)
n_rows <- 20

stan_foot 29

Create fake ranking
ranking <- data.frame(

periods = rep(1, n_rows),
team = sample(teams, n_rows, replace = FALSE),
rank_points = sample(0:60, n_rows, replace = FALSE)

)

ranking <- ranking %>%
arrange(periods, desc(rank_points))

colnames(italy_2021) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit_with_ranking <- stan_foot(
data = italy_2021
model = "diag_infl_biv_pois",
ranking = ranking,
home_effect = TRUE,
prior_par = list(
ability = student_t(4, 0, NULL),
ability_sd = cauchy(0, 3),
home = normal(1, 10)

),
norm_method = "mad",
iter = 1000,
chains = 2,
cores = 2,
control = list(adapt_delta = 0.95, max_treedepth = 15)

)

Print a summary of the model fit
print(fit_with_ranking, pars = c("att","def"))

Use Italian Serie A from 2000 to 2002

data("italy")
italy <- as_tibble(italy)
italy_2000_2002<- italy %>%
dplyr::select(Season, home, visitor, hgoal,vgoal) %>%
dplyr::filter(Season=="2000" | Season=="2001"| Season=="2002")

colnames(italy_2000_2002) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

Fit Stan models
no dynamics, no predictions

fit_1 <- stan_foot(data = italy_2000_2002,
model = "double_pois") # double poisson

print(fit_1, pars = c("home", "sigma_att",
"sigma_def"))

30 stan_foot

fit_2 <- stan_foot(data = italy_2000_2002,
model = "biv_pois") # bivariate poisson

print(fit_2, pars = c("home", "rho",
"sigma_att", "sigma_def"))

fit_3 <- stan_foot(data = italy_2000_2002,
mode ="skellam") # skellam

print(fit_3, pars = c("home", "sigma_att",
"sigma_def"))

fit_4 <- stan_foot(data = italy_2000_2002,
model = "student_t") # student_t

print(fit_4, pars = c("beta"))

seasonal dynamics, no prediction

fit_5 <- stan_foot(data = italy_2000_2002,
model = "double_pois",
dynamic_type = "seasonal") # double poisson

print(fit_5, pars = c("home", "sigma_att",
"sigma_def"))

seasonal dynamics, prediction for the last season

fit_6 <- stan_foot(data = italy_2000_2002,
model = "double_pois",
dynamic_type = "seasonal",
predict = 170) # double poisson

print(fit_6, pars = c("home", "sigma_att",
"sigma_def"))

other priors' options
double poisson with
student_t priors for teams abilities
and laplace prior for the hyper sds

fit_p <- stan_foot(data = italy_2000_2002,
model = "double_pois",
prior_par = list(ability = student_t(4, 0, NULL),

ability_sd = laplace(0,1),
home = normal(1, 10)
))

print(fit_p, pars = c("home", "sigma_att",
"sigma_def"))

End(Not run)

Index

∗ datasets
england, 7
italy, 13

btd_foot, 2

cauchy (priors), 23
compare_foot, 5, 22

data.frame, 10

england, 7

foot_abilities, 8
foot_prob, 9
foot_rank, 11
foot_round_robin, 12

italy, 13

laplace (priors), 23
list, 8, 10

mle_foot, 14

normal (priors), 23

optim, 14

plot_btdPosterior, 15
plot_logStrength, 18
pp_foot, 19
print.btdFoot, 21
print.compareFoot, 22
print.stanFoot, 22
priors, 23

stan, 3, 26, 28
stan_foot, 25
stanfit, 10–12, 19
student_t (priors), 23

31

	btd_foot
	compare_foot
	england
	foot_abilities
	foot_prob
	foot_rank
	foot_round_robin
	italy
	mle_foot
	plot_btdPosterior
	plot_logStrength
	pp_foot
	print.btdFoot
	print.compareFoot
	print.stanFoot
	priors
	stan_foot
	Index

