Package 'mappeR'

February 20, 2025

Type Package

Title Construct and Visualize TDA Mapper Graphs

Description Topological data analysis (TDA) is a method of data analysis that uses techniques from topology to analyze high-dimensional data. Here we implement Mapper, an algorithm from this area developed by Singh, Mémoli and Carlsson (2007) which generalizes the concept of a Reeb graph <https://en.wikipedia.org/wiki/Reeb_graph>.

License MIT + file LICENSE

URL https://github.com/Uiowa-Applied-Topology/mappeR

BugReports https://github.com/Uiowa-Applied-Topology/mappeR/issues Version 2.0.2 Encoding UTF-8 Imports fastcluster, grDevices, igraph, stats, utils Suggests testthat (>= 3.0.0) Config/testthat/edition 3 RoxygenNote 7.3.2 NeedsCompilation no Author George Clare Kennedy [aut, cre] Maintainer George Clare Kennedy <george-clarekennedy@uiowa.edu> Repository CRAN Date/Publication 2025-02-20 18:10:05 UTC

Contents

assemble_mapper_object	2
check_in_interval	3
compute_tightness	3
convert_to_clusters	4
create_1D_mapper_object	5
create_balls	6

create_ball_mapper_object	7
create_bins	7
create_clusterball_mapper_object	8
create_mapper_object	9
create_single_bin	10
create_width_balanced_cover	11
cut_dendrogram	12
eccentricity_filter	12
get_bin_vector	13
get_clustered_data	13
get_clusters	14
get_cluster_sizes	14
get_cluster_tightness_vector	15
get_edgelist_from_overlaps	15
get_edge_weights	16
get_hierarchical_clusters	16
get_overlaps	17
get_raw_clusters	17
get_tallest_branch	18
hierarchical_clusterer	18
is_in_ball	19
mapper_object_to_igraph	20
next_triangular	20
process_dendrograms	21
run_link	21
subset_dists	22
	23

Index

assemble_mapper_object

Construct mapper graph from data

Description

Construct mapper graph from data

Usage

```
assemble_mapper_object(binclust_data, dists, binning = TRUE)
```

Arguments

binclust_data	A list of bins, each containing named vectors whose names are those of data points and whose values are cluster ids
dists	A distance matrix for the data that has been binned and clustered.
binning	Whether the output dataframe should sort vertices into "bins" or not. Should be true if using clustering, leave false otherwise

Value

A list of two dataframes, one with node data containing bin membership, datapoints per cluster, and cluster dispersion, and one with edge data containing sources, targets, and weights representing overlap strength.

check_in_interval Get a tester function for an interval.

Description

Get a tester function for an interval.

Usage

```
check_in_interval(endpoints)
```

Arguments

endpoints A vector of interval endpoints, namely a left and a right. Must be in order.

Value

A function that eats a data point and outputs TRUE if the datapoint is in the interval and FALSE if not.

compute_tightness Compute dispersion of a single cluster

Description

Compute dispersion of a single cluster

Usage

```
compute_tightness(dists, cluster)
```

Arguments

dists	A distance matrix for points in the cluster.
cluster	A list containing named vectors, whose names are data point names and whose
	values are cluster labels

Details

This method computes a measure of cluster dispersion. It finds the medoid of the input data set and returns the average distance to the medoid. Formally, we say the tightness τ of a cluster C is given by

$$\tau(C) = \frac{1}{(|C|-1)} \sum_{i} \operatorname{dist}(x_i, x_j)$$

where

$$x_j = \arg \min_{x_j \in C} \sum_{x_i \in C, i \neq j} \operatorname{dist}(x_i, x_j)$$

A smaller value indicates a tighter cluster based on this metric.

Value

A real number in [0, 1] representing a measure of dispersion of a cluster.

<pre>convert_to_clusters</pre>	"Clustering" for ballmapper just means treating each bin as its own
	cluster.

Description

"Clustering" for ballmapper just means treating each bin as its own cluster.

Usage

```
convert_to_clusters(bins)
```

Arguments

bins A list of bins, each containing names of data from some data frame.

Value

A named vector whose names are data point names and whose values are cluster labels

create_1D_mapper_object

Run 1D mapper

Description

Run mapper using a one-dimensional filter, a cover of intervals, and a clustering algorithm.

Usage

```
create_1D_mapper_object(
   data,
   dists,
   filtered_data,
   cover,
   clusterer = hierarchical_clusterer("single")
)
```

Arguments

data	A data frame.
dists	A distance matrix for the data frame.
filtered_data	The result of a function applied to the data frame; there should be one filter value per observation in the original data frame.
cover	A 2D array of interval left and right endpoints; rows should be intervals and columns left and right endpoints (in that order).
clusterer	A function which accepts a list of distance matrices as input, and returns the results of clustering done on each distance matrix.

Value

A list of two data frames, one with node data containing bin membership, data points per cluster, and cluster dispersion, and one with edge data containing sources, targets, and weights representing overlap strength.

Examples

```
data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
projx = data$x
```

```
num_bins = 10
percent_overlap = 25
```

cover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)

```
create_1D_mapper_object(data, dist(data), projx, cover)
```

create_balls Make a cover of balls

Description

Make a cover of balls

Usage

create_balls(data, dists, eps)

Arguments

data	A data frame.
dists	A distance matrix for the data frame.
eps	A positive real number.

Value

A list of vectors of data point names, one list element per ball. The output is such that every data point is contained in a ball of radius ε , and no ball center is contained in more than one ball. The centers are datapoints themselves.

Examples

```
num_points = 5000
P.data = data.frame(
    x = sapply(1:num_points, function(x)
        sin(x) * 10) + rnorm(num_points, 0, 0.1),
    y = sapply(1:num_points, function(x)
        cos(x) ^ 2 * sin(x) * 10) + rnorm(num_points, 0, 0.1),
    z = sapply(1:num_points, function(x)
        10 * sin(x) ^ 2 * cos(x)) + rnorm(num_points, 0, 0.1)
)
P.dist = dist(P.data)
balls = create_balls(data = P.data, dists = P.dist, eps = .25)
```

```
create_ball_mapper_object
```

Run mapper using a trivial filter, a cover of balls, and no clustering algorithm.

Description

Run mapper using an ε -net cover (greedily generated) and the 2D inclusion function as a filter.

Usage

```
create_ball_mapper_object(data, dists, eps)
```

Arguments

data	A data frame.
dists	A distance matrix for the data frame.
eps	A positive real number for your desired ball radius.

Value

A list of two data frames, one with node data containing ball size, data points per ball, ball tightness, and one with edge data containing sources, targets, and weights representing overlap strength.

Examples

```
data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
eps = .5
```

create_ball_mapper_object(data, dist(data), eps)

create_bins Create bins of data

Description

Create bins of data

Usage

```
create_bins(data, filtered_data, cover_element_tests)
```

Arguments

data	A data frame.	
filtered_data	The result of a function applied to the data frame; there should be one filter value per observation in the original data frame.	
cover_element_tests		
	A list of membership test functions for a set of cover elements. In other words, each element of cover_element_tests is a function that returns TRUE or FALSE when given a filter value.	

Value

A list of level sets, each containing a vector of the names of the data inside it.

Description

Run ball mapper, but additionally cluster within the balls. Can use two different distance matrices to accomplish this.

Usage

```
create_clusterball_mapper_object(
  data,
  dist1,
  dist2,
  eps,
  clusterer = hierarchical_clusterer("single")
)
```

Arguments

data	A data frame.
dist1	A distance matrix for the data frame; this will be used to ball the data.
dist2	Another distance matrix for the data frame; this will be used to cluster the data after balling.
eps	A positive real number for your desired ball radius.
clusterer	A function which accepts a list of distance matrices as input, and returns the results of clustering done on each distance matrix.

Value

A list of two dataframes, one with node data containing bin membership, datapoints per cluster, and cluster dispersion, and one with edge data containing sources, targets, and weights representing overlap strength.

create_mapper_object

Examples

```
data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
data.dists = dist(data)
eps = 1
```

```
create_clusterball_mapper_object(data, data.dists, data.dists, eps)
```

create_mapper_object Create a mapper object

Description

Run the mapper algorithm on a data frame.

Usage

```
create_mapper_object(
  data,
  dists,
  filtered_data,
  cover_element_tests,
  clusterer = NULL
)
```

Arguments

data	A data frame.	
dists	A distance matrix for the data frame.	
filtered_data	The result of a function applied to the data frame; there should be one filter value per observation in the original data frame.	
cover_element_tests		
	A list of membership test functions for a set of cover elements. In other words, each element of cover_element_tests is a function that returns TRUE or FALSE when given a filter value.	
clusterer	A function which accepts a list of distance matrices as input, and returns the results of clustering done on each distance matrix. Defaults to NULL, meaning no all data in each bin will be lumped into a single cluster.	

Value

A list of two dataframes, one with node data and one with edge data.

Examples

```
data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
projx = data$x
num bins = 10
percent_overlap = 25
xcover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)
check_in_interval <- function(endpoints) {</pre>
 return(function(x) (endpoints[1] - x <= 0) & (endpoints[2] - x >= 0))
}
# each of the "cover" elements will really be a function that checks if a data point lives in it
xcovercheck = apply(xcover, 1, check_in_interval)
# build the mapper object
xmapper = create_mapper_object(
  data = data,
  dists = dist(data),
  filtered_data = projx,
  cover_element_tests = xcovercheck
)
```

create_single_bin Create a bin of data

Description

Create a bin of data

Usage

```
create_single_bin(data, filtered_data, cover_element_test)
```

Arguments

data	A data frame.	
filtered_data	The result of a function applied to the data frame; there should be one filter value per observation in the original data frame.	
cover_element_test		
	A membership test function for a cover element. It should return TRUE or FALSE when given a filtered data point.	

Value

A vector of names of points from the data frame, representing a level set.

10

create_width_balanced_cover

Generate an overlapping cover of an interval

Description

This is a function that generates a cover of an interval [a, b] with some number of (possibly) overlapping, evenly spaced, identical width subintervals.

Usage

create_width_balanced_cover(min_val, max_val, num_bins, percent_overlap)

Arguments

min_val	The left endpoint a. A real number.
max_val	The right endpoint b. A real number.
num_bins	The number of cover intervals with which to cover the interval. A positive integer.
percent_overlap	
	II 1

How much overlap desired between the cover intervals (the percent of the intersection of each interval with its immediate neighbor relative to its length, e.g., [0, 2] and [1, 3] would have 50% overlap). A real number between 0 and 100, inclusive.

Value

A 2D numeric array.

- left_ends The left endpoints of the cover intervals.
- right_ends The right endpoints of the cover intervals.

Examples

```
create_width_balanced_cover(min_val=0, max_val=100, num_bins=10, percent_overlap=15)
create_width_balanced_cover(-11.5, 10.33, 100, 2)
```

cut_dendrogram

Description

Cut a dendrogram in context

Usage

cut_dendrogram(dend, threshold)

Arguments

dend	A single dendrogram.
threshold	A mininum tallest branch value.

Details

The number of clusters is determined to be 1 if the tallest branch of the dendrogram is less than the threshold, or if the index of dispersion (standard deviation squared divided by mean) of the branch heights is below 0.015. Otherwise, we cut at the longest branch of the dendrogram to determine the number of clusters.

Value

A named vector whose names are data point names and whose values are cluster labels.

eccentricity_filter Compute eccentricity of data points

Description

Compute eccentricity of data points

Usage

```
eccentricity_filter(dists)
```

Arguments

dists A distance matrix associated to a data frame.

Value

A vector of centrality measures, calculated per data point as the sum of its distances to every other data point, divided by the number of points.

get_bin_vector

num_points = 100

Examples

```
P.data = data.frame(
  x = sapply(1:num_points, function(x)
     sin(x) * 10) + rnorm(num_points, 0, 0.1),
  y = sapply(1:num_points, function(x)
     cos(x) ^ 2 * sin(x) * 10) + rnorm(num_points, 0, 0.1)
)
P.dist = dist(P.data)
eccentricity = eccentricity_filter(P.dist)
```

get_bin_vector Recover bins

Description

Recover bins

Usage

get_bin_vector(binclust_data)

Arguments

binclust_data A list of bins, each containing named vectors whose names are those of data points and whose values are cluster ids.

Value

A vector of integers equal in length to the number of clusters, whose members identify which bin that cluster belongs to.

get_clustered_data Get data within a cluster

Description

Get data within a cluster

Usage

get_clustered_data(binclust_data)

Arguments

binclust_data

A list of bins, each containing named vectors whose names are those of data points and whose values are cluster ids

Value

A list of strings, each a comma separated list of the toString values of the data point names.

get_clusters

Perform the clustering step in mapper

Description

This function processes the binned data and global distance matrix to return freshly clustered data.

Usage

get_clusters(bins, dists, clusterer)

Arguments

bins	A list containing "bins" of vectors of names of data points.
dists	A distance matrix containing pairwise distances between named data points.
clusterer	A function which accepts a list of distance matrices as input, and returns the
	results of clustering done on each distance matrix.

Value

The output of clusterer applied to a list of distance matrices, which should be a list containing named vectors (one per bin), whose names are data point names and whose values are cluster labels.

get_cluster_sizes Compute cluster sizes

Description

Compute cluster sizes

Usage

```
get_cluster_sizes(binclust_data)
```

Arguments

binclust_data A list of bins, each containing named vectors whose names are those of data points and whose values are cluster ids.

14

Value

A vector of integers representing the lengths of the clusters in the input data.

```
get_cluster_tightness_vector
```

Compute dispersion measures of a list of clusters

Description

Compute dispersion measures of a list of clusters

Usage

```
get_cluster_tightness_vector(dists, binclust_data)
```

Arguments

dists	A distance matrix for the data points inside all the input clusters
binclust_data	A list of named vectors whose names are those of data points and whose values
	are cluster ids

Value

A vector of real numbers in $(0, \infty)$ representing a measure of dispersion of a cluster, calculated according to compute_tightness.

```
get_edgelist_from_overlaps
```

Obtain edge list from cluster intersections

Description

Obtain edge list from cluster intersections

Usage

```
get_edgelist_from_overlaps(overlaps, num_vertices)
```

Arguments

overlaps	A named list of edges, whose elements contain the names of clusters in the
	overlap represented by that edge; output of get_overlaps().
num_vertices	The number of vertices in the graph.

Value

A 2D array representing the edge list of a graph.

get_edge_weights Calculate edge weights

Description

Calculate edge weights

Usage

```
get_edge_weights(overlap_lengths, cluster_sizes, edges)
```

Arguments

overlap_length	S
	A named vector of cluster overlap lengths, obtained by calling length() on the output from [get_overlaps()].
cluster_sizes	A vector of cluster sizes.
edges	A 2D array of source and target nodes, representing an edge list. Should be ordered consistently with the overlap_lengths parameter.

Details

This value is calculated per edge by dividing the number of data points in the overlap by the number of points in the cluster on either end, and taking the maximum value. Formally,

$$w(\lbrace c_i, c_j \rbrace) = \max\left\{\frac{|c_i \cap c_j|}{|c_i|}, \frac{|c_i \cap c_j|}{|c_j|}\right\}$$

Value

A vector of real numbers representing cluster overlap strength.

get_hierarchical_clusters

Perform single-linkage hierarchical clustering and process dendrograms in a semi-global context.

Description

Perform single-linkage hierarchical clustering and process dendrograms in a semi-global context.

Usage

```
get_hierarchical_clusters(dist_mats, method)
```

get_overlaps

Arguments

dist_mats	A list of distance matrices to be used for clustering.
method	A string to pass to hclust to tell it what kind of clustering to do.

Value

A list containing named vectors (one per dendrogram), whose names are data point names and whose values are cluster labels.

get_overlaps Get cluster overlaps

Description

Get cluster overlaps

Usage

get_overlaps(binclust_data)

Arguments

binclust_data A list of bins, each containing named vectors whose names are those of data points and whose values are cluster ids.

Value

A named list of edges, whose elements contain the names of clusters in the overlap represented by that edge.

get_raw_clusters Ship data off to the clustering goblins

Description

This function tells the computer to look away for a second, so the goblins come and cluster your data while it's not watching.

Usage

get_raw_clusters(dist_mats, clusterer)

Arguments

dist_mats	A list of distance matrices of each bin that is to be clustered.
clusterer	A function which accepts a list of distance matrices as input, and returns the
	results of clustering done on each distance matrix in a list.

Value

The output of clusterer(dist_mats), which needs to be a list containing named vectors (one per bin), whose names are data point names and whose values are cluster labels (within each bin)

get_tallest_branch Find the tallest branch of a dendrogram

Description

Find the tallest branch of a dendrogram

Usage

```
get_tallest_branch(dend)
```

Arguments

dend A single dendrogram.

Value

The height of the tallest branch (longest time between merge heights) of the input dendrogram.

hierarchical_clusterer

Create a little dude to perform hierarchical clustering in a semi-global context using the hclust package.

Description

Create a little dude to perform hierarchical clustering in a semi-global context using the hclust package.

Usage

hierarchical_clusterer(method)

Arguments

method A string to pass to hclust to tell it what kind of clustering to do.

is_in_ball

Details

This clusterer determines cutting heights for bin dendrograms generated by hclust by first considering the tallest branches across all dendrograms; if all branch heights of a given dendrogram are below a threshold (10 percent of the global tallest), that dendrogram will be considered to describe a single cluster. Additionally, if the index of dispersion of the branch heights of a dendrogram are below 0.015, we will also consider it as describing a single cluster. If neither of these are true, then we will cut the dendrogram at its longest branch.

Value

A function that inputs a list of distance matrices and returns a list containing one vector per bin, whose element names are data point names and whose values are cluster labels (within each bin).

Examples

```
data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
projx = data$x
```

```
num_bins = 10
percent_overlap = 25
```

cover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)

create_1D_mapper_object(data, dist(data), projx, cover, hierarchical_clusterer("mcquitty"))

is_in_ball Get a tester function for a ball.

Description

Get a tester function for a ball.

Usage

is_in_ball(ball)

Arguments

ball A list of data points.

Value

A function that eats a data point and returns TRUE or FALSE depending if the point is in the ball or not.

mapper_object_to_igraph

make igraph

Description

make igraph

Usage

mapper_object_to_igraph(mapperobject)

Arguments

mapperobject mapper object generated by mappeR

Value

an igraph object

Examples

```
data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
```

projy = data\$y

cover = create_width_balanced_cover(min(projy), max(projy), 10, 25)

mapperobj = create_1D_mapper_object(data, dist(data), data\$y, cover)

mapper_object_to_igraph(mapperobj)

next_triangular Find which triangular number you're on

Description

Find which triangular number you're on

Usage

next_triangular(x)

Arguments

x A positive integer.

Value

The index of the next greatest or equal triangular number to x.

process_dendrograms Cut many dendrograms in context

Description

Cut many dendrograms in context

Usage

```
process_dendrograms(dends, semi_local_clustering = TRUE)
```

Arguments

dends A list of dendrograms to be cut.

semi_local_clustering

Whether you want clustering to happen in a semi-local (entire dataset visible) or strictly local (only current level set visible) context. Defaults to semi-local.

Details

This function uses a value of 10 percent of the tallest branch across dendrograms as a threshold for cut_dendrogram.

Value

A list of named vectors (one per dendrogram) whose names are data point names and whose values are cluster labels.

run_link

Perform agglomerative clustering on a single distance matrix.

Description

Perform agglomerative clustering on a single distance matrix.

Usage

```
run_link(dist, method)
```

Arguments

dist	A distance matrix.
method	A string to pass to hclust to determine clustering method.

Value

A dendrogram generated by fastcluster.

subset_dists Subset a distance matrix

Description

Subset a distance matrix

Usage

subset_dists(bin, dists)

Arguments

bin	A list of names of data points.
dists	A distance matrix for data points in the bin, possibly including extra points.

Value

A distance matrix for only the data points in the input bin.

Index

assemble_mapper_object, 2 check_in_interval, 3 compute_tightness, 3, 15 convert_to_clusters, 4 create_1D_mapper_object, 5 create_ball_mapper_object,7 create_balls, 6 create_bins, 7 create_clusterball_mapper_object, 8 create_mapper_object,9 create_single_bin, 10 create_width_balanced_cover, 11 cut_dendrogram, 12, 21 eccentricity_filter, 12 get_bin_vector, 13 get_cluster_sizes, 14 get_cluster_tightness_vector, 15 get_clustered_data, 13 get_clusters, 14 get_edge_weights, 16 get_edgelist_from_overlaps, 15 get_hierarchical_clusters, 16 get_overlaps, 17 get_overlaps(), 15 get_raw_clusters, 17 get_tallest_branch, 18 hclust, 17-19, 21 hierarchical_clusterer, 18 is_in_ball, 19

length(), 16

mapper_object_to_igraph, 20

next_triangular, 20

 $process_dendrograms, 21$

run_link,21

subset_dists, 22