| cstep | C-Step of EM algorithm |
| em | A Generic EM Algorithm |
| em.clogit | The em function for 'survival::clogit'. |
| em.default | The default em function |
| em.fitdist | The default em function |
| em.glmerMod | The em function for glmerMod |
| em.panelmodel | The em function for 'panelmodel' such as 'plm'. |
| estep | This function performs an E-Step of EM Algorithm. |
| fit.den | Fit the density function for a fitted model. |
| fit.den.coxph | Fit the density for the survival::clogit |
| fit.den.fitdist | Fitting the density function using in 'fitdistrplus::fitdist()' |
| fit.den.glm | Fit the density function for a generalized linear regression model. |
| fit.den.glmerMod | Fit the density function for a generalized linear mixed effect model. |
| fit.den.gnm | Fit the density function for a generalized non-linear regression model. |
| fit.den.lm | Fit the density function for a linear regression model. |
| fit.den.multinom | Fit the density function for a multinomial regression model. |
| fit.den.nnet | Fit the density function for a 'nnet' model. |
| fit.den.plm | Fit the density function for a panel regression model. |
| flatten | Flatten a data.frame or matrix by column or row with its name. The name will be transformed into the number of row/column plus the name of column/row separated by '.'. |
| init.em | Initialization of EM algorithm |
| init.em.hc | model-based agglomerative hierarchical clustering |
| init.em.kmeans | K-mean initialization |
| init.em.random | Random initialization |
| init.em.random.weights | Random initialization with weights |
| init.em.sample5 | Initialization using sampling 5 times. |
| logLik.em | This function computes logLik of EM Algorithm. |
| mstep | M-Step of EM algorithm |
| mstep.concomitant | The mstep for the concomitant model. |
| mstep.concomitant.refit | The refit of for the concomitant model. This section was inspired by Flexmix. |
| multi.em | Multiple run of EM algorithm |
| multi.em.default | Default generic for multi.em |
| plot.em | Plot the fitted results of EM algorithm |
| predict.em | Predict the fitted finite mixture models |
| print.em | Print the 'em' object |
| print.summary.em | Print the 'summary.em' object |
| simbinom | Simulated Data from a logistic regression |
| simclogit | Simulated Data from a conditional logistic regression |
| simreg | Simulated Regression Data |
| sstep | S-step of EM algorithm |
| summary.em | Summaries of fitted finite mixture models using EM algorithm |
| vdummy | Transform a factor variable to a matrix of dummy variables |