| .Dy | Compute one of the terms of the efficient influence function |
| .estim_fn | An estimating function for cvAUC |
| .estim_fn_nested_cv | An estimating function for cvAUC with initial estimates generated via nested cross-validation |
| .get_auc | Compute the AUC given the cdf and pdf of psi |
| .get_cv_estim | Helper function to turn prediction_list into CV estimate of SCRNP |
| .get_density | Function to estimate density needed to evaluate standard errors. |
| .get_nested_cv_quantile | Helper function to get quantile for a single training fold data when nested CV is used. |
| .get_one_fold | Helper function to get results for a single cross-validation fold |
| .get_predictions | Worker function for fitting prediction functions (possibly in parallel) |
| .get_psi_distribution | Compute the conditional (given Y = y) estimated distribution of psi |
| .get_psi_distribution_nested_cv | Compute the conditional (given Y = y) CV-estimated distribution of psi |
| .get_quantile | Helper function to get quantile for a single training fold data when nested CV is NOT used. |
| .make_long_data | Worker function to make long form data set needed for CVTMLE targeting step |
| .make_long_data_nested_cv | Worker function to make long form data set needed for CVTMLE targeting step when nested cv is used |
| .make_targeting_data | Helper function for making data set in proper format for CVTMLE |
| .process_input | Unexported function from cvAUC package |
| adult | adult |
| bank | bank |
| boot_auc | Compute the bootstrap-corrected estimator of AUC. |
| boot_scrnp | Compute the bootstrap-corrected estimator of SCRNP. |
| cardio | Cardiotocography |
| ci.cvAUC_withIC | ci.cvAUC_withIC |
| cv_auc | Estimates of CVAUC |
| cv_scrnp | Estimates of CV SCNP |
| drugs | drugs |
| fluc_mod_optim_0 | Helper function for CVTMLE grid search |
| fluc_mod_optim_1 | Helper function for CVTMLE grid search |
| F_nBn_star | Compute the targeted conditional cumulative distribution of the learner at a point |
| F_nBn_star_nested_cv | Compute the targeted conditional cumulative distribution of the learner at a point where the initial distribution is based on cross validation |
| glmnet_wrapper | Wrapper for fitting a lasso using package 'glmnet'. |
| glm_wrapper | Wrapper for fitting a logistic regression using 'glm'. |
| lpo_auc | Compute the leave-pair-out cross-validation estimator of AUC. |
| one_boot_auc | Internal function used to perform one bootstrap sample. The function 'try's to fit 'learner' on a bootstrap sample. If for some reason (e.g., the bootstrap sample contains no observations with 'Y = 1') the learner fails, then the function returns 'NA'. These 'NA's are ignored later when computing the bootstrap corrected estimate. |
| one_boot_scrnp | Internal function used to perform one bootstrap sample. The function 'try's to fit 'learner' on a bootstrap sample. If for some reason (e.g., the bootstrap sample contains no observations with 'Y = 1') the learner fails, then the function returns 'NA'. These 'NA's are ignored later when computing the bootstrap corrected estimate. |
| print.cvauc | Print results of cv_auc |
| print.scrnp | Print results of cv_scrnp |
| randomforest_wrapper | Wrapper for fitting a random forest using randomForest. |
| ranger_wrapper | Wrapper for fitting a random forest using ranger. |
| stepglm_wrapper | Wrapper for fitting a forward stepwise logistic regression using 'glm'. |
| superlearner_wrapper | Wrapper for fitting a super learner based on 'SuperLearner'. |
| wine | wine |
| xgboost_wrapper | Wrapper for fitting eXtreme gradient boosting via 'xgboost' |