| bayes | Bayesian D-Optimal Designs |
| bayes.update | Updating an Object of Class 'minimax' |
| bayescomp | Bayesian Compound DP-Optimal Designs |
| beff | Calculates Relative Efficiency for Bayesian Optimal Designs |
| crt.bayes.control | Returns Control Parameters for Approximating Bayesian Criteria |
| crt.minimax.control | Returns Control Parameters for Optimizing Minimax Criteria Over The Parameter Space |
| FIM_2par_exp_censor1 | Fisher Information Matrix for a 2-Parameter Cox Proportional-Hazards Model for Type One Censored Data |
| FIM_2par_exp_censor2 | Fisher Information Matrix for a 2-Parameter Cox Proportional-Hazards Model for Random Censored Data |
| FIM_3par_exp_censor1 | Fisher Information Matrix for a 3-Parameter Cox Proportional-Hazards Model for Type One Censored Data |
| FIM_3par_exp_censor2 | Fisher Information Matrix for a 3-Parameter Cox Proportional-Hazards Model for Random Censored Data |
| FIM_exp_2par | Fisher Information Matrix for the 2-Parameter Exponential Model |
| FIM_kinetics_alcohol | Fisher Information Matrix for the Alcohol-Kinetics Model |
| FIM_logistic | Fisher Information Matrix for the 2-Parameter Logistic (2PL) Model |
| FIM_logistic_2pred | Fisher Information Matrix for the Logistic Model with Two Predictors |
| FIM_logistic_4par | Fisher Information Matrix for the 4-Parameter Logistic Model |
| FIM_loglin | Fisher Information Matrix for the Mixed Inhibition Model |
| FIM_mixed_inhibition | Fisher Information Matrix for the Mixed Inhibition Model. |
| FIM_power_logistic | Fisher Information Matrix for the Power Logistic Model |
| FIM_sig_emax | Fisher Information Matrix for the Sigmoid Emax Model |
| ICA.control | Returns ICA Control Optimization Parameters |
| ICAOD | ICAOD: Finding Optimal Designs for Nonlinear Models Using Imperialist Competitive Algorithm |
| leff | Calculates Relative Efficiency for Locally Optimal Designs |
| locally | Locally D-Optimal Designs |
| locallycomp | Locally DP-Optimal Designs |
| meff | Calculates Relative Efficiency for Minimax Optimal Designs |
| minimax | Minimax and Standardized Maximin D-Optimal Designs |
| multiple | Locally Multiple Objective Optimal Designs for the 4-Parameter Hill Model |
| normal | Assumes A Multivariate Normal Prior Distribution for The Model Parameters |
| plot.minimax | Plotting 'minimax' Objects |
| print.minimax | Printing 'minimax' Objects |
| print.sensminimax | Printing 'sensminimax' Objects |
| robust | Robust D-Optimal Designs |
| sens.bayes.control | Returns Control Parameters for Approximating The Integrals In The Bayesian Sensitivity Functions |
| sens.control | Returns Control Parameters To Find Maximum of The Sensitivity (Derivative) Function Over The Design Space |
| sens.minimax.control | Returns Control Parameters for Verifying General Equivalence Theorem For Minimax Optimal Designs |
| sensbayes | Verifying Optimality of Bayesian D-optimal Designs |
| sensbayescomp | Verifying Optimality of Bayesian Compound DP-optimal Designs |
| senslocally | Verifying Optimality of The Locally D-optimal Designs |
| senslocallycomp | Verifying Optimality of The Locally DP-optimal Designs |
| sensminimax | Verifying Optimality of The Minimax and Standardized maximin D-optimal Designs |
| sensmultiple | Verifying Optimality of The Multiple Objective Designs for The 4-Parameter Hill Model |
| sensrobust | Verifying Optimality of The Robust Designs |
| skewnormal | Assumes A Multivariate Skewed Normal Prior Distribution for The Model Parameters |
| student | Multivariate Student's t Prior Distribution for Model Parameters |
| uniform | Assume A Multivariate Uniform Prior Distribution for The Model Parameters |
| update.minimax | Updating an Object of Class 'minimax' |