| adabag-package | Applies Multiclass AdaBoost.M1, SAMME and Bagging |
| adabag | Applies Multiclass AdaBoost.M1, SAMME and Bagging |
| adaboost.M1 | Applies the AdaBoost.M1 and SAMME algorithms to a data set |
| autoprune | Builds automatically a pruned tree of class 'rpart' |
| bagging | Applies the Bagging algorithm to a data set |
| bagging.cv | Runs v-fold cross validation with Bagging |
| boosting | Applies the AdaBoost.M1 and SAMME algorithms to a data set |
| boosting.cv | Runs v-fold cross validation with AdaBoost.M1 or SAMME |
| Ensemble_ranking_IW | Ensemble methods for ranking data: Item-Weighted Boosting and Bagging Algorithms |
| errorevol | Shows the error evolution of the ensemble |
| errorevol_ranking_vector_IW | Calculate the error evolution and final predictions of an item-weighted ensemble for rankings |
| importanceplot | Plots the variables relative importance |
| MarginOrderedPruning.Bagging | MarginOrderedPruning.Bagging |
| margins | Calculates the margins |
| plot.errorevol | Plots the error evolution of the ensemble |
| plot.margins | Plots the margins of the ensemble |
| predict.bagging | Predicts from a fitted bagging object |
| predict.boosting | Predicts from a fitted boosting object |
| prep_data | Prepare Ranking Data for Item-Weighted Ensemble Algorithm |
| simulatedRankingData | Simulated ranking data |