A B C D E F G H I J L M N O P R S T U V W Z misc
| OpenMx-package | OpenMx: An package for Structural Equation Modeling and Matrix Algebra Optimization |
| as.data.frame.MxCompare | The MxCompare Class |
| as.statusCode | Convert a numeric or character vector into an optimizer status code factor |
| BaseCompute-class | BaseCompute |
| Bollen | Bollen Data on Industrialization and Political Democracy |
| cvectorize | Vectorize By Column |
| demoOneFactor | Demonstration data for a one factor model |
| demoTwoFactor | Demonstration data for a two factor model |
| diag2vec | Extract Diagonal of a Matrix |
| DiagMatrix-class | MxMatrix Class |
| dim-method | MxMatrix Class |
| dimnames-method | MxAlgebra Class |
| dimnames-method | MxMatrix Class |
| dimnames<--method | MxAlgebra Class |
| dimnames<--method | MxMatrix Class |
| DiscreteBase | An S4 base class for discrete marginal distributions |
| DiscreteBase-class | An S4 base class for discrete marginal distributions |
| dzfData | Example twin extended kinship data: DZ female data |
| dzmData | Example twin extended kinship data: DZ Male data |
| dzoData | Example twin extended kinship data: DZ opposite sex twins |
| eigenval | Eigenvector/Eigenvalue Decomposition |
| eigenvec | Eigenvector/Eigenvalue Decomposition |
| example1 | Bivariate twin data, wide-format from Classic Mx Manual |
| example2 | Bivariate twin data, long-format from Classic Mx Manual |
| expm | Matrix exponential |
| factorExample1 | Example Factor Analysis Data |
| factorScaleExample1 | Example Factor Analysis Data for Scaling the Model |
| factorScaleExample2 | Example Factor Analysis Data for Scaling the Model |
| FullMatrix-class | MxMatrix Class |
| genericFitDependencies-method | Add dependencies |
| HS.ability.data | Holzinger & Swineford (1939) Ability in 301 children from 2 schools |
| IdenMatrix-class | MxMatrix Class |
| ieigenval | Eigenvector/Eigenvalue Decomposition |
| ieigenvec | Eigenvector/Eigenvalue Decomposition |
| imxAddDependency | Add a dependency |
| imxAutoOptionValue | imxAutoOptionValue |
| imxCheckMatrices | imxCheckMatrices |
| imxCheckVariables | imxCheckVariables |
| imxConDecMatrixSlots | Condense/de-condense slots of an MxMatrix |
| imxConDecMatrixSlots-method | Condense/de-condense slots of an MxMatrix |
| imxConstraintRelations | imxConstraintRelations |
| imxConvertIdentifier | imxConvertIdentifier |
| imxConvertLabel | imxConvertLabel |
| imxConvertSubstitution | imxConvertSubstitution |
| imxCreateMatrix | Create a matrix |
| imxCreateMatrix-method | Create a matrix |
| imxDataTypes | Valid types of data that can be contained by MxData |
| imxDefaultGetSlotDisplayNames | imxDefaultGetSlotDisplayNames |
| imxDeparse | Deparse for MxObjects |
| imxDeparse-method | Deparse for MxObjects |
| imxDependentModels | Are submodels dependence? |
| imxDetermineDefaultOptimizer | imxDetermineDefaultOptimizer |
| imxDmvnorm | A C implementation of dmvnorm |
| imxEvalByName | imxEvalByName |
| imxExtractMethod | imxExtractMethod |
| imxExtractNames | imxExtractNames |
| imxExtractReferences | imxExtractReferences |
| imxExtractSlot | imxExtractSlot |
| imxFlattenModel | Remove hierarchical structure from model |
| imxFreezeModel | Freeze model |
| imxGenerateLabels | imxGenerateLabels |
| imxGenerateNamespace | imxGenerateNamespace |
| imxGenericModelBuilder | imxGenericModelBuilder |
| imxGenSwift | imxGenSwift |
| imxGentleResize | Resize an MxMatrix while preserving entries |
| imxGetExpectationComponent | Extract the component from a model's expectation |
| imxGetNumThreads | imxGetNumThreads |
| imxGetSlotDisplayNames | imxGetSlotDisplayNames |
| imxHasAlgebraOnPath | imxHasAlgebraOnPath |
| imxHasConstraint | imxHasConstraint |
| imxHasDefinitionVariable | imxHasDefinitionVariable |
| imxHasNPSOL | imxHasNPSOL |
| imxHasOpenMP | imxHasOpenMP |
| imxHasPenalty | imxHasPenalty |
| imxHasThresholds | imxHasThresholds |
| imxHasWLS | imxHasWLS |
| imxIdentifier | imxIdentifier |
| imxIndependentModels | Are submodels independent? |
| imxInitModel | imxInitModel |
| imxInitModel-method | imxInitModel |
| imxIsDefinitionVariable | imxIsDefinitionVariable |
| imxIsMultilevel | imxIsMultilevel |
| imxIsPath | imxIsPath |
| imxIsStateSpace | imxIsStateSpace |
| imxJiggle | Jiggle parameter values. |
| imxLocateFunction | imxLocateFunction |
| imxLocateIndex | imxLocateIndex |
| imxLocateLabel | imxLocateLabel |
| imxLog | Test thread-safe output code |
| imxLookupSymbolTable | imxLookupSymbolTable |
| imxModelBuilder | imxModelBuilder |
| imxModelBuilder-method | imxModelBuilder |
| imxModelTypes | imxModelTypes |
| imxMpiWrap | imxMpiWrap |
| imxOriginalMx | Run an classic mx script |
| imxPenaltyTypes | imxPenaltyTypes |
| imxPPML | imxPPML |
| imxPPML.Test.Battery | imxPPML.Test.Battery |
| imxPPML.Test.Test | imxPPML.Test.Test |
| imxPreprocessModel | imxPreprocessModel |
| imxReplaceMethod | imxReplaceMethod |
| imxReplaceModels | Replace parts of a model |
| imxReplaceSlot | imxReplaceSlot |
| imxReportProgress | Report backend progress |
| imxReservedNames | imxReservedNames |
| imxReverseIdentifier | imxReverseIdentifier |
| imxRobustSE | imxRobustSE |
| imxRowGradients | imxRowGradients |
| imxSameType | imxSameType |
| imxSeparatorChar | imxSeparatorChar |
| imxSfClient | imxSfClient |
| imxSimpleRAMPredicate | imxSimpleRAMPredicate |
| imxSparseInvert | Sparse symmetric matrix invert |
| imxSquareMatrix | imxSquareMatrix |
| imxSquareMatrix-method | imxSquareMatrix |
| imxStanMathMajor | imxStanMathMajor |
| imxSymmetricMatrix | imxSymmetricMatrix |
| imxSymmetricMatrix-method | imxSymmetricMatrix |
| imxTypeName | imxTypeName |
| imxTypeName-method | imxTypeName |
| imxUntitledName | imxUntitledName |
| imxUntitledNumber | imxUntitledNumber |
| imxUntitledNumberReset | imxUntitledNumberReset |
| imxUpdateModelValues | imxUpdateModelValues |
| imxVariableTypes | imxVariableTypes |
| imxVerifyMatrix | imxVerifyMatrix |
| imxVerifyMatrix-method | imxVerifyMatrix |
| imxVerifyModel | imxVerifyModel |
| imxVerifyModel-method | imxVerifyModel |
| imxVerifyName | imxVerifyName |
| imxVerifyReference | imxVerifyReference |
| imxWlsChiSquare | Calculate Chi Square for a WLS Model |
| imxWlsStandardErrors | Calculate Standard Errors for a WLS Model |
| jointdata | Joint Ordinal and continuous variables to be modeled together |
| latentMultipleRegExample1 | Example data for multiple regression among latent variables |
| latentMultipleRegExample2 | Example data for multiple regression among latent variables |
| lazarsfeld | Respondent-soldiers on four dichotomous items |
| length-method | MxMatrix Class |
| lgamma1p | Create MxAlgebra Object |
| logm | Matrix logarithm |
| logp2z | Create MxAlgebra Object |
| longData | Longitudinal, Overdispersed Count Data |
| LongitudinalOverdispersedCounts | Longitudinal, Overdispersed Count Data |
| LowerMatrix-class | MxMatrix Class |
| mpinv | Create MxAlgebra Object |
| multiData1 | Data for multiple regression |
| MxAlgebra | MxAlgebra Class |
| mxAlgebra | Create MxAlgebra Object |
| MxAlgebra-class | MxAlgebra Class |
| MxAlgebraFormula | MxAlgebraFormula |
| MxAlgebraFormula-class | MxAlgebraFormula |
| mxAlgebraFromString | Create MxAlgebra object from a string |
| mxAlgebraObjective | DEPRECATED: Create MxAlgebraObjective Object |
| mxAutoStart | Automatically set starting values for an MxModel |
| mxAvailableOptimizers | mxAvailableOptimizers |
| MxBaseExpectation-class | MxBaseExpectation |
| MxBaseFitFunction-class | MxBaseFitFunction |
| MxBaseNamed | MxBaseNamed |
| MxBaseNamed-class | MxBaseNamed |
| MxBaseObjectiveMetaData | MxBaseObjectiveMetaData |
| MxBaseObjectiveMetaData-class | MxBaseObjectiveMetaData |
| mxBootstrap | Repeatedly estimate model using resampling with replacement |
| mxBootstrapEval | Evaluate Values in a bootstrapped MxModel |
| mxBootstrapEvalByName | Evaluate Values in a bootstrapped MxModel |
| mxBootstrapStdizeRAMpaths | Bootstrap distribution of standardized RAM path coefficients |
| MxBounds | MxBounds Class |
| mxBounds | Create MxBounds Object |
| MxBounds-class | MxBounds Class |
| MxCharOrList-class | A character, list or NULL |
| MxCharOrLogical-class | A character or logical |
| MxCharOrNumber-class | A character or integer |
| mxCheckIdentification | Check that a model is locally identified |
| MxCI | MxCI Class |
| mxCI | Create mxCI Object |
| mxCompare | Likelihood ratio test |
| MxCompare-class | The MxCompare Class |
| mxCompareMatrix | Likelihood ratio test |
| MxCompute | MxCompute |
| MxCompute-class | MxCompute |
| mxComputeBenchmark | Repeatedly invoke a series of compute objects |
| mxComputeBootstrap | Repeatedly estimate model using resampling with replacement |
| MxComputeBootstrap-class | Repeatedly estimate model using resampling with replacement |
| mxComputeCheckpoint | Log parameters and state to disk or memory |
| MxComputeCheckpoint-class | Log parameters and state to disk or memory |
| mxComputeConfidenceInterval | Find likelihood-based confidence intervals |
| MxComputeConfidenceInterval-class | Find likelihood-based confidence intervals |
| mxComputeDefault | Default compute plan |
| MxComputeDefault-class | Default compute plan |
| mxComputeEM | Fit a model using DLR's (1977) Expectation-Maximization (EM) algorithm |
| MxComputeEM-class | Fit a model using DLR's (1977) Expectation-Maximization (EM) algorithm |
| mxComputeGenerateData | Generate data |
| MxComputeGenerateData-class | Generate data |
| mxComputeGradientDescent | Optimize parameters using a gradient descent optimizer |
| MxComputeGradientDescent-class | Optimize parameters using a gradient descent optimizer |
| mxComputeHessianQuality | Compute the quality of the Hessian |
| MxComputeHessianQuality-class | Compute the quality of the Hessian |
| mxComputeIterate | Repeatedly invoke a series of compute objects until change is less than tolerance |
| MxComputeIterate-class | Repeatedly invoke a series of compute objects until change is less than tolerance |
| mxComputeJacobian | Numerically estimate the Jacobian with respect to free parameters |
| MxComputeJacobian-class | Numerically estimate the Jacobian with respect to free parameters |
| mxComputeLoadContext | Load contextual data to supplement checkpoint |
| MxComputeLoadContext-class | Load contextual data to supplement checkpoint |
| mxComputeLoadData | Load columns into an MxData object |
| MxComputeLoadData-class | Load columns into an MxData object |
| mxComputeLoadMatrix | Load data from CSV files directly into the backend |
| MxComputeLoadMatrix-class | Load data from CSV files directly into the backend |
| mxComputeLoop | Repeatedly invoke a series of compute objects |
| MxComputeLoop-class | Repeatedly invoke a series of compute objects |
| MxComputeNelderMead | Optimize parameters using a variation of the Nelder-Mead algorithm. |
| mxComputeNelderMead | Optimize parameters using a variation of the Nelder-Mead algorithm. |
| MxComputeNelderMead-class | Optimize parameters using a variation of the Nelder-Mead algorithm. |
| mxComputeNewtonRaphson | Optimize parameters using the Newton-Raphson algorithm |
| MxComputeNewtonRaphson-class | Optimize parameters using the Newton-Raphson algorithm |
| mxComputeNothing | Compute nothing |
| mxComputeNumericDeriv | Numerically estimate Hessian using Richardson extrapolation |
| MxComputeNumericDeriv-class | Numerically estimate Hessian using Richardson extrapolation |
| mxComputeOnce | Compute something once |
| MxComputeOnce-class | Compute something once |
| mxComputePenaltySearch | Regularize parameter estimates |
| MxComputePenaltySearch-class | Regularize parameter estimates |
| mxComputeReportDeriv | Report derivatives |
| MxComputeReportDeriv-class | Report derivatives |
| mxComputeReportExpectation | Report expectation |
| MxComputeReportExpectation-class | Report expectation |
| mxComputeSequence | Invoke a series of compute objects in sequence |
| MxComputeSequence-class | Invoke a series of compute objects in sequence |
| mxComputeSetOriginalStarts | Reset parameter starting values |
| MxComputeSetOriginalStarts-class | Reset parameter starting values |
| mxComputeSimAnnealing | Optimization using generalized simulated annealing |
| MxComputeSimAnnealing-class | Optimization using generalized simulated annealing |
| mxComputeStandardError | Compute standard errors |
| MxComputeStandardError-class | Compute standard errors |
| mxComputeTryCatch | Execute a sub-compute plan, catching errors |
| MxComputeTryCatch-class | Execute a sub-compute plan, catching errors |
| mxComputeTryHard | Repeatedly attempt a compute plan until successful |
| MxComputeTryHard-class | Repeatedly attempt a compute plan until successful |
| MxConstraint | Class '"MxConstraint"' |
| mxConstraint | Create MxConstraint Object |
| MxConstraint-class | Class '"MxConstraint"' |
| mxConstraintFromString | Create MxConstraint Object |
| MxData | MxData Class |
| mxData | Create MxData Object |
| MxData-class | MxData Class |
| mxDataDynamic | Create dynamic data |
| MxDataDynamic-class | Create dynamic data |
| MxDataLegacyWLS-class | Create legacy MxData Object for Least Squares (WLS, DWLS, ULS) Analyses |
| MxDataStatic | Create static data |
| MxDataStatic-class | Create static data |
| mxDataWLS | Create legacy MxData Object for Least Squares (WLS, DWLS, ULS) Analyses |
| mxDescribeDataWLS | Determine whether a dataset will have weights and summary statistics for the means if used with mxFitFunctionWLS |
| MxDirectedGraph | MxDirectedGraph |
| MxDirectedGraph-class | MxDirectedGraph |
| mxEval | Evaluate Values in MxModel |
| mxEvalByName | Evaluate Values in MxModel |
| mxEvaluateOnGrid | Evaluate an algebra on an abscissa grid and collect column results |
| MxExpectation | MxExpectation |
| MxExpectation-class | MxExpectation |
| mxExpectationBA81 | Create a Bock & Aitkin (1981) expectation |
| MxExpectationBA81-class | Create a Bock & Aitkin (1981) expectation |
| MxExpectationGREML | Class "MxExpectationGREML" |
| mxExpectationGREML | Create MxExpectationGREML Object |
| MxExpectationGREML-class | Class "MxExpectationGREML" |
| mxExpectationHiddenMarkov | Hidden Markov expectation |
| MxExpectationHiddenMarkov-class | Hidden Markov expectation |
| mxExpectationLISREL | Create MxExpectationLISREL Object |
| MxExpectationLISREL-class | Create MxExpectationLISREL Object |
| mxExpectationMixture | Mixture expectation |
| MxExpectationMixture-class | Mixture expectation |
| mxExpectationNormal | Create MxExpectationNormal Object |
| MxExpectationNormal-class | Create MxExpectationNormal Object |
| mxExpectationRAM | Create an MxExpectationRAM Object |
| MxExpectationRAM-class | Create an MxExpectationRAM Object |
| mxExpectationSSCT | Create an MxExpectationStateSpace Object |
| mxExpectationStateSpace | Create an MxExpectationStateSpace Object |
| MxExpectationStateSpace-class | Create an MxExpectationStateSpace Object |
| mxExpectationStateSpaceContinuousTime | Create an MxExpectationStateSpace Object |
| mxFactor | Fail-safe Factors |
| mxFactorScores | Estimate factor scores and standard errors |
| mxFIMLObjective | DEPRECATED: Create MxFIMLObjective Object |
| MxFitFunction | MxFitFunction |
| MxFitFunction-class | MxFitFunction |
| mxFitFunctionAlgebra | Create MxFitFunctionAlgebra Object |
| MxFitFunctionAlgebra-class | Create MxFitFunctionAlgebra Object |
| MxFitFunctionGREML | Class '"MxFitFunctionGREML"' |
| mxFitFunctionGREML | Create MxFitFunctionGREML Object |
| MxFitFunctionGREML-class | Class '"MxFitFunctionGREML"' |
| mxFitFunctionML | Create MxFitFunctionML Object |
| MxFitFunctionML-class | Create MxFitFunctionML Object |
| mxFitFunctionMultigroup | Create a fit function used to fit multiple-group models |
| MxFitFunctionMultigroup-class | Create a fit function used to fit multiple-group models |
| mxFitFunctionR | Create MxFitFunctionR Object |
| MxFitFunctionR-class | Create MxFitFunctionR Object |
| mxFitFunctionRow | Create an MxFitFunctionRow Object |
| MxFitFunctionRow-class | Create an MxFitFunctionRow Object |
| mxFitFunctionWLS | Create MxFitFunctionWLS Object |
| MxFitFunctionWLS-class | Create MxFitFunctionWLS Object |
| MxFlatModel-class | MxFlatModel |
| mxGenerateData | Generate data based on an mxModel (or a data.frame) |
| mxGetExpected | Extract the component from a model's expectation |
| mxGREMLDataHandler | Helper Function for Structuring GREML Data |
| MxInterval | MxCI Class |
| MxInterval-class | MxInterval |
| mxJiggle | Jiggle parameter values. |
| mxKalmanScores | Estimate Kalman scores and error covariance matrices |
| MxLISRELModel-class | MxLISRELModel |
| mxLISRELObjective | Create MxLISRELObjective Object |
| MxListOrNull-class | An optional list |
| mxMakeNames | mxMakeNames |
| mxMarginalNegativeBinomial | Indicator with marginal Negative Binomial distribution |
| MxMarginalNegativeBinomial-class | Indicator with marginal Negative Binomial distribution |
| mxMarginalPoisson | Indicator with marginal Poisson distribution |
| MxMarginalPoisson-class | Indicator with marginal Poisson distribution |
| mxMarginalProbit | Create List of Thresholds |
| MxMatrix | MxMatrix Class |
| mxMatrix | Create MxMatrix Object |
| MxMatrix-class | MxMatrix Class |
| mxMI | Estimate Modification Indices for MxModel Objects |
| mxMLObjective | DEPRECATED: Create MxMLObjective Object |
| MxModel | MxModel Class |
| mxModel | Create MxModel Object |
| MxModel-class | MxModel Class |
| mxModelAverage | Information-Theoretic Model-Averaging and Multimodel Inference |
| MxNonNullData-class | MxData Class |
| mxNormalQuantiles | mxNormalQuantiles |
| mxOption | Set or Clear an Optimizer Option |
| MxOptionalChar-class | An optional character |
| MxOptionalCharOrNumber-class | A character, integer, or NULL |
| MxOptionalDataFrame-class | An optional data.frame |
| MxOptionalDataFrameOrMatrix-class | An optional data.frame or matrix |
| MxOptionalInteger-class | An optional integer |
| MxOptionalLogical-class | An optional logical |
| MxOptionalMatrix-class | An optional matrix |
| MxOptionalNumeric-class | An optional numeric |
| mxParametricBootstrap | Assess whether potential parameters should be freed using parametric bootstrap |
| mxPath | Create List of Paths |
| MxPath-class | Create List of Paths |
| mxPearsonSelCov | Perform Pearson Aitken selection |
| mxPearsonSelMean | Perform Pearson Aitken selection |
| mxPenalty | This function creates a penalty object |
| MxPenalty-class | MxPenalty |
| mxPenaltyElasticNet | mxPenaltyElasticNet |
| mxPenaltyLASSO | mxPenaltyLASSO |
| mxPenaltyRidge | mxPenaltyRidge |
| mxPenaltySearch | mxPenaltySearch |
| mxPenaltyZap | mxPenaltyZap |
| mxPower | Power curve |
| mxPowerSearch | Power curve |
| MxRAMGraph | MxRAMGraph |
| MxRAMGraph-class | MxRAMGraph |
| MxRAMModel-class | MxRAMModel |
| mxRAMObjective | DEPRECATED: Create MxRAMObjective Object |
| mxRefModels | Create Reference (Saturated and Independence) Models |
| mxRename | Rename a model or submodel |
| mxRestore | Restore model state from a checkpoint file |
| mxRestoreFromDataFrame | Restore model state from a checkpoint file |
| mxRetro | Return random classic Mx error message |
| mxRObjective | DEPRECATED: Create MxRObjective Object |
| mxRobustLog | Create MxAlgebra Object |
| mxRowObjective | DEPRECATED: Create MxRowObjective Object |
| mxRun | Run an OpenMx model |
| mxSave | Save model state to a checkpoint file |
| mxSE | Compute standard errors in OpenMx |
| mxSetDefaultOptions | Reset global options to the default |
| mxSimplify2Array | Like simplify2array but works with vectors of different lengths |
| mxStandardizeRAMPaths | Standardize RAM models' path coefficients |
| mxStandardizeRAMpaths | Standardize RAM models' path coefficients |
| mxSummary | Model Summary |
| mxThreshold | Create List of Thresholds |
| MxThreshold-class | Create List of Thresholds |
| mxTryHard | Make multiple attempts to run a model |
| mxTryHardctsem | Make multiple attempts to run a model |
| mxTryHardOrdinal | Make multiple attempts to run a model |
| mxTryHardOrig | Make multiple attempts to run a model |
| mxTryHardWideSearch | Make multiple attempts to run a model |
| mxTypes | List Currently Available Model Types |
| mxVersion | Returns Current Version String |
| MxVersionType-class | A package_version or character |
| myAutoregressiveData | Example data with autoregressively related columns |
| myFADataRaw | Example 500-row dataset with 12 generated variables |
| myGrowthKnownClassData | Data for a growth mixture model with the true class membership |
| myGrowthMixtureData | Data for a growth mixture model |
| myLongitudinalData | Data for a linear latent growth curve model |
| myRegData | Example regression data with correlated predictors |
| myRegDataRaw | Example regression data with correlated predictors |
| myTwinData | Duplicate of twinData |
| mzfData | Example twin extended kinship data: MZ female twins |
| mzmData | Example twin extended kinship data: MZ Male data |
| Named-entities | Named Entities |
| named-entities | Named Entities |
| Named-entity | Named Entities |
| named-entity | Named Entities |
| names-method | Class '"MxConstraint"' |
| names-method | MxFlatModel |
| names-method | MxMatrix Class |
| names-method | MxModel Class |
| ncol-method | MxMatrix Class |
| nhanesDemo | Modified National Health and Nutrition Examination Survey demographic data |
| nrow-method | MxMatrix Class |
| nuclear_twin_design_data | Twin data from a nuclear family design |
| numHess1 | numeric Hessian data 1 |
| numHess2 | numeric Hessian data 2 |
| omxAICWeights | Information-Theoretic Model-Averaging and Multimodel Inference |
| omxAkaikeWeights | Information-Theoretic Model-Averaging and Multimodel Inference |
| omxAllInt | All Interval Multivariate Normal Integration |
| omxAnd | Logical mxAlgebra() operators |
| omxApply | On-Demand Parallel Apply |
| omxApproxEquals | Logical mxAlgebra() operators |
| omxAssignFirstParameters | Assign First Available Values to Model Parameters |
| omxAugmentDataWithWLSSummary | Estimate summary statistics used by the WLS fit function |
| omxBootstrapCov | omxGetBootstrapReplications |
| omxBootstrapEval | Evaluate Values in a bootstrapped MxModel |
| omxBootstrapEvalByName | Evaluate Values in a bootstrapped MxModel |
| omxBootstrapEvalCov | Evaluate Values in a bootstrapped MxModel |
| omxBrownie | Make Brownies in OpenMx |
| omxBuildAutoStartModel | Build the model used for mxAutoStart |
| omxCbind | MxMatrix operations |
| omxCheckCloseEnough | Approximate Equality Testing Function |
| omxCheckEquals | Equality Testing Function |
| omxCheckError | Correct Error Message Function |
| omxCheckIdentical | Exact Equality Testing Function |
| omxCheckNamespace | omxCheckNamespace |
| omxCheckSetEquals | Set Equality Testing Function |
| omxCheckTrue | Boolean Equality Testing Function |
| omxCheckWarning | Correct Warning Message Function |
| omxCheckWithinPercentError | Approximate Percent Equality Testing Function |
| omxConstrainMLThresholds | omxConstrainMLThresholds |
| omxDefaultComputePlan | Construct default compute plan |
| omxDetectCores | omxDetectCores |
| omxDnbinom | Create MxAlgebra Object |
| omxExponential | Matrix exponential |
| omxGetBootstrapReplications | omxGetBootstrapReplications |
| omxGetNPSOL | omxGetNPSOL |
| omxGetParameters | Fetch Model Parameters |
| omxGetRAMDepth | omxGetRAMDepth |
| omxGraphviz | Show RAM Model in Graphviz Format |
| omxGreaterThan | Logical mxAlgebra() operators |
| omxHasDefaultComputePlan | omxHasDefaultComputePlan |
| omxLapply | On-Demand Parallel Lapply |
| omxLessThan | Logical mxAlgebra() operators |
| omxLocateParameters | Get the location (model, matrix, row, column) and other info for a parameter |
| omxLogical | Logical mxAlgebra() operators |
| omxManifestModelByParameterJacobian | Estimate the Jacobian of manifest model with respect to parameters |
| omxMatrixOperations | MxMatrix operations |
| omxMnor | Multivariate Normal Integration |
| omxModelDeleteData | Remove all instances of data from a model |
| omxNameAnonymousParameters | omxNameAnonymousParameters |
| omxNormalQuantiles | mxNormalQuantiles |
| omxNot | Logical mxAlgebra() operators |
| omxOr | Logical mxAlgebra() operators |
| omxParallelCI | Calculate confidence intervals without re-doing the primary optimization. |
| omxPnbinom | Create MxAlgebra Object |
| omxQuotes | omxQuotes |
| omxRAMtoML | omxRAMtoML |
| omxRbind | MxMatrix operations |
| omxReadGRMBin | Read a GCTA-Format Binary GRM into R. |
| omxRMSEA | Get the RMSEA with confidence intervals from model |
| omxRunCI | Calculate confidence intervals without re-doing the primary optimization. |
| omxSapply | On-Demand Parallel Sapply |
| omxSaturatedModel | Create Reference (Saturated and Independence) Models |
| omxSelectCols | Filter rows and columns from an mxMatrix |
| omxSelectRows | Filter rows and columns from an mxMatrix |
| omxSelectRowsAndCols | Filter rows and columns from an mxMatrix |
| omxSetParameters | Assign Model Parameters |
| omxSymbolTable | Internal OpenMx algebra operations |
| omxTranspose | MxMatrix operations |
| OpenMx | OpenMx: An package for Structural Equation Modeling and Matrix Algebra Optimization |
| ordinalTwinData | Data for ordinal twin model |
| Oscillator | Oscillator Data for Latent Differential Equations |
| p2z | Create MxAlgebra Object |
| predict.MxModel | 'predict' method for 'MxModel' objects |
| print-method | BaseCompute |
| print-method | MxAlgebra Class |
| print-method | MxAlgebraFormula |
| print-method | The MxCompare Class |
| print-method | Class '"MxConstraint"' |
| print-method | MxData Class |
| print-method | Create static data |
| print-method | MxFlatModel |
| print-method | MxInterval |
| print-method | MxMatrix Class |
| print-method | MxModel Class |
| print-method | Create dynamic data |
| print-method | Create a Bock & Aitkin (1981) expectation |
| print-method | Hidden Markov expectation |
| print-method | Create MxExpectationLISREL Object |
| print-method | Mixture expectation |
| print-method | Create MxExpectationNormal Object |
| print-method | Create an MxExpectationRAM Object |
| print-method | Create an MxExpectationStateSpace Object |
| print-method | Create MxFitFunctionAlgebra Object |
| print-method | Create MxFitFunctionML Object |
| print-method | Create MxFitFunctionR Object |
| print-method | Create an MxFitFunctionRow Object |
| print-method | Create MxFitFunctionWLS Object |
| print-method | Indicator with marginal Negative Binomial distribution |
| print-method | Indicator with marginal Poisson distribution |
| print-method | Create List of Paths |
| print-method | Create List of Thresholds |
| rvectorize | Vectorize By Row |
| SdiagMatrix-class | MxMatrix Class |
| show-method | BaseCompute |
| show-method | MxAlgebra Class |
| show-method | MxAlgebraFormula |
| show-method | The MxCompare Class |
| show-method | Class '"MxConstraint"' |
| show-method | MxData Class |
| show-method | Create static data |
| show-method | MxFlatModel |
| show-method | MxInterval |
| show-method | MxMatrix Class |
| show-method | MxModel Class |
| show-method | Create dynamic data |
| show-method | Create a Bock & Aitkin (1981) expectation |
| show-method | Hidden Markov expectation |
| show-method | Create MxExpectationLISREL Object |
| show-method | Mixture expectation |
| show-method | Create MxExpectationNormal Object |
| show-method | Create an MxExpectationRAM Object |
| show-method | Create an MxExpectationStateSpace Object |
| show-method | Create MxFitFunctionAlgebra Object |
| show-method | Create MxFitFunctionML Object |
| show-method | Create MxFitFunctionR Object |
| show-method | Create an MxFitFunctionRow Object |
| show-method | Create MxFitFunctionWLS Object |
| show-method | Indicator with marginal Negative Binomial distribution |
| show-method | Indicator with marginal Poisson distribution |
| show-method | Create List of Paths |
| show-method | Create List of Thresholds |
| StandMatrix-class | MxMatrix Class |
| summary.MxModel | Model Summary |
| SymmMatrix-class | MxMatrix Class |
| THard | Make multiple attempts to run a model |
| tr | trace |
| twinData | Australian twin sample biometric data. |
| twin_NA_dot | Twin biometric data (Practice cleaning: "." for missing data, wrong data types etc.) |
| UnitMatrix-class | MxMatrix Class |
| vec2diag | Create Diagonal Matrix From Vector |
| vech | Half-vectorization |
| vech2full | Inverse Half-vectorization |
| vechs | Strict Half-vectorization |
| vechs2full | Inverse Strict Half-vectorization |
| vechs<- | Strict Half-vectorization |
| wideData | Longitudinal, Overdispersed Count Data |
| ZeroMatrix-class | MxMatrix Class |
| $-method | BaseCompute |
| $-method | An S4 base class for discrete marginal distributions |
| $-method | MxAlgebra Class |
| $-method | MxBaseExpectation |
| $-method | MxBaseFitFunction |
| $-method | The MxCompare Class |
| $-method | Class '"MxConstraint"' |
| $-method | MxData Class |
| $-method | MxFlatModel |
| $-method | MxInterval |
| $-method | MxMatrix Class |
| $-method | MxModel Class |
| $-method | MxPenalty |
| $-method | Indicator with marginal Negative Binomial distribution |
| $-method | Indicator with marginal Poisson distribution |
| $-method | Create List of Paths |
| $-method | Create List of Thresholds |
| $<--method | BaseCompute |
| $<--method | An S4 base class for discrete marginal distributions |
| $<--method | MxAlgebra Class |
| $<--method | MxBaseExpectation |
| $<--method | MxBaseFitFunction |
| $<--method | Class '"MxConstraint"' |
| $<--method | MxData Class |
| $<--method | MxFlatModel |
| $<--method | MxInterval |
| $<--method | MxLISRELModel |
| $<--method | MxMatrix Class |
| $<--method | MxModel Class |
| $<--method | MxPenalty |
| $<--method | MxRAMModel |
| $<--method | Indicator with marginal Negative Binomial distribution |
| $<--method | Indicator with marginal Poisson distribution |
| $<--method | Create List of Paths |
| $<--method | Create List of Thresholds |
| %&% | Create MxAlgebra Object |
| %^% | Create MxAlgebra Object |
| [-method | The MxCompare Class |
| [-method | MxMatrix Class |
| [<--method | MxMatrix Class |
| [[-method | MxFlatModel |
| [[-method | MxMatrix Class |
| [[-method | MxModel Class |
| [[<--method | MxFlatModel |
| [[<--method | MxLISRELModel |
| [[<--method | MxMatrix Class |
| [[<--method | MxModel Class |
| [[<--method | MxPenalty |
| [[<--method | MxRAMModel |