Package 'FinCovRegularization'

January 20, 2025

Type Package

Title Covariance Matrix Estimation and Regularization for Finance

Version 1.1.0

Description Estimation and regularization for covariance matrix of asset returns. For covariance matrix estimation, three major types of factor models are included: macroeconomic factor model, fundamental factor model and statistical factor model. For covariance matrix regularization, four regularized estimators are included: banding, tapering, hard-thresholding and softthresholding. The tuning parameters of these regularized estimators are selected via cross-validation.

URL http://github.com/yanyachen/FinCovRegularization

BugReports http://github.com/yanyachen/FinCovRegularization/issues

Depends R (>= 2.10) Imports stats, graphics, quadprog License GPL-2 LazyData true RoxygenNote 5.0.1 NeedsCompilation no Author YaChen Yan [aut, cre], FangZhu Lin [aut] Maintainer YaChen Yan <yanyachen21@gmail.com> Repository CRAN

Date/Publication 2016-04-25 15:32:07

Contents

banding												 					2
banding.cv																	
F.norm2																	
FinCovRegularization																	4

banding

FundamentalFactor.Cov	5
GMVP	5
hard.thresholding	6
Ind.Cov	7
m.excess.c10sp9003	7
MacroFactor.Cov	8
O.norm2	8
RiskParity	9
soft.thresholding	9
StatFactor.Cov	10
tapering	11
tapering.cv	11
threshold.cv	13
	15

Index

bandi	ng
-------	----

Banding Opreator on Covariance Matrix

Description

Apply banding operator on a covariance matrix with a banding parameter.

Usage

banding(sigma, k = 0)

Arguments

sigma	a p*p covariance matrix
k	banding parameter

Value

a regularized covariance matrix after banding operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
banding(cov.SAM, 7)</pre>
```

banding.cv

Description

Apply K-fold cross-validation for selecting tuning parameters for banding covariance matrix using grid search strategy

Usage

banding.cv(matrix, n.cv = 10, norm = "F", seed = 142857)

Arguments

matrix	a N*p matrix, N indicates sample size and p indicates the dimension
n.cv	times that cross-validation repeated, the default number is 10
norm	the norms used to measure the cross-validation errors, which can be the Frobenius norm "F" or the operator norm "O" $$
seed	random seed, the default value is 142857

Details

For cross-validation, this function split the sample randomly into two pieces of size $n1 = n-n/\log(n)$ and $n2 = n/\log(n)$, and repeat this k times

Value

An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

regularization	regularization method, which is "Banding"
parameter.opt	selected optimal parameter by cross-validation
cv.error	the corresponding cross-validation errors
n.cv	times that cross-validation repeated
norm	the norm used to measure the cross-validation error
seed	random seed

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

F.norm2

The Squared Frobenius Norm

Description

Calculate the squared Frobenius norm of a matrix

Usage

F.norm2(matrix)

Arguments

matrix a matrix

Value

a scalar of the squared Frobenius norm

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
F.norm2(cov.SAM)</pre>
```

FinCovRegularization FinCovRegularization: Covariance Matrix Estimation and Regularization for Finance

Description

Estimation and regularization for covariance matrix of asset returns. For covariance matrix estimation, three major types of factor models are included: macroeconomic factor model, fundamental factor model and statistical factor model. For covariance matrix regularization, four regularized estimators are included: banding, tapering, hard-thresholding and soft-thresholding. The tuning parameters of these regularized estimators are selected via cross-validation.

4

FundamentalFactor.Cov Covariance Matrix Estimation by Fundamental Factor Model

Description

Estimate covariance matrix by fitting a fundamental factor model using OLS or WLS regression

Usage

```
FundamentalFactor.Cov(assets, exposure, method = "WLS")
```

Arguments

assets	a N*p matrix of asset returns, N indicates sample size and p indicates the di- mension of asset returns
exposure	a p*q matrix of exposure indicator for the fundamental factor model, p corre- sponds to the dimension of asset returns, q indicates the number of fundamental industries
method	a character, indicating regression method: "OLS" or "WLS"

Value

an estimated p*p covariance matrix

Examples

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
Indicator <- matrix(0,10,3)
dimnames(Indicator) <- list(colnames(assets),c("Drug","Auto","0il"))
Indicator[c("ABT","LLY","MRK","PFE"),"Drug"] <- 1
Indicator[c("F","GM"),"Auto"] <- 1
Indicator[c("BP","CVX","RD","XOM"),"0il"] <- 1
FundamentalFactor.Cov(assets,exposure=Indicator,method="WLS")</pre>
```

GMVP

Global Minimum Variance Portfolio

Description

Computing a global minimum variance portfolio weights from the estimated covariance matrix of return series.

Usage

GMVP(cov.mat, short = TRUE)

Arguments

cov.mat	an estimated p*p covariance matrix
short	logical flag, indicating whether shortsales on the risky assets are allowed

Value

a numerical vector containing the estimated portfolio weights

Examples

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
GMVP(cov(assets), short=TRUE)
GMVP(cov(assets), short=FALSE)</pre>
```

hard.thresholding Hard-Thresholding Opreator on Covariance Matrix

Description

Apply hard-thresholding operator on a covariance matrix with a hard-thresholding parameter.

Usage

```
hard.thresholding(sigma, threshold = 0.5)
```

Arguments

sigma	a p*p covariance matrix
threshold	hard-thresholding parameter

Value

a regularized covariance matrix after hard-thresholding operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
hard.thresholding(cov.SAM, threshold = 0.001)</pre>
```

Ind.Cov

Description

Apply independence model on a covariance matrix.

Usage

Ind.Cov(sigma)

Arguments

sigma a covariance matrix

Value

a regularized covariance matrix after applying independence model

Examples

data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
Ind.Cov(cov.SAM)</pre>

m.excess.c10sp9003 10 stock and S&P 500 excess returns

Description

A dataset containing monthly excess returns of 10 stocks and S\$P 500 index return from January 1990 to December 2003

Usage

data(m.excess.c10sp9003)

Format

A matrix with 168 rows and 11 variables

MacroFactor.Cov

Description

Estimate covariance matrix by fitting a macroeconomic factor model using time series regression

Usage

MacroFactor.Cov(assets, factor)

Arguments

assets	a N*p matrix of asset returns, N indicates sample size and p indicates the di- mension of asset returns
factor	a numerical vector of length N, or a N*q matrix of macroeconomic factor(s), q indicates the dimension of factors

Value

an estimated p*p covariance matrix

Examples

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
factor <- m.excess.c10sp9003[,11]
MacroFactor.Cov(assets, factor)</pre>
```

0.norm2

The Squared Operator Norm

Description

Calculate the squared Operator norm of a matrix

Usage

0.norm2(matrix)

Arguments

matrix a matrix

Value

a scalar of the squared Operator norm

RiskParity

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
0.norm2(cov.SAM)</pre>
```

RiskParity

Risk Parity Portfolio

Description

Computing a Risk Parity portfolio weights from the estimated covariance matrix of return series.

Usage

RiskParity(cov.mat)

Arguments

cov.mat an estimated p*p covariance matrix

Value

a numerical vector containing the estimated portfolio weights

Examples

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
RiskParity(cov(assets))</pre>
```

soft.thresholding Soft-Thresholding Opreator on Covariance Matrix

Description

Apply soft-thresholding operator on a covariance matrix with a soft-thresholding parameter.

Usage

soft.thresholding(sigma, threshold = 0.5)

Arguments

sigma	a covariance matrix
threshold	soft-thresholding parameter

10

Value

a regularized covariance matrix after soft-thresholding operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)</pre>
soft.thresholding(cov.SAM, threshold = 0.001)
```

StatFactor.Cov Covariance Matrix Estimation by Statistical Factor Model

Description

Estimate covariance matrix by fitting a statistical factor model using principle components analysis

Usage

```
StatFactor.Cov(assets, k = 0)
```

Arguments

assets	a matrix of asset returns
k	numbers of factors, if $k = 0$, automatically estimating by Kaiser method

Value

an estimated p*p covariance matrix

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]</pre>
StatFactor.Cov(assets, 3)
```

tapering

Description

Apply tapering operator on a covariance matrix with tapering parameters.

Usage

tapering(sigma, 1, h = 1/2)

Arguments

sigma	a p*p covariance matrix
1	tapering parameter
h	the ratio between taper l_h and parameter l

Value

a regularized covariance matrix after tapering operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
tapering(cov.SAM, l=7, h = 1/2)</pre>
```

tapering.cv

Select Tuning Parameter for Tapering Covariance Matrix by CV

Description

Apply K-fold cross-validation for selecting tuning parameters for tapering covariance matrix using grid search strategy

Usage

```
tapering.cv(matrix, h = 1/2, n.cv = 10, norm = "F", seed = 142857)
```

Arguments

matrix	a N*p matrix, N indicates sample size and p indicates the dimension
h	the ratio between taper l_h and parameter l
n.cv	times that cross-validation repeated, the default number is 10
norm	the norms used to measure the cross-validation errors, which can be the Frobenius norm "F" or the operator norm "O" $$
seed	random seed, the default value is 142857

Details

For cross-validation, this function split the sample randomly into two pieces of size $n1 = n-n/\log(n)$ and $n2 = n/\log(n)$, and repeat this k times

Value

An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

regularization	regularization method, which is "Tapering"
parameter.opt	selected optimal parameter by cross-validation
cv.error	the corresponding cross-validation errors
n.cv	times that cross-validation repeated
norm	the norm used to measure the cross-validation error
seed	random seed

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

threshold.cv

Description

Apply K-fold cross-validation for selecting tuning parameters for thresholding covariance matrix using grid search strategy

Usage

```
threshold.cv(matrix, method = "hard", thresh.len = 20, n.cv = 10,
    norm = "F", seed = 142857)
```

Arguments

matrix	a N*p matrix, N indicates sample size and p indicates the dimension
method	thresholding method, "hard" or "soft"
thresh.len	the number of thresholding values tested in cross-validation, the thresholding values will be a sequence of thresh.len equally spaced values from minimum threshold constant to largest covariance in sample covariance matrix
n.cv	times that cross-validation repeated, the default number is 10
norm	the norms used to measure the cross-validation errors, which can be the Frobe- nius norm "F" or the operator norm "O"
seed	random seed, the default value is 142857

Details

For cross-validation, this function split the sample randomly into two pieces of size $n1 = n-n/\log(n)$ and $n2 = n/\log(n)$, and repeat this k times

Value

An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

regularization	regularization method, which is "Hard Thresholding" or "Soft Thresholding"
parameter.opt	selected optimal parameter by cross-validation
cv.error	the corresponding cross-validation errors
n.cv	times that cross-validation repeated
norm	the norm used to measure the cross-validation error
seed	random seed
threshold.grid	thresholding values tested in cross-validation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

14

Index

* datasets m.excess.c10sp9003,7 banding, 2 banding.cv, 3F.norm2, 4 FinCovRegularization, 4 FinCovRegularization-package (FinCovRegularization), 4 FundamentalFactor.Cov, 5 GMVP, 5 hard.thresholding, 6 Ind.Cov, 7 m.excess.c10sp9003,7 MacroFactor.Cov, 8 0.norm2, 8 RiskParity, 9 soft.thresholding,9 StatFactor.Cov, 10 tapering, 11 tapering.cv, 11 threshold.cv, 13