Package ‘HyRiM’

January 20, 2025
Type Package

Title Multicriteria Risk Management using Zero-Sum Games with
Vector-Valued Payoffs that are Probability Distributions

Version 2.0.2

Date 2022-12-06

Imports compare, polynom, grlmport2, Rglpk, purrr, methods
Author Stefan Rass, Sandra Koenig, Ali Alshawish

Maintainer
* " Stefan Rass, on behalf of the Austrian Institute of Technology" <stefan.rass@jku.at>

Description
Construction and analysis of multivalued zero-sum matrix games over the abstract space of prob-
ability distributions, which describe the losses in each scenario of defense vs. attack ac-
tion. The distributions can be compiled directly from expert opinions or other empirical data (in-
sofar available). The package implements the methods put forth in the EU project HyRiM (Hy-
brid Risk Management for Utility Networks), FP7 EU Project Num-
ber 608090. The method has been published in Rass, S., Konig, S., Schauer, S., 2016. Deci-
sions with Uncertain Consequences-A Total Ordering on Loss-
Distributions. PLoS ONE 11, e0168583. <doi:10.1371/journal.pone.0168583>, and ap-
plied for advanced persistent thread modeling in Rass, S., Konig, S., Schauer, S., 2017. Defend-
ing Against Advanced Persistent Threats Using Game-
Theory. PLoS ONE 12, e0168675. <doi:10.1371/journal.pone.0168675>. A volume cover-
ing the wider range of aspects of risk management, partially based on the theory imple-
mented in the package is the book edited by S. Rass and S. Schauer, 2018. Game Theory for Se-
curity and Risk Management: From Theory to Practice. Springer, <doi:10.1007/978-3-319-
75268-6>, ISBN 978-3-319-75267-9.

License GPL-3

NeedsCompilation no

Encoding UTF-8

Suggests knitr,rmarkdown,qpdf,testthat
Repository CRAN

Date/Publication 2022-12-08 23:42:35 UTC

https://doi.org/10.1371/journal.pone.0168583
https://doi.org/10.1371/journal.pone.0168675
https://doi.org/10.1007/978-3-319-75268-6
https://doi.org/10.1007/978-3-319-75268-6

2 HyRiM-package

Contents
HyRiM-package e 2
cdf . e 3
disappointmentRate 4
lossDistribution e 6
TNESS & o v o v e 10
MOMENT vttt e e et e e e e e e e e e 14
INOSE . o v v v v e 15
mosg.equilibrium oL 20
preference L 22
VAMIANCE« o ot e e e e e e e e e e 24
[MOSg e e 25

Index 28

HyRiM-package Multicriteria Risk Management using Zero-Sum Games with Vector-
Valued Payoffs that are Probability Distributions
Description

Construction and analysis of multivalued zero-sum matrix games over the abstract space of prob-
ability distributions, which describe the losses in each scenario of defense vs. attack action. The
distributions can be compiled directly from expert opinions or other empirical data (insofar avail-
able). The package implements the methods put forth in the EU project HyRiM (Hybrid Risk
Management for Utility Networks), FP7 EU Project Number 608090. The method has been pub-
lished in Rass, S., Konig, S., Schauer, S., 2016. Decisions with Uncertain Consequences-A Total
Ordering on Loss-Distributions. PLoS ONE 11, e0168583. <doi:10.1371/journal.pone.0168583>,
and applied for advanced persistent thread modeling in Rass, S., Konig, S., Schauer, S., 2017.
Defending Against Advanced Persistent Threats Using Game-Theory. PLoS ONE 12, e0168675.
<doi:10.1371/journal.pone.0168675>. A volume covering the wider range of aspects of risk man-
agement, partially based on the theory implemented in the package is the book edited by S. Rass
and S. Schauer, 2018. Game Theory for Security and Risk Management: From Theory to Practice.
Springer, <doi:10.1007/978-3-319-75268-6>, ISBN 978-3-319-75267-9.

Author(s)
Stefan Rass, Sandra Koenig, Ali Alshawish

Maintainer: "Stefan Rass, on behalf of the Austrian Institute of Technology" <stefan.rass@jku.at>

References

S. Rass, S. Konig, S. Schauer: Games over Probability Distributions Revisited: New Equilibrium
Models and Refinements, MDPI Games 2022, 13(6), 80; DOI: https://doi.org/10.3390/g13060080,
online: https://www.mdpi.com/2073-4336/13/6/80

S. Rass, S. Konig, S. Schauer, V. Biirgin, J. Epperlein, F. Wirth: On Game Theory Using Stochastic
Tail Orders, arXiv:2108.00680v1 [math.PR], 2021

cdf 3

S. Rass, A. Wiegele, S. Konig: Security Games over Lexicographic Orders, in: Decision and Game
Theory for Security, 11th International Conference, GameSec 2020, College Park, MD, USA, Oc-
tober 28-30, 2020, Proceedings, Springer LNCS 12513, ISBN 978-3-030-64792-6

S. Rass, S. Koenig, S. Schauer: Uncertainty in Games: Using Probability-Distributions as Pay-
offs. in MHR Khouzani et al. (Eds.) GameSec 2015, Springer LNCS 9406, pp. 346-357, DOL:
10.1007/978-3-319-25594-1_20.

S. Rass. On Game-Theoretic Risk Management (Part One). Towards a Theory of Games with Pay-
offs that are Probability-Distributions. ArXiv e-prints, June 2015. http://arxiv.org/abs/1506.07368.

S. Rass. On Game-Theoretic Risk Management (Part Two). Algorithms Algorithms to Compute
Nash-Equilibria in Games with Distributions as Payoffs, ArXiv e-prints, arXiv:1511.08591, 2015.

cdf (cumulative) loss distribution function

Description

returns the numeric values of the cumulative loss distribution 1d evaluated at x, i.e., Pr(X < z),
where X ~ 1d.

Usage
cdf(ld, x)
Arguments
1d the loss distribution as obtained from lossDistribution or mgss.
X the point at which the distribution function shall be evaluated (must be a nu-
meric; vectors are not supported yet)
Details

the function internally distinguishes discrete and continous disributions only in terms of rounding
its argument to the largest integer less than x. Its value is obtained by numeric integration of the
internal representation of the loss distribution (in the continuous case).

For discrete distributions, the function works on the internal probability mass function (which may
be different from the empirical distribution in case that the loss distribution has been smoothed
during its construction; see lossDistribution).

Value

an approximation for the probability Pr(Id<=x).

Note

in its current version, cdf does not vectorize, i.e., cannot be applied to vector arguments x.

4 disappointmentRate
Author(s)
Stefan Rass
See Also
suitable inputs for this function are provided by lossDistribution and mgss.
Examples

cvsslbase <- ¢(10,6.4,9,7.9,7.1,9)

1d <- lossDistribution(cvssibase)

cdf(ld, 4)

disappointmentRate computation of the disappointment rate
Description
For a minimizing player, the disappointment rate is the likelihood for the loss to exceed its expec-
tation (thus disappoint the defender). For any random loss X, it is given by Pr(X > E(X)).
Usage
disappointmentRate(d, x, y, verbose = TRUE, ...)
Arguments

d a lossDistribution object or a matrix; typically the assurance from a previously
computed equilibrium (see mgss). In that case, all other parameters are ignored.
Alternatively, one can provide a matrix of real values instead, to compute the
disappointment rate in the so-specified zero-sum matrix game. In that case, the
other parameters are also taken into considertion.

X,y the mixed strategies under which the disappointment rate shall be computed.
Usually, this would be an equilibrium of the (real-valued) matrix game. If only x
or only y is supplied, the function computes a best response to the given (mixed)
strategy. If both are omitted, the function internally computes an equilibrium by
a call to mgss.

verbose if set to FALSE, suppresses all messaging.
further parameters internally passed onwards to mgss to compute an equilibrium.

Details

The disappointment rate can be taken as an auxiliary goal to optimize, though it is not supported for
optimization in the current version of the package. Note that it does not make sense to consider this
rate as an isolated (single) goal, since the optimal strategy would then be playing towards maximal
losses (with explicit aid of the opponent) in order to minimize the mass to the left of the expected
loss. However, it is a quantity of interest when the equilibrium has been computed, as it indicates
how “satisfying” the equilibrium will be upon playing.

disappointmentRate 5

Value

the likelihood to overshoot the expectation of the random loss X with distribution d, i.e., Pr(X >
E(X)).

Author(s)

Stefan Rass

References

see for example, F. Gul: "A Theory of Disappointment Aversion", Econometrica, vol. 59, no. 3, p.
667, 1991.

See Also

mgss

Examples

raw data (PURELY ARTIFICIAL, for demo purposes only)

N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
obs112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
obs121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
obs122<-c(rep(1,40),rep(2.5,20),rep(5,20),rep(7.5,10),rep(9,10));
obs211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));
obs212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
obs221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
o0bs222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
obs311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
obs312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
o0bs321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
obs322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));

compute payoff densities

f111<-lossDistribution(obs111)
f112<-lossDistribution(obs112)
f121<-lossDistribution(obs121)
f122<-lossDistribution(obs122)
f211<-lossDistribution(obs211)
f212<-lossDistribution(obs212)
f221<-lossDistribution(obs221)
f222<-lossDistribution(obs222)
f311<-lossDistribution(obs311)
f312<-lossDistribution(obs312)
f321<-lossDistribution(obs321)
f322<-lossDistribution(obs322)

payoffs<-list(f111,f112,f121, f122,f211,f212,f221,f222, f311,f312,f321,f322)
G <- mosg(n=2,

m=2,

payoffs,

6 lossDistribution

goals=3,
goalDescriptions=c("gl1", "g2", "g3"),
defensesDescr = c("d1"”, "d2"),
attacksDescr = c("al", "a2"))

eq <- mgss(G,weights=c(0.25,0.5,0.25))

get the disappointment rate for the first security goal g1
disappointmentRate(eg$assurances$gl)

S
construct a game with one goal and related disappointment
payoffs <- list(f111,f112,f121,f122)
note that from here onwards, the code is "generic”, meaning that
exactly the same procedure would apply to *any* kind of game that
we want to play with disappointments, as long as the input data comes
in the variable "payoffs"” (as used in the code below)
expectations <- unlist(lapply(payoffs, mean))
disappointmentRates <- unlist(lapply(payoffs, disappointmentRate))
put the two goals together in a game
gameWithDisappointment <- c(expectations, disappointmentRates)
G <- mosg(n=2,
m=2,
losses=gameWithDisappointment,
goals=2,
goalDescriptions=c("revenue”, "disappointment”),
defensesDescr = c("d1"”, "d2"),
attacksDescr = c("al1”, "a2"))
eq <- mgss(G,weights=c(0.1,0.9))

lossDistribution construction and handling of loss distributions

Description

Loss distributions can be constructed from both, continuous and categorical data. In any case, the
input data must be a list (vector) of at least two numeric values all being > 1. For discrete data, the
function additionally takes the full range of categories, all being represented as integers (with the
lowest category having the number 1).

Usage

construct a loss distribution from data
lossDistribution(

dat,

discrete = FALSE,

dataType = c("raw”", "pdf", "cdf"),

supp = NULL,

smoothing = c("none"”, "ongaps"”, "always"),

lossDistribution 7

bw = NULL)
get information about the loss distribution
S3 method for class 'mosg.lossdistribution’

print(x, ...)
S3 method for class 'mosg.lossdistribution’
summary (object, ...)
S3 method for class 'summary.mosg.lossdistribution'
print(x, ...)
S3 method for class 'mosg.lossdistribution'’
plot(x, points = 100, xlab = "", ylab = "",
main = "", p = 0.999, newPlot = TRUE, cutoff = NULL, ...)

get quantiative information about the distribution
S3 method for class 'mosg.lossdistribution'

quantile(x, p, eps = 0.001, ...)
S3 method for class 'mosg.lossdistribution’
mean(x, ...)

evaluate the loss density function

S3 method for class 'mosg.lossdistribution'

density(x, t, ...)

for the cumulative distribution function, see the function 'cdf'

Arguments

dat a vector of at least two input observations (all > 1 required)

discrete defaults to FALSE. If set to TRUE, the loss distribution is constructed as discrete.
In that case, a value for supp is required.

dataType applies only if discrete=TRUE, and specifies how the values in dat are to be
interpreted. Defaults to raw, by which the data is taken as observations. Given as
pdf, the values in dat are directly interpreted as a probability density (checked
for nonnegativity and re-normalized if necessary). If the data type is specified
as cdf, then the values in dat are taken as cumulative distribution function, i.e.,
checked to be non-decreasing, non-negative and re-normalized to 1 if necessary.

supp if the parameter discrete is set to TRUE, then this parameter must be set as
a vector of two elements, specifying the minimal and maximal category, e.g.
supp=c(1,5).

bw the bandwidth parameter (numeric value) for kernel smoothing. Defaults inter-
nally to the result of bw.nrdO if omitted.

X a loss distribution object returned by lossDistribution or mgss, or a value
within the support of a loss distribution.

t a value within the support of 1d or a summary object for a loss distribution.

object a loss distribution object

eps the accuracy at which the quantile is approximated (see the details below).

smoothing string; partially matched with "none" (default), "ongaps", and "always". If set to

"always", then the function computes a discrete kernel density estimate (using
a discretized version of a Gaussian density with a bandwidth as computed by
bw.nrdo (Silverman’s rule)), to assign categories with zero probability a positive

8 lossDistribution

likelihood. If set to "ongaps", then the smoothing is applied only if necessary
(i.e., if the probability mass is zero on at least one category).

the function plot.mosg.lossdistribution takes the parameters:

points the number of points at which loss densities are is evaluated (numerically) for
plotting.

xlab a label for the x-axis in the plot.

ylab a label for the y-axis in the plot.

main a title for the plot

p a quantile that determines the plot range for the loss distribution

newPlot if set to TRUE, then a new plot is opened. Otherwise, the plot is added to the

current plot window (typcially used by plot.mosg to visualize game matrices).

cutoff the cutoff point at which all densities shall be truncated before plotting (note
that the mass functions are rescaled towards unit mass).

further arguments passed to or from other methods

Details

The function internally computes a Gaussian kernel density estimator (KDE; using Silverman’s rule
of thumb for the bandwidth selection) on the continuous data. The distribution is truncated at the
maximal observation supplied + 5*the bandwidth of the Gaussian KDE, or equivalently, at the right
end of the support in case of discrete distributions.

For discrete distributions, missing observations are handled by smoothing the density (by convo-
Iution with a discretized Gaussian kernel). As an alternative, a re-definition of categories may be
considered.

Degenerate distributions are not supported! The construction of classical games with real-valued
payoffs works directly through mosg by supplying a list of values rather than loss distributions. See
the example given with mosg.

The generic functions quantile, mean and density both distinguish discrete from continuous dis-
tributions in the way of how values are being computed.

Quantiles are computed using the direct definition as an approximation y so that x = Pr(ld <=y).
For continuous distributions, a bisective search is performed to approximate the inverse cumulative
distribution function. For discret distributions, quantile works with cumulative sums. The accu-
racy parameter eps passed to quantile causes the bisective search to stop if the search interval has
a length less than eps. In that case, the middle of the interval is returned. For discrete distributions,
the computation is done by cumulative sums on the discrete probability mass function.

mean either invokes moment (1d, 1) to compute the first moment.

density is either a wrapper for the internal representation by the function object lossdistr, or
directly accesses the probability mass function as internally stored in the field dpdf (see the ’values’
section below).

For visualization, plot produces a bar plot for categorical distributions (over categories as specified
by the supp field; see the ’values’ section below), and for continous distributions, a continuous line
plot is returned on the range 1...max(range + 5*bw), where the values are described below. To ease
comparison and a visual inspection of the game matrix, the default plot ranges can be overridden
by supplying x1im and ylim for the plot function.

lossDistribution 9

Value

The return values of lossDistribution is an object of class mosg.lossdistribution. The same
goes for lossDistribution.mosg.

observations carries over the data vector supplied to construct the distribution.

range the minimal and maximal loss observed, as a 2-element vector. For loss distri-
butions induced by games, the range is the smallest interval covering the ranges
of all distributions in the game.

bw the bandwidth used for the kernel density approximate.

lossdistr a function embodying the kernel density (probability mass function) as a spline
function (for continuous densities only)

normalizationFactor

the factor by which lossdistr must be multiplied (to normalize under the trun-
cation at max(observations) + 5*bw.

is.mixedDistribution
a flag indicating whether or not the distribution was constructed by a call to
lossDistribution or the generic function lossDistribution.mosg.

is.discrete a flag set to TRUE if the distribution is over categories

dpdf if is.discrete is TRUE, then this is a vector of probability masses over the
support (field supp).

supp if is.discrete is TRUE, then this is a 2-element vector specifying the minimal

and maximal loss category (represented by integers).

A summary returns an object of class mosg.equilibrium.summary, for which the generic print
function can be applied, and which carries the following fields:

range the minimal and maximal observation of the underlying data (if available), or
the minimal and maximal losses anticipated for this distribution (e.g., in case of
discrete distributions the common support).

mean the first moment as computed by mean.

variance the variance as computed by variance.

quantiles a 2x5-matrix of quantiles at levels 10%, 25%, 50%, 75% and 90%.
Note

If the plotting throws an error concerning too large figure margins, then adjusting the plot parameters
using par may help, since the plot function does not override any of the current plot settings (e.g.,
issue par(c(0,0,1,1) +0.1)) before plotting to reduce the spacing close towards zero))

In some cases, plots may require careful customization to look well, so playing arourd with the
other settings as offered by par can be useful.

If the distribution has been smoothed, then mean, variance, quantile, density and cdf will
refer to the smoothed version of the distribution. In that case, the returned quantities are mere
approximations of the analogous values obtained directly from the underlying data.

Author(s)

Stefan Rass

10 mgss

See Also

mosg, mgss, cdf, variance

Examples

construct a loss distribution from observations (raw data)
cvsslbase <- ¢(10,6.4,9,7.9,7.1,9)
1d <- lossDistribution(cvssibase)

summary (1d)

plot(ld)

construct a loss distribution of given shape

for example, a Poisson density with lambda = 4

x <- 1:10

f <- dpois(x, lambda = 4)

construct the loss distribution by declaring the data
to be a probability density function (pdf)

1d <- lossDistribution(f, dataType = "pdf", discrete = TRUE, supp = range(x))
note that this call throws a warning since it internally

truncates the loss distribution to the support 1:10, and

renormalizes the supplied density for that matter.

for further examples, see the documentation to 'mosg' and 'mosg.equilibrium'

mgss compute a multi-goal security strategy

Description

Finds security strategy that assures a maximal loss w.r.t. all goals of the given game, delivering
a Pareto-efficient loss bound. Internally, it constructs an auxiliary one-against-all game and uses
a sequence of linear programs to compute a lexicographic Nash equilibrium therein (Rass et al.,
2022), using the methods described by (Lozovanu et al 2005; Rass, Wiegele & Konig 2020).

Usage
mgss(G, weights, cutOff, ord = 5, fbr = FALSE, points = 512, tol = 0.0)

Arguments
G a multi-objective game constructed using mosg
weights each goal in G can be assigned a weight to reflect its priority. If missing, the
weights default to be all equal. The weights do not need to sum up to 1 (and are
normalized towards a unit sum otherweise), but need to be all non-negative.
cutoff (only used for continuous loss distributions) the maximal loss for which no

events are expected or otherwise the risk of exceeding cutOff are accepted. If
missing, this value defaults to the maximal observation on which the loss distri-
butions were constructed (equivalently, the right end of their common support).

mgss 11

ord the order up to which a continuous loss distribution shall be approximated. This
value may be set to high orders when it is necessary to distinguish distributions
that are similar at the tails.

fbr if set to TRUE, instruct the function to additionally compute the best replies re-
garding each goal individually, assuming that defender plays optimalDefense
as a leader, and the attacker per goal follows (follower’s best reply). These
replies are always pure strategies.

points the number of points at which the resulting equilibrium loss distributions are
evaluated numerically.

tol occasionally, it was observed that the internal linear programs failed due to
roundoff errors; in these cases, the function reported an "internal error” on the
LP failure. In that case, one can supply a tolerance to go into the optimiza-
tion to avoid such roundoff problems. By default, the tolerance is set to zero,
to search for an "exact" solution, though. The GLPK status given in the er-
ror message refers to the codes for the GNU Linear Programming Kit, given at
https://rdrr.io/cran/glpkAPI/man/glpkConstants.html.

Details

For continuous loss distributions, the function uses a Gaussian kernel density approximation (con-
structed using the function lossDistribution), and computes a Taylor-polynomial approximation
at the = equal to cutOff for each distribution up to order ord. Preferences are decided using the
methods described by (Rass, Konig and Schauer; 2022), and (Rass, Konig, Schauer, Biirgin, Ep-
perlein and Wirth; 2021), using sign-alternating derivatives, representing a distribution by a vector
with ord elements. Categorical distributions are represented likewise directly by the vector of their
probability masses. In both cases, preferences are decided by a lexicographic comparison of vector-
representations. The returned optima are Nash equilibria for single-goal games, and lexicographic
Nash equilibria for multi-goal games. Constructing a game using mosg with vectors in the pay-
off description can, consequently, allows to use mgss to compute optimal results with explicit goal
priorities in multi-criteria games.

Value
An object of class mosg.equilibrium, containing the following fields:

optimalDefense a discrete probability distribution over the action space of player 1 (defender)

optimalAttacks a discrete probability distribution over the action space of player 2 (attacker).
Note that this is not a best-response to the player 1’s optimalDefense, but rather
the best that the attacker could do if the game were just about the particular goal
that the attacker refers to. This worst-case scenario assumes that the defender
would focus all its efforts to that single goal.

assurances a list of loss distributions valid under the assumption that player 1 adheres to the
optimalDefense distribution in its randomized action choices, while the oppo-
nent plays its own zero-sum equilibrium strategy in the game that is only (and
exclusively) about this particular goal. This value has to be interpreted with care,
as it assumes that player 1 would put all efforts into a defense for the particular
goal, but in reality, will have multiple criteria to simultaneously optimize. This
means that the attacker, in turn, could adapt to the optimalDefense of player 1,

https://rdrr.io/cran/glpkAPI/man/glpkConstants.html

12 mgss

to cause more damage. The given assurance is thus only an upper bound of the
worst-possible damage, under the assumption that player 1 would focus only on
this particular goal.

The list can be accessed by the names for each goal as specified through the input
mosg object G. Each distribution within assurances is a mixed loss distribution
constructed using lossDistribution

br_to_optimalDefense
This is a vector of best replies per goal for a leading defender playing the fixed
strategy optimalDefense, and letting the adversary (player 2) follow. It is the
(stochastically largest) damage among optimal De fense® - A, when A, is the
game structure for the p-th goal; the vector br_to_optimalDefense contains
the indices of the individually best replies, pointing into the list of attack strate-
gies.

Note

The output loss distributions (accessible by the list assurances) cannot be used to construct a
subsequent game (see mosg), since continuous distributions are represented as a sequence of points,
rather than raw data or probability masses.

As of version 2.0.0 of the package, this function is no longer downwards compatible to earlier
versions of itself, since the method of computation (formerly fictitious play) was replaced by linear
programming to give exact solutions rather than approximations. Consequently, the parameters
T (iteration count) and eps (accuracy) have become useless and have been removed after version
1.0.4.

Author(s)

Sandra Koenig, Stefan Rass

References

S. Rass, S. Konig, S. Schauer: Games over Probability Distributions Revisited: New Equilibrium
Models and Refinements, MDPI Games 2022, 13(6), 80; DOI: https://doi.org/10.3390/g13060080,
online: https://www.mdpi.com/2073-4336/13/6/80

S. Rass, S. Konig, S. Schauer, V. Biirgin, J. Epperlein, F. Wirth: On Game Theory Using Stochastic
Tail Orders, arXiv:2108.00680v1 [math.PR], 2021

S. Rass, A. Wiegele, S. Konig: Security Games over Lexicographic Orders, in: Decision and Game
Theory for Security, 11th International Conference, GameSec 2020, College Park, MD, USA, Oc-
tober 28-30, 2020, Proceedings, Springer LNCS 12513, ISBN 978-3-030-64792-6

S. Rass, S. Konig, S. Schauer. Decisions with Uncertain Consequences-A Total Ordering on Loss-
Distributions. PLoS ONE 11, e0168583. 2016, https://doi.org/10.1371/journal.pone.0168583

S. Rass. On Game-Theoretic Risk Management (Part One). Towards a Theory of Games with
Payoffs that are Probability-Distributions. June 2015. http://arxiv.org/abs/1506.07368.

S. Rass. On Game-Theoretic Risk Management (Part Two). Algorithms to Compute Nash-Equilibria
in Games with Distributions as Payoffs, 2015, arXiv:1511.08591v1 [g-fin.EC].

mgss 13

D. Lozovanu, D. Solomon, and A. Zelikovsky. Multiobjective games and determining pareto-nash
equilibria. Buletinul Academiei de Stiinte a Republicii Moldova Matematica, 3(49):115-122, 2005.
ISSN 1024-7696.

See Also

A brief info on the results can be obtained by print.mosg.equilibrium, and a more detailed
summary (showing all loss distributions in detail) is obtained by summary.mosg.equilibrium.

Examples

raw data (PURELY ARTIFICIAL, for demo purposes only)

N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
obs112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
obs121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
obs122<-c(rep(1,40),rep(2.5,20),rep(5,20),rep(7.5,10),rep(9,10));
obs211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));
obs212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
obs221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
obs222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
obs311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
obs312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
obs321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
obs322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));

compute payoff densities

f111<-lossDistribution(obs111)
f112<-lossDistribution(obs112)
f121<-lossDistribution(obs121)
f122<-lossDistribution(obs122)
f211<-lossDistribution(obs211)
f212<-lossDistribution(obs212)
f221<-lossDistribution(obs221)
f222<-lossDistribution(obs222)
f311<-lossDistribution(obs311)
f312<-lossDistribution(obs312)
f321<-lossDistribution(obs321)
f322<-lossDistribution(obs322)

payoffs<-list(f111,f112,f121, f122,f211,f212,f221,f222, f311,f312,f321,f322)
G <- mosg(n=2,
m=2,
payoffs,
goals=3,
goalDescriptions=c("gl1", "g2", "g3"),
defensesDescr = c("d1", "d2"),
attacksDescr = c("al1"”, "a2"))
eq <- mgss(G,weights=c(0.25,0.5,0.25))
print(eq)
summary (eq)

14 moment

construct another loss distribution from a given behavior in the game G
suboptimal <- lossDistribution.mosg(G, c(0.1,0.1,0.8), c(0.2,0.3,0.5))
plot(suboptimal)

compute an equilibrium in a standard matrix game
[,110L,2]
#[1,1] 3 4
#02,] 6 1
G <- mosg(n = 2, m =2, goals =1,
losses = list(3,6,4,1), byrow=FALSE,
attacksDescr = c("al1”, "a2"))
mgss(G, fbr=TRUE) # compute an equilibrium, including best replies if the adversary is a follower

get best replies if there would be a following
adversary per goal (taking the defender as a leader)
G$attacksDescriptions[eq$br_to_optimalDefense]

moment compute moments of loss distributions

Description
the moment of given order k is computed by numeric integration or summation (in case of discrete
distributions)

Usage
moment(1ld, k)

Arguments
1d the loss distribution as obtained from lossDistribution or mgss.
k the order of the moment (must be an integer > 1)

Value

the k-th order moment of the given loss distribution

Note

In case of continuous distributions, the value returned is an approximation and based on the internal
kernel density approximation.

For categorical distributions, the function works on the internal probability mass function (which
may be different from the empirical distribution in case that the loss distribution has been smoothed
during its construction; see lossDistribution).

In its current version, cdf does not vectorize, i.e., cannot be applied to vector arguments X.

mosg

Author(s)

Stefan Rass

See Also

the methods mean and variance are based on this function.

Examples

cvsslbase <- ¢(10,6.4,9,7.9,7.1,9)
1d <- lossDistribution(cvssibase)
cdf(ld, 4)

mosg

Construction and handling of multi-objective security games

Description

this function takes a list of loss distributions construced using lossDistribution, along with a
specification of the game’s shape (number of strategies for both players and number of goals for the
first player), and returns an object suitable for analysis by mgss to compute a multi-goal security

strategy.
Usage
mosg(n,
m ’
goals,
losses,
byrow = TRUE,

goalDescriptions = NULL,
defensesDescr = NULL,
attacksDescr = NULL)

S3 method for class 'mosg'
print(x, ...)

S3 method for class 'mosg'
plot(x,

goal = 1,
points = 100,
cutoff = NULL,
largeGame = FALSE,
subPlotWidth = 2,
subPlotHeight = 2,
cleanUp = TRUE, ...)

16

mosg

construct a loss distribution by playing a given strategy in the game G
S3 method for class 'mosg'
lossDistribution(G, playeriStrat, player2Strat, points = 512, goal = 1)

Arguments

n
m
goals

losses

byrow

number of defense strategies (cardinality of the action space for player 1)
number of attack stratgies (cardinality of the action space for player 2)
number of goals for player 1 (must be > 1)

a list with nxmxgoals entries, which specifies a total of goals game matrices,
each with shape n-by-m. The way in which the game matrices are filled from this
list is controlled by the parameter byrow. Note that in every case, it is assumed
that one matrix is specified after the other in the list.

Furthermore, the function assumes all loss distributions having a common sup-
port. This is only explicitly verified for discrete distributions (with errors re-
ported), but implicitly assumed to hold for continuous distributions without fur-
ther checks.

Typically, a game will be constructed from a list of loss distributions obtained
by invocations of lossDistribution.

Games can be defined with real-valued (scalar) payoffs if a list of numbers is
provided instead. Internally, the function converts these numbers into Bernoulli
distributions; a scalar payoff a is converted into a Bernoulli random variable X
having Pr(X = a) = p « a. This conversion is equivalent to an invocation
of lossDistribution with the parameters dat=c(1-p, p), discrete=TRUE,
dataType="pdf", smoothing="none", bw = 1 and supp=c(1, 2).

If the list of losses comes as a list of vectors, mosg will construct a game assum-
ing a lexicographic order on the loss vectors (with the order being determined
from left to right along the coordinates). To this end, mosg checks for all loss
vectors to have the same length (otherwise, an error is reported). Negative and
zero values in the loss vector are allowed.

by default (TRUE), the game matrices are filled row-by-row from list losses. If
set to FALSE, then the game matrices are filled column-by-column.

goalDescriptions

defensesDescr

attacksDescr

if specified, this can be any vector (e.g., textual descriptions) for the goals. De-
faults to 1, 2, 3, ... if missing. The length must be equal to goals.

if specified, this can be any vector (e.g., textual descriptions) for the defense
strategies. Defaults to 1, 2, 3, ... if missing. The length must be equal to n.

if specified, this can be any vector (e.g., textual descriptions) for the attack strate-
gies. Defaults to 1, 2, 3, ... if missing. The length must be equal to m.

for the functions print, summary and plot

X

a game, object of class "mosg", as constructed by the function mosg

The function plot additionally takes the following parameters:

mosg 17

goal an integer referring to the goal of interest (for plotting or to construct a loss
distribution for). Defaults to the first goal if omitted.

points The number of points at which the density is evaluated (for continuous losses);
this parameter is ignored for categorical losses.

cutoff the cutoff point at which all densities shall be truncated before plotting (note
that the mass functions are rescaled towards unit mass).

The plot function overrides the following settings internally (so supplying these as parameters will
raise an error): xlab, ylab, main, type, names.arg and font.main (applying differently for bar
and line plots)

largeGame if the plot exits with the error "figure margins too large", one can set this pa-
rameter to TRUE, causing plot to write to a temporary SVG file (scalable vec-
tor graphics), to avoid the figure space issue and hence the error. The price
is a (potentially much) slower plotting, since the system creates the file, and
loads it afterwards from the harddisk (cleaning up the file after displaying it).
The size of the plot is controllable by setting the parameters subPlotWidth and
subPlotHeight, see below.

subPlotWidth the width in inches for each payoff distribution in the game matrix. This param-
eter is ignored when largeGame is set to FALSE (the default).

subPlotHeight the height in inches for each payoff distribution in the game matrix. This param-
eter is ignored when largeGame is set to FALSE (the default).

cleanUp If the graph is to be used in other programs, one can supply cleanUp = FALSE to
retain the temporary SVG file for subsequent use and prints a message where to
find the file. By default, the temporary file gets deleted.

The function lossDistribution.mosg can be used to play any (given) strategies for player 1 and
player 2, and compute the resulting loss from the game.

G a game constructed by mosg to deliver the loss distribution through its game
matrices.

playeriStrat a discrete distribution over the action space for the defending player 1 in the
game G

player2Strat adiscrete distribution over the action space for the attacking player 2 in the game
G

further arguments passed to or from other methods

Details

Upon input, the function does some consistency checks, such as testing the length of the parameter
losses to be equal to n¥*m*goals. The loss distributions are checked for mutual consistency in
terms of all being continuous or all being discrete (a mix is not allowed), and all being not mixed
distributions (that is, the output distribution of a previous call to mgss cannot be used as input to
this function).

The functions print.mosg gives a brief overview of the game, listing only the shape and strategies
for both players. For detailed information, use summary on a specific loss distribution in the list for
the game (field losses).

18 mosg

For plotting games, plot.mosg constructs an (n X m)-matrix of loss distributions with rows and
columns in the grid being labeled by the values in defensesDescr and attacksDescr. The plot
heading is the name for the specified goal. The function makes no changes to the plot parameters,
so fine tuning can be done by changing the settings using the par function.

The function lossDistribution.mosg can be used to compute the distribution 27 * A x 3, for the
payoff distribution matrix A, and mixed strategies = (playeristrat) and y (player2strat) in the
game. The computation is by a pointwise addition of loss distributions, with the number of points
being specifiable by the parameter points, which defaults to 512.

Value

The function returns an object of class mosg, usable with the function mgss to determine a security
strategy (i.e., a lexicographic Nash equilibrium assuming a zero-sum one-against-all competition).
The fields returned in the mosg object are filled with the input values supplied. In detail, the fields

are:
nDefenses the value of the parameter n
nAttacks the value of the parameter m
dim the value of the parameter goals

attacksDescriptions, defensesDescriptions, goalDescriptions
if supplied, then these are filled with the values of goalDescr, defensesDescr
and attacksDescr; otherwise, they contain the default values described above.

maximumLoss the maximal loss taken over all specified loss distributions

loc a locus-function for accessing the list losses using a triple notation (goal,i,j),
where goal addresses the game matrix and i,j are the row and column indices
(starting from 1 as the smallest index). This function is used internally (only).

Warning

Games constructed with real-valued payoffs or payoff vectors over the reals are allowed with neg-
ative or zero values in the list of losses. In that case, embeds the loss values or vector into a
lossDistribution object after shifting and scaling the values into the strictly positive range. This
operation creates a strategically equivalent game, i.e., leaves the set of equilibria unchanged, yet
the resulting mosg object is not useful with the lossDistribution.mosg, moment, cdf, or any other
member functions for lossDistribution objects obtained from equilibria. Those have to be computed
manually. Be aware that there will be no warnings issued whatsoever in that case of misuse, since
the lossDistribution objects constructed to carry the real or vector-valued payoffs of the original
game carry no information about the semantics of the values or vectors that they have been created
from. Hence, the computation of equilibria works correctly using mosg, while any further analysis
(including plots) needs to be done manually.

Note

It is important to remark that player 1 is always minimizing. To treat a maximizing player, one must
reconstruct the game using regrets instead of losses, i.e., if the data for a specific loss distribution is
D, then the game for a maximizing player 1 must be constructed from (max(D) - D) instead of D.

mosg 19

Author(s)

Stefan Rass

See Also

Security strategies for a mosg object can be obtained by calling mgss. The game itself can be
constructed from the output of lossDistribution.

Examples

library(compare)

raw data (PURELY ARTIFICIAL, for demo purposes only)

N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
obs112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
obs121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
obs122<-c(rep(1,40),rep(2.5,20),rep(5,20),rep(7.5,10),rep(9,10));
obs211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));
obs212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
obs221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
obs222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
obs311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
obs312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
obs321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
obs322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));

compute payoff densities

f111<-lossDistribution(obs111)
f112<-lossDistribution(obs112)
f121<-lossDistribution(obs121)
f122<-lossDistribution(obs122)
f211<-lossDistribution(obs211)
f212<-lossDistribution(obs212)
f221<-lossDistribution(obs221)
f222<-lossDistribution(obs222)
f311<-lossDistribution(obs311)
f312<-lossDistribution(obs312)
f321<-lossDistribution(obs321)
f322<-lossDistribution(obs322)

payoffs<-list(f111,f112,f121, f122,f211,f212,f221,f222, £311,f312,f321,f322)
G <- mosg(n=2,
m=2,
payoffs,
goals=3,
goalDescriptions=c("g1", "g2", "g3"),
defensesDescr = c("d1", "d2"),
attacksDescr = c("a1"”, "a2"))
print(G)
summary (G)
plot(G)

20 mosg.equilibrium

construct and solve scalar valued (classical) game;

losses are all numbers (degenerate distributions)

the resulting matrix game has the payoff structure:

[,110[,2]

#01,1] 3 4

#[2,] 6 1

G <- mosg(n = 2, m = 2, goals = 1, losses = list(3,6,4,1), byrow=FALSE)
mgss(G) # compute a lexicographic Nash equilibrium

mosg.equilibrium embodies all information related to a lexicographic Nash equilibrium
computed by the function mgss.

Description

The generic functions print and summary provide brief, and detailed information about the lexico-
graphic Nash equilibrium. The generic function plot can be used to visualize the equilibrium.

Usage
S3 method for class 'mosg.equilibrium'
summary(object, ...)
S3 method for class 'mosg.equilibrium.summary'’
print(x, ...)
S3 method for class 'mosg.equilibrium’
print(x, extended=FALSE, ...)
S3 method for class 'mosg.equilibrium'
plot(x, points=100, ...)
Arguments
X an mgss object as returned by the function mgss.
object an mgss object as returned by the function mgss.

for print.mosg.equilibrium, the following parameter can be supplied:
extended if set to TRUE, then the individual assurances are printed as well.
for plot.mosg.equilibrium, the following parameter can be supplied:

points the number of points to evaluate the density function over its support for plotting

further arguments passed to or from other methods.

mosg.equilibrium 21

Value
the result returned by the function summary carries the following fields:

optimalDefense a discrete probability distribution over the action space for player 1 (the de-

fender).

optimalAttacks a discrete probability distribution over the action space for player 2 (the at-
tacker).

assurances an optimal loss distribution valid under the assumption that the defender plays

optimalDefense as its mixed strategy. This is alist of mosg.lossdistribution
objects, accessible through their assigend names (coming from the underlying
game) or by indices.

The action spaces for both players are defined in first place by the game for which the equilibrium
was computed (via mgss on a game constructed by mosg).

print gives a shortened output restricted only to displaying the optimal defense for the defender
and attack strategies per goal (as defined by the underlying game).

summary returns an object of class summary.mosg. lossdistribution, which has the fields: "range"

"non "non "o

"mean" "variance" "quantiles" "is.discrete"

range the minimal and maximal values of the loss (as anticipated by the observations)
mean the first moment as computed by mean

variance the variance as computed by variance

quantiles a 2x5-matrix of quantiles at the 10%,25%,50%,75% and 90% level
is.discrete a Boolean flag being TRUE if the loss distribution is over categories

plot displays a grid of plots, starting with the optimal defense behavior plotted as a discrete dis-
tribution on top of a (m x 2)-matrix of plots. Each line in this grid shows the discrete optimal
attack strategy on the right side (as a bar plot), paired with the loss distribution (extracted from
x) caused when the defender plays optimalDefense and the attacker plays the respective optimal
attack strategy.

Author(s)

Stefan Rass

See Also

print.mosg.equilibrium, mgss, mosg, lossDistribution

Examples

raw data (PURELY ARTIFICIAL, for demo purposes only)

N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
obs112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
obs121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
obs122<-c(rep(1,40),rep(2.5,20),rep(5,20),rep(7.5,10),rep(9,10));
obs211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));

22 preference
obs212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
o0bs221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
obs222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
obs311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
obs312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
obs321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
obs322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));

compute payoff densities
f111<-lossDistribution(obs111)
f112<-lossDistribution(obs112)
f121<-lossDistribution(obs121)
f122<-lossDistribution(obs122)
f211<-lossDistribution(obs211)
f212<-lossDistribution(obs212)
f221<-lossDistribution(obs221)
f222<-lossDistribution(obs222)
f311<-lossDistribution(obs311)
f312<-lossDistribution(obs312)
f321<-lossDistribution(obs321)
f322<-lossDistribution(obs322)
payoffs<-list(f111,f112,f121, f122,f211,f212,f221,f222, £311,f312,f321,f322)
G <- mosg(n=2,

m=2,

payoffs,

goals=3,

goalDescriptions=c("g1", "g2", "g3"),

defensesDescr = c("d1", "d2"),

attacksDescr = c("a1”, "a2"))
eq <- mgss(G,weights=c(0.25,0.5,0.25))
print(eq)
summary (eq)
plot(eq)
access the loss distributions computed in the game
summary (eg$assurances$gl)
mean(eg$assurance$gl) # get the average loss in goal "gl”

preference Decision on preferences between loss distributions

Description
This function implements the total ordering on losses, based on treating the moment sequences as
hyperreal numbers, and returns the lesser of the loss distribution representatives in the hyperreal
space.

Usage

preference(x, y, verbose = FALSE, weights, points = 512)

preference

Arguments

X

weights

verbose

points

Details

23

a loss, being either a number,a distribution or list of distributions (objects of
class mosg.lossdistribution)

a loss, being either a number,a distribution or list of distributions (objects of
class mosg.lossdistribution)

a vector of n = length(x) = length(y) nonzero numbers (not necessarily sum-
ming up to 1), used only if x and y are lists of mosg.lossdistribution objects
corresponding to n > 1 goals. In that case, the i-th goal gets assigend the
weight (priority) weights[[i]]. Defaults to all goals having equal priority if
the parameter is missing (weights = rep(1/length(x), length(x))).

if set to TRUE, the function returns the preferred of its arguments directly (thus,
giving back x or y). If set to FALSE (default), then it returns the argument index
(1 =x,2=y)or0in case that z = y.

the number of points at which the distributions are evaluated numerically to
determine the preference.

Deciding the preference ordering defined in terms of moment sequence as proposed in (Rass, 2015).
To avoid having to compute all moments up to an unknown order, this function decides by looking
at the tails of the distribution, returning the one with faster decaying tail as the preferred distribution.
This method delivers exact decisions for discrete distributions, but is only an approximate approach
for continous densities.

Value

the result is either a copy of the input parameter x or y, depending on which distribution is preferred.

Author(s)

Stefan Rass

References

S. Rass. On Game-Theoretic Risk Management (Part One). Towards a Theory of Games with Pay-
offs that are Probability-Distributions. ArXiv e-prints, June 2015. http://arxiv.org/abs/1506.07368.

See Also

lossDistribution, lossDistribution.mosg, print.mosg.lossdistribution

Examples

use data from CVSS risk assessments
cvsslbase <- ¢(10,6.4,9,7.9,7.1,9)

cvss2base <- ¢(10,7.9,8.2,7.4,10,8.5,9,9,8.7)
1d1 <- lossDistribution(cvssibase)

1d2 <- lossDistribution(cvss2base)

24 variance

lowerRisk <- preference(ldl, 1d2) # get the result for later use
preference(ldl, 1d2, verbose=TRUE) # view the detailed answer

variance Computes the approximate variance of a loss distribution.

Description

The computation is based on Steiner’s theorem var(X) = E(X?) — (E(X))2, where the respective
first and second moments are computed using the moment function (from this package). Internally,
these functions operate on the approximate kernel density estimation for both, continuous and cat-
egorical distributions (see the lossDistribution function for details).

Usage

variance(x)

Arguments

X an object of class mosg.lossDistribution

Value

the approximate variance value

Note

the function works on the internal probability mass function (which may be different from the
empirical distribution in case that the loss distribution has been smoothed during its construction;
see lossDistribution). The function delivers only an approximate variance, whose error is due
to numeric roundoff errors (known to occur in Steiner’s formula), and the fact that the computation
is done on an approximate density (rather than the empirical distribution).

Author(s)

Stefan Rass

See Also

moment, lossDistribution

Examples

x <- ¢(10,6.4,9,7.9,7.1,9)
1d <- lossDistribution(x)
variance(1ld)

var(x)

[.mosg 25

[.mosg Extract or replace parts of a game’s payoff matrix

Description

Construct a new game by taking out a specified set of rows, columns and goals from a given game
G. The new game inherits all descriptions (rows, cols and goals) from the GG, and has its list of loss
distributions organized in the same way (by rows or columns) as G.

The extraction or substitution works like as for data frames (see [. data. frame). Strategies for both
players, as well as goals, can equivalently be addressed by their string-names.
Usage
S3 method for class 'mosg'
x[i,j,k=NULL]

S3 replacement method for class 'mosg'
x[i,j,k=NULL] <- value

Arguments
X a game of class mosg
i, j,k a numeric value or numeric vector of row incides i, colum indices j, or goals k.
value a list of lossDistribution objects, or a game object of class mosg.

Details

For [extraction of elements from a payoff matrix, omitting any index dimension selects all ele-
ments in the respective dimension. Supplying negative values excludes the respective elements. For
example, GLc(1:3),1] returns a game with only the rows 1..3 of G, but all column strategies that G
had, and only the first of G’s goals retained.

For [<-, the list of substitute values needs to be of the same length as the number of elements
addressed by the triple (i, j,k), otherwise an error is returned. If the new elements come from
another game object, say G2, only the loss distributions get replaced, but not the names of the
strategies. The replacement checks if G2 has its list of loss distributions organized in the same way
as G, i.e., row-by-row or column-by-column. If there is a mismatch, the substitution is nonetheless
done, but a warning about this issue is printed.

Value

[returns a freshly constructed game object.

Warning

For [<-, be aware that the replacement does not semantically check if the newly incoming loss
distributions make sense as elements of the new game (e.g., they can have different supports, or be
discrete/continuous while the game was continuous/discrete in its payoffs). Respective errors may
only subsequently come up when the modified or extracted game is used.

26

Author(s)

Stefan Rass

See Also

[.data.frame

Examples

raw data (PURELY ARTIFICIAL, for demo purposes only)
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
obs112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
obs121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
obs122<-c(rep(1,40),rep(2.5,20),rep(5,20),rep(7.5,10),rep(9,10));
obs211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));
obs212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
o0bs221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
obs222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
obs311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
obs312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
obs321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
obs322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));

compute payoff densities

f111<-lossDistribution(obs111)
f112<-lossDistribution(obs112)
f121<-lossDistribution(obs121)
f122<-lossDistribution(obs122)
f211<-lossDistribution(obs211)
f212<-lossDistribution(obs212)
f221<-lossDistribution(obs221)
f222<-lossDistribution(obs222)
f311<-lossDistribution(obs311)
f312<-lossDistribution(obs312)
f321<-lossDistribution(obs321)
f322<-lossDistribution(obs322)

payoffs<-list(f111,f112,f121, f122,f211,f212,f221,f222, £311,f312,321,f322)

G <- mosg(n=2,
m=3,
payoffs,
goals=2,

goalDescriptions=c("gl1", "g2"),
defensesDescr = c("d1"”, "d2"),
attacksDescr = c("al”, "a2", "a3"))

modify the game by subsetting

G[,c(1,2),] # select only the first two strategies
G[,-3,] # exclude the third strategy (equivalent to before)

replace a 2x2 subgame related to the second goal
(replacement data is chosen arbitrarily here)
G2 <- mosg(n=2, m=2, goals=1, losses = list(f111,f112,f121, f122))

[.mosg

[.mosg

G[,c(1,2),1] <- G2 # replace the subgame

construct another replacement game that is organized different (by column)
G2 <- mosg(n=2, m=2, goals=1, losses = list(f111,f112,f121, f122), byrow=FALSE)
G[,c(1,2),1] <- G2 # this will issue a warning

plot a submatrix from the game
plot(G[-2,c(1,2),]1, goal=2)

27

Index

* equilibrium
HyRiM-package, 2
* multi-objective game theory
HyRiM-package, 2
* risk management
HyRiM-package, 2
* security strategy
HyRiM-package, 2
* stochastic games
HyRiM-package, 2
x stochastic order
HyRiM-package, 2
[.data.frame, 25, 26
[.mosg, 25
[<-.mosg ([.mosg), 25

bw.nrdo, 7
cdf, 3, 10, 18

density.mosg.lossdistribution
(lossDistribution), 6
disappointmentRate, 4

HyRiM (HyRiM-package), 2
HyRiM-package, 2

list, 25
lossDistribution, 3, 4, 6, 14, 18, 19, 21,
23-25
lossDistribution.mosg, I8
lossDistribution.mosg (mosg), 15

matrix, 4

mean, 15

mean.mosg. lossdistribution
(lossDistribution), 6

mgss, 4, 5, 10, 10, 19, 21

moment, 14, 18, 24

mosg, 8, 10, 15, 18, 19, 21, 25

mosg.equilibrium, 20

28

par, 9, 18
plot.mosg (mosg), 15
plot.mosg.equilibrium
(mosg.equilibrium), 20
plot.mosg.lossdistribution
(lossDistribution), 6
preference, 22
print.mosg (mosg), 15
print.mosg.equilibrium, 13, 21
print.mosg.equilibrium
(mosg.equilibrium), 20
print.mosg.lossdistribution, 23
print.mosg.lossdistribution
(lossDistribution), 6
print.summary.mosg.lossdistribution
(lossDistribution), 6

quantile.mosg.lossdistribution
(lossDistribution), 6

summary.mosg.equilibrium, /13

summary.mosg.equilibrium
(mosg.equilibrium), 20

summary.mosg.lossdistribution
(lossDistribution), 6

variance, 10, 15,24

	HyRiM-package
	cdf
	disappointmentRate
	lossDistribution
	mgss
	moment
	mosg
	mosg.equilibrium
	preference
	variance
	[.mosg
	Index

