
Package ‘MatrixModels’
March 26, 2025

Version 0.5-4

VersionNote Released 0.5-3 on 2023-11-06

Date 2025-03-25

Title Modelling with Sparse and Dense Matrices

Contact Matrix-authors@R-project.org

Description Generalized Linear Modelling with sparse and dense 'Matrix' matrices, using
modular prediction and response module classes.

Depends R (>= 3.6.0)

Imports stats, methods, Matrix (>= 1.6-0), Matrix(< 1.8-0)

ImportsNote _not_yet_stats4

Encoding UTF-8

LazyLoad yes

License GPL (>= 2)

URL https://Matrix.R-forge.R-project.org/,

https://r-forge.r-project.org/R/?group_id=61

BugReports https://R-forge.R-project.org/tracker/?func=add&atid=294&group_id=61

NeedsCompilation no

Author Douglas Bates [aut] (<https://orcid.org/0000-0001-8316-9503>),
Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>)

Maintainer Martin Maechler <mmaechler+Matrix@gmail.com>

Repository CRAN

Date/Publication 2025-03-26 08:50:02 UTC

Contents
glm4 . 2
glpModel-class . 4
lm.fit.sparse . 5
mkRespMod . 7

1

https://Matrix.R-forge.R-project.org/
https://r-forge.r-project.org/R/?group_id=61
https://R-forge.R-project.org/tracker/?func=add&atid=294&group_id=61
https://orcid.org/0000-0001-8316-9503
https://orcid.org/0000-0002-8685-9910

2 glm4

Model-class . 8
model.Matrix . 9
modelMatrix-class . 10
predModule-class . 11
resid-et-al . 13
respModule-class . 13
reweightPred . 15
solveCoef . 15
updateMu . 16
updateWts . 17

Index 18

glm4 Fitting Generalized Linear Models (using S4)

Description

glm4, very similarly as standard R’s glm() is used to fit generalized linear models, specified by
giving a symbolic description of the linear predictor and a description of the error distribution.

It is more general, as it fits linear, generalized linear, non-linear and generalized nonlinear models.

Usage

glm4(formula, family, data, weights, subset, na.action,
start = NULL, etastart, mustart, offset,
sparse = FALSE, drop.unused.levels = FALSE, doFit = TRUE,
control = list(...),
model = TRUE, x = FALSE, y = TRUE, contrasts = NULL, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. The details of model specification are
given under ‘Details’.

family a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or the
result of a call to a family function. (See family for details of family functions.)

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which glm is called.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

glm4 3

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

start, etastart, mustart
starting values for the parameters in the linear predictor, the predictor itself and
for the vector of means.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

sparse logical indicating if the model matrix should be sparse or not.
drop.unused.levels

used only when sparse is TRUE: Should factors have unused levels dropped?
(This used to be true, implicitly in the first versions up to July 2010; the default
has been changed for compatibility with R’s standard (dense) model.matrix().

doFit logical indicating if the model should be fitted (or just returned unfitted).

control a list with options on fitting; currently passed unchanged to (hidden) function
IRLS().

model, x, y currently ignored; here for back compatibility with glm.

contrasts passed to model.Matrix(.., contrasts.arg = contrasts), see its documen-
tation.

... potentially arguments passed on to fitter functions; not used currently.

Value

an object of class glpModel.

See Also

glm() the standard R function;
lm.fit.sparse() a sparse least squares fitter.

The resulting class glpModel documentation.

Examples

All the following is very experimental -- and probably will change: -------

data(CO2, package="datasets")
dense linear model
str(glm4(uptake ~ 0 + Type*Treatment, data=CO2, doFit = FALSE), 4)
sparse linear model
str(glm4(uptake ~ 0 + Type*Treatment, data=CO2, doFit = FALSE,

sparse = TRUE), 4)

From example(glm): -----------------

4 glpModel-class

Dobson (1990) Page 93: Randomized Controlled Trial :
str(trial <- data.frame(counts=c(18,17,15,20,10,20,25,13,12),

outcome=gl(3,1,9,labels=LETTERS[1:3]),
treatment=gl(3,3,labels=letters[1:3])))

glm.D93 <- glm(counts ~ outcome + treatment, family=poisson, data=trial)
summary(glm.D93)
c.glm <- unname(coef(glm.D93))
glmM <- glm4(counts ~ outcome + treatment, family = poisson, data=trial)
glmM2 <- update(glmM, quick = FALSE) # slightly more accurate
glmM3 <- update(glmM, quick = FALSE, finalUpdate = TRUE)

finalUpdate has no effect on 'coef'
stopifnot(identical(glmM2@pred@coef, glmM3@pred@coef),

all.equal(glmM @pred@coef, c.glm, tolerance=1e-7),
all.equal(glmM2@pred@coef, c.glm, tolerance=1e-12))

Watch the iterations --- and use no intercept --> more sparse X
1) dense generalized linear model
glmM <- glm4(counts ~ 0+outcome + treatment, poisson, trial,

verbose = TRUE)
2) sparse generalized linear model
glmS <- glm4(counts ~ 0+outcome + treatment, poisson, trial,

verbose = TRUE, sparse = TRUE)
str(glmS, max.lev = 4)
stopifnot(all.equal(glmM@pred@coef, glmS@pred@coef),

all.equal(glmM@pred@Vtr, glmS@pred@Vtr))

A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
clotting <- data.frame(u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

str(gMN <- glm4(lot1 ~ log(u), data=clotting, family=Gamma, verbose=TRUE))
glm. <- glm(lot1 ~ log(u), data=clotting, family=Gamma)
stopifnot(all.equal(gMN@pred@coef, unname(coef(glm.)), tolerance=1e-7))

glpModel-class Class "glpModel" of General Linear Prediction Models

Description

The class "glpModel" conceptually contains a very large class of “General Linear Prediction Mod-
els”.

Its resp slot (of class "respModule") may model linear, non-linear, generalized linear and non-
linear generalized response models.

Objects from the Class

Objects can be created by calls of the form new("glpModel", ...), but typically rather are returned
by our modeling functions, e.g., glm4().

lm.fit.sparse 5

Slots

resp: a "respModule" object.

pred: a "predModule" object.

Extends

Class "Model", directly.

Methods

coef signature(object = "glpModel"): extract the coefficient vector β from the object.

fitted signature(object = "glpModel"): fitted values; there may be several types, correspond-
ing to the residuals, see there (below).

residuals signature(object = "glpModel"): residuals, depending on the type of the model,
there are several types of residuals and correspondingly residuals, see residuals.glm from
the stats package.

See Also

glm4() returns fitted glpModel objects.

The constituents of this class are respModule and predModule, both of which have several sub
classes.

Examples

showClass("glpModel")

Use example(glm4) or see help(glm4) for many more examples.

lm.fit.sparse Fitter Function for Sparse Linear Models

Description

A basic computing engine for sparse linear least squares regression.

Note that the exact interface (arguments, return value) currently is experimental, and is bound to
change. Use at your own risk!

Usage

lm.fit.sparse(x, y, w = NULL, offset = NULL,
method = c("qr", "cholesky"),
tol = 1e-7, singular.ok = TRUE, order = NULL,
transpose = FALSE)

6 lm.fit.sparse

Arguments

x sparse design matrix of dimension n * p, i.e., an R object of a class extending
dsparseMatrix; typically the result of sparse.model.matrix.

y vector of observations of length n, or a matrix with n rows.

w vector of weights (length n) to be used in the fitting process. Weighted least
squares is used with weights w, i.e., sum(w * e^2) is minimized.
Not yet implemented !

offset numeric of length n). This can be used to specify an a priori known component
to be included in the linear predictor during fitting.

method a character string specifying the (factorization) method. Currently, "qr" or
"cholesky".

tol [for back-compatibility only; unused:] tolerance for the qr decomposition. De-
fault is 1e-7.

singular.ok [for back-compatibility only; unused:] logical. If FALSE, a singular model is an
error.

order integer or NULL, for method == "qr", will determine how the fill-reducing order-
ing (aka permutation) for the “symbolic” part is determined (in cs_amd()), with
the options

0: natural,
1: Chol,
2: LU, and
3: QR,

where 3 is the default.

transpose logical; if true, use the transposed matrix t(x) instead of x.

Value

Either a single numeric vector or a list of four numeric vectors.

See Also

glm4 is an alternative (much) more general fitting function.

sparse.model.matrix from the Matrix package; the non-sparse function in standard R’s package
stats: lm.fit().

Examples

dd <- expand.grid(a = as.factor(1:3),
b = as.factor(1:4),
c = as.factor(1:2),
d= as.factor(1:8))

n <- nrow(dd <- dd[rep(seq_len(nrow(dd)), each = 10),])
set.seed(17)
dM <- cbind(dd, x = round(rnorm(n), 1))
randomly drop some

https://CRAN.R-project.org/package=Matrix

mkRespMod 7

n <- nrow(dM <- dM[- sample(n, 50),])
dM <- within(dM, { A <- c(2,5,10)[a]

B <- c(-10,-1, 3:4)[b]
C <- c(-8,8)[c]
D <- c(10*(-5:-2), 20*c(0, 3:5))[d]

Y <- A + B + A*B + C + D + A*D + C*x + rnorm(n)/10
wts <- sample(1:10, n, replace=TRUE)
rm(A,B,C,D)

})
str(dM) # 1870 x 7

X <- Matrix::sparse.model.matrix(~ (a+b+c+d)^2 + c*x, data = dM)
dim(X) # 1870 x 69
X[1:10, 1:20]

For now, use 'MatrixModels:::' --- TODO : export once interface is clear!

Xd <- as(X,"matrix")
system.time(fmDense <- lm.fit(Xd, y = dM[,"Y"])) # {base} functionality
system.time(r1 <- MatrixModels:::lm.fit.sparse(X, y = dM[,"Y"])) # *is* faster
stopifnot(all.equal(r1, unname(fmDense$coeff), tolerance = 1e-12))
system.time(

r2 <- MatrixModels:::lm.fit.sparse(X, y = dM[,"Y"], method = "chol"))
stopifnot(all.equal(r1, r2$coef, tolerance = 1e-12),

all.equal(fmDense$residuals, r2$residuals, tolerance=1e-9)
)

with weights:
system.time(fmD.w <- with(dM, lm.wfit(Xd, Y, w = wts)))
system.time(fm.w1 <- with(dM, MatrixModels:::lm.fit.sparse(X, Y, w = wts)))
system.time(fm.w2 <- with(dM, MatrixModels:::lm.fit.sparse(X, Y, w = wts,

method = "chol")))
stopifnot(all.equal(fm.w1, unname(fmD.w$coeff), tolerance = 1e-12),

all.equal(fm.w2$coef, fm.w1, tolerance = 1e-12),
all.equal(fmD.w$residuals, fm.w2$residuals, tolerance=1e-9)
)

mkRespMod Create a respModule object

Description

Create a respModule object, which could be from a derived class such as glmRespMod or nlsRespMod.

Usage

mkRespMod(fr, family = NULL, nlenv = NULL, nlmod = NULL)

8 Model-class

Arguments

fr a model frame, usually created by a call to model.frame.

family an optional glm family object (glmRespMod objects only).

nlenv an environment for evaluation of the nonlinear model, nlmod. (nlsRespMod
objects only).

nlmod the nonlinear model function, as a function call (nlsRespMod objects only).

Details

The internal representation of a statistical model based on a linear predictor expression is derived
from a formula expression and a data argument, possibly supplemented with a family object
and/or a nonlinear model expression. The steps to obtain this representation usually involve calls
to model.frame and to model.matrix or model.Matrix, which encapsulate important parts of this
process. This function encapsulates other operations related to weights and offsets and to the model
family to create a respModule object.

Value

an object of a class inheriting from respModule.

See Also

The respModule class description.

Examples

see help("glpModel-class")

Model-class Mother Class "Model" of all S4 Models

Description

Class "Model" is meant to be the mother class of all (S4) model classes. As some useful methods
are already defined for "Model" objects, derived classes inherit those “for free”.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

call: the call which generated the model.

fitProps: a list; must be named, i.e., have unique names, but can be empty.
When the main object is a fitted model, the list will typically have components such as iter
(non-negative integer) and convergenece (logical typically).

model.Matrix 9

Methods

formula signature(x = "Model"): extract the model formula - if there is one, or NULL.

update signature(object = "Model"): Update the model with a new formula, new data, etc.
This semantically equivalent (and as R function almost identical) to the standard update
(package stats).

See Also

the glpModel class in package MatrixModels which extends this class.

Examples

showClass("Model")

model.Matrix Construct Possibly Sparse Design or Model Matrices

Description

model.Matrix creates design matrix, very much like the standard R function model.matrix, how-
ever returning a dense or sparse object of class modelMatrix.

Usage

model.Matrix(object, data = environment(object),
contrasts.arg = NULL, xlev = NULL,
sparse = FALSE, drop.unused.levels = FALSE, ...)

Arguments

object an object of an appropriate class. For the default method, a model formula or a
terms object.

data a data frame created with model.frame. If another sort of object, model.frame
is called first.

contrasts.arg A list, whose entries are values (numeric matrices or character strings nam-
ing functions) to be used as replacement values for the contrasts replace-
ment function and whose names are the names of columns of data containing
factors.

xlev to be used as argument of model.frame if data has no "terms" attribute.

sparse logical indicating if the result should be sparse (of class sparseModelMatrix),
using sparse.model.matrix() (package Matrix).

drop.unused.levels

used only when sparse is TRUE: Should factors have unused levels dropped?
(This used to be true, implicitly in the first versions up to July 2010; the default
has been changed for compatibility with R’s standard (dense) model.matrix().

... further arguments passed to or from other methods.

10 modelMatrix-class

Details

model.Matrix() is a simple wrapper either (sparse = FALSE) around the traditional model.matrix()
returning a "ddenseModelMatrix", or (sparse = TRUE) around sparse.model.matrix(), return-
ing a "dsparseModelMatrix" object.

model.Matrix creates a design matrix from the description given in terms(object), using the
data in data which must supply variables with the same names as would be created by a call to
model.frame(object) or, more precisely, by evaluating attr(terms(object), "variables").

For more details, see model.matrix.

Value

an object inheriting from class modelMatrix, by default, ddenseModelMatrix.

See Also

model.matrix, and sparse.model.matrix from package Matrix.

Examples

data(CO2, package="datasets")
class(sm <- model.Matrix(~ 0+Type*Treatment, data=CO2, sparse=TRUE))
class(dm <- model.Matrix(~ 0+Type*Treatment, data=CO2, sparse=FALSE))
stopifnot(dim(sm) == c(84,4), dim(sm) == dim(dm), all(sm == dm))

modelMatrix-class Class "modelMatrix" and SubClasses

Description

The class "modelMatrix" and notably its subclass "dsparseModelMatrix" are used to encode
additional information, analogously to what the standard R function model.matrix() returns.

Objects from the Classes

Only "dsparseModelMatrix" and "ddenseModelMatrix" are “actual” (aka non-virtual) classes.
For these, objects can be created by calls of the form new("dsparseModelMatrix", x, assign,
contrast), where x is a dgCMatrix classed object.

Slots

The "modelMatrix" mother class contains Matrix (pkg Matrix) plus two extra slots,

assign: "integer" vector of length ncol(.), coding the variables which make up the matrix
columns, see model.matrix.

contrasts: a named list of contrasts, as in model.matrix().

Dim: integer vector of length two with the matrix dimensions.

Dimnames: list of length two, the dimnames(.) of the matrix.

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix

predModule-class 11

whereas the (current only) actual classes "d*ModelMatrix", have an at least an additional (numeric
slot "x". E.g., "dsparseModelMatrix" has the additional slots

i,p: row number and “pointer” integer vectors, see class "dgCMatrix".

x: "numeric" vector of non-zero entries.

factors: a (possibly empty) list of factorizations.

Extends

"dsparseModelMatrix" extends class "dgCMatrix" directly,
"ddenseModelMatrix" extends class "dgeMatrix" directly.

Methods

show signature(object = "modelMatrix"): show(.) the matrix, but also the assign and contrasts
slots.

print signature(x = "modelMatrix"): as show(), however (via ...) allowing to pass further
arguments for printing the matrix.

Author(s)

Martin Maechler

See Also

sparse.model.matrix (pkg Matrix) will return a "dgCMatrix" object. model.Matrix is a simple
wrapper around the traditional model.matrix and returns a "ddenseModelMatrix" object.

Examples

showClass("modelMatrix")
showClass("dsparseModelMatrix")

see example(model.Matrix)

predModule-class Class "predModule" and SubClasses

Description

The class "predModule" and notably its subclasses "dPredModule" and "sPredModule" encapsu-
late information about linear predictors in statistical models. They incorporate a modelMatrix, the
corresponding coefficients and a representation of a triangular factor from the, possibly weighted or
otherwise modified, model matrix.

Objects from the Classes

Objects are typically created by coercion from objects of class ddenseModelMatrix or dsparseModelMatrix.

https://CRAN.R-project.org/package=Matrix

12 predModule-class

Slots

The virtual class "predModule" and its two subclasses all have slots

X: a modelMatrix.

coef: "numeric" coefficient vector of length ncol(.):= p.

Vtr: "numeric" vector of length p, to contain V ′r (“V transposed r”).

fac: a representation of a triangular factor, the Cholesky decomposition of V ′V .

The actual classes "dPredModule" and "sPredModule" specify specific (sub) classes for the two
non-trivial slots,

X: a "ddenseModelMatrix" or "dsparseModelMatrix", respectively.

fac: For the "dpredModule" class this factor is a Cholesky object. For the "spredModule" class,
it is of class CHMfactor.

Methods

coerce signature(from = "ddenseModelMatrix", to = "predModule"): Creates a "dPredModule"
object.

coerce signature(from = "dsparseModelMatrix", to = "predModule"): Creates an "sPredModule"
object.

Author(s)

Douglas Bates

See Also

model.Matrix() which returns a "ddenseModelMatrix" or "dsparseModelMatrix" object, de-
pending if its sparse argument is false or true. In both cases, the resulting "modelMatrix" can
then be coerced to a sparse or dense "predModule".

Examples

showClass("dPredModule")
showClass("sPredModule")

see example(model.Matrix)

resid-et-al 13

resid-et-al Aliases for Model Extractors

Description

Aliases for model extractors; it is an old S and R tradition to have aliases for these three model
extractor functions:

resid() equivalent to residuals().

fitted.values() equivalent to fitted().

coefficients() equivalent to coef().

We provide S4 generics and methods for these.

Methods

resid signature(object = "ANY"): return the residuals; this is a rarely used alias for residuals().

fitted.values signature(object = "ANY"): return the fitted values; this is a rarely used alias for
fitted().

coefficients signature(object = "ANY"): return the coefficients of a model; this is a rarely used
alias for coef().

See Also

residuals; Methods for general information about formal (S4) methods.

respModule-class "respModule" and derived classes

Description

The "respModule" class is the virtual base class of response modules for glpModel model ob-
jects. Classes that inherit from "respModule" include glmRespMod, for generalized linear models,
nlsRespMod, for nonlinear models and nglmRespMod for generalized nonlinear models.

Objects from the Class

Objects from these classes are usually created with mkRespMod as part of an glpModel object re-
turned by model-fitting functions such as the hidden function glm4.

14 respModule-class

Slots

mu: Fitted mean response.

offset: offset in the linear predictor – always present even if it is a vector of zeros. In an
nlsRespMod object the length of the offset can be a multiple of the length of the response.

sqrtXwt: the matrix of weights for the model matrices, derived from the sqrtrwt slot.

sqrtrwt: Numeric vector of the square roots of the weights for the residuals. For respModule and
nlsRespMod objects these are constant. For glmRespMod and nglmRespMod objects these are
updated at each iteration of the iteratively reweighted least squares algorithm.

weights: Prior weights – always present even when it is a vector of ones.

y: Numeric response vector.

family: a glm family, see family for details - glmRespMod objects only.

eta: numeric vector, the linear predictor that is transformed to the conditional mean via the link
function - glmRespMod objects only.

n: a numeric vector used for calculation of the aic family function (it is really only used with the
binomial family but we need to include it everywhere) - glmRespMod objects only.

nlenv: an environment in which to evaluate the nonlinear model function - nlsRespMod objects
only.

nlmod: an unevaluated call to the nonlinear model function - nlsRespMod objects only.

pnames: a character vector of parameter names - nlsRespMod objects only.

Methods

fitted signature(object = "respModule"): fitted values; there may be several types, correspond-
ing to the residuals, see there (below).

residuals signature(object = "respModule"): residuals, depending on the type of the model,
there are several types of residuals and correspondingly residuals, see residuals.glm from
the stats package. Because many of these types of residuals are identical except for objects
that inherit from "glmRespMod", a separate method is defined for this subclass.

See Also

mkRespMod

Examples

showClass("respModule")
showClass("glmRespMod")
showClass("nlsRespMod")

reweightPred 15

reweightPred Reweight Prediction Module Structure Internals

Description

Update any internal structures associated with sqrtXwt and the weighted residuals. The "V" matrix
is evaluated from X using the sqrtXwt matrix and a Vtr vector is calculated.

Usage

reweightPred(predM, sqrtXwt, wtres, ...)

Arguments

predM a predictor module

sqrtXwt the sqrtXwt matrix

wtres the vector of weighted residuals

... potentially further arguments used in methods; not used currently.

Value

updated predM

Methods

signature(predM = "dPredModule", sqrtXwt = "matrix", wtres = "numeric") ..

signature(predM = "sPredModule", sqrtXwt = "matrix", wtres = "numeric") ..

Examples

TODO

solveCoef Solve for the Coefficients or Coefficient Increment

Description

The squared length of the intermediate solution is attached as an attribute of the returned value.

Usage

solveCoef(predM, ...)

16 updateMu

Arguments

predM prediction module, i.e. from class predModule.

... potentially further arguments used in methods; not used currently.

Value

coefficient vector or increment of coef.~vector.

Methods

signature(predM = "dPredModule") ..

signature(predM = "sPredModule") ..

Examples

TODO

updateMu Update ’mu’, the Fitted Mean Response

Description

Updates the mean vector µ given the linear predictor γ. Evaluate the residuals and the weighted
sum of squared residuals.

Usage

updateMu(respM, gamma, ...)

Arguments

respM a response module, see the respModule class.

gamma the value of the linear predictor before adding the offset

... potentially further arguments used in methods; not used currently.

Details

Note that the offset is added to the linear predictor before calculating mu.

The sqrtXwt matrix can be updated but the sqrtrwt should not be in that the weighted sum of squared
residuals should be calculated relative to fixed weights. Reweighting is done in a separate call.

Value

updated respM

updateWts 17

Methods

signature(respM = "glmRespMod", gamma = "numeric") ..

signature(respM = "nglmRespMod", gamma = "numeric") ..

signature(respM = "nlsRespMod", gamma = "numeric") ..

signature(respM = "respModule", gamma = "numeric") ..

See Also

The respModule class (and specific subclasses); glm4.

Examples

TODO

updateWts Update the Residual and X Weights - Generic and Methods

Description

Update the residual weights sqrtrwt and X weights sqrtXwt.

Usage

updateWts(respM, ...)

Arguments

respM a response module, see the respModule class.

... potentially further arguments used in methods; not used currently.

Value

updated response module.

Methods

signature(respM = "glmRespMod") ..

signature(respM = "respModule") ..

Examples

TODO

Index

∗ array
lm.fit.sparse, 5

∗ classes
glpModel-class, 4
Model-class, 8
modelMatrix-class, 10
predModule-class, 11
respModule-class, 13

∗ methods
reweightPred, 15
solveCoef, 15
updateMu, 16
updateWts, 17

∗ models
glm4, 2
mkRespMod, 7
model.Matrix, 9
resid-et-al, 13

∗ regression
glm4, 2
lm.fit.sparse, 5
reweightPred, 15
solveCoef, 15
updateMu, 16
updateWts, 17

as.data.frame, 2

call, 8
CHMfactor, 12
Cholesky, 12
class, 6
coef, 13
coef,glpModel-method (glpModel-class), 4
coefficients,ANY-method (resid-et-al),

13
coerce,ddenseModelMatrix,predModule-method

(predModule-class), 11
coerce,dsparseModelMatrix,predModule-method

(predModule-class), 11

contrasts, 9, 10

ddenseModelMatrix, 10–12
ddenseModelMatrix-class

(modelMatrix-class), 10
denseModelMatrix-class

(modelMatrix-class), 10
dgCMatrix, 10, 11
dgeMatrix, 11
dimnames, 10
dPredModule-class (predModule-class), 11
dsparseMatrix, 6
dsparseModelMatrix, 10–12
dsparseModelMatrix-class

(modelMatrix-class), 10

factor, 9
family, 2, 8, 14
fitted, 13
fitted,glpModel-method

(glpModel-class), 4
fitted,respModule-method

(respModule-class), 13
fitted.values,ANY-method (resid-et-al),

13
formula, 2, 8, 9
formula,Model-method (Model-class), 8

glm, 2, 3
glm4, 2, 5, 6, 17
glmRespMod, 7, 8, 13, 14
glmRespMod-class (respModule-class), 13
glpModel, 3, 9, 13
glpModel-class, 4

list, 8, 10, 11
lm.fit, 6
lm.fit.sparse, 3, 5
logical, 8

Matrix, 10

18

INDEX 19

Methods, 13
mkRespMod, 7, 13, 14
Model, 5
Model-class, 8
model.frame, 8, 9
model.Matrix, 3, 8, 9, 11, 12
model.matrix, 3, 8–11
model.offset, 3
modelMatrix, 9–12
modelMatrix-class, 10

na.exclude, 3
na.fail, 3
na.omit, 3
names, 8
nglmRespMod, 13, 14
nglmRespMod-class (respModule-class), 13
nlsRespMod, 7, 8, 13, 14
nlsRespMod-class (respModule-class), 13
NULL, 9
numeric, 11

offset, 3
options, 3

predModule, 5, 16
predModule-class, 11
print,modelMatrix-method

(modelMatrix-class), 10

qr, 6

resid,ANY-method (resid-et-al), 13
resid-et-al, 13
residuals, 13
residuals,glmRespMod-method

(respModule-class), 13
residuals,glpModel-method

(glpModel-class), 4
residuals,respModule-method

(respModule-class), 13
residuals.glm, 5, 14
respModule, 4, 5, 7, 8, 16, 17
respModule-class, 13
reweightPred, 15
reweightPred,dPredModule,matrix,numeric-method

(reweightPred), 15
reweightPred,sPredModule,matrix,numeric-method

(reweightPred), 15

reweightPred-methods (reweightPred), 15

show, 11
show,modelMatrix-method

(modelMatrix-class), 10
solveCoef, 15
solveCoef,dPredModule-method

(solveCoef), 15
solveCoef,sPredModule-method

(solveCoef), 15
solveCoef-methods (solveCoef), 15
sparse.model.matrix, 6, 9–11
sparseModelMatrix, 9
sparseModelMatrix-class

(modelMatrix-class), 10
sPredModule-class (predModule-class), 11

terms, 9

update, 9
update,Model-method (Model-class), 8
updateMu, 16
updateMu,glmRespMod,numeric-method

(updateMu), 16
updateMu,nglmRespMod,numeric-method

(updateMu), 16
updateMu,nlsRespMod,numeric-method

(updateMu), 16
updateMu,respModule,numeric-method

(updateMu), 16
updateMu-methods (updateMu), 16
updateWts, 17
updateWts,glmRespMod-method

(updateWts), 17
updateWts,respModule-method

(updateWts), 17
updateWts-methods (updateWts), 17

	glm4
	glpModel-class
	lm.fit.sparse
	mkRespMod
	Model-class
	model.Matrix
	modelMatrix-class
	predModule-class
	resid-et-al
	respModule-class
	reweightPred
	solveCoef
	updateMu
	updateWts
	Index

