Package ‘RCLabels’

January 20, 2025
Title Manipulate Matrix Row and Column Labels with Ease
Version 0.1.11
Date 2025-01-13

Description Functions to assist manipulation of matrix
row and column labels for all types of matrix mathematics
where row and column labels are to be respected.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports assertthat, Hmisc, magrittr, purrr

Suggests dplyr, knitr, rmarkdown, spelling, stringr, testthat (>=
3.0.0), tibble

Config/testthat/edition 3
Config/testthat/parallel true
Config/testthat/start-first notation
Depends R (>=2.10)

LazyData true

VignetteBuilder knitr

Language en-US

URL https://matthewheun.github.io/RCLabels/

NeedsCompilation no

Author Matthew Heun [aut, cre] (<https://orcid.org/0000-0002-7438-214X>)
Maintainer Matthew Heun <matthew.heun@me.com>

Repository CRAN

Date/Publication 2025-01-13 22:00:01 UTC

https://matthewheun.github.io/RCLabels/
https://orcid.org/0000-0002-7438-214X

2 arrow_notation

Contents
ATOW_NOLAtION o s e 2
bracket_arrow_notation e e e e e e e e 3
bracket_notation e 3
dash_notation e 4
first_dot_notation e e e e e e 4
from_notation e e e e e e 5
CEL NOUNS v vt i e i e 5
get_ObJEeCtS 6
GEELPIECE . . . o o e e 7
BEELDPPS « o e e e e e e e e e e e 8
GEeL_PIepositions e e e e e e e 9
infer notation e e e e e 11
infer notation_for one labelo 13
IN_NOAtION o o o e e e e e e e 14
make _liSt L e 15
make_Or_pattern e e e e e e e e e e 16
modify_label_pieces 17
modify_nouns e e 18
notations_liSt e 19
of Notation e e 20
Paren_notation e e e e e e e e e e e e e e e 20
PASte_NOUN_DPDP . o v v v v e 21
PIepoSItions e e e e e e e 22
prepositions_list L. 22
regex_funcs L 23
remove_label_pieces 25
row-col-notation L. e e e 26
SPLIt_NOUN_PD . .« . o o o e e e e e e 30
strip_label_part 31
tO_NOAtION e e e e e e 32

Index 33

arrow_notation Arrow notation
Description

A description of arrow notation.

Usage

arrow_notation

Format

A vector of notational symbols that provides an arrow separator ("a ->b") between prefix and suffix.

bracket_arrow_notation

Examples

arrow_notation

bracket_arrow_notation
Bracket arrow notation

Description

A description of bracket arrow notation.

Usage

bracket_arrow_notation

Format

A vector of notational symbols that provides bracket arrow ("a [-> b]") notation.

Examples

bracket_arrow_notation

bracket_notation Bracket notation

Description

A description of bracket notation.

Usage

bracket_notation

Format

A vector of notational symbols that provides bracket ("a [b]") notation.

Examples

bracket_notation

4 first_dot_notation

dash_notation A description of dash notation.

Description

A description of dash notation.

Usage

dash_notation

Format

A vector of notational symbols that provides an dash separator ("a - b") between prefix and suffix.

Examples

dash_notation

first_dot_notation First dot notation

Description

A description of first dot notation. Note that "a.b.c" splits into prefix ("a") and suffix ("b.c").

Usage

first_dot_notation

Format

A vector of notational symbols that provides first dot ("a.b") notation.

Examples

first_dot_notation

from_notation 5

from_notation From notation

Description

A description of from notation.

Usage

from_notation

Format

A vector of notational symbols that provides from ("a [from b]") notation.

Examples

from_notation

get_nouns Extract nouns from row and column labels

Description

Nouns are the first part of a row-column label, "a" in "a [b]". Internally, this function calls get_pref_suff(which
= "pref"”).

Usage

get_nouns(
labels,
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = TRUE

Arguments

labels A list or vector of labels from which nouns are to be extracted.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.

notation The notation type to be used when extracting nouns. Defaultis RCLabels: :notations_list,
meaning that the notation is inferred using infer_notation().

choose_most_specific
A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is TRUE.

6 get_objects

Value

A list of nouns from row and column labels.

Examples

get_nouns(”a [b]"”, notation = bracket_notation)
Also works with vectors and lists.
get_nouns(c("a [b]", "c [d1"))
get_nouns(list("a [b1", "c [d1"))

get_objects Extract objects of prepositional phrases in row and column labels

Description

This function extracts the objects of prepositional phrases from row and column labels. The format
of the output is a list of named items, one name for each preposition encountered in labels. Objects
are NA if there is no prepositional phrase starting with that preposition.

Usage

get_objects(
labels,
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = FALSE,
prepositions = RCLabels::prepositions_list

Arguments

labels The row and column labels from which prepositional phrases are to be extracted.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.

notation The notation type to be used when extracting prepositions. Defaultis RCLabels: :notations_list,
meaning that the notation is inferred using infer_notation().
choose_most_specific
A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is FALSE so that a less specific notation can be
inferred. In combination with RCLabels: :notations_list, the default value
of FALSE means that RCLabels: :bracket_notation will be selected instead of
anything more specific, such as RCLabels: : from_notation.

prepositions A vector of strings to be treated as prepositions. Note that a space is appended to
each word internally, so, e.g., "to" becomes "to ". Defaultis RCLabels: :prepositions_list.

get_piece 7

Value

A list of objects of prepositional phrases, with names being prepositions, and values being objects.

Examples

get_objects(c("a [of b into c]”, "d [of Coal from e -> f1"))

get_piece Get a piece of a label

Description

This is a wrapper function for get_pref_suff (), get_nouns(), and get_objects(). It returns a
piece of a row or column label.

Usage

get_piece(
labels,
piece = "all",
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = FALSE,
prepositions = RCLabels::prepositions_list

)

Arguments
labels The row and column labels from which prepositional phrases are to be extracted.
piece The name of the item to return.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.

notation The notation type to be used when extracting prepositions. Defaultis RCLabels: :notations_list,
meaning that the notation is inferred using infer_notation().

choose_most_specific
A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is FALSE so that a less specific notation can be
inferred. In combination with RCLabels: :notations_list, the default value
of FALSE means that RCLabels: :bracket_notation will be selected instead of
anything more specific, such as RCLabels: : from_notation.

prepositions A vector of strings to be treated as prepositions. Note that a space is appended to
each word internally, so, e.g., "to" becomes "to ". Defaultis RCLabels: :prepositions_list.

Details

piece is typically one of

get_pps

» "all" (which returns labels directly),

o "pref" (for the prefixes),
e "suff" (for the suffixes),

* "noun" (returns the noun),

* "pps" (prepositional phrases, returns prepositional phrases in full),

* "prepositions" (returns a list of prepositions),

* "objects" (returns a list of objects with prepositions as names), or

* a preposition in prepositions (as a string), which will return the object of that preposition
named by the preposition itself.

piece must be a character vector of length 1. If a piece is missing in a label, "" (empty string) is

returned.

If specifying more than one notation, be sure the notations are in a list. notation = c(RCLabels: :bracket_notation,
RCLabels: :arrow_notation) is unlikely to produce the desired result, because the notations are

concatenated together to form a long string vector. Rather say notation = list(RCLabels: :bracket_notation,
RCLabels: :arrow_notation).

Value

A piece of 1labels.

Examples

labs <- c("a [from b in
get_piece(labs, "pref")
get_piece(labs, "suff")

get_piece(labs, piece
get_piece(labs, piece
get_piece(labs, piece
get_piece(labs, piece
get_piece(labs, piece
get_piece(labs, piece
get_piece(labs, piece
get_piece(labs, piece

c]”, "d [of e in f]", "Export [of Coal from USA to MEX]")

"noun™)

"pps”)
"prepositions”)
"objects")
"from")

"in")

"of")

"to")

get_pps

Extract prepositional phrases of row and column labels

Description

This function extracts prepositional phrases from suffixes of row and column labels of the form "a
[preposition b]", where "preposition b" is the prepositional phrase.

get_prepositions 9

Usage

get_pps(
labels,
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = FALSE,
prepositions = RCLabels: :prepositions_list

Arguments

labels A list or vector of labels from which prepositional phrases are to be extracted.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.

notation The notation type to be used when extracting prepositional phrases. Default
is RCLabels: :notations_list, meaning that the notation is inferred using
infer_notation().

choose_most_specific

A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is FALSE so that a less specific notation can be
inferred. In combination with RCLabels: :notations_list, the default value
of FALSE means that RCLabels: :bracket_notation will be selected instead of
anything more specific, such as RCLabels: : from_notation.

prepositions A list of prepositions for which to search. Defaultis RCLabels: :prepositions_list.

Value

All prepositional phrases in a suffix.

Examples

get_pps(c(”a [in b]", "c [of d1"))
get_pps(c(”"a [of b in c]”, "d [-> e of f1"))

get_prepositions Extract prepositions from row and column labels

Description

This function extracts prepositions from a list of row and column labels. The list has outer structure
of the number of labels and an inner structure of each prepositional phrase in the specific label.

10 get_prepositions

Usage

get_prepositions(
labels,
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = FALSE,
prepositions = RCLabels::prepositions_list

Arguments

labels The row and column labels from which prepositional phrases are to be extracted.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.

notation The notation type to be used when extracting prepositions. Defaultis RCLabels: :notations_list,
meaning that the notation is inferred using infer_notation().
choose_most_specific
A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is FALSE so that a less specific notation can be
inferred. In combination with RCLabels: :notations_list, the default value
of FALSE means that RCLabels: :bracket_notation will be selected instead of
anything more specific, such as RCLabels: : from_notation.

prepositions A vector of strings to be treated as prepositions. Note that a space is appended to
each word internally, so, e.g., "to" becomes "to ". Defaultis RCLabels: :prepositions_list.

Details

If labels are in the form of from_notation, to_notation or similar, it is probably best to give bracket_notation
in the notation argument. Providing from_notation, to_notation or similar in the notation argu-

ment will lead to empty results. The preposition is discarded when extracting the suffix, yielding
empty strings for the prepositions.

Value

A list of prepositions.

Examples

get_prepositions(c(”a [of b into c]", "d [-> e of f1"))
get_prepositions(c(”a [of b]", "d [-> e of f1"),
inf_notation = FALSE,
notation = bracket_notation)
Best to *not* specify notation by the preposition,
as the result will be empty strings.
Rather, give the notation as “bracket_notation”
as shown above, or infer the notation
as shown below.
get_prepositions(c(”a [of b]", "d [-> e of f1"),
inf_notation = TRUE)

*o# o o

infer_notation

11

The suffix is extracted, and the preposition

is lost before

looking for the preposition.

get_prepositions(c(”a [of b]", "d [of f]1"),

inf_notation = FALSE,
notation = of_notation)

infer_notation

Infer the notation(s) for a row or column label

Description

It is convenient to know which notation is applicable to row or column labels. This function infers
which notations are appropriate for x.

Usage

infer_notation(
X’
inf_notation

= TRUE,

notations = RCLabels::notations_list,

allow_multipl
retain_names
choose_most_s
must_succeed

Arguments

X
inf_notation
notations

allow_multiple

retain_names

e = FALSE,
= FALSE,
pecific = TRUE,
= TRUE

A row or column label (or vector of labels).
A boolean that tells whether to infer notation for x. Default is TRUE.

A list of notations from which matches will be inferred. This function might not
work as expected if notation is not a list. If notation is not a list, notations
is returned in full. Default is RCLabels: :notations_list.

A boolean that tells whether multiple notation matches are allowed. If FALSE
(the default), multiple matches give an error.

A boolean that tells whether to retain names from notations on the outgoing
matches. Default is FALSE. If TRUE, the return value is always a named list. If
only one of notations is returned (for example, because choose_most_specific
= TRUE), names are never supplied.

choose_most_specific

must_succeed

A boolean that indicates whether the most-specific notation will be returned

when more than one of notations matches x and allow_multiple = FALSE.

When FALSE, the first matching notation in notations is returned when allow_multiple
= FALSE. Default is TRUE. See details.

A boolean that if TRUE (the default), causes an error to be thrown if a matching
notation is not found for any label in x. When FALSE, an unsuccessful notation
inference will return NULL.

12 infer_notation

Details

This function is vectorized. Thus, x can be a vector, in which case the output is a list of notations.

notations is treated as a store from which matches for each label in x can be determined. notations
should be a named list of notations. When retain_names = TRUE, the names on notations will be
retained, and the return value is always a list.

By default (allow_multiple = FALSE), a single notation object is returned for each item in x if only
one notation in notations is appropriate for x. If allow_multiple = FALSE (the default) and more
than one notation is applicable to x, an error is thrown. Multiple matches can be returned when
allow_multiple = TRUE.

If multiple notations are matched, the return value is a list.

When choose_most_specific = TRUE (the default), the most specific notation in notations is
returned. "Most specific" is defined as the matching notation whose sum of characters in the
pref_start, pref_end, suff_start and suff_end elements is greatest. If choose_most_specific
= TRUE and two matching notations in notations have the same number of characters, only the first
match is returned. When choose_most_specific = TRUE, the value of allow_multiple no longer
matters. allow_multiple = FALSE is implied and at most one of the notations will be returned.

When inf_notation = FALSE (default is TRUE), notations are returned unmodified, essentially
disabling this function. Although calling with inf_notation = FALSE seems daft, this behavior
enables cleaner code elsewhere.

Value

A single notation object (if x is a single row or column label) or a list of notation objects (if x is a
vector or a list). If no notations match x, NULL is returned, either alone or in a list.

Examples

Does not match any notations in RCLabels::notations_list

and throws an error, because the default value for “must_succeed”
is “TRUE".

Not run:

infer_notation("abc")

End(Not run)

This returns “NULL", because “must_succeed = FALSE".

infer_notation("abc"”, must_succeed = FALSE)

This succeeds, because the label is in the form of a

notation in “RCLabels::notation_list~,

the default value of the “notation™ argument.

infer_notation("a -> b")

Names of the notations can be retained, in which case

the return value is always a list.

infer_notation("a -> b"”, retain_names = TRUE)

This function is vectorized.

The list of labels matches

all known notations in “RCLabels::notations_list~.

infer_notation(c("a -> b", "a (b)", "a [b]", "a [from b]", "a [of b]",
"a [to b]", "a [in b]", "a [-> b]", "a.b"),
retain_names = TRUE)

infer_notation_for_one_label

By default, the most specific notation is returned.
But when two or more matches are present,
multiple notations can be returned, too.
infer_notation(”"a [from b]",
allow_multiple = TRUE, retain_names = TRUE,
choose_most_specific = FALSE)
infer_notation(c("a [from b]", "c [to d1"),
allow_multiple = TRUE, retain_names = TRUE,
choose_most_specific = FALSE)
As shown above, "a \[from b\]" matches 2 notations:
“RCLabels::bracket_notation™ and “RCLabels::from_notation™.
The default value for the notation argument is
RCLabels::notations_list,
which includes “RCLabels::bracket_notation”
and “RCLabels::from_notation™ in that order.
Thus, there is some flexibility to how this function works
if the value of the “notation™ argument is a list of notations
ordered from least specific to most specific,
as “RCLabels::notations_list™ is ordered.
To review, the next call returns both “RCLabels::bracket_notation™ and
“RCLabels::from_notation™, because “allow_multiple = TRUE™ and
~choose_most_specific = FALSE™, neither of which are default.
infer_notation("a [from b]",
allow_multiple = TRUE,
choose_most_specific = FALSE,
retain_names = TRUE)
The next call returns “RCLabels::from_notation™, because
the most specific notation is requested, and
“RCLabels::from_notation™ has more characters in its specification than
“RCLabels: :bracket_notation™.
infer_notation("a [from b]",
choose_most_specific = TRUE,
retain_names = TRUE)
The next call returns the “RCLabels::bracket_notation™, because
~choose_most_specific = FALSE™, and the first matching
notation in “RCLabels::notations_list™ is “RCLabels::bracket_notation™.
infer_notation("a [from b]",
choose_most_specific = FALSE,
retain_names = TRUE)

#
#
#
#

infer_notation_for_one_label
Infer the notation from one row or column label

Description

This is a non-public helper function for vectorized infer_notation().

14

Usage

infer_notation
X,
inf_notation
notations =
allow_multip
retain_names
choose_most_
must_succeed

Arguments

X
inf_notation
notations

allow_multiple

retain_names

in_notation

_for_one_label(

= TRUE,
RCLabels::notations_list,
le = FALSE,

= FALSE,

specific = TRUE,

= TRUE

A single row or column label.
A boolean that tells whether to infer notation for x.

A list of notations from which matches will be inferred This function might not
work as expected if notation is not a list. If notation is not a list, notations
is returned in full. Default is RCLabels: :notations_list.

A boolean that tells whether multiple notation matches are allowed. If FALSE
(the default), multiple matches give an error.

A boolean that tells whether to retain names on the outgoing matches. Default
is FALSE. If TRUE, the return value is a named list. If only one of notations is
returned, names are never supplied.

choose_most_specific

must_succeed

Value

A boolean that indicates if the most-specific notation will be returned when more
than one of notations matches x. Default is TRUE.

A boolean that if TRUE (the default), causes an error to be thrown if a matching
notation is not found for any label in x. When FALSE, an unsuccessful label
inference will return NULL.

A single matching notation object (if allow_multiple = FALSE, the default) or possibly multiple
matching notation objects (if allow_multiple = TRUE). If no notations match x, NULL.

in_notation

In notation

Description

A description of in notation.

Usage

in_notation

make_list 15

Format

A vector of notational symbols that provides to ("a [in b]") notation.

Examples

in_notation

make_list Make a list of items in x, regardless of x’s type

Description

Repeats x as necessary to make n of them. Does not try to simplify x.

Usage

make_list(x, n, lenx = ifelse(is.vector(x), length(x), 1))

Arguments

X The object to be duplicated.

n The number of times to be duplicated.

lenx The length of item x. Be default, lenx is taken to be length(x),
Details

If x is itself a vector or list, you may want to override the default value for 1lenx. For example, if x
is a list that should be duplicated several times, set lenx = 1.

Value

A list of x duplicated n times

Examples

m <- matrix(c(1:6), nrow=3, dimnames = list(c("r1", "r2", "r3"), c("c2", "c1")))
make_list(m, n = 1)

make_list(m, n = 2)

make_list(m, n = 5)

make_list(list(c(1,2), c(1,2)), n = 4)

m <- matrix(1:4, nrow = 2)

1 <- list(m, m+100)

make_list(1l, n = 4)

make_list(l, n = 1) # Warning because 1 is trimmed.

make_list(l, n = 5) # Warning because length(l) (i.e., 2) not evenly divisible by 5
make_list(list(c("r10", "r11"), c("c10", "c11")), n = 2) # Confused by x being a list
make_list(list(c("r10", "r11"), c("c10", "c11")), n =2, lenx = 1) # Fix by setting lenx =1

16 make_or_pattern

make_or_pattern Create "or" regex patterns

Description

This function makes "or" regex patterns from vectors or lists of strings. This function can be used
with the matsbyname: :select_rows_byname() and matsbyname::select_cols_byname func-
tions. make_or_pattern() correctly escapes special characters in strings, such as (and), as
needed. Thus, it is highly recommended that make_or_pattern be used when constructing patterns
for row and column selections with matsbyname: : select_rows_byname () and matsbyname: : select_cols_byname().

Usage
make_or_pattern(
strings,
pattern_type = c("exact"”, "leading”, "trailing", "anywhere”, "literal”)
)
Arguments
strings A vector of row and column names.

"non "non

pattern_type One of "exact", "leading", "trailing", "anywhere", or "literal". Default is "exact".

Details
pattern_type controls the type of pattern created:

* exact produces a regex pattern that selects row or column names by exact match.

* leading produces a regex pattern that selects row or column names if the item in strings
matches the beginnings of row or column names.

e trailing produces a regex pattern that selects row or column names if the item in strings
matches the ends of row or column names.

* anywhere produces a regex pattern that selects row or column names if the item in strings
matches any substring of row or column names.

* literal returns strings unmodified, and it is up to the caller to formulate a correct regex.

Value

An "or" regex pattern suitable for selecting row and column names. Amenable for use with matsbyname: : select_rows_byn:
or matsbyname: :select_cols_byname.

Examples

make_or_pattern(strings = c("a", "b"), pattern_type = "exact")

make_or_pattern(strings = c("a", "b"), pattern_type = "leading")
make_or_pattern(strings = c("a", "b"), pattern_type = "trailing")
make_or_pattern(strings = c("a", "b"), pattern_type = "anywhere")
make_or_pattern(strings = c("a", "b"), pattern_type = "literal”)

modify_label_pieces 17

modify_label_pieces Modify pieces of row and column labels

Description

Typical pieces include "noun" or a preposition, such as "in" or "from". See RCLabels: :prepositions
for additional examples. This argument may be a single string or a character vector.

Usage

modify_label_pieces(
labels,
piece,
mod_map,
prepositions = RCLabels::prepositions_list,
inf_notation = TRUE,
notation = RCLabels::bracket_notation,
choose_most_specific = FALSE

)

Arguments
labels A vector of row or column labels in which pieces will be modified.
piece The piece (or pieces) of the row or column label that will be modified.
mod_map A modification map. See details.

prepositions Alistof prepositions, used to detect prepositional phrases. Defaultis RCLabels: :prepositions_list.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.

notation The notation type to be used when extracting prepositions. Defaultis RCLabels: :notations_list,
meaning that the notation is inferred using infer_notation().

choose_most_specific
A boolean that tells whether the most specific notation is selected when more
than one notation match. Default is FALSE.

Details

This function modifies pieces of row and column labels according to 1label_map that defines "one or

many to one" relationships. This function is useful for aggregations. For example, replacing nouns

can be done by modify_label_pieces(labels, piece = "noun”, label_map = list(new_noun = c("a", "b", "c")).
The string "new_noun" will replace any of "a", "b", or "c¢" when they appear as nouns in a row or

column label. See examples for details.

The mod_map argument should consist of a named list of character vectors in which names indicate
strings to be inserted and values indicate values that should be replaced. The sense is new = old or
new = olds, where "new" is the new name (the replacement) and "old"/"olds" is/are a string/vector
of strings, any one of which will be replaced by "new".

18 modify_nouns

Note piece can be "pref"/"suff" or "noun"/"prepositions" If any piece is "pref" or "suff", all pieces
are assumed to be a prefix or a suffix. If non of the pieces are "pref" or "suff", all pieces are
assumed to be nouns or prepositions, such as "in" or "from". See RCLabels: :prepositions for
additional examples. This argument may be a single string or a character vector.

Value

labels with replacements according to piece and mod_map.

Examples

Simple case
modify_label_pieces("”a [of b in c]",

piece = "noun”,

mod_map = list(new_noun = c("a", "b")))
Works with a vector or list of labels
modify_label_pieces(c("a [of b in c]”, "d [-> e in f]1"),

piece = "noun”,

mod_map = list(new_noun = c("d", "e")))
Works with multiple items in the mod_map
modify_label_pieces(c("a [of b in c]”, "d [-> e in f]"),

piece = "noun”,

mod_map = list(new_nounl = c("a", "b", "c"),

new_noun2 = c("d", "e", "f")))

Works with multiple pieces to be modified
modify_label_pieces(c("a [of b in c]”, "d [-> e in f]1"),

piece = c¢("noun”, "in"),
mod_map = list(new_noun = c("a", "b", "c"),
new_in = c("c", "f")))
modify_nouns Modify nouns in labels

Description

This function modifies the nouns of row and column labels. The length of new_nouns must be the
same as the length of labels.

Usage

modify_nouns(
labels,
new_nouns,
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = FALSE

notations_list 19

Arguments
labels The row and column labels in which the nouns will be modified.
new_nouns The new nouns to be set in labels. Must be same length as labels.

inf_notation A boolean that tells whether to infer notation for labels. Default is TRUE. See
infer_notation() for details.
notation The notation type to be used when extracting prepositions. Defaultis RCLabels: :notations_list,
meaning that the notation is inferred using infer_notation().
choose_most_specific
A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is FALSE so that a less specific notation can be
inferred. In combination with RCLabels: :notations_list, the default value
of FALSE means that RCLabels: :bracket_notation will be selected instead of
anything more specific, such as RCLabels: : from_notation.

Value

A character vector of same length as labels with nouns modified to be new_nouns.

Examples

labels <- c("a [of b in c]", "d [of e in USA]")
modify_nouns(labels, c("a_plus”, "g"))

notations_list Notations list

Description

A list of all bundled notations. This list is organized by least specific to most specific, thereby
enabling some unique behaviors in infer_notation(). See the examples for infer_notation().

Usage

notations_list

Format

A list of bundled notations.

Examples

notations_list

20 paren_notation

of__notation Of notation

Description

A description of of notation.

Usage

of_notation

Format

A vector of notational symbols that provides of ("a [of b]") notation.

Examples

of_notation

paren_notation Parenthetical notation

Description

A description of parenthetical notation.

Usage

paren_notation

Format

A vector of notational symbols that provides a parenthetical ("a (b)") notation.

Examples

paren_notation

paste_noun_pp 21

paste_noun_pp Recombine row and column labels

Description

This function recombines (unsplits) row or column labels that have been separated by split_noun_pp().

Usage

paste_noun_pp(
splt_labels,
notation = RCLabels: :bracket_notation,
squish = TRUE

)

Arguments

splt_labels A vector of split row or column labels, probably created by split_noun_pp().
notation The notation object that describes the labels. Defaultis RCLabels: :bracket_notation.

squish A boolean that tells whether to remove extra spaces in the output of paste_x()
functions. Default is TRUE.

Value

Recombined row and column labels.

Examples

labs <- c¢("a [of b in c]”, "d [from Coal mines in USA]")
labs
split <- split_noun_pp(labs)
split
paste_noun_pp(split)
Also works in a data frame
df <- tibble::tibble(labels = c("a [in b]", "c [of d into USAJ]",
"e [of f in g1”, "h [-> 1 in j1"))
recombined <- df %>%
dplyr: :mutate(
splits = split_noun_pp(labels),
recombined = paste_noun_pp(splits)
)

all(recombined$labels == recombined$recombined)

22 prepositions_list

prepositions Prepositions

Description

This constant is deprecated. Please use prepositiions_list instead.

Usage

prepositions

Format

A vector of prepositions used in row and column labels.

prepositions_list Prepositions

Description

Prepositions used in row and column labels.

Usage

prepositions_list

Format

A vector of prepositions used in row and column labels.

Examples

prepositions_list

regex_funcs

23

regex_funcs

Find or replace row or column labels that match a regular expression

Description

match_by_pattern() tells whether row or column labels match a regular expression. Internally,
grepl() decides whether a match occurs. replace_by_pattern() replaces portions of row of
column labels when a regular expression is matched. Internally, gsub () performs the replacements.

Usage

match_by_pattern(

labels,

regex_pattern,
pieces = "all",
prepositions = RCLabels::prepositions_list,

notation

= RCLabels: :bracket_notation,

inf_notation = TRUE,
choose_most_specific = FALSE,

)

replace_by_pattern(
labels,
regex_pattern,
replacement,
pieces = "all",
prepositions = RCLabels::prepositions_list,
notation = RCLabels::bracket_notation,

)

Arguments
labels The row and column labels to be modified.

regex_pattern The regular expression pattern to determine matches and replacements. Con-

pieces

sider using Hmisc: :escapeRegex() to escape regex_pattern before calling
this function.

The pieces of row or column labels to be checked for matches or replacements.
See details.

prepositions A vector of strings that count as prepositions. Default is prepositions_list. Used

notation

to detect prepositional phrases if pieces are to be interpreted as prepositions.

The notation used in 1labels. Default is bracket_notation.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()

for details.

24 regex_funcs

choose_most_specific
A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is FALSE so that a less specific notation can be
inferred. In combination with notations_list, the default value of FALSE means
that bracket_notation will be selected instead of anything more specific, such as
from_notation.

Other arguments passed to grepl() or gsub(), such as ignore.case, perl,
fixed, or useBytes. See examples.

replacement For replace_by_pattern(), the string that replaces all matches to regex_pattern.

Details

By default (pieces = "all"), complete labels (as strings) are checked for matches and replace-
ments. If pieces == "pref” or pieces == "suff", only the prefix or the suffix is checked for
matches and replacements. Alternatively, pieces = "noun” or pieces = <<preposition>> in-
dicate that only specific pieces of labels are to be checked for matches and replacements. When
pieces = <<preposition>>, only the object of <<preposition>> is checked for matches and
replacement.

pieces can be a vector, indicating multiple pieces to be checked for matches and replacements. But
if any of the pieces are "all", all pieces are checked and replaced. If pieces is "pref" or "suff",
only one can be specified.

Value

A logical vector of same length as labels, where TRUE indicates a match was found and FALSE
indicates otherwise.

Examples

labels <- c("Production [of b in c]”, "d [of Coal in f]", "g [of h in USA]")
With default “pieces™ argument, matching is done for whole labels.
match_by_pattern(labels, regex_pattern = "Production”)
match_by_pattern(labels, regex_pattern = "Coal")

match_by_pattern(labels, regex_pattern = "USA")

Check beginnings of labels

match_by_pattern(labels, regex_pattern = "*Production”)

Check at ends of labels: no match.

match_by_pattern(labels, regex_pattern = "Production$”)

Can match on nouns or prepositions.

match_by_pattern(labels, regex_pattern = "Production”, pieces = "noun")

Gives FALSE, because "Production” is a noun.
match_by_pattern(labels, regex_pattern = "Production”, pieces = "in")

remove_label_pieces 25

remove_label_pieces Remove a prepositional phrase in a row or column label

Description

This function removes pieces from row and column labels.

Usage

remove_label_pieces(
labels,
pieces_to_remove,
prepositions = RCLabels::prepositions_list,
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = FALSE

Arguments

labels The row and column labels from which prepositional phrases will be removed.

pieces_to_remove
The names of pieces of the label to be removed, typically "noun" or a preposition
such as "of" or "in" See RCLabels: :prepositions_list for a list of known
prepositions.

prepositions A list of prepositions, used to detect prepositional phrases. Defaultis RCLabels: :prepositions_list.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.
notation The notation type to be used when extracting prepositions. Defaultis RCLabels: :notations_list,
meaning that the notation is inferred using infer_notation().
choose_most_specific
A boolean that tells whether the most specific notation is selected when more
than one notation match. Default is FALSE.

Value

labels with pieces removed.

Examples
labs <- c¢("a [of b in c]", "d [-> e in f1")
remove_label_pieces(labs, pieces_to_remove = "of")
remove_label_pieces(labs, pieces_to_remove = c("of", "->"))
remove_label_pieces(labs, pieces_to_remove = c("in"”, "into"))

remove_label_pieces(labs, pieces_to_remove = c("of”, "in"))

26

row-col-notation

row-col-notation Row and column notation

Description

It is often convenient to represent matrix row and column names with notation that includes a
prefix and a suffix, with corresponding separators or start-end string sequences. There are several
functions to generate specialized versions or otherwise manipulate row and column names on their
own or as row or column names.

e flip_pref_suff() Switches the location of prefix and suffix, such that the prefix becomes
the suffix, and the suffix becomes the prefix. E.g., "a->b" becomes "b ->a" or "a [b]" becomes
llb [a]n.

o get_pref_suff() Selects only prefix or suffix, discarding notational elements and the re-
jected part. Internally, this function calls split_pref_suff() and selects only the desired
portion.

* notation_vec() Builds a vector of notation symbols in a standard format. By default, it
builds a list of notation symbols that provides an arrow separator (" -> ") between prefix and
suffix.

* paste_pref_suff() pasted’s prefixes and suffixes, the inverse of split_pref_suff(). Al-
ways returns a character vector.

* preposition_notation() Builds a list of notation symbols that provides (by default) square
brackets around the suffix with a preposition ("prefix [preposition suffix]").

* split_pref_suff() Splits prefixes from suffixes, returning each in a list with names pref
and suff. If no prefix or suffix delimiters are found, x is returned in the pref item, unmodified,
and the suff item is returned as "" (an empty string). If there is no prefix, and empty string
is returned for the pref item. If there is no suffix, and empty string is returned for the suff
item.

* switch_notation() Switches from one type of notation to another based on the from and to
arguments. Optionally, prefix and suffix can be flipped.

non

Parts of a notation vector are "pref_start", "pref_end", "suff_start", and "suff_end". None of the
strings in a notation vector are considered part of the prefix or suffix. E.g., "a ->b" in arrow notation
means that "a" is the prefix and "b" is the suffix. If sep only is specified for notation_vec()
(defaultis " -> "), pref_start, pref_end, suff_start, and suff_end are set appropriately.

For functions where the notation argument is used to identify portions of the row or column label
(suchas split_pref_suff(), get_pref_suff(), and the fromargument to switch_notation()),
(Note: flip_pref_suff() cannot infer notation, because it switches prefix and suffix in a known,
single notation.) if notation is a list, it is treated as a store from which the most appropri-
ate notation is inferred by infer_notation(choose_most_specific = TRUE). Because default is
RCLabels: :notations_list, notation is inferred by default. The argument choose_most_specific
tells what to do when two notations match a label: if TRUE (the default), the notation with most
characters is selected. If FALSE, the first matching notation in notation will be selected. See details
at infer_notation().

row-col-notation 27

If specifying more than one notation, be sure the notations are in a list. notation = c(RCLabels: :bracket_notation,

RCLabels: :arrow_notation) is unlikely to produce the desired result, because the notations are
concatenated together to form a long string vector. Rather say notation = list(RCLabels: :bracket_notation,
RCLabels: :arrow_notation).

For functions that construct labels (such as paste_pref_suff()), notation can be a list of nota-
tions over which the paste tasks is mapped. If notation is a list, it must have as many items as
there are prefix/suffix pairs to be pasted.

If either pref or suff are a zero-length character vector (essentially an empty character vector such
as obtained from character()) input to paste_pref_suff (), an error is thrown. Instead, use an
empty character string (such as obtained from "").

Usage

notation_vec(
sep =" > ",
pref_start = "",
pref_end = "",
suff_start = "",

suff_end = ""

preposition_notation(preposition, suff_start = " [", suff_end = "]")

split_pref_suff(
X,
transpose = FALSE,
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = TRUE

paste_pref_suff(
ps = list(pref = pref, suff = suff),
pref = NULL,
suff = NULL,
notation = RCLabels::arrow_notation,
squish = TRUE

flip_pref_suff(
X,
notation = RCLabels::notations_list,
inf_notation = TRUE,
choose_most_specific = TRUE

get_pref_suff(
X,

28

row-col-notation

which = c("pref”, "suff"),
inf_notation = TRUE,

notation = RCLabels::notations_list,
choose_most_specific = TRUE

)

switch_notation(

X’
from
to,
flip

inf_notation

Arguments

sep

pref_start

pref_end

suff_start

suff_end

preposition

X

transpose

inf_notation

notation

RCLabels::notations_list,

= TRUE

"

A string separator between prefix and suffix. Default is " -> ".
A string indicating the start of a prefix. Default is NULL.

A string indicating the end of a prefix. Default is the value of sep.
A string indicating the start of a suffix. Default is the value of sep.
A string indicating the end of a suffix. Default is NULL.

A string used to indicate position for energy flows, typically "from" or "to" in
different notations.

A string or vector of strings to be operated upon.

A boolean that tells whether to purr: : transpose() the result. Set transpose
= TRUE when using split_pref_suff() inadplyr: :mutate() call in the con-
text of a data frame. Default is FALSE.

A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.

A notation vector generated by one of the *_notation() functions, such as
notation_vec(), arrow_notation, or bracket_notation.

choose_most_specific

ps

pref
suff

squish

which
from
to
flip

A boolean that tells whether to choose the most specific notation from the notation
argument when the notation argument is a list.

A list of prefixes and suffixes in which each item of the list is itself a list with
two items named pref and suff.

A string or list of strings that are prefixes. Default is NULL.
A string of list of strings that are suffixes. Default is NULL.

A boolean that tells whether to remove extra spaces in the output of paste_x()
functions. Default is TRUE.

Tells which to keep, the prefix ("pref") or the suffix ("suff").

The notation to switch away from.

The notation to switch zo.

A boolean that tells whether to also flip the notation. Default is FALSE.

row-col-notation 29

Value

For notation_vec(), arrow_notation, and bracket_notation, a string vector with named items
pref_start, pref_end, suff_start, and suff_end; For split_pref_suff(), a string list with
named items pref and suff. For paste_pref_suff(), split_pref_suff(),and switch_notation(),
a string list in notation format specified by various notation arguments, including from, and to.

For keep_pref_suff, one of the prefix or suffix or a list of prefixes or suffixes.

Examples

notation_vec()
arrow_notation
bracket_notation
split_pref_suff(”a -> b", notation = arrow_notation)
Or infer the notation (by default from notations_list)
split_pref_suff(”"a -> b")
split_pref_suff(c("a -> b", "c -> d", "e -> "))
split_pref_suff(c(”"a -> b", "c -> d", "e -> f"), transpose = TRUE)
flip_pref_suff("”a [b]", notation = bracket_notation)
Infer notation
flip_pref_suff("a [b]")
get_pref_suff(”"a -> b"”, which = "suff")
switch_notation("”a -> b", from = arrow_notation, to = bracket_notation)
Infer notation and flip prefix and suffix
switch_notation("a -> b", to = bracket_notation, flip = TRUE)
Also works for vectors
switch_notation(c("a -> b", "c -> d"),

from = arrow_notation,

to = bracket_notation)
Functions can infer the correct notation and return multiple matches
infer_notation("a [to b]",

allow_multiple = TRUE,

choose_most_specific = FALSE)
Or choose the most specific notation
infer_notation("a [to b]",

allow_multiple = TRUE,

choose_most_specific = TRUE)
When setting the from notation, only that type of notation will be switched
switch_notation(c("a -> b"”, "c [to d1"),

from = arrow_notation,

to = bracket_notation)
But if notations are inferred, all notations can be switched
switch_notation(c(”a -> b", "c [to d]"), to = bracket_notation)
A double-switch can be accomplished.
In this first example, “RCLabels::first_dot_notation™ is inferred.
switch_notation("a.b.c”, to = arrow_notation)
In this second example,
it is easier to specify the “from™ and “to” notations.
switch_notation("a.b.c”, to = arrow_notation) %>%

switch_notation(from = first_dot_notation, to = arrow_notation)

"" can be used as an input
paste_pref_suff(pref = "a", suff = "", notation = RCLabels::from_notation)

30 split_noun_pp

split_noun_pp Split row and column labels into nouns and prepositional phrases

Description

This function is similar to split_pref_suff() in that it returns a list. However, this function’s list
is more detailed than split_pref_suff(). The return value from this function is a list with the
first named item being the prefix (with the name noun) followed by objects of prepositional phrases
(with names being prepositions that precede the objects).

Usage

split_noun_pp(
labels,
inf_notation = TRUE,
notation = RCLabels::notations_list,
choose_most_specific = FALSE,
prepositions = RCLabels::prepositions_list

Arguments

labels The row and column labels from which prepositional phrases are to be extracted.

inf_notation A boolean that tells whether to infer notation for x. Default is TRUE. See infer_notation()
for details.

notation The notation type to be used when extracting prepositions. Defaultis RCLabels: :notations_list,
meaning that the notation is inferred using infer_notation().
choose_most_specific
A boolean that tells whether to choose the most specific notation from notation
when inferring notation. Default is FALSE so that a less specific notation can be
inferred. In combination with RCLabels: :notations_list, the default value
of FALSE means that RCLabels: :bracket_notation will be selected instead of
anything more specific, such as RCLabels: : from_notation.

prepositions A vector of strings to be treated as prepositions. Note that a space is appended to
each word internally, so, e.g., "to" becomes "to ". Defaultis RCLabels: :prepositions_list.
Details
Unlike split_pref_suff(), it does not make sense to have a transpose argument on split_noun_pp().
Labels may not have the same structure, e.g., they may have different prepositions.
Value

A list of lists with items named noun and pp.

strip_label_part 31

Examples

Specify the notation

split_noun_pp(c("a [of b in c]”, "d [of e into f1"),
notation = bracket_notation)

Infer the notation via default arguments

split_noun_pp(c("a [of b in c]”, "d [of e into f1"))

strip_label_part A convenience function to help splitting prefixes and suffixes

Description

This function should only ever see a single label (x) and a single notation.

Usage

strip_label_part(x, notation, part, pattern_pref = "", pattern_suff = "")
Arguments

X The label(s) to be split.

notation The notations to be used for each x.

part The part of the label to work on, such as "pref_start", "pref_end", "suff_start",

or "suff _end".
pattern_pref The prefix to a regex pattern to be used in gsub ().

pattern_suff The suffix to a regex pattern to be used in gsub().

Details

If notation is NULL, x is returned, unmodified.

Value

A label shorn of the part to be stripped.

32 to_notation

to_notation To notation

Description

A description of to notation.

Usage

to_notation

Format

A vector of notational symbols that provides to ("a [to b]") notation.

Examples

to_notation

Index

+ datasets
arrow_notation, 2
bracket_arrow_notation, 3
bracket_notation, 3
dash_notation, 4
first_dot_notation, 4
from_notation, 5
in_notation, 14
notations_list, 19
of _notation, 20
paren_notation, 20
prepositions, 22
prepositions_list, 22
to_notation, 32

arrow_notation, 2

bracket_arrow_notation, 3
bracket_notation, 3, 10, 23, 24

dash_notation, 4

first_dot_notation, 4
flip_pref_suff (row-col-notation), 26
from_notation, 5, 10, 24

get_nouns, 5

get_objects, 6

get_piece, 7

get_pps, 8

get_pref_suff (row-col-notation), 26
get_prepositions, 9

grepl(), 23, 24

gsub(), 23, 24

Hmisc: :escapeRegex(), 23

in_notation, 14
infer_notation, 11
infer_notation(), 23
infer_notation_for_one_label, 13

33

make_list, 15

make_or_pattern, 16
match_by_pattern (regex_funcs), 23
match_by_pattern(), 23
modify_label_pieces, 17
modify_nouns, 18

notation_vec (row-col-notation), 26
notations_list, 19, 24

of _notation, 20

paren_notation, 20

paste_noun_pp, 21

paste_pref_suff (row-col-notation), 26

preposition_notation
(row-col-notation), 26

prepositions, 22

prepositions_list, 22, 23

regex_funcs, 23
remove_label_pieces, 25
replace_by_pattern (regex_funcs), 23
replace_by_pattern(), 23, 24
row-col-notation, 26

split_noun_pp, 30

split_pref_suff (row-col-notation), 26
strip_label_part, 31

switch_notation (row-col-notation), 26

to_notation, 10, 32

	arrow_notation
	bracket_arrow_notation
	bracket_notation
	dash_notation
	first_dot_notation
	from_notation
	get_nouns
	get_objects
	get_piece
	get_pps
	get_prepositions
	infer_notation
	infer_notation_for_one_label
	in_notation
	make_list
	make_or_pattern
	modify_label_pieces
	modify_nouns
	notations_list
	of_notation
	paren_notation
	paste_noun_pp
	prepositions
	prepositions_list
	regex_funcs
	remove_label_pieces
	row-col-notation
	split_noun_pp
	strip_label_part
	to_notation
	Index

