Package ‘RMTL’

January 20, 2025
Title Regularized Multi-Task Learning
Type Package
Version 0.9.9

Description Efficient solvers for 10 regularized multi-task learning algorithms applicable for regres-
sion, classification, joint feature selection, task clustering, low-rank learning, sparse learn-
ing and network incorporation. Based on the accelerated gradient descent method, the algo-
rithms feature a state-of-art computational complexity O(1/k”2). Sparse model structure is in-
duced by the solving the proximal operator. The detail of the package is described in the pa-
per of Han Cao and Emanuel Schwarz (2018) <doi:10.1093/bioinformatics/bty831>.

Depends R (>=3.5.0)
URL https://github.com/transbioZI/RMTL/

BugReports https://github.com/transbioZI/RMTL/issues/

Imports MASS (>=7.3-50), psych (>= 1.8.4), corpcor (>= 1.6.9),
doParallel (>= 1.0.14), foreach (>= 1.4.4)

Date 2022-04-29

License GPL-3

Encoding UTF-8
RoxygenNote 7.1.2
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no

Author Han Cao [cre, aut, cph],
Emanuel Schwarz [aut]

Maintainer Han Cao <hank9cao@gmail.com>
Repository CRAN
Date/Publication 2022-05-02 16:10:09 UTC

https://doi.org/10.1093/bioinformatics/bty831
https://github.com/transbioZI/RMTL/
https://github.com/transbioZI/RMTL/issues/

2 RMTL-package

Contents
RMTL-package e 2
calcError L e 3
Create_simulated_data oo L. 4
cVMTL 5
MTL . . . 6
plot.evMTL o e 8
plotObj e 8
predict MTL e e 9
print MTL e 10

Index 11

RMTL-package RMTL: Regularized Multi-Task Learning
Description

This package provides an efficient implementation of regularized multi-task learning (MTL) com-
prising 10 algorithms applicable for regression, classification, joint feature selection, task cluster-
ing, low-rank learning, sparse learning and network incorporation. All algorithms are implemented
based on the accelerated gradient descent method and feature a complexity of O(1/k"2). Parallel
computing is allowed to improve the efficiency. Sparse model structure is induced by the solving
the proximal operator.

Details

This package provides 10 multi-task learning algorithms (5 classification and 5 regression), which
incorporate five regularization strategies for knowledge transferring among tasks. All algorithms
share the same framework:

t
. 2
IVIVI%E;L(WU Cil X3, V) + MQW) + Ao W[5

where L(o) is the loss function (logistic loss for classification or least square loss for linear regres-
sion). (o) is the cross-task regularization for knowledge transfer, and ||W||% is used for improving
the generalization. X = {X; = n; xpli € {1,...,¢t}} and Y = {Y; = n; x 1]i € {1,...,t}} are
predictors matrices and responses of ¢ tasks respectively, while each task ¢ contains n; subjects and
p predictors. W = p x t is the coefficient matrix, where W;, the ith column of W, refers to the
coefficient vector of task i.

The function Q(W) jointly modulates multi-task models({W7, Wa, ..., W;}) according to specific
prior structure of W. In this package, 5 common regularization methods are implemented to in-
corporate different priors, i.e. sparse structure (Q2(W) = ||W|]|1), joint feature selection (2(W) =
[|[W]|2,1), low-rank structure (2(W) = ||W||.), network-based relatedness across tasks (2(W) =
||[WG||%) and task clustering (Q(W) = tr(WTW) — tr(FTWTW F)). To call a specific method

calcError 3

correctly, the corresponding "short name" has to be given. Follow the above sequence of methods,
the short names are defined: L21, Lasso, Trace, Graph and CMTL

For all algorithms, we implemented an solver based on the accelerated gradient descent method,
which takes advantage of information from the previous two iterations to calculate the current gra-
dient and then achieves an improved convergent rate. To solve the non-smooth and convex regu-
larizer, the proximal operator is applied. Moreover, backward line search is used to determine the
appropriate step-size in each iteration. Overall, the solver achieves a complexity of O(k—lz) and is
optimal among first-order gradient descent methods.

For the academic references of the implemented algorithms, the users are referred to the paper
(doi:10.1093/bioinformatics/bty831) or the vignettes in the package.

calcError Calculate the prediction error

Description
Calculate the averaged prediction error across tasks. For classification problem, the miss-classification
rate is returned, and for regression problem, the mean square error(MSE) is returned.

Usage

calcError(m, newX = NULL, newY = NULL)

Arguments
m A MTL model
newX The feature matrices of new individuals
newY The responses of new individuals
Value

The averaged prediction error

Examples

#create example data

data<-Create_simulated_data(Regularization="L21", type="Regression")

#train a model

model<-MTL (data$X, data$yY, type="Regression”, Regularization="L21",
Lam1=0.1, Lam2=0, opts=list(init=0, tol=10"-6, maxIter=1500))

#calculate the training error

calcError(model, newX=data$X, newY=data$yY)

#calculate the test error

calcError(model, newX=data$tX, newY=data$tY)

4 Create_simulated_data

Create_simulated_data Create an example dataset for testing the MTL algorithm

Description

Create an example dataset which contains 1), training datasets (X: feature matrices, Y: response vec-
tors); 2), test datasets (tX: feature matrices, tY: response vectors); 3), the ground truth model (W:
coefficient matrix) and 4), extra information for some algorithms (i.e. a matrix for encoding the net-
work information is necessary for calling the MTL method with network structure(Regularization=Graph

)

Usage
Create_simulated_data(
t =5,
p =50,
n = 20,
type = "Regression”,
Regularization = "L21"
)
Arguments
t Number of tasks
p Number of features
n Number of samples of each task. For simplicity, all tasks contain the same
number of samples.
type The type of problem, must be "Regression" or "Classification"

Regularization The type of MTL algorithm (cross-task regularizer). The value must be one of
{L21, Lasso, Trace, Graph, CMTL }

Value

The example dataset.

Examples

data<-Create_simulated_data(t=5,p=50, n=20, type="Regression”, Regularization="L21")
str(data)

cvMTL 5

CVMTL K-fold cross-validation

Description

Perform the k-fold cross-validation to estimate the ;.

Usage
CVMTL(
X,
Y,
type = "Classification”,
Regularization = "L21",
Laml_seq = 10*seq(1, -4, -1),
Lam2 = 0,
G = NULL,
k =2,
opts = list(init = @, tol = 10*-3, maxIter = 1000),
stratify = FALSE,
nfolds = 5,
ncores = 2,
parallel = FALSE
)
Arguments
X A set of feature matrices
Y A set of responses, could be binary (classification problem) or continues (re-
gression problem). The valid value of binary outcome € {1, —1}
type The type of problem, must be Regression or Classification

Regularization The type of MTL algorithm (cross-task regularizer). The value must be one of
{L21, Lasso, Trace, Graph, CMTL }

Lam1_seq A positive sequence of Lam1 which controls the cross-task regularization
Lam2 A positive constant Ao to improve the generalization performance
G A matrix to encode the network information. This parameter is only used in the

MTL with graph structure (Regularization=Graph)

k A positive number to modulate the structure of clusters with the default of 2.
This parameter is only used in MTL with clustering structure (Regularization=CMTL
) Note, the larger number is adapted to more complex clustering structure.

opts Options of the optimization procedure. One can set the initial search point, the
tolerance and the maximized number of iterations through the parameter. The
default value is list(init=0, tol=10"-3, maxIter=1000)

stratify stratify=TRUE is used for stratified cross-validation

6 MTL

nfolds The number of folds
ncores The number of cores used for parallel computing with the default value of 2
parallel parallel=TRUE is used for parallel computing

Value

The estimated \; and related information

Examples

#create the example data

data<-Create_simulated_data(Regularization="L21", type="Classification”)

#perform the cross validation

cvfit<-cvMTL(data$X, data$yY, type="Classification”, Regularization="L21",
Lam2=0, opts=list(init=0, tol=10"-6, maxIter=1500), nfolds=5,
stratify=TRUE, Laml_seq=10"seq(1,-4, -1))

#show meta-infomration

str(cvfit)
#plot the CV accuracies across laml sequence
plot(cvfit)
MTL Train a multi-task learning model.
Description

Train a multi-task learning model.

Usage

MTL(
X,
Y,
type = "Classification”,
Regularization = "L21",
Laml = 0.1,
Lam1_seq = NULL,
Lam2 = 0,
opts = list(init = @, tol = 10*-3, maxIter = 1000),
G = NULL,
k =2

MTL 7

Arguments
X A set of feature matrices
Y A set of responses, could be binary (classification problem) or continues (re-
gression problem). The valid value of binary outcome € {1, —1}
type The type of problem, must be Regression or Classification

Regularization The type of MTL algorithm (cross-task regularizer). The value must be one of
{L21, Lasso, Trace, Graph, CMTL }

Lam1 A positive constant \; to control the cross-task regularization

Laml1_seq A positive sequence of Lam1. If the parameter is given, the model is trained
using warm-start technique. Otherwise, the model is trained based on the Lam1
and the initial search point (opts$init).

Lam2 A non-negative constant Ao to improve the generalization performance with the
default value of 0 (except for Regularization=CMTL)

opts Options of the optimization procedure. One can set the initial search point, the
tolerance and the maximized number of iterations using this parameter. The
default value is 1ist(init=0, tol=10*-3, maxIter=1000)

G A matrix to encode the network information. This parameter is only used in the
MTL with graph structure (Regularization=Graph)

k A positive number to modulate the structure of clusters with the default of 2.
This parameter is only used in MTL with clustering structure (Regularization=CMTL
) Note, the larger number is adapted to more complex clustering structure.

Value

The trained model including the coefficient matrix W and intercepts C and related meta information

Examples

#create the example data

data<-Create_simulated_data(Regularization="L21", type="Regression")

#train a MTL model

#cold-start

model<-MTL (data$X, data$yY, type="Regression”, Regularization="L21",
Lam1=0.1, Lam2=0, opts=list(init=0, tol=10"-6, maxIter=1500))

#warm-start

model<-MTL (data$X, data$yY, type="Regression”, Regularization="L21",

Lam1=0.1, Lam1_seq=10"seq(1,-4, -1), Lam2=0, opts=list(init=0, tol=10"-6, maxIter=1500))

#meta-information

str(model)

#plot the historical objective values

plotObj(model)

8 plotObj

plot.cvMTL Plot the cross-validation curve

Description

Plot the cross-validation curve

Usage
S3 method for class 'cvMTL'
plot(x, ...)
Arguments
X The returned object of function cvMTL
Other parameters
Examples

#create the example data

data<-Create_simulated_data(Regularization="L21", type="Classification”)

#perform the cv

cvfit<-cvMTL(data$X, data$yY, type="Classification”, Regularization="L21",
Lam2=0, opts=list(init=0, tol=10"-6, maxIter=1500), nfolds=5,
stratify=TRUE, Laml_seq=10"seq(1,-4, -1))

#plot the curve

plot(cvfit)

plotObj Plot the historical values of objective function

Description

Plot the values of objective function across iterations in the optimization procedure. This function
indicates the "inner status" of the solver during the optimization, and could be used for diagnosis of
the solver and training procedure.

Usage
plotObj(m)

Arguments

m A trained MTL model

predict MTL 9

Examples

#create the example date

data<-Create_simulated_data(Regularization="L21", type="Regression")

#Train a MTL model

model<-MTL (data$X, data$yY, type="Regression”, Regularization="L21",
Lam1=0.1, Lam2=0, opts=list(init=0, tol=10"-6, maxIter=1500))

#plot the objective values

plotObj(model)

predict.MTL Predict the outcomes of new individuals

Description

Predict the outcomes of new individuals. For classification, the probability of the individual being
assigned to positive label P(y==1) is estimated, and for regression, the prediction score is estimated

Usage
S3 method for class 'MTL'
predict(object, newX = NULL, ...)
Arguments
object A trained MTL model
newX The feature matrices of new individuals

Other parameters

Value

The predictive outcome

Examples

#Create data

data<-Create_simulated_data(Regularization="L21", type="Regression")

#Train

model<-MTL (data$X, data$yY, type="Regression”, Regularization="L21",
Lam1=0.1, Lam2=0, opts=list(init=0, tol=10"-6, maxIter=1500))

predict(model, newX=data$tX)

10

print MTL

print.MTL Print the meta information of the model

Description

Print the meta information of the model

Usage
S3 method for class 'MTL'
print(x, ...)
Arguments
X A trained MTL model
Other parameters
Examples

#create data

data<-Create_simulated_data(Regularization="L21", type="Regression")

#train a MTL model

model<-MTL (data$X, data$yY, type="Regression”, Regularization="L21",
Lam1=0.1, Lam2=0, opts=list(init=0, tol=10"-6, maxIter=1500))

#print the information of the model
print(model)

Index

calcError, 3
Create_simulated_data, 4
cVMTL, 5

MTL, 6
plot.cvMTL, 8
plotObj, 8
predict.MTL, 9
print.MTL, 10

RMTL-package, 2

11

	RMTL-package
	calcError
	Create_simulated_data
	cvMTL
	MTL
	plot.cvMTL
	plotObj
	predict.MTL
	print.MTL
	Index

