Package ‘SeaSondeR’

April 30, 2025
Title Radial Metrics from SeaSonde HF-Radar Data
Version 0.2.8

Description
Read CODAR's SeaSonde High-Frequency Radar spectra files, compute radial metrics, and gen-
erate plots for spectra and antenna pattern data. Implementation is based in technical manu-
als, publications and patents, please refer to the following documents for more information: Bar-
rick and Lipa (1999) <https://codar.com/images/about/patents/05990834.PDF>; CO-
DAR Ocean Sensors (2002) <http://support.codar.com/Technicians_Information_
Page_for_SeaSondes/Docs/Informative/FirstOrder_Settings.
pdf>; Lipa et al. (2006) <doi:10.1109/joe.2006.886104>; Paolo et al. (2007) <doi: 10.1109/oceans.2007.4449265>; CO-
DAR Ocean Sensors (2009a) <http://support.codar.com/Technicians_Information_
Page_for_SeaSondes/Docs/GuidesToFileFormats/File_AntennaPattern.pdf>; CO-
DAR Ocean Sensors (2009b) <http://support.codar.com/Technicians_Information_
Page_for_SeaSondes/Docs/GuidesToFileFormats/File_CrossSpectraReduced. pdf>; CO-
DAR Ocean Sensors (2016a) <http:
//support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_
Documentation_Release_8/File_Formats/File_Cross_Spectra_V6.pdf>; CO-
DAR Ocean Sensors (2016b) <http:
//support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_
Documentation_Release_8/File_Formats/FIle_Reduced_Spectra.pdf>; CO-
DAR Ocean Sensors (2016¢) <http:
//support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_
Documentation_Release_8/Application_Guides/Guide_SpectraPlotterMap.pdf>; Bush-
nell and Worthington (2022) <doi:10.25923/4¢5x-g538>.

License GPL (>=3)
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>=4.1.0)

Suggests here (>= 1.0.1), mockthat (>= 0.2.8), testthat (>= 3.0.0),
openssl (>= 2.1.0), jsonlite (>= 1.8.7), knitr, rmarkdown

Config/testthat/edition 3

URL https://github.com/GOFUVI/SeaSondeR,
https://gofuvi.github.io/SeaSondeR/

https://codar.com/images/about/patents/05990834.PDF
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/FirstOrder_Settings.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/FirstOrder_Settings.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/FirstOrder_Settings.pdf
https://doi.org/10.1109/joe.2006.886104
https://doi.org/10.1109/oceans.2007.4449265
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_AntennaPattern.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_AntennaPattern.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_CrossSpectraReduced.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_CrossSpectraReduced.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/File_Cross_Spectra_V6.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/File_Cross_Spectra_V6.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/File_Cross_Spectra_V6.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/FIle_Reduced_Spectra.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/FIle_Reduced_Spectra.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/FIle_Reduced_Spectra.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/Application_Guides/Guide_SpectraPlotterMap.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/Application_Guides/Guide_SpectraPlotterMap.pdf
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/Application_Guides/Guide_SpectraPlotterMap.pdf
https://doi.org/10.25923/4c5x-g538
https://github.com/GOFUVI/SeaSondeR
https://gofuvi.github.io/SeaSondeR/

2 Contents
BugReports https://github.com/GOFUVI/SeaSondeR/issues
Imports bit64 (>=4.0.5), bitops (>= 1.0.7), constants (>= 1.0.1),
data.table (>= 1.15.4), dplyr (>= 1.1.3), geosphere (>=
1.5.18), ggplot2 (>= 3.5.1), glue (>= 1.6.2), lubridate (>=
1.9.3), magrittr (>= 2.0.3), pracma (>= 2.4.4), purrr (>=
1.0.2), rlang (>= 1.1.1), slider (>= 0.3.1), stringr (>=
1.5.0), tibble (>=3.2.1), tidyr (>= 1.3.1), uuid (>=1.2.1),
whisker (>= 0.4.1), yaml (>= 2.3.7), zoo (>=1.8.12)
VignetteBuilder knitr
NeedsCompilation no
Author Juan Luis Herrera Cortijo [aut, cre]
(<https://orcid.org/0000-0002-4206-2459>),
Ramiro A. Varela Benvenuto [aut]
(<https://orcid.org/0000-0002-9212-577X>),
Adrian Fernandez Baladrén [aut]
(<https://orcid.org/0000-0001-6795-4261>)
Maintainer Juan Luis Herrera Cortijo <juan.luis.herrera.cortijo@gmail.com>
Repository CRAN
Date/Publication 2025-04-30 11:20:06 UTC
Contents
dB_to_self _spectra L 9
new_SeaSondeRCS e 10
parse_metadata_line Lo 11
print.SeaSondeRAPM 11
print.SeaSondeRCS L 12
process_version_header 13
gc_check_rangeo L 14
gc_check_type 14
gc_check unsigned 15
readV6BlockData 16
read_and_qc_field L 17
read_MatriX_TOW o e e e e e e e e e 19
SeaSondeRAPM_amplitude_and_phase_corrections_step_text 19
SeaSondeRAPM_amplitude_factors_override_step_text 20
SeaSondeRAPM_antenna_bearing_override_step_text 20
SeaSondeRAPM_creation_step_text o o v it e 21
SeaSondeRAPM_phase_correction_override_step_text 21
SeaSondeRAPM_SiteOrigin_override_step_text 22
SeaSondeRAPM_smoothing_step_text e 22
SeaSondeRAPM_trimming_step_text e 23
SeaSondeRCS_creation_step_text o i i e 23
SeaSondeRCS_MUSIC_validate_doppler_interpolation 24
seasonder_applyAPMAmplitudeAndPhaseCorrections 25

seasonder_applyCSSWSigns L 25

https://github.com/GOFUVI/SeaSondeR/issues
https://orcid.org/0000-0002-4206-2459
https://orcid.org/0000-0002-9212-577X
https://orcid.org/0000-0001-6795-4261

Contents

3
seasonder_areLogsEnabled 26
seasonder_areMessagesEnabledo o Lo 26
seasonder_asJSONSeaSondeRCSData 27
seasonder_asJSONSeaSondeRCSHeader 28
seasonder_Bins2DopplerFreq oL 29
seasonder_Bins2NormalizedDopplerFreq L. 29
seasonder_check_specs L. 30
seasonder_computeBinsRadialVelocity 31
seasonder_computeCenterDopplerBin oo 0oL 32
seasonder_computeDopplerBinsFrequency 33
seasonder_computeDopplerFreq2Binso oL oo 34
seasonder_computeFORs 35
seasonder_computeFORsSeaSondeMethod, 37
seasonder_computeLonLatFromOriginDistBearing 38
seasonder_computeNoiseLevel L 39
seasonder_computePowerMatrix L L L o 41
seasonder_compute_antenna_pattern_proyections 42
seasonder_createSeaSondeRAPM 43
seasonder_createSeaSondeRCS L. 44
seasonder_createSeaSondeRCS.character 45
seasonder_createSeaSondeRCS.list 47
seasonder_CSSW2CSData e 48
seasonder CSSW2CSHeader e 49
seasonder_CSSW_read_asign 50
seasonder_CSSY2CSData e 51
seasonder_CSSY2CSHeader 52
seasonder_CSSY_read_asign 53
seasonder_CSSY_read_csign Lo 53
seasonder_defaultFOR_parameters 54
seasonder_defaultMUSICOptions 57
seasonder_defaultMUSIC_parameters 58
seasonder_defaultSpecsFilePath 59
seasonder_defaultSpecsPathForFile, 59
seasonder_disableLogs 60
seasonder_disableMessageso 60
seasonder_disable_all_debug_points L Lo 61
seasonder_DopplerFreq2Bins oL L 61
seasonder_DopplerFreq2NormalizedDopplerFreq 62
seasonder_enablelLogs L. 63
seasonder_enableMessages Lo e 64
seasonder_enable_debug_points 64
seasonder_estimateReferenceNoiseNormalizedLimits 65
seasonder_exportCSVMUSICTable 66
seasonder_exportCTFRangelnfo, 67
seasonder_exportLLUVRadialMetrics 68
seasonder_exportMUSICTable 69
seasonder_exportRadialMetrics L oL Lo 71

seasonder_exportRangelnfo o oo oo 72

Contents

seasonder_extractFOR 74
seasonder_extractSeaSondeRCS_dopplerRanges_from_SSdata 75
seasonder_extrapolateAPM 76
seasonder_filterFORAmplitudes 77
seasonder_findFORNulls o 78
seasonder_findFORNullsInFOR 79
seasonder_findFORNullsInSpectrum, 80
seasonder_findFORNullsInSSMatrix 82
seasonder_find_spectra_file_type oL 83
seasonder_getBinsRadialVelocity Lo 84
seasonder_getBraggDopplerAngularFrequency 85
seasonder_getBragglineBins L L L 86
seasonder_getBraggWaveLength oo o oL 87
seasonder_getCenterDopplerBin oL o oL 88
seasonder_getCenterFreqMHz o 88
seasonder_getCSHeaderByPath 0 .. 89
seasonder_getDopplerBinsFrequency L. 90
seasonder_getDopplerSpectrumResolution L. 91
seasonder_getFORParameter 92
seasonder_getFOR_currmax Lo 92
seasonder_getFOR _fdown o 93
seasonder_getFOR_flim 94
seasonder_getFOR _noisefact L L o 95
seasonder_getFOR_nsm 95
seasonder_getFOR_parameters e 96
seasonder_getlog L 97
seasonder_getMUSICConfig 98
seasonder_getMUSICDopplerInterpolation 99
seasonder_getMUSICDualSolutionsProportion 99
seasonder_getMUSICInterpolatedData 100
seasonder_getMUSIClInterpolatedDopplerCellsIndex 101
seasonder_getMUSICOPtions i v v it e e e e 102
seasonder_getnDopplerCells o o 102
seasonder_getnRangeCells o 103
seasonder_getRadarWaveLength L 0oL, 104
seasonder_getRadarWaveNumber 105
seasonder_getRadialVelocityResolution 106
seasonder_getReceiverGain_dB oo 107
seasonder_getSeaSondeRAPM_AmplitudeFactors 107
seasonder_getSeaSondeRAPM_AntennaBearing 108
seasonder_getSeaSondeRAPM_BEAR L. 109
seasonder_getSeaSondeRAPM_BearingResolution 109
seasonder_getSeaSondeRAPM_CommentLine 110
seasonder_getSeaSondeRAPM_CreateTimeStamp 111
seasonder_getSeaSondeRAPM_Creator, 111
seasonder_getSeaSondeRAPM _FileID, 112
seasonder_getSeaSondeRAPM_FileName 113

seasonder_getSeaSondeRAPM_PhaseCorrections 113

Contents

5
seasonder_getSeaSondeRAPM_ProcessingSteps 114
seasonder_getSeaSondeRAPM_quality_matrix 115
seasonder_getSeaSondeRAPM_SiteName 115
seasonder_getSeaSondeRAPM_SiteOrigin, 116
seasonder_getSeaSondeRAPM_Smoothing 116
seasonder_getSeaSondeRAPM_StationCode 117
seasonder_getSeaSondeRAPM_Type oo 118
seasonder_getSeaSondeRCS_antenna_SSdata, 118
seasonder_getSeaSondeRCS_APM o 119
seasonder_getSeaSondeRCS_data oL, 120
seasonder_getSeaSondeRCS_dataMatrix oL, 120
seasonder_getSeaSondeRCS_FOR 121
seasonder_getSeaSondeRCS_FORConfig 122
seasonder_getSeaSondeRCS_FOR_SS_Smoothed 123
seasonder_getSeaSondeRCS_header 124
seasonder_getSeaSondeRCS_headerField, 124
seasonder_getSeaSondeRCS_MUSIC, 125
seasonder_getSeaSondeRCS_MUSIC_BinsRadialVelocity 126
seasonder_getSeaSondeRCS_MUSIC_CenterDopplerBin 127
seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency 128
seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolution 129
seasonder_getSeaSondeRCS_MUSIC_nDopplerCells 130
seasonder_getSeaSondeRCS_MUSIC_parameters 131
seasonder_getSeaSondeRCS_ProcessingSteps 131
seasonder_getSeaSondeRCS_reference_noise_normalized_limits_estimation_interval . . 132
seasonder_getSeaSondeRCS_SelfSpectrao 133
seasonder_getVersion L. 134
seasonder_getVersion.SeaSondeRAPM Lo oL, 135
seasonder_getVersion.SeaSondeRCS o L. 136
seasonder_get_enabled_debug_pointso L oL oL 136
seasonder_initCSDataStructure 137
seasonder_initializeAttributesSeaSondeRAPM 138
seasonder_initMUSICData 139
seasonder_initSeaSondeRCS_MUSIC 140
seasonder_Int_tO_raw e e e e e e e e e e e e 142
seasonder_is_debug_point_enabled oo oL 143
seasonder_lastlog 143
seasonder_limitFORCurrentRange, 144
seasonder_log L e e e 145
seasonder_logAndAbort L 146
seasonder_logAndMessage 146
seasonder_logArchiver L 147
seasonder_ MUSICBearing2GeographicalBearing 148
seasonder_ MUSICCheckEigenValueRatio 149
seasonder_ MUSICCheckSignalMatrix 150
seasonder_ MUSICCheckSignalPowers 151
seasonder_ MUSICComputeCov o ittt e 152

seasonder_ MUSICComputeDOAProjections 153

Contents

seasonder_ MUSICComputePropDualSols 154
seasonder_ MUSICComputeSignalPowerMatrix 155
seasonder_ MUSICCovDecomposition 156
seasonder MUSICExtractDOASolutions 157
seasonder_ MUSICExtractPeaks 159
seasonder_ MUSICExtractPeaksCheckRetainedSolution 160
seasonder MUSICInitCov e 161
seasonder_MUSICInitDOASolutions 161
seasonder_ MUSICInitEigenDecomp 162
seasonder_MUSICInitInterpolatedData 163
seasonder_MUSICInitProjections, 164
seasonder_ MUSICLonLat 165
seasonder MUSICSelectDOA 166
seasonder_MUSICTestDualSolutions 167
seasonder_ MUSIC_Bins2DopplerFreq 168
seasonder MUSIC_DopplerFreq2Bins, 169
seasonder_NormalizedDopplerFreq2Bins 170
seasonder_NormalizedDopplerFreq2DopplerFreq 171
seasonder_ NULLSeaSondeRCS_MUSIC 172
seasonder_plotAPMLoops 173
seasonder_raw_to_INt e e e e e e e e e 173
seasonder_readCSField 174
seasonder_readCSSWBody 176
seasonder_readCSSWBodyRangeCell 176
seasonder_readCSSWFields 177
seasonder_readCSSWHeader 178
seasonder_readCSSWLImMs e 179
seasonder_readCSSYBodyRangeCell 180
seasonder_readCSSYHeader 181
seasonder_readPhaseFile 182
seasonder_readSeaSondeCSFile 183
seasonder_readSeaSondeCSFileBlock 184
seasonder_readSeaSondeCSFileData 186
seasonder_readSeaSondeCSFileHeader 187
seasonder_readSeaSondeCSFileHeaderV1 188
seasonder_readSeaSondeCSFileHeaderV2 189
seasonder_readSeaSondeCSFileHeaderV3 189
seasonder_readSeaSondeCSFileHeaderV4 190
seasonder_readSeaSondeCSFileHeaderV5 191
seasonder_readSeaSondeCSFileHeaderV6 192
seasonder_readSeaSondeRAPMFile 193
seasonder_readSeaSondeRCSSWFile 194
seasonder_readSeaSondeRCSSYFile 195
seasonder_readYAMLSpecso 196
seasonder_read_reduced_encoded_data, 197
seasonder_rejectDistantBragg oL 198
seasonder_rejectDistantBraggPeakTest 0L, 199

seasonder_rejectNoiselonospheric oL oo 201

Contents

7
seasonder_rejectNoiselonosphericTest 202
seasonder_rerun_qc_with_ funo o000 204
seasonder_ runMUSIC 205
seasonder_runMUSICInFOR 206
seasonder_SeaSondeRCSExportFORBoundaries 208
seasonder_SeaSondeRCSMUSICInterpolateDoppler 209
seasonder_SeaSondeRCSSWApplyScaling 210
seasonder_SeaSondeRCSSYApplyScaling 212
seasonder_SeaSondeRCS_plotSelfSpectrum 213
seasonder_SelfSpectra2dB 214
seasonder_setFORParameter e 215
seasonder_setFOR_currmax 216
seasonder_setFOR_fdown 217
seasonder_setFOR_flim 217
seasonder_setFOR_noisefact 218
seasonder_setFOR_nsm 219
seasonder_setFOR_parameters 220
seasonder_setMUSICOption it 221
seasonder_setMUSICOptions i 222
seasonder_setNoiseLevelEstimationInterval 223
seasonder_setSeaSondeRAPM_AmplitudeFactors 224
seasonder_setSeaSondeRAPM_AntennaBearing 225
seasonder_setSeaSondeRAPM_BEAR 225
seasonder_setSeaSondeRAPM_BearingResolution 226
seasonder_setSeaSondeRAPM_CommentLine 227
seasonder_setSeaSondeRAPM_CreateTimeStamp 227
seasonder_setSeaSondeRAPM_Creator 228
seasonder_setSeaSondeRAPM _FileID 229
seasonder_setSeaSondeRAPM_FileName 229
seasonder_setSeaSondeRAPM_PhaseCorrections 230
seasonder_setSeaSondeRAPM_ProcessingSteps 231
seasonder_setSeaSondeRAPM_quality_matrix 231
seasonder_setSeaSondeRAPM_SiteName 232
seasonder_setSeaSondeRAPM_SiteOrigin, 233
seasonder_setSeaSondeRAPM_Smoothing, 234
seasonder_setSeaSondeRAPM_StationCode 234
seasonder_setSeaSondeRAPM _Type L 235
seasonder_setSeaSondeRCS_APM 236
seasonder_setSeaSondeRCS data 237
seasonder_setSeaSondeRCS_FOR 237
seasonder_setSeaSondeRCS_FOR MAXP 238
seasonder_setSeaSondeRCS_FOR_MAXPbin 239
seasonder_setSeaSondeRCS_FOR_method 240
seasonder_setSeaSondeRCS_FOR_SS Smoothed 241
seasonder_setSeaSondeRCS_header 242
seasonder_setSeaSondeRCS_MUSIC 243
seasonder_setSeaSondeRCS_MUSIC_doppler_interpolation 243

seasonder_setSeaSondeRCS_MUSIC_dual_solutions_proportion 244

Index

Contents

seasonder_setSeaSondeRCS_MUSIC _interpolated_data 245
seasonder_setSeaSondeRCS_MUSIC_parameters 246
seasonder_setSeaSondeRCS_NoiseLevel 247
seasonder_setSeaSondeRCS_ProcessingSteps 247
seasonder_skip_cs_field L L 248
seasonder_skip_cs_file L 249
seasonder SmoothAPM 250
seasonder_SmoothFORSS 251
seasonder_SmoothSS 252
seasonder_splitLog L 253
seasonder_SwapDopplerUnits 254
seasonder_trimAPM 255
seasonder_v6_skip_transformation L. L Lo 256
seasonder_validateAttributesSeaSondeRAPM 257
seasonder_validateCalibrationMatrixSeaSondeRAPM 258
seasonder_validateCSDataStructure 259
seasonder_validateCSFileData 260
seasonder_validateCSHeaderStructure 261
seasonder_validateFORMethod 262
seasonder_validateFOR_parameters o v i 263
self_spectra_to_dB 264
summary.SeaSondeRAPM 265
summary.SeaSondeRCS 266
validate_SeaSondeRAPM_AmplitudeFactors 267
validate_SeaSondeRAPM_AntennaBearing 267
validate_SeaSondeRAPM_BEAR 268
validate_SeaSondeRAPM_BearingResolution 268
validate_SeaSondeRAPM_CommentLine 269
validate_SeaSondeRAPM_CreateTimeStamp 269
validate_SeaSondeRAPM_Creator 0 v v v v i e 270
validate_SeaSondeRAPM_FileID 270
validate_SeaSondeRAPM _FileName, 271
validate_SeaSondeRAPM_PhaseCorrections o v v v v i it 271
validate_SeaSondeRAPM_ProcessingSteps 272
validate_SeaSondeRAPM_quality_matrix 272
validate_SeaSondeRAPM_SiteName 273
validate_SeaSondeRAPM_SiteOrigin 273
validate_SeaSondeRAPM_Smoothing 274
validate_SeaSondeRAPM_StationCode 274
validate_SeaSondeRAPM_Type 275
validate_SeaSondeRCS_ProcessingSteps 275
276

dB_to_self_spectra 9

dB_to_self_spectra Convert dB Values to Self-Spectra Power

Description

This function converts power values expressed in decibels (dB) to linear self-spectra power val-
ues. The conversion is based on the given receiver gain, which accounts for the radar system’s
amplification effects.

Usage

dB_to_self_spectra(dB_values, receiver_gain)

Arguments

dB_values A numeric vector. The power values in decibels (dB).

receiver_gain A numeric scalar. The receiver gain in decibels (dB).

Details
The conversion from decibels to linear power follows the equation:

P — 10(dB+G)/10
where:

* \(P\) is the self-spectra power in linear scale,
* \(dB) represents the power values in decibels,

* \(G)) is the receiver gain in decibels.

Value

A numeric vector of self-spectra power values in linear scale.

See Also

self_spectra_to_dB for the inverse operation.

10 new_SeaSondeRCS

new_SeaSondeRCS Create a New SeaSondeRCS Object

Description

This function constructs a new SeaSondeRCS object with the provided header and data information,
initializing default values for various attributes including processing steps, FOR and MUSIC data,
noise level, APM, and reference noise normalized limits estimation interval.

Usage

new_SeaSondeRCS(header, data, seasonder_apm_object = NULL)

Arguments
header A list containing header information for the SeaSondeRCS object.
data A list containing the data fields for the SeaSondeRCS object.

seasonder_apm_object
An optional object representing the APM (Antenna Pattern Matrix or similar
metadata). If provided, it is assigned to the SeaSondeRCS object; otherwise, the
APM attribute is set to NULL.

Details
The object is created with the following components:

* header: Initially set to an empty list, then populated by seasonder_setSeaSondeRCS_header.
* data: Initially set to an empty list, then populated by seasonder_setSeaSondeRCS_data.
* version: Setto 1.
* ProcessingSteps: A character vector to log processing steps.
* FOR_data and MUSIC_data: Initialized as empty lists.
* NoiselLevel: Set using seasonder_defaultCSNoiseLevel().
* APM: Set to seasonder_apm_object if provided.
* interpolated_doppler_cells_index: An integer vector initialized as empty.
* reference_noise_normalized_limits_estimation_interval: Setusing seasonder_defaultCSReference_nois
* The object’s class is set to c("SeaSondeRCS", "list").
After constructing the base object, the function updates the header and data attributes, initializes

FOR parameters, and sets up the FOR configuration by calling seasonder_initSeaSondeRCS_FOR.
A processing step message is logged to indicate successful creation.

Value

A SeaSondeRCS object with version 1 containing the specified header, data, and default-initialized
attributes.

parse_metadata_line 11

See Also

seasonder_setSeaSondeRCS_header, seasonder_setSeaSondeRCS_data, seasonder_setFOR_parameters,
seasonder_setSeaSondeRCS_FOR

parse_metadata_line Parse a Metadata Line from a SeaSonde APM File

Description
This function takes a single line from a SeaSonde APM file and parses it into a named attribute and
its corresponding value.

Usage

parse_metadata_line(line)

Arguments

line The line of text to parse.

Value

A list containing the attribute name and its value.

print.SeaSondeRAPM Print a SeaSondeRAPM Object

Description

This function prints the details of a SeaSondeRAPM object, including the station code, original file
name, site origin (latitude and longitude), and antenna bearing. It is primarily used for displaying
the object’s metadata in a human-readable format.

Usage
S3 method for class 'SeaSondeRAPM'
print(x, ...)
Arguments
X A SeaSondeRAPM object. This object should be created using the season-

der_createSeaSondeRAPM() function and must include a calibration matrix, a
quality matrix, the BEAR attribute, and a StationCode.

Additional arguments that might be passed to other methods; currently not used.

12 print.SeaSondeRCS

Value

The SeaSondeRAPM object itself, invisibly.

Examples

Print metadata of a test SeaSondeRAPM object

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

print(obj)

print.SeaSondeRCS Print Method for SeaSondeRCS Object

Description

This method provides a formatted printout of the SeaSondeRCS object, displaying the station code,
date/time, number of Doppler cells, and number of range cells. It is designed for interactive use,
allowing users to quickly inspect the object.

Usage
S3 method for class 'SeaSondeRCS'
print(x, ...)
Arguments
X An object of class "SeaSondeRCS". This object should contain at least a header
list with metadata (such as station name, date/time, and cell counts).
Additional arguments. Currently not used, but supplied for compatibility with
generic print methods.
Details

The function uses the whisker package to render a template string with the header information.

Value

Invisibly returns the original SeaSondeRCS object.

Examples

obj <- list(header = list(nSiteCodeName = "Station1”,
nDateTime = Sys.time(),
nDopplerCells = 256,
nRangeCells = 100))

class(obj) <- "SeaSondeRCS"

print(obj)

process_version_header 13

process_version_header
Process a Specific Version of the SeaSonde File Header

Description

This function processes a specified version of the SeaSonde file header. It identifies the appropriate
header function for the given version, processes the header, and then updates the accumulating pool
of header data. Specifically:

Usage
process_version_header(
pool,
version,
specs,
connection,
endian = "big",
prev_data = NULL
)
Arguments
pool List. An accumulating list of processed headers from prior versions.
version Integer. The specific version of the header to be processed. E.g., for version 3,
the function seasonder_readSeaSondeCSFileHeaderV3 should be present.
specs List. Header specifications for each version. Each entry should correspond to
a version number and contain the required information to process that version’s
header.
connection Connection object. The file connection pointing to the SeaSonde file.
endian Character string. Specifies the byte order for reading data. Can be "big" (default)
prev_data previous header data or "little". Use the appropriate value depending on the
system architecture and the file’s source.
Details

1. For fields in the current header that overlap with the accumulated pool, the current header’s
values overwrite those in the pool.

2. Fields that are unique to the current header are appended to the pool.

Value

List. A combination of the initial pool and the processed header for the given version. Fields in
the current header will overwrite or append to the pool as described above.

14 gc_check_type

Assumptions

This function assumes that the desired version-specific seasonder_readSeaSondeCSFileHeaderVx
functions are available in the global environment.

See Also

seasonder_readSeaSondeCSFileHeaderV2 seasonder_readSeaSondeCSFileHeaderV3 seasonder_readSeaSondeCSFi.
seasonder_readSeaSondeCSFileHeaderV5 seasonder_readSeaSondeCSFileHeaderVe6

gc_check_range Quality Control - Check Range and Type

Description

This function verifies if a given value lies within a specified range and matches the expected type,
if provided.

Usage
gc_check_range(field_value, min, max, expected_type = NULL)

Arguments
field_value The value to be checked.
min Minimum allowable value for field_value.
max Maximum allowable value for field_value.

expected_type (optional) The expected type of the field_value. Default is NULL.

Value

The original field_value if it’s within range and matches the expected_type; otherwise, an error is
raised.

gc_check_type Quality Control - Check Type

Description

This function verifies if a given value is of the expected type.

Usage
gc_check_type(field_value, expected_type)

gc_check_unsigned 15

Arguments

field_value The value whose type needs to be checked.

expected_type The expected type of the field_value.

Value

The original field_value if it matches the expected_type; otherwise, an error is raised.

gc_check_unsigned Quality Control Check for Unsigned Values

Description

This function performs a quality control check to ensure that a given field value is an unsigned
number (i.e., a non-negative number). Optionally, it can also check if the field value matches a
specified data type before performing the unsigned check.

Usage

gc_check_unsigned(field_value, expected_type = NULL)

Arguments

field_value The value to be checked. The function verifies if this value is non-negative. It
can be of any type but is typically expected to be a numeric value.

expected_type An optional parameter specifying the expected data type of field_value. If
provided, the function first checks if field_value matches the expected type
before verifying if it is unsigned. Default is NULL, which means no type check
is performed.

Value

Returns the field_value if it passes the checks: it is of the expected type (if expected_type is
not NULL) and is non-negative. If any of the checks fail, the function logs an error message and
aborts execution.

16 readV6BlockData

readVé6BlockData Read Version 6 Block Data

Description

This function reads and processes regular and repeated blocks of data based on provided specifica-
tions. Regular blocks are read directly, while repeated blocks are processed recursively based on a
set of loops provided in the specifications.

Usage

readVéBlockData(
specs,
connection,
endian = "big",
prev_data = NULL,
remaining_loops = NULL

)
Arguments

specs A list. Specifications detailing the structure and content of the data blocks. Con-
tains variable names, types, quality check functions, and other related attributes.
For repeated blocks, a 'repeat’ key is added which details the loop structure and
nested specifications.

connection A connection object. Represents the connection to the data source. It’s passed
to the lower-level reading function.

endian A character string. Specifies the byte order to be used. Default is "big". Passed
to the lower-level reading function.

prev_data A list. Previous data or metadata that might be required to inform the reading

process, such as loop lengths for repeated blocks. Default is NULL.
remaining_loops

A character vector. Details the remaining loops to be processed for repeated

blocks. Internally used for recursive processing. Default is NULL. If provided,

it should always be in sync with the repeat specifications.

Value

A list. Contains the read and processed data based on the provided specifications. Regular variables
are returned at the top level. Repeated blocks are nested lists with "loop’ and ’data’ keys detailing
the loop variable and corresponding data.

See Also

readV6BlockData

read_and_qc_field 17

Examples

Example: read a single UInt8 value using internal helper
specs <- list(
fieldl = list(

type = "UInt8",
gc_fun = "qgc_check_unsigned”,
qc_params = list()

)

)

con <- rawConnection(as.raw(c(10)), "rb")

result <- readV6BlockData(specs, con, endian = "big")
print(result)

close(con)

read_and_qgc_field Read and Quality Control a Single Field

Description

This auxiliary function reads a field from a binary file using a provided specification and applies
a quality control function on the retrieved data. The expectations and functioning of the quality con-
trol functions are described in detail in the documentation for seasonder_readSeaSondeCSFileBlock.

Usage
read_and_qc_field(field_spec, connection, endian = "big")
Arguments
field_spec A list containing the specifications for the field to read. It should contain:

* type: the type of data to read, passed to seasonder_readCSField.

* gc_fun: the name of a quality control function. As detailed in seasonder_readSeaSondeCSFileBlo
this function should be present in the shared environment seasonder_the
and must accept field_value as its first argument, followed by any other
arguments specified in qc_params.

* gc_params: a list of additional parameters to pass to the quality control
function. See seasonder_readSeaSondeCSFileBlock for detailed expec-
tations of the QC function behavior.

connection A connection to the binary file.
endian A character string indicating the byte order. Options are "big" and "little" (de-
fault is "big").
Value

The value of the field after applying quality control.

18 read_and_qc_field

Condition Management

This function utilizes the rlang package to manage conditions and provide detailed and structured
condition messages:

Condition Classes:
* seasonder_cs_field_skipped: Condition that indicates a CSField was skipped during read-
ing.

* seasonder_cs_field_qgc_fun_rerun: Condition that indicates a rerun of the quality control
function was triggered.

* seasonder_cs_field_qgc_fun_not_defined_error: Error raised when the quality control
function specified is not found in the shared environment seasonder_the.

* seasonder_cs_field_qgc_fun_error: Error raised when an issue occurs while applying the
quality control function.

Condition Cases:

* If a CSField is skipped during reading, the condition seasonder_cs_field_skipped is used
to skip QC and then is re-signaled.

e If an alternate QC is rerun using the seasonder_rerun_gc_with_fun restart, the condition
seasonder_cs_field_qgc_fun_rerun is signaled.

* If the quality control function specified is not found in the shared environment seasonder_the,
the error seasonder_cs_field_qgc_fun_not_defined_error is raised.

* Ifthere’s an issue applying the quality control function, the error seasonder_cs_field_qc_fun_error
is raised.

Restart Options: The function provides structured mechanisms to recover from errors/conditions
during its execution using withRestarts. The following restart options are available:

* seasonder_rerun_gc_with_fun: Allows for rerunning QC with an alternate function.

— Usage: In a custom condition handler, you can call seasonder_rerun_gc_with_fun(cond,
alternateQCfunction) to trigger this restart and run an alternate QC using alternateQCfunction.
alternateQCfunction will be used as follows alternateQCfunction(x) being x the value.

No extra parameters are passed.

— Effect: If invoked, the function logs an info message detailing the reason of the rerun,
and then returns the value returned by alternateQCfunction.

See Also

seasonder_rerun_qc_with_fun, seasonder_readCSField

It’s also important to note that within read_and_qc_field, the function seasonder_readCSField
is used. This function has its own error management and restart options, which are detailed in its
documentation.

read_matrix_row 19

read_matrix_row Read a Row from a Matrix Represented as Text Lines

Description
This function reads a row of numbers from a matrix that is represented as an array of text lines. It
is used to facilitate reading data from SeaSonde APM files.

Usage

read_matrix_row(lines, start, number_of_lines_to_read)

Arguments
lines The array of lines, each representing part of the row.
start The start index of the lines to read from.

number_of_lines_to_read
The number of lines to read to form the row.

Value

A numeric vector containing the row values.

SeaSondeRAPM_amplitude_and_phase_corrections_step_text
Generate Amplitude and Phase Corrections Step Text

Description

This function generates a message indicating the amplitude and phase corrections applied to the
APM.

Usage

SeaSondeRAPM_amplitude_and_phase_corrections_step_text(
amplitudel,
amplitude2,
phasel,
phase?2

Arguments

amplitudel Amplitude correction for the first channel.
amplitude2 Amplitude correction for the second channel.
phasel Phase correction (in degrees) for the first channel.

phase?2 Phase correction (in degrees) for the second channel.

20 SeaSondeRAPM_antenna_bearing_override_step_text

Value

A character string detailing the applied amplitude and phase corrections.

SeaSondeRAPM_amplitude_factors_override_step_text
Generate Amplitude Factors Override Step Text

Description

This function generates a message indicating that amplitude factors have been overridden.

Usage

SeaSondeRAPM_amplitude_factors_override_step_text(amplitude_factors)

Arguments

amplitude_factors
A numeric vector with two elements for the new amplitude factors.

Value

A character string stating the new amplitude factors.

SeaSondeRAPM_antenna_bearing_override_step_text
Generate Antenna Bearing Override Step Text

Description

This function generates a message indicating that the AntennaBearing attribute was overridden.

Usage

SeaSondeRAPM_antenna_bearing_override_step_text(antenna_bearing)

Arguments

antenna_bearing
The new antenna bearing value.

Value

A character string stating that the antenna bearing has been overridden.

SeaSondeRAPM_creation_step_text 21

SeaSondeRAPM_creation_step_text
Generate Creation Step Text

Description
This function generates a text message indicating the time an APM object was created based on the
current system time and the provided file path.

Usage

SeaSondeRAPM_creation_step_text(file_path)

Arguments

file_path A character string specifying the path to the file.

Value

A character string with the formatted creation message.

SeaSondeRAPM_phase_correction_override_step_text
Generate Phase Correction Override Step Text

Description

This function generates a message indicating that phase corrections have been overridden.

Usage

SeaSondeRAPM_phase_correction_override_step_text(phase_correction)

Arguments

phase_correction
A numeric vector with two elements for the new phase corrections.

Value

A character string stating the new phase correction values.

22 SeaSondeRAPM_smoothing_step_text

SeaSondeRAPM_SiteOrigin_override_step_text
Generate SiteOrigin Override Step Text

Description

This function generates a message indicating that the SiteOrigin has been overridden.

Usage

SeaSondeRAPM_SiteOrigin_override_step_text(SiteOrigin)

Arguments

SiteOrigin A numeric vector with two elements representing the new latitude and longitude.

Value

A character string with the updated SiteOrigin details.

SeaSondeRAPM_smoothing_step_text
Generate Smoothing Step Text

Description

This function generates a message indicating that smoothing has been applied to the APM.

Usage

SeaSondeRAPM_smoothing_step_text(smoothing)

Arguments

smoothing The smoothing parameter (number of points used).

Value

A character string detailing the smoothing operation.

SeaSondeRAPM_trimming_step_text 23

SeaSondeRAPM_trimming_step_text
Generate Trimming Step Text

Description

This function generates a message indicating that trimming has been applied to the APM.

Usage

SeaSondeRAPM_trimming_step_text(trimming)

Arguments

trimming The number of points trimmed from each end of the APM.

Value

A character string with the trimming details.

SeaSondeRCS_creation_step_text
Generate Creation Step Text

Description
This function generates a text message indicating the time an CS object was created based on the
current system time and the provided file path.

Usage

SeaSondeRCS_creation_step_text(file_path)

Arguments

file_path A character string specifying the path to the file.

Value

A character string with the formatted message indicating the time of creation and the file path.

24 SeaSondeRCS_MUSIC_validate_doppler_interpolation

SeaSondeRCS_MUSIC_validate_doppler_interpolation
Validate Doppler Interpolation Factor for SeaSondeRCS Objects

Description

This function validates the doppler_interpolation factor for a SeaSondeRCS object, ensuring it
is within the allowed range and does not result in exceeding the maximum number of Doppler bins
after interpolation.

Usage

SeaSondeRCS_MUSIC_validate_doppler_interpolation(value, seasonder_cs_object)

Arguments

value An integer specifying the Doppler interpolation factor. Must be one of 1, 2, 3,
or4.
seasonder_cs_object

A SeaSondeRCS object containing metadata for Doppler bin calculations.
Details

Doppler interpolation is a process that increases the number of Doppler bins by the specified factor
before radial processing. The function performs the following validations:

¢ Ensures the doppler_interpolation factor is one of 1, 2, 3, or 4.

* Computes the total number of Doppler bins after applying the specified interpolation factor. If
this number exceeds 2048, the function aborts with a descriptive error message.

The maximum Doppler bins (2048) constraint is derived from CODAR’s SeaSonde R8 Radial Con-
fig Setup, which specifies that the product of the interpolation factor and the original number of
Doppler bins should not exceed this limit.

Value

The validated doppler_interpolation factor as an integer.

Warnings

» Using Doppler interpolation factors of 3x or 4x is not recommended.

* Exceeding 2048 Doppler bins after interpolation will result in an error.

See Also

seasonder_getnDopplerCells for retrieving the number of Doppler bins, seasonder_logAndAbort
for error handling and logging.

seasonder_applyAPMAmplitude AndPhaseCorrections 25

seasonder_applyAPMAmplitudeAndPhaseCorrections
Apply Amplitude and Phase Corrections to a SeaSonde RAPM Object

Description
This function applies amplitude and phase corrections to each antenna channel of a SeaSonde
RAPM object based on the correction factors stored within the object.

Usage

seasonder_applyAPMAmplitudeAndPhaseCorrections(seasonder_apm_object)

Arguments

seasonder_apm_object
A SeaSonde RAPM object containing raw data and correction factors.

Value

The SeaSonde RAPM object with amplitude and phase corrections applied to the data.

Examples

Apply amplitude & phase corrections to a test SeaSondeRAPM object
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

corrected_obj <- seasonder_applyAPMAmplitudeAndPhaseCorrections(obj)

seasonder_applyCSSWSigns
Apply CSSW Sign Corrections

Description
Applies sign corrections to both cross-spectra and auto-spectra fields within a list of CSSW data
cells.

Usage

seasonder_applyCSSWSigns(cs_data)

Arguments

cs_data A list of CSSW data cells, where each cell may include fields for cross-spectra
(Ccl2m’,’cl2a’,’c13m’, ’cl13a’, ’c23m’, ’c23a’) and auto-spectra ("csla’, ’cs2a’,
’cs3a’) signs.

26 seasonder._areMessagesEnabled

Value

The modified list of CSSW data cells with sign corrections applied.

seasonder_arelLogsEnabled
Check if log recording is enabled in SeaSondeR

Description

This function checks whether log recording is currently enabled in the SeaSondeR package.

Usage

seasonder_arelLogsEnabled()

Value

Logical indicating whether logs are enabled or disabled.

Examples

seasonder_arelLogsEnabled()

seasonder_areMessagesEnabled
Check if message logging is enabled in SeaSondeR

Description

This function checks whether message logging is currently enabled.

Usage

seasonder_areMessagesEnabled()

Value

Logical value indicating whether messages are enabled.

Examples

seasonder_areMessagesEnabled()

seasonder_asJSONSeaSondeRCSData 27

seasonder_asJSONSeaSondeRCSData
Convert SeaSondeRCS Object to JSON

Description

This function extracts the data from a seasonder_cs_object, representing a SeaSondeRCS object,
and converts it into a JSON format. Optionally, it can write this JSON data to a specified file path.

Usage

seasonder_asJSONSeaSondeRCSData(seasonder_cs_object, path = NULL)

Arguments

seasonder_cs_object
A SeaSondeRCS object from which the data will be extracted.

path Optional path to a file where the JSON output should be saved. If provided, the
function will write the JSON data to this file. If NULL, the function will only
return the JSON data as a string without writing it to a file.

Value
A character string in JSON format representing the data of the provided SeaSondeRCS object. If a
path is provided, the function also writes this data to the specified file.

Note

If a path is provided and there is an issue writing to the file, the function logs an error message using
seasonder_logAndMessage and returns the JSON data as a string.

See Also

seasonder_createSeaSondeRCS, seasonder_getSeaSondeRCS_data

Examples

Example: create a simple SeaSondeRCS object and convert its data to JSON
cs_obj <- structure(list(data = list(a =1, b = 2)), class = "SeaSondeRCS")
json_output <- seasonder_asJSONSeaSondeRCSData(cs_obj)

print(json_output)

28 seasonder_asJSONSeaSondeRCSHeader

seasonder_asJSONSeaSondeRCSHeader
Convert SeaSondeRCS Object to JSON

Description

This function extracts the header data from a seasonder_cs_object, representing a SeaSondeRCS
object, and converts it into a JSON format. Optionally, it can write this JSON data to a specified file
path.

Usage

seasonder_asJSONSeaSondeRCSHeader (seasonder_cs_object, path = NULL)

Arguments

seasonder_cs_object
A SeaSondeRCS object from which the header data will be extracted.

path Optional path to a file where the JSON output should be saved. If provided, the
function will write the JSON data to this file. If NULL, the function will only
return the JSON data as a string without writing it to a file.

Value

A character string in JSON format representing the header data of the provided SeaSondeRCS
object. If a path is provided, the function also writes this data to the specified file.

Note

If a path is provided and there is an issue writing to the file, the function logs an error message using
seasonder_logAndMessage and returns the JSON data as a string.

See Also

seasonder_createSeaSondeRCS, seasonder_getSeaSondeRCS_header

Examples

Example: create a simple SeaSondeRCS object and convert its header to JSON
cs_obj <- structure(list(data = list(a =1, b = 2)), class = "SeaSondeRCS")
attr(cs_obj, "header"”) <- list(

nSiteCodeName = "Stationl”,

nDateTime = Sys.time(),

nDopplerCells = 2,

nRangeCells = 3
)
json_header <- seasonder_asJSONSeaSondeRCSHeader (cs_obj)
print(json_header)

seasonder_Bins2DopplerFreq 29

seasonder_Bins2DopplerFreq
Convert Doppler Bins to Doppler Frequencies

Description
This function retrieves the Doppler frequency values corresponding to the specified bin indices in a
given SeaSondeR object.

Usage

seasonder_Bins2DopplerFreq(seasonder_cs_object, bins)

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing Doppler bin metadata.

bins A numeric vector specifying the Doppler bin indices.

Details

This function retrieves the full set of Doppler bin frequencies using seasonder_getDopplerBinsFrequency
in non-normalized form. It then selects the Doppler frequencies corresponding to the specified bin
indices.

Value

A numeric vector of Doppler frequencies (in Hz) corresponding to the specified bins.

See Also

seasonder_DopplerFreq2Bins for the reverse operation. seasonder_getDopplerBinsFrequency
for retrieving the full set of Doppler frequencies.

seasonder_Bins2NormalizedDopplerFreq
Convert Doppler Bins to Normalized Doppler Frequency

Description
This function retrieves the normalized Doppler frequencies corresponding to the specified bins in a
given SeaSondeR object.

Usage

seasonder_Bins2NormalizedDopplerFreq(seasonder_cs_object, bins)

30 seasonder_check_specs

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing Doppler bin metadata.

bins A numeric vector specifying the Doppler bin indices.

Details

This function first retrieves the Doppler bin frequencies in normalized form using seasonder_getDopplerBinsFrequency.
It then selects the normalized Doppler frequencies corresponding to the specified bin indices.

Normalized Doppler Frequency Calculation: The normalized Doppler frequency is typically
defined as:
_ f doppler

f =
norm fbragg

where:

* fnorm 18 the normalized Doppler frequency,
* fdoppler is the Doppler frequency of a given bin,

* foragg 1s the Bragg frequency, computed based on radar wavelength.

Value

A numeric vector of normalized Doppler frequencies corresponding to the specified bins.

See Also

seasonder_getDopplerBinsFrequency for retrieving Doppler bin frequencies.

seasonder_check_specs Validate Field Specifications

Description

This function checks if the provided specifications (specs) contain entries for all the required fields
listed in fields.

Usage

seasonder_check_specs(specs, fields)

Arguments

specs A list containing field specifications.

fields A character vector of field names to be checked in the specs.

seasonder_computeBinsRadial Velocity 31

Details

The function iterates over each field in the fields vector and checks if there is an associated entry in
the specs list. If any field is missing, an error is thrown using seasonder_logAndAbort indicating
the missing field specification.

Value

Invisibly returns NULL.

Condition Management

This function utilizes the rlang package to manage conditions, and provide detailed and structured
condition messages:

Condition Classes:

» spsr_field_specification_missing_error: This error is thrown when a required field
specification is missing from the specs list.

Condition Cases:

» Required field specification is missing.

seasonder_computeBinsRadialVelocity
Compute Radial Velocities for Doppler Bins

Description

This function calculates the radial velocities corresponding to the Doppler bins in a SeaSondeRCS
object, based on the provided Doppler frequencies. The calculation uses the radar’s wave number
and Bragg angular frequencies.

Usage

seasonder_computeBinsRadialVelocity(seasonder_cs_object, freq)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing data and metadata necessary for the calcula-
tion of Doppler bin frequencies and velocities.

freq A numeric vector representing the Doppler frequencies for which the radial ve-
locities are to be calculated.

32 seasonder._computeCenterDopplerBin

Details
The radial velocity v for each Doppler bin is computed using the formula:

_ Freq — BraggFreq
B 2 ko

where:

* Freq is the Doppler frequency of the bin.
» BraggFreq is the Bragg Doppler angular frequency for the bin.

* kg is the radar wave number divided by 27.
The Bragg frequency is negative for bins with frequencies below zero and positive for bins with
frequencies above zero.
Value
A numeric vector containing the radial velocities (in meters per second, m/s) corresponding to the
provided Doppler frequencies.
See Also

seasonder_getBraggDopplerAngularFrequency to retrieve the Bragg angular frequencies. seasonder_getRadarWaveNun
to obtain the radar wave number.

seasonder_computeCenterDopplerBin
Compute the Center Doppler Bin

Description

This function calculates the center Doppler bin for a SeaSondeRCS object based on the total number
of Doppler bins. The center bin corresponds to the bin representing zero Doppler frequency.

Usage

seasonder_computeCenterDopplerBin(seasonder_cs_object, nDoppler)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing metadata about Doppler bins and other radar
parameters.

nDoppler An integer representing the total number of Doppler bins.

seasonder_computeDopplerBinsFrequency 33

Details

The center Doppler bin is computed as: center_bin = nDoppler /2 where nDoppler is the total
number of Doppler bins. This represents the bin at zero Doppler frequency in a zero-indexed system.
Since R uses one-based indexing, users might observe an offset when comparing the output of this
function to CODAR’s Radia Suite programs.

Value

A numeric value representing the center Doppler bin. The calculation assumes zero-based indexing
from CODAR data files, but note that R uses one-based indexing, which may result in differences
compared to CODAR’s Radia Suite outputs.

See Also

seasonder_getSeaSondeRCS_MUSIC_nDopplerCells to retrieve the number of Doppler cells from
a SeaSondeRCS object.

seasonder_computeDopplerBinsFrequency
Compute Doppler Bins Frequencies

Description

This function computes the Doppler frequencies associated with each Doppler bin in a SeaSon-
deRCS object. The output can be normalized by the positive Bragg frequency if specified.

Usage

seasonder_computeDopplerBinsFrequency(
seasonder_cs_object,
nDoppler,
center_bin,
spectra_res,
normalized = FALSE

Arguments

seasonder_cs_object
A SeaSonde CS object created by seasonder_createSeaSondeRCS(). This
object contains the necessary metadata, such as Doppler resolution and center
bin, for frequency computation.

nDoppler Integer. The total number of Doppler bins.

center_bin Numeric. The index of the central Doppler bin corresponding to 0 Hz.
spectra_res Numeric. The spectral resolution in Hz for each Doppler bin.

normalized Logical. If TRUE, the frequencies are normalized by dividing them by the posi-

tive Bragg frequency. Default is FALSE.

34 seasonder_computeDopplerFreq2Bins
Details
Doppler frequencies are calculated using the formula:
frequency, = (bin index; — center bin) x resolution

For normalized frequencies:

frequency,

fi =
requency; positive Bragg frequency

The center bin is typically determined using seasonder_getCenterDopplerBin(), and the resolu-
tion is obtained from seasonder_getDopplerSpectrumResolution(). Normalization is based on
the positive Bragg frequency calculated by seasonder_getBraggDopplerAngularFrequency().

Value

A numeric vector representing the Doppler frequencies for each bin. If normalized = TRUE, the
values are dimensionless and relative to the positive Bragg frequency. Otherwise, they are in Hz.

See Also

seasonder_getCenterDopplerBin, seasonder_getDopplerSpectrumResolution, seasonder_getBraggDopplerAngul.

seasonder_computeDopplerFreg2Bins
Convert Doppler Frequencies to Doppler Bins

Description

This function converts a set of Doppler frequency values into their corresponding Doppler bin in-
dices using predefined Doppler frequency bins and frequency step size.

Usage

seasonder_computeDopplerFreqg2Bins(
seasonder_cs_object,
doppler_values,
doppler_fregs,
delta_freq,
nDoppler

seasonder._computeFORs 35

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object.

doppler_values A numeric vector specifying the Doppler frequencies to be converted into bin
indices.

doppler_freqs A numeric vector containing the Doppler frequencies corresponding to each bin.

delta_freq A numeric scalar specifying the frequency step size (difference between consec-
utive Doppler bins).
nDoppler An integer indicating the total number of Doppler bins.
Details

The function constructs a set of bin boundaries using the Doppler frequencies. The leftmost bound-
ary is adjusted by subtracting delta_freq from the first Doppler frequency to extend the range.

The function then applies findInterval to determine the corresponding bin index for each input
Doppler frequency. The bin assignment process follows these rules:
* rightmost.closed = TRUE: The last bin interval includes its upper boundary.

* all.inside = FALSE: Values outside the defined frequency range are assigned indices below
1 or above nDoppler.

* left.open = TRUE: The left interval is open, meaning values exactly equal to a boundary are
assigned to the higher bin.

After determining the bin indices, values that are out of range (bins <1 or bins > nDoppler) are
set to NA.

Value
An integer vector of Doppler bin indices corresponding to the input Doppler frequencies. Values
that fall outside the valid bin range are assigned NA.

See Also

seasonder_Bins2NormalizedDopplerFreq for converting bins back to normalized Doppler fre-
quencies. findInterval for details on interval-based bin selection.

seasonder_computeFORs Compute First Order Regions (FOR) Based on Selected Method

Description

This function processes a SeaSondeRCS object to compute the First Order Regions (FOR) using the
specified method. It allows the user to configure the processing method and parameters dynamically.

36 seasonder_computeFORs

Usage

seasonder_computeFORs (seasonder_cs_object, method = NULL, FOR_control = NULL)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the spectral data and FOR parameters.

method Optional; A character string specifying the method to be used for FOR compu-
tation. Defaults to NULL, in which case the method stored in the object is used.
Currently supported method: "SeaSonde".

FOR_control Optional; A list of parameters for configuring the FOR computation process.
Defaults to NULL, in which case the parameters already stored in the object are
used.

Details

Steps:

1. Set Method:

 If a method is provided, it updates the SeaSondeRCS object with the specified method.
2. Retrieve Method:

 If no method is specified, the function retrieves the method stored in the object.

3. Set Parameters:

* If FOR_control is provided, the function updates the object’s FOR parameters.
4. Method Execution:

» Based on the selected method, the corresponding processing function is called. Currently,
the only supported method is "SeaSonde”, which calls seasonder_computeFORsSeaSondeMethod.

Use Case: This function provides a flexible interface for computing FORs, allowing users to dy-
namically select methods and configure parameters without modifying the internal object structure.
Value

The updated SeaSondeRCS object with the computed First Order Regions (FOR).

See Also

* seasonder_computeFORsSeaSondeMethod for processing FORs using the SeaSonde method.
* seasonder_setSeaSondeRCS_FOR_method for setting the processing method.

* seasonder_setFOR_parameters for configuring FOR parameters.

seasonder._computeFORsSeaSondeMethod 37

Examples

Set sample file paths

seasonder_disableMessages()

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_computeFORs(cs_obj, method = "SeaSonde")

Retrieve existing FOR control parameters from the object

FOR_control <- seasonder_getSeaSondeRCS_FORConfig(cs_obj)

cs_obj <- seasonder_computeFORs(cs_obj, FOR_control = FOR_control)

seasonder_computeFORsSeaSondeMethod
Compute First Order Regions (FOR) Using the SeaSonde Method

Description

This function processes a SeaSondeRCS object to compute the First Order Regions (FOR) using
the SeaSonde method. The workflow includes detecting null points, filtering amplitudes, limit-
ing currents to a maximum range, and rejecting peaks based on proximity to Bragg indices and
noise/ionospheric contamination.

Usage

seasonder_computeFORsSeaSondeMethod(seasonder_cs_object)

Arguments

seasonder_cs_object

A SeaSondeRCS object containing the spectral data and configuration parame-
ters.

Details
Workflow Steps:

1. Initialize Processing Steps:

* Marks the start of the SeaSonde method processing in the object’s metadata.
2. Detect Null Points:

 Locates the nulls defining the First Order Regions (FOR) using seasonder_findFORNulls.
3. Filter Amplitudes:

* Removes regions with insufficient amplitudes using seasonder_filterFORAmplitudes.

4. Limit Currents to Maximum Range:

38 seasonder_computel onLatFromOriginDistBearing

* Ensures that currents exceed the configured maximum radial velocity using seasonder_limitFORCurrentRange.
5. Reject Distant Bragg Peaks:

* Ifenabled, rejects peaks that are too far from Bragg indices using seasonder_rejectDistantBragg.
6. Reject Noise/Ionospheric Peaks:

* If enabled, removes peaks where non-Bragg power significantly exceeds Bragg power
using seasonder_rejectNoiseIonospheric.

7. Finalize Processing Steps:

* Marks the end of the SeaSonde method processing in the object’s metadata.

Use Case: This function is designed for processing SeaSonde radar data to accurately identify and
validate the First Order Regions, ensuring reliable current and wave measurements.

Value

The updated SeaSondeRCS object with the computed First Order Regions (FOR).

See Also

* seasonder_findFORNulls for detecting nulls in the FOR.

* seasonder_filterFORAmplitudes for amplitude filtering.

* seasonder_limitFORCurrentRange for limiting radial velocity.

* seasonder_rejectDistantBragg for rejecting distant Bragg peaks.

* seasonder_rejectNoiseIonospheric for rejecting noise/ionospheric contamination.

seasonder_computeLonLatFromOriginDistBearing
Compute Geographic Coordinates from Origin, Distance, and Bearing

Description

This function calculates the geographic coordinates (latitude and longitude) for a given distance and
bearing from a specified origin.

Usage

seasonder_computeLonLatFromOriginDistBearing(
origin_lon,
origin_lat,
dist,
bearing

)

seasonder_computeNoiseLevel 39

Arguments
origin_lon A numeric value representing the longitude of the origin point in decimal de-
grees.
origin_lat A numeric value representing the latitude of the origin point in decimal degrees.
dist A numeric value representing the distance from the origin in kilometers.
bearing A numeric vector of bearings (in degrees) indicating the direction from the ori-
gin.
Details

The function uses the geodetic formulas provided by the geosphere package to compute the desti-
nation point based on:

* Origin longitude and latitude
¢ Distance in meters (converted from kilometers)

* Bearing in degrees
The calculation employs the geosphere: :destPoint function, which handles the spherical geom-
etry of the Earth.
Value
A data frame with two columns:

* lon: The longitude of the computed geographic coordinates.

* lat: The latitude of the computed geographic coordinates.

See Also

destPoint

Examples

Example with a point at 100 km to the north of the origin
result <- seasonder_computelLonLatFromOriginDistBearing(-123.3656, 48.4284, 100, 0)
print(result)

seasonder_computeNoiselLevel
Compute Noise Level for First Order Region (FOR) Processing

Description

This function estimates the noise level in the self-spectra of a SeaSondeR cross-spectral object. The
noise level is determined by averaging the spectral power over a predefined frequency range where
no first-order Bragg signal is expected. This value is later used in setting signal-to-noise thresholds
for FOR detection.

40 seasonder._computeNoiseLevel

Usage

seasonder_computeNoiselLevel (seasonder_cs_object, antenna = 3, smoothed = FALSE)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral data and FOR parameters.

antenna A numeric value specifying the antenna from which to extract self-spectra (de-
fault is 3).
smoothed Logical; if TRUE, the function uses a smoothed version of the self-spectra.
Details

The noise level is computed via the following steps:

1. Determine Noise Reference Limits:
* Retrieves the normalized Doppler frequency limits for noise reference from the FOR
parameters (using seasonder_getFOR_parameters).
» Converts these normalized limits into Doppler bin indices using seasonder_SwapDopplerUnits.
e If any of the resulting bin indices are missing, they are replaced with appropriate default
boundaries (i.e., upper limit set to the total number of Doppler cells and lower limit set to

D).
2. Extract Spectral Data for Noise Estimation:

* The function extracts the self-spectra from the specified antenna (using seasonder_getSeaSondeRCS_SelfSpectr
limiting the extraction to the Doppler bins within the computed noise reference range
(both negative and positive regions).

3. Compute the Average Noise Level:

* The spectral data from both the negative and positive Doppler regions are concatenated,
and the row-wise mean is calculated to estimate the average noise level.

4. Store the Noise Level:

» The computed average noise level is stored in the object’s NoiseLevel attribute by calling
seasonder_setSeaSondeRCS_Noiselevel.
* A processing step message is logged using SeaSondeRCS_computeNoiselLevel _step_text.

The resulting noise level is essential for setting accurate thresholds during FOR detection.

Value

The updated SeaSondeRCS object with the computed noise level stored in its attributes.

See Also

* seasonder_getFOR_parameters for retrieving noise reference limits.

* seasonder_SwapDopplerUnits for converting normalized Doppler frequencies into bin in-
dices.

* seasonder_getSeaSondeRCS_SelfSpectra for extracting self-spectra.
* seasonder_setSeaSondeRCS_NoiseLevel for storing the computed noise level.

seasonder_computePowerMatrix 41

seasonder_computePowerMatrix
Compute Power Matrix

Description

This function calculates the power matrix based on the provided steering vector, eigenvalues, and
eigenvectors. The computation differs depending on the number of columns in the steering vector
matrix.

Usage

seasonder_computePowerMatrix(eig, a)

Arguments
eig A list containing the eigenvalues and eigenvectors of a covariance matrix. The
list should include:
* values: A numeric vector of eigenvalues.
* vectors: A matrix where each column is an eigenvector.
a A complex matrix representing the steering vector(s). Each column corresponds
to a direction of arrival.
Details

The function computes the power matrix using the following steps:

 If a has two columns:

1. Select the first two eigenvalues and their corresponding eigenvectors.
2. Compute the matrix G = a™* - eigVector, where a* is the conjugate transpose of a.
3. Calculate the inverse of G and its conjugate transpose.

4. Compute the power matrix P = G, - diag(eigValues) - Gipy.
e If a has one column:

1. Select the first eigenvalue and its corresponding eigenvector.

2. Follow similar steps as above with single-column operations.

If a has no columns, the function returns NULL.

Value

A complex matrix representing the power matrix, calculated based on the provided eigenvalues,
eigenvectors, and steering vectors. If the number of columns in a is zero, the function returns NULL.

42 seasonder_compute_antenna_pattern_proyections

Mathematical Formula

For a steering vector matrix a, eigenvectors eigVector, and eigenvalues eigValues, the power matrix
is calculated as:
P=qG*

mv

- diag(eigValues) - Giny

where: G = a* - eigVector and Gy, is the inverse of G.

References

* Paolo, T. de, Cook, T., & Terrill, E. (2007). Properties of HF RADAR Compact Antenna Ar-
rays and Their Effect on the MUSIC Algorithm. OCEANS 2007, 1-10. doi:10.1109/oceans.2007.4449265.

seasonder_compute_antenna_pattern_proyections
Compute Antenna Pattern Projections for the MUSIC Algorithm

Description

This function computes the projection of the antenna pattern vector onto the noise subspace, a
critical step in the Multiple Signal Classification (MUSIC) algorithm. It is used to estimate the
direction of arrival (DOA) by identifying the bearing that minimizes this projection.

Usage

seasonder_compute_antenna_pattern_proyections(En, a, Conj_t_a)

Arguments
En A matrix containing the eigenvectors of the noise subspace, derived from the
covariance matrix of the signals.
a A complex-valued vector representing the antenna manifold response for a spe-
cific bearing. Each element corresponds to the response of an antenna element.
Conj_t_a The conjugate transpose of the antenna manifold vector a.
Details

The MUSIC algorithm leverages the property that the antenna manifold vector is orthogonal to the
noise subspace eigenvectors in an ideal scenario. However, in practice, noise in the covariance
matrix perturbs the noise subspace, resulting in a small but non-zero projection. This function
calculates the magnitude of this projection using the formula:

P =a"(EnEM)a
where:

¢ ¢ is the antenna manifold vector.

» En is the noise subspace eigenvector matrix.

seasonder_createSeaSondeRAPM 43

* H denotes the Hermitian (conjugate transpose) operator.
The bearing that produces the smallest projection is considered the best estimate of the signal bear-
ing, as it corresponds to the direction where the signal is strongest relative to the noise.
Value

A complex scalar representing the magnitude of the projection of the antenna manifold vector onto
the noise subspace. This value indicates how close the antenna manifold vector is to being orthog-
onal to the noise subspace.

References

 Paolo, T. de, Cook, T., & Terrill, E. (2007). Properties of HF RADAR Compact Antenna Ar-
rays and Their Effect on the MUSIC Algorithm. OCEANS 2007, 1-10. doi:10.1109/oceans.2007.4449265.

seasonder_createSeaSondeRAPM
Create a SeaSondeRAPM Object

Description

This function creates a SeaSondeRAPM object to store antenna pattern calibration data.

Usage

seasonder_createSeaSondeRAPM(
calibration_matrix = matrix(complex(real = NA_real_, imaginary = NA_real_), nrow = 3,
ncol = 0),

Arguments

calibration_matrix
A 3 x b complex matrix, where b is the number of bearings for calibration.

Additional named attributes that will be passed to seasonder_initializeAttributesSeaSondeRAPM.

Details
The function performs the following operations:

1. Validates the calibration_matrix with seasonder_validateCalibrationMatrixSeaSondeRAPM.
2. Initializes all other attributes either with default or user-provided values.

3. Merges the initialized attributes into calibration_matrix.

4. Sets the object’s class to ’SeaSondeRAPM’.

For more details on the attributes, see seasonder_initializeAttributesSeaSondeRAPM.

44 seasonder_createSeaSondeRCS

Value

A SeaSondeRAPM object containing a complex matrix with class attribute *’SeaSondeRAPM’ and
additional attributes for metadata. Row names are set "A13", "A23" and "A33" and column names
are set to be the values in BEAR.

See Also

seasonder_validateCalibrationMatrixSeaSondeRAPM, seasonder_initializeAttributesSeaSondeRAPM

Examples

Create a test SeaSondeRAPM object by reading sample file
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

seasonder_createSeaSondeRCS
Create a SeaSondeRCS object

Description

This generic function creates a SeaSondeRCS object either from a file path or directly from a list
containing header and data. When x is a character string, the function determines the file type (either
"CS", "CSSY" or "CSSW") by analyzing the spectra file and reads it using the appropriate reading
function. If specs_path is not provided (or set to rlang: : zap()), the default YAML specifications
path corresponding to the detected file type is used.

Usage
seasonder_createSeaSondeRCS(x, specs_path = NULL, ...)
Arguments
X Either a character string specifying the path to the SeaSonde CS file or a list
containing header and data.
specs_path A character string specifying the path to the YAML specifications for the CS
file. Used only if x is a character string.
Additional parameters passed to the underlying functions.
Details

For character inputs, the function first checks if the specified file exists. It then determines the file

type using seasonder_find_spectra_file_type. If the specs_path parameter is not provided or

is setto rlang: :zap(), the default specifications file path is obtained using seasonder_defaultSpecsFilePath
based on the detected file type. The file is then read using the appropriate reading function:

¢ seasonder_readSeaSondeCSFile for CS files.

seasonder_createSeaSondeRCS.character 45

¢ seasonder_readSeaSondeRCSSYFile for CSSY files.
e seasonder_readSeaSondeRCSSWFile for CSSW files.

For list inputs, the SeaSondeRCS object is created directly from the provided header and data. Addi-
tionally, a processing step is appended to the object using seasonder_setSeaSondeRCS_ProcessingSteps
with a creation step text that indicates the source.

Value

A SeaSondeRCS object.

See Also

new_SeaSondeRCS, seasonder_readSeaSondeCSFile, seasonder_readSeaSondeRCSSWFile, seasonder_setSeaSondeR(

Examples

Creating a SeaSondeRCS object from a list

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
specs_path <- seasonder_defaultSpecsFilePath("CS")

temp_obj <- seasonder_readSeaSondeCSFile(cs_file, specs_path)

cs_list <- list(header = temp_obj$header, data = temp_obj$data)

rcs_object <- seasonder_createSeaSondeRCS(cs_list)

Creating a SeaSondeRCS object from a file path using default YAML specifications
rcs_object <- seasonder_createSeaSondeRCS(system.file("css_data/CSS_TORA_24_04_04_0700.cs",
package = "SeaSondeR"))

Creating a SeaSondeRCS object from a file path with a specified YAML specifications file
rcs_object <- seasonder_createSeaSondeRCS(
system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR"),
specs_path = seasonder_defaultSpecsFilePath(”"CS")
)

seasonder_createSeaSondeRCS.character
Create a SeaSondeRCS object from a file path

Description

This method creates a SeaSondeRCS object by reading a file from the specified file path. It verifies

the file’s existence, determines the file type ("CS", "CSSY" or "CSSW") using seasonder_find_spectra_file_type,
and then reads the file using the appropriate function. If specs_path is not provided (or is set to

rlang::zap()), the default YAML specifications file path is retrieved using seasonder_defaultSpecsFilePath
based on the detected file type.

Usage

S3 method for class 'character'
seasonder_createSeaSondeRCS(x, specs_path = rlang::zap(), endian = "big", ...)

46 seasonder_createSeaSondeRCS.character

Arguments
X A character string specifying the path to the SeaSonde CS file.
specs_path A character string specifying the path to the YAML specifications for the CS
file. If not provided or set to rlang: :zap(), the default specifications path for
the detected file type is used.
endian A character string indicating the byte order. Options are "big" (default) or "lit-
tle".
Additional parameters passed to new_SeaSondeRCS for creating the object.
Details

The function performs the following steps:

1. Checks if the file specified by x exists; if not, it aborts with an error.
2. Determines the file type using seasonder_find_spectra_file_type.
3. If specs_path is not provided or is set to rlang: : zap(), retrieves the default YAML specifi-
cations path using seasonder_defaultSpecsFilePath based on the detected file type.
4. Reads the file using the appropriate function:
* seasonder_readSeaSondeCSFile for CS files.
e seasonder_readSeaSondeRCSSYFile for CSSY files.
* seasonder_readSeaSondeRCSSWFile for CSSW files.
5. Creates a SeaSondeRCS object using new_SeaSondeRCS with the header and data obtained
from the file.

6. Appends a processing step indicating the creation source via seasonder_setSeaSondeRCS_ProcessingSteps
with a creation step text generated by SeaSondeRCS_creation_step_text(x).

Value

A SeaSondeRCS object.

See Also

new_SeaSondeRCS, seasonder_find_spectra_file_type, seasonder_defaultSpecsFilePath,
seasonder_readSeaSondeCSFile, seasonder_readSeaSondeRCSSYFile, seasonder_readSeaSondeRCSSWFile,
seasonder_setSeaSondeRCS_ProcessingSteps, SeaSondeRCS_creation_step_text

Examples

Create a SeaSondeRCS object from a file using the default YAML specifications

rcs_object <- seasonder_createSeaSondeRCS(
system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")

)

Create a SeaSondeRCS object from a file with a specified YAML specifications file

rcs_object <- seasonder_createSeaSondeRCS(
system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR"),
specs_path = seasonder_defaultSpecsFilePath("CS")

)

seasonder_createSeaSondeRCS.list 47

seasonder_createSeaSondeRCS.list
Create a SeaSondeRCS object from a list

Description

This method creates a SeaSondeRCS object directly from a list containing the header and data.

Usage
S3 method for class 'list'
seasonder_createSeaSondeRCS(x, specs_path = NULL, ...)
Arguments
X A list with components header and data required for constructing the SeaSon-
deRCS object.
specs_path Not used for list inputs.

Additional parameters that may be used for setting object attributes.

Details

The function creates a new SeaSondeRCS object using new_SeaSondeRCS with the provided header
and data. It then appends a processing step, generated by SeaSondeRCS_creation_step_text("list"),
to the object via seasonder_setSeaSondeRCS_ProcessingSteps.

Value

A SeaSondeRCS object.

See Also

new_SeaSondeRCS, seasonder_setSeaSondeRCS_ProcessingSteps, SeaSondeRCS_creation_step_text

Examples

Given a list with header and data, create a SeaSondeRCS object

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
specs_path <- seasonder_defaultSpecsFilePath("CS")

temp_obj <- seasonder_readSeaSondeCSFile(cs_file, specs_path)

cs_list <- list(header = temp_obj$header, data = temp_obj$data)

rcs_object <- seasonder_createSeaSondeRCS(cs_list)

48 seasonder CSSW2CSData

seasonder_CSSW2CSData Transform CSSW Body to SeaSonde CS Data Structure

Description

This function converts the body structure of a CSSW file into a list of matrices that conform to
the data structure required for creating a SeaSondeRCS object. The conversion is performed by
mapping specific fields:

SSA1, SSA2, SSA3 Matrices are built using the numeric vectors found in the cs1a, cs2a and cs3a
fields respectively.

CS12, CS13, CS23 Each complex cross-spectra matrix is formed by combining the real parts from
c12m, ¢13m and c23m with the corresponding imaginary parts from c12a, c13a and c23a.

QC The quality control matrix is obtained directly from the csqf field.

Usage
seasonder_CSSW2CSData(body)

Arguments
body A list representing the body of a CSSW file. Each element of the list is expected
to be a cell containing the following fields: indx (which includes an index),
csla, cs2a, cs3a, c12m, c12a, ¢13m, c13a, c23m, c23a and csqf.
Details

Each row in the output matrices corresponds to the index provided by cell$indx$index in the
input list.

The function first determines the maximum index among the cells in the body, which defines the
number of rows for the matrices. Then, it calculates the number of columns for each matrix based
on the length of the corresponding vectors from the first cell where they appear. Finally, each cell’s
data is inserted into the appropriate row of the matrices as indicated by the cell’s indx$index value.

Value
A list with the following components:

SSA1 A numeric matrix containing self-spectra from cs1a.
SSA2 A numeric matrix containing self-spectra from cs2a.
SSA3 A numeric matrix containing self-spectra from cs3a.
CS12 A complex matrix formed by pairing c12m (real) and c12a (imaginary).
CS13 A complex matrix formed by pairing c13m (real) and c13a (imaginary).
CS23 A complex matrix formed by pairing c23m (real) and c23a (imaginary).

QC A numeric matrix containing the quality control data from csqf.

seasonder_CSSW2CSHeader 49

Examples

Example with a single cell
cell <- list(
indx = list(index = 1),
csla =c(1, 2, 3),
cs2a = c(4, 5, 6),
cs3a = c(7, 8, 9),
clam = c(1e, 11, 12),
cl2a = c(13, 14, 15),
c13m = c(16, 17, 18),
cl3a = c(19, 20, 21),
c23m = c(22, 23, 24),
c23a = c(25, 26, 27),
csqf = c(28, 29, 30)
)
body <- list(cell)
transformed <- seasonder_CSSW2CSData(body)
print(transformed)

seasonder_CSSW2CSHeader
Transform CSSW Header to SeaSonde CS Header

Description

Extracts the *cs4h’ component from a CSSW header and reorganizes the remaining header infor-
mation under "header_csr’.

Usage

seasonder_CSSW2CSHeader (header)

Arguments

header A list representing the CSSW header, which must contain a ’cs4h’ component.

Value

A transformed list representing a valid SeaSonde CS header with embedded CSSW header infor-
mation.

50 seasonder_CSSW_read_asign

seasonder_CSSW_read_asign

Read Self Spectra Sign Information from a Connection

Description
This function reads a raw binary stream from a provided connection, expecting a specific format
that contains the sign bits for self spectra values. The data is divided into 3 groups corresponding
to: csla, cs2a, and cs3a.

Usage

seasonder_CSSW_read_asign(connection, key)

Arguments
connection A binary connection to read raw bytes from.
key A list containing:
size An integer specifying the total number of bytes to be read. It must equal 3
times the number of bytes per group.
key A string identifier (expected to be "asign").
Details

The function performs the following steps:

* Reads key$size bytes from the specified connection.
 Verifies that the number of bytes read matches the expected size.

* Checks that the total number of bytes is divisible by 3, allowing equal distribution among the
groups.

* Splits the raw byte vector into 3 groups based on the calculated number of bytes per group.

* Converts each byte into its 8-bit binary representation (using rawToBits) and flattens the
results for each group.

Value

A named list of 3 vectors, each containing bits as integers (0 or 1) for self spectra sign data.

seasonder CSSY2CSData 51

seasonder_CSSY2CSData Transform CSSY Body to SeaSonde CS Data Structure

Description

This function converts the body structure of a CSSY file into a list of matrices that conform to
the data structure required for creating a SeaSondeRCS object. The conversion is performed by
mapping specific fields:

SSA1, SSA2, SSA3 Matrices are built using the numeric vectors found in the cs1a, cs2a and cs3a
fields respectively.

CS12, CS13, CS23 Each complex cross-spectra matrix is formed by combining the real parts from
c12r, ¢13r and c23r with the corresponding imaginary parts from c12i, ¢131i and c23i.

QC The quality control matrix is obtained directly from the csqf field.

Usage
seasonder_CSSY2CSData(body)

Arguments
body A list representing the body of a CSSY file. Each element of the list is expected
to be a cell containing the following fields: indx (which includes an index),
csla, cs2a, cs3a, c12r, ¢c12i, c13r, ¢13i, c23r, c23i and csqf.
Details

Each row in the output matrices corresponds to the index provided by cell$indx$index in the
input list.

The function first determines the maximum index among the cells in the body, which defines the
number of rows for the matrices. Then, it calculates the number of columns for each matrix based
on the length of the corresponding vectors from the first cell where they appear. Finally, each cell’s
data is inserted into the appropriate row of the matrices as indicated by the cell’s indx$index value.

Value
A list with the following components:

SSA1 A numeric matrix containing self-spectra from cs1a.
SSA2 A numeric matrix containing self-spectra from cs2a.
SSA3 A numeric matrix containing self-spectra from cs3a.
CS12 A complex matrix formed by pairing c12r (real) and c12i (imaginary).
CS13 A complex matrix formed by pairing c13r (real) and c13i (imaginary).
CS23 A complex matrix formed by pairing c23r (real) and c23i (imaginary).

QC A numeric matrix containing the quality control data from csqf.

52

Examples

Example with a single cell
cell <- list(

indx
csla
cs2a
cs3a
cl2r
cl2i
c13r
c13i
c23r
c23i
csqgf
)

list(index = 1),

c(1, 2, 3),

c(4, 5, 6),

c(7, 8, 9,

c(1e, 11, 12),
c(13, 14, 15),
c(16, 17, 18),
c(19, 20, 21),
c(22, 23, 24),
c(25, 26, 27),
c(28, 29, 30)

body <- list(cell)

transformed <- seasonder_CSSY2CSData(body)

print(transformed)

seasonder CSSY2CSHeader

seasonder_CSSY2CSHeader
Transform CSSY Header to SeaSondeRCS Header

Description

This helper function extracts the "cs4h’ component from a CSSY header, removes it from the orig-
inal header, and embeds the remaining header information within the "header_csr’ field of the CS

header.

Usage

seasonder_CSSY2CSHeader (header)

Arguments

header

Value

A list representing the CSSY header. Must contain a ’cs4h’ component.

A transformed header where the primary CS header is taken from ’cs4h’ and the remaining CSSY

header fields are stored in the "header_csr’ element.

seasonder_CSSY_read_asign 53

seasonder_CSSY_read_asign

Read Self Spectra Sign Information from a Connection

Description

This function reads a raw binary stream from a provided connection, expecting a specific format

that contains the sign bits for self spectra values. The data is divided into 3 groups corresponding
to: csla, cs2a, and cs3a.

Usage

seasonder_CSSY_read_asign(connection, key)

Arguments
connection A binary connection to read raw bytes from.
key A list containing:
size An integer specifying the total number of bytes to be read. It must equal 3
times the number of bytes per group.
key A string identifier (expected to be "asign").
Value

A named list of 3 vectors. Each vector represents one group (i.e., csla, cs2a, cs3a) and contains
integers (0 or 1) corresponding to the bits (in little-endian order) extracted from the raw data.

seasonder_CSSY_read_csign

Read Complex Spectral Sign Information from a Connection

Description
This function reads a raw binary stream from a provided connection, expecting a specific format that

contains the sign bits for complex spectral values. The data is divided into 6 groups corresponding
to: C13r, C131i, C23r, C231, C12r, and C12i.

Usage

seasonder_CSSY_read_csign(connection, key)

54 seasonder._defaultFOR_parameters

Arguments
connection A binary connection to read raw bytes from.
key A list containing:
size An integer specifying the total number of bytes to be read. It must equal 6
times the number of bytes per group.
key A string identifier (expected to be "csign”).
Details

The function performs the following steps:

* Reads key$size bytes from the specified connection.
* Checks if enough bytes were read.

* Ensures that the total number of bytes is divisible by 6, allowing equal distribution among the
groups.

* Splits the raw byte vector into 6 groups based on the calculated number of bytes per group.

» Converts each byte into its 8-bit representation (using rawToBits) and flattens the result.

Value

A named list of 6 vectors. Each vector represents one group (e.g., C13r, C13i, etc.) and contains
integers (0 or 1) corresponding to the bits (in little-endian order) extracted from the raw data.

seasonder_defaultFOR_parameters
Default First-Order Radial Processing Parameters

Description

This function returns a list of default parameters for first-order radial processing in CODAR’s Ra-
dial Suite R7. Each parameter has an equivalent R8 version, where applicable, often expressed in
decibels (dB).

Usage

seasonder_defaultFOR_parameters()

Details
Parameter Descriptions:

1. nsm (R8: Doppler Smoothing)

* Default value: 2

» Usage: Sets how many Doppler bins (points) are smoothed. Smoothing helps remove
jagged edges in the sea echo spectrum, aiding in locating the null between the first and
second order (or noise floor).

seasonder_defaultFOR_parameters 55

Recommended values: Typically 2 to 6. Default in Radial Suite RS is 2
Effects of over-/'under-smoothing:
— Too high: May smear out the real null, causing the first order to appear wider.

— Too low: Jagged minima may cause the null to be detected inside the first-order
region, making it appear too narrow.

2. fdown (R8: Null Below Peak Power)

L]

L]

L]

Default value (R7): 10
Equivalent in dB (R8): 10 dB

Usage: Defines how far below the peak power the algorithm must descend (in dB) before
searching for the null that separates the first and second order. This helps avoid including
second-order energy as part of the first-order.

Recommended range: 3.981072 to 31.62278 (6 to 15 dB in R8). Default in Radial Suite
R8is 10 dB

Effects of misconfiguration:
— Too large: The null search may be bypassed entirely, causing second-order content
to be included in the first order.
— Too small: The null may be found inside the first-order region, excluding valid Bragg
energy.

3. flim (R8: Peak Power Dropoff)

Default value (R7): 100
Equivalent in dB (R8): 20 dB
Usage: Once a peak is located, any spectral bins that are more than f1im below the peak
(in linear scale) or 20 dB below the peak (in dB scale) are excluded from the first-order
region.
Recommended range: 15.84893 to 316.2278 (12 to 25 dB in RS8). Default in Radial
Suite R8 is 20 dB.
Effects of misconfiguration:

— Too high: May include non-Bragg signal and yield spurious high velocity estimates.

— Too low: May cut out part of the actual Bragg signal, underestimating maximum
velocities.

4. noisefact (R8: Signal to Noise)

Default value (R7): 3.981072
Equivalent in dB (R8): 6 dB

Usage: Sets the threshold above the noise floor that must be exceeded for the algorithm
to accept Doppler bins as potential first-order.

Recommended range: 3.981072 to 7.943282 (6 to 9 dB in R8). Default in Radial Suite
R8is 6 dB

Effects of misconfiguration:
— Too high: Useful Bragg data could be excluded.
— Too low: Noise or spurious signals may be included as Bragg.

5. currmax (R8: Maximum Velocity)

L]

Default value: 2 m/s

56 seasonder._defaultFOR_parameters

* Usage: Sets a maximum radial velocity, preventing first-order limits from extending be-
yond realistic current speeds for the site.

» Effects of misconfiguration:
— Too high: May include non-Bragg data, producing overestimated velocities.

— Too low: May exclude valid Bragg data, underestimating velocities.
6. reject_distant_bragg (Reject Distant Bragg)

¢ Default value: TRUE

» Usage: Rejects a first-order region if its limits are farther from the Bragg index (central
Doppler bin for zero current) than the width of the region itself. Helps avoid misclassify-
ing strong but isolated signals (e.g., ships) as Bragg.

* Recommendation: Usually keep this enabled unless operating at a site where only
strongly biased positive or negative currents are expected.
7. reject_noise_ionospheric (Reject Noise/Ionospheric)

¢ Default value: TRUE

* Usage: Rejects Bragg if the total non-Bragg power in a range cell exceeds the Bragg
power by at least the threshold set in reject_noise_ionospheric_threshold. Recom-
mended to set as FALSE for 42 MHz systems.

* Recommendation: Enable if the site experiences significant noise.
8. reject_noise_ionospheric_threshold (Reject Noise/Ionospheric Threshold)

¢ Default value: 0
¢ Equivalent in dB: 0 dB

» Usage: Difference threshold (in dB) for comparing non-Bragg power to Bragg power. If
non-Bragg power is higher by this threshold, the Bragg is rejected.

* Recommended setting: Typically 0 dB. Increase only if needed to be less sensitive to
noise contamination.

Value

A named list containing the default parameter values.

References

COS. SeaSonde Radial Suite Release 7; CODAR Ocean Sensors (COS): Mountain View, CA, USA,
2013. COS. SeaSonde Radial Suite Release 8; CODAR Ocean Sensors (COS): Mountain View, CA,
USA, 2016.

Examples

params <- seasonder_defaultFOR_parameters()
print(params)

seasonder._defaultMUSICOptions 57

seasonder_defaultMUSICOptions
Default Options for the MUSIC Algorithm

Description

This function returns a list of default options used in the MUSIC algorithm.

Usage

seasonder_defaultMUSICOptions()

Details

The returned list includes:

e PPMIN: Lower threshold value (default is NULL).
* PWMAX: Upper threshold value (default is NULL).

» smoothNoiselLevel: Logical flag indicating whether the noise level should be smoothed
(FALSE by default).

* doppler_interpolation: Doppler interpolation factor (default is 2).

e MUSIC_parameters: A numeric vector of default parameters for the MUSIC algorithm, re-
trieved from seasonder_defaultMUSIC_parameters().

* discard_low_SNR: Logical flag to discard solutions with low signal-to-noise ratio (TRUE by
default).

e discard_no_solution: Logical flag to discard cases with no solution (TRUE by default).

Value

A list containing the default options for the MUSIC algorithm.

Examples

Retrieve the default options for the MUSIC algorithm
opts <- seasonder_defaultMUSICOptions()
print(opts)

58 seasonder_default MUSIC_parameters

seasonder_defaultMUSIC_parameters
Default Parameters for MUSIC Algorithm

Description
This function returns the default parameters for the MUSIC algorithm used in the SeaSondeR pack-
age.

Usage

seasonder_defaultMUSIC_parameters()

Details

The default parameters are:

40: Threshold used in seasonder_MUSICCheckEigenValueRatio.

20: Threshold used in seasonder_MUSICCheckSignalPowers.

2: Threshold used in seasonder_MUSICCheckSignalMatrix.

20: Threshold used in seasonder_MUSICCheckBearingDistance.

Value

A numeric vector containing the default parameters for the MUSIC algorithm: c (40, 20, 2, 20).

See Also

seasonder_MUSICTestDualSolutions to understand the parameters in context.

Examples

Retrieve default parameters
params <- seasonder_defaultMUSIC_parameters()
print(params)

seasonder._defaultSpecsFilePath 59

seasonder_defaultSpecsFilePath
Get the Default Specifications File Path

Description
This function returns the default file path for the specifications YAML file corresponding to the pro-
vided type. The type must be one of the names defined in the default paths (i.e., "CS" or "CSSY").
Usage
seasonder_defaultSpecsFilePath(type = "CS")

Arguments

type A character string specifying the type of specifications file. Default is "CS".

Value

A character string representing the full path to the YAML specifications file.

Examples

Retrieve the default CS specifications file path
cs_specs_path <- seasonder_defaultSpecsFilePath("CS")

Retrieve the default CSSY specifications file path
cssy_specs_path <- seasonder_defaultSpecsFilePath("CSSY")

seasonder_defaultSpecsPathForFile
Get the Default Specifications Path for a Spectra File

Description

This function returns the default YAML specifications file path corresponding to a given spectra
file. It first determines the file type by analyzing the file content and then retrieves the associated
default specifications path.

Usage

seasonder_defaultSpecsPathForFile(filepath, endian = "big")

Arguments

filepath A character string specifying the path to the spectra file.
endian A character string indicating the file’s byte order ("big" by default).

60 seasonder_disableMessages

Details

The function leverages seasonder_find_spectra_file_type to determine whether the file is of
type "CS" or "CSSY". It then uses seasonder_defaultSpecsFilePath to obtain the correspond-
ing default specifications path.

Value

A character string representing the default YAML specifications file path for the detected file type.

See Also

seasonder_find_spectra_file_type, seasonder_defaultSpecsFilePath

seasonder_disablelLogs Disable log recording in SeaSondeR

Description
This function disables log recording in the SeaSondeR package. Once disabled, various SeaSondeR
functions will no longer output logs.

Usage

seasonder_disablelLogs()

Value

Invisibly returns FALSE, indicating that log recording has been disabled.

Examples

seasonder_disablelLogs()

seasonder_disableMessages
Disable message logging in SeaSondeR

Description
This function disables message logging in the SeaSondeR package. Once disabled, various Sea-
SondeR functions will no longer output informational messages.

Usage

seasonder_disableMessages()

seasonder_disable_all_debug_points 61

Value

logical FALSE indicating that message logging was disabled.

Examples

seasonder_disableMessages()

seasonder_disable_all_debug_points
Disable all debug points in SeaSondeR

Description

This function resets the debug points to the default state ("none").

Usage

seasonder_disable_all_debug_points()

Value

A character vector containing only the default debug point "none".

Examples

seasonder_disable_all_debug_points()

seasonder_DopplerFreq2Bins
Convert Doppler Frequencies to Doppler Bins

Description

This function converts a set of Doppler frequency values into their corresponding Doppler bin in-
dices within a SeaSondeR object.

Usage

seasonder_DopplerFreq2Bins(seasonder_cs_object, doppler_values)

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing metadata about the Doppler bins.

doppler_values A numeric vector specifying the Doppler frequencies to be converted into bin
indices.

62 seasonder_DopplerFreq2NormalizedDopplerFreq

Details

This function first retrieves the Doppler frequency bins from the given SeaSondeR object using
seasonder_getDopplerBinsFrequency in non-normalized form. The spectral resolution, which
defines the frequency step size (A f), is obtained using seasonder_getDopplerSpectrumResolution.

The number of Doppler bins is then determined using seasonder_getnDopplerCells.

With this information, the function calls seasonder_computeDopplerFreq2Bins to determine the
corresponding bin indices for each input Doppler frequency.

Value
An integer vector of Doppler bin indices corresponding to the input Doppler frequencies. Values
that fall outside the valid bin range are assigned NA.

See Also

seasonder_Bins2NormalizedDopplerFreq for the reverse operation. seasonder_computeDopplerFreq2Bins
for the core computation logic.

seasonder_DopplerFreqg2NormalizedDopplerFreq
Convert Doppler Frequencies to Normalized Doppler Frequencies

Description

This function converts Doppler frequencies (in Hz) into their corresponding normalized Doppler
frequencies within a SeaSondeR object.

Usage

seasonder_DopplerFreq2NormalizedDopplerFreq(
seasonder_cs_object,
doppler_values

)

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing metadata about the Doppler bins.

doppler_values A numeric vector specifying the Doppler frequencies (in Hz) to be converted
into normalized Doppler frequencies.

seasonder_enableLogs 63

Details
The function follows these steps:

1. Calls seasonder_DopplerFreq2Bins to convert the input Doppler frequencies into Doppler
bin indices.

2. Calls seasonder_Bins2NormalizedDopplerFreq to obtain the corresponding normalized
Doppler frequencies.

The normalized Doppler frequency is computed as:

fdoppler = fnorm X fbragg
where:

* fdoppler is the Doppler frequency in Hz,
* fnorm is the normalized Doppler frequency,

* foragg is the Bragg frequency, computed based on radar wavelength.
This function ensures consistency by mapping input frequencies to their closest bin representation
before normalization.
Value

A numeric vector of normalized Doppler frequencies corresponding to the input Doppler values.

See Also

seasonder_DopplerFreq2Bins for converting Doppler frequencies to bin indices. seasonder_Bins2NormalizedDopplerF
for converting bin indices to normalized frequencies.

seasonder_enableLogs Enable log recording in SeaSondeR

Description
This function enables log recording in the SeaSondeR package. Once enabled, various SeaSondeR
functions will output logs.

Usage

seasonder_enablelogs()

Value

Invisibly returns TRUE, indicating that log recording has been enabled.

Examples

seasonder_enablelogs()

64 seasonder._enable_debug_points

seasonder_enableMessages
Enable message logging in SeaSondeR

Description
This function enables message logging in the SeaSondeR package. Once enabled, various SeaSon-
deR functions will output informational messages.

Usage

seasonder_enableMessages()

Value

logical TRUE indicating that message logging was enabled.

Examples

seasonder_enableMessages()

seasonder_enable_debug_points
Enable debug points in SeaSondeR

Description

This function adds one or more debug points to the list of enabled debug points.

Usage

seasonder_enable_debug_points(debug_points)

Arguments

debug_points A character vector of debug point names to enable.

Value

Updated character vector of enabled debug points.

Examples

seasonder_enable_debug_points("example_debug")

seasonder_estimateReferenceNoiseNormalizedLimits 65

seasonder_estimateReferenceNoiseNormalizedLimits
Estimate Reference Noise Limits in Normalized Doppler Frequency

Description

This function estimates the reference noise limits for normalized Doppler frequencies in a SeaSon-
deR cross-spectral object. These limits define the frequency range over which the noise floor is
assessed for first-order region (FOR) detection.

Usage

seasonder_estimateReferenceNoiseNormalizedLimits(
seasonder_cs_object,
low_limit = 0.95,
high_limit = 1

)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing Doppler frequency metadata.

low_limit Optional. A numeric value representing the fraction of the maximum normalized
Doppler frequency to be used as the lower bound for noise estimation. Default
is 0.95.
high_limit Optional. A numeric value representing the fraction of the maximum normalized
Doppler frequency to be used as the upper bound for noise estimation. Default
is 1.0.
Details

The function operates as follows:

1. Retrieves the Doppler bin frequencies in normalized units (relative to the Bragg frequency)
via seasonder_getDopplerBinsFrequency.

2. Computes the noise limits by scaling the maximum normalized Doppler frequency using the
provided low_limit and high_limit factors:

* The lower bound is given by max(freq) * low_limit.
* The upper bound is given by max(freq) * high_limit.
3. The default empirical choice for the lower bound (56.5% in the original calibration process)
is adjustable via the low_limit parameter. This parameter was determined through an itera-
tive process where the initial lower bound was decreased in increments (e.g., 0.5%) until the

computed noise floor closely matched the reference provided by the AnalyseSpectra Tool in
Radial Suite R8.

This approach is crucial for setting the signal-to-noise ratio (SNR) thresholds used in FOR detection.

66 seasonder_exportCSVMUSICTable

Value
A numeric vector of length two, representing the lower and upper reference noise limits in normal-
ized Doppler frequency.

See Also

seasonder_getDopplerBinsFrequency for retrieving Doppler bin frequencies.

seasonder_exportCSYMUSICTable
Export MUSIC Table to CSV

Description

This function exports the MUSIC detection table from a SeaSondeRCS object to a CSV file.

Usage

seasonder_exportCSYMUSICTable(seasonder_cs_object, filepath)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC detection data.

filepath A character string specifying the path to the output CSV file.

Details

This function performs the following steps:

1. Generates a MUSIC table using seasonder_exportMUSICTable.
2. Converts the resulting table to a data frame.

3. Writes the data frame to the specified CSV file using data.table:: fwrite.

Value

The function returns NULL invisibly. The output is saved to the specified file.

See Also

e seasonder_exportMUSICTable

e fwrite

seasonder_exportCTFRangelnfo 67

Examples

Prepare a SeaSondeRCS object for examples, including APM
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)
specs_path <- seasonder_defaultSpecsFilePath("CS")
cs_obj <- seasonder_createSeaSondeRCS(
system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR"),
specs_path = specs_path,
seasonder_apm_object = apm_obj
)
cs_obj <- seasonder_initMUSICData(
cs_obj,
range_cells = c(rep(5,11), rep(4,11)),
doppler_bins = c(c(669:679),c(674:684))
)
cs_obj <- seasonder_runMUSIC(cs_obj)
Export MUSIC table to a temporary CSV file

tmpfile <- tempfile(fileext = ".csv")
seasonder_exportCSYMUSICTable(cs_obj, tmpfile)
print(tmpfile)

seasonder_exportCTFRangeInfo
Export CTF Range Information to a File

Description

This function writes the formatted CTF range information, generated from a SeaSondeRCS object,
to a specified file.

Usage

seasonder_exportCTFRangeInfo(seasonder_cs_object, file, tableStart = "")

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the relevant MUSIC processing data.

file A character string specifying the output file path where the range information
will be written.
tableStart A character string to prepend to the table output. Defaults to an empty string.
Details

The function internally calls seasonder_exportCTFRangeInfo_string to obtain a formatted string
of range information. It then writes this output string to the specified file. Additionally, it returns
the extracted range information invisibly, allowing further processing if necessary.

68 seasonder_exportLLUVRadialMetrics

Value

Invisibly returns a data frame containing the range information.

Examples

Prepare a SeaSondeRCS object with valid data

apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs_obj <- seasonder_createSeaSondeRCS(

cs_file,
seasonder_apm_object = apm_obj
)
Export CTF range information to a temporary text file
range_info <- seasonder_exportCTFRangeInfo(cs_obj, tempfile(fileext = ".txt"))

seasonder_exportLLUVRadialMetrics
Export LLUV Radial Metrics to a File

Description

This function extracts radial metrics from a SeaSondeRCS object and formats them for export us-
ing defined mustache templates. The formatted output, which includes MUSIC parameters, antenna
pattern corrections, noise thresholds, and other spectral metrics, is written to a specified file. Addi-
tionally, the function returns the computed radial metrics as a data frame.

Usage

seasonder_exportLLUVRadialMetrics(seasonder_cs_object, LLUV_path, ...)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC detection data and related metadata.

LLUV_path A character string specifying the output file path for the LLUV radial metrics.

Additional arguments passed to seasonder_exportRadialMetrics.

Details
The function performs the following steps:
1. Retrieves the radial metrics from the SeaSondeRCS object using seasonder_exportRadialMetrics.

2. Obtains MUSIC parameters and antenna pattern attributes from the object.

3. Formats numeric values using predefined formats for each column.

seasonder._exportMUSICTable 69

4. Renders a data template (from "LLUV_RDM1_data.mustache") with the formatted radial met-
rics.

5. Generates a deterministic UUID from the rendered data.

6. Renders an overall LLUV template (from "LLUV_RDMI.mustache") that incorporates the
radial parameters, formatted data, header information, and the generated UUID.

7. Writes the rendered LLUV content to the file specified by LLUV_path.

Value

Invisibly returns a data frame containing the radial metrics used in the export.

Examples

Prepare a SeaSondeRCS object with MUSIC data

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

FOR <- seasonder_getSeaSondeRCS_FOR(cs_obj)

cs_obj <- seasonder_setSeaSondeRCS_FOR(cs_obj,FOR[4:5])

Optionally, run MUSIC in FOR context to populate MUSIC data

cs_obj <- seasonder_runMUSICInFOR(cs_obj)

radial_metrics <- seasonder_exportLLUVRadialMetrics(cs_obj, tempfile(fileext = ".ruv"))
head(radial_metrics)

seasonder_exportMUSICTable
Export MUSIC Table from SeaSondeRCS Object

Description

This function generates a table containing detailed MUSIC detection data from a SeaSondeRCS
object. The output table includes geographic coordinates, signal parameters, and other metadata for
each MUSIC detection.

Usage

seasonder_exportMUSICTable(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC detection data and related metadata.

70

Details

seasonder._exportMUSICTable

This function performs the following operations:

1.

Value

Retrieves the timestamp (nDateTime) from the header of the SeaSondeRCS object. Defaults to
as.POSIXct (@) if unavailable.

. Initializes an empty data frame with predefined columns.

. Retrieves MUSIC detection data, processes the Direction of Arrival (DOA) and geographic

coordinates (lonlat), and unnests these fields.

. Converts MUSIC bearings to geographic bearings using the associated Antenna Pattern Matrix

(APM) object.

. Computes additional metrics such as signal power in dB, signal-to-noise ratio (SNR), and

DOA peak response in dB.

. Appends the timestamp to the table and reorders columns for clarity.

A data frame with the following columns:

datetime: Timestamp of the data.

longitude: Geographic longitude of the detection.
latitude: Geographic latitude of the detection.
range_cell: Range cell number.

range: Range in kilometers.

doppler_bin: Doppler bin number.
doppler_freq: Doppler frequency.
radial_velocity: Radial velocity in m/s.
signal_power: Signal power.

bearing: Geographic bearing in degrees.
bearing_raw: Original MUSIC bearing in degrees.
noise_level: Noise level in dB.
signal_power_db: Signal power in dB.

SNR: Signal-to-noise ratio in dB.

DOA_peak_resp_db: DOA peak response in dB.

seasonder_getSeaSondeRCS_MUSIC
seasonder_MUSICBearing2GeographicalBearing

seasonder_getSeaSondeRAPM_AntennaBearing

seasonder._exportRadialMetrics 71

Examples

Load sample CSS and APM files
cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)
Create SeaSondeRCS object with APM
cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

FOR <- seasonder_getSeaSondeRCS_FOR(cs_obj)

cs_obj <- seasonder_setSeaSondeRCS_FOR(cs_obj,FOR[4:5])

Run MUSIC algorithm (in FOR context) if MUSIC data is available:
cs_obj <- seasonder_runMUSICInFOR(cs_obj)

Export MUSIC table

music_table <- seasonder_exportMUSICTable(cs_obj)
print(music_table)

seasonder_exportRadialMetrics
Export Radial Metrics from a SeaSondeRCS Object

Description

This function extracts and formats radial metrics from a SeaSondeRCS object for export. It pro-
cesses the MUSIC table, computes various spectral metrics, applies antenna pattern corrections, and
combines the results into a final data frame formatted according to predefined column specifications.

Usage

seasonder_exportRadialMetrics(seasonder_cs_object, AngSeg = list())

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC detection data and related metadata.

AngSeg An optional list of angular segments to be applied to the vector flag field (VFLG).
Each element should be a numeric vector of length 3 defining a segment. Default
is an empty list.

Details

The function proceeds as follows:

1. Retrieves the MUSIC table using seasonder_getSeaSondeRCS_MUSIC and the associated
APM object.

2. Defines a template row with 34 predefined columns, initializing most numeric values to NA,
except for specific defaults such as MSA1, MDA1, and MDA2 (set to 1440L).

72

seasonder._exportRangelnfo

3. Copies basic numeric fields and computes additional fields from the MUSIC table, such as the
radial velocity (scaled by 100), range, range cell, doppler cell (shifted by -1), eigenvalue ratio,
signal power ratio, and offset power ratio.

4. Computes the metric MDRJ by applying the function seasonder_computeMDRJ on the MUSIC
TOWw.

5. Extracts eigen decomposition results from each MUSIC row to populate the eigenvalue fields
(MEI1, MEI2, MEI3).

6. Processes the DOA solutions stored in each MUSIC row: - For solutions retained as "single",
geographic bearing corrections are applied to populate MSA1. - For dual-bearing solutions, the
first two elements of the DOA bearings populate MDA1 and MDA2, respectively.

7. Computes additional spectral metrics such as the self-spectra conversion to dB (fields MA1S,
MA2S, and MA3S) after subtracting the noise level (obtained for each antenna).

8. Based on the retained solution type (either "single" or "dual"), assigns location data (if avail-
able), sets selection flags, and computes additional output metrics (e.g., PPFG and PWFG).

9. Finally, all rows are combined into a data frame. If angular segments are provided, additional
modifications to the vector flag (VFLG) are applied.

Value

A data frame with 34 columns containing the computed radial metrics. The columns include geo-
graphic coordinates, velocity components, range, bearing information, signal power metrics, noise
thresholds, and computed spectral parameters.

Examples

Prepare a SeaSondeRCS object with MUSIC data

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

FOR <- seasonder_getSeaSondeRCS_FOR(cs_obj)

cs_obj <- seasonder_setSeaSondeRCS_FOR(cs_obj,FOR[4:5])

Run MUSIC algorithm to populate MUSIC data

cs_obj <- seasonder_runMUSICInFOR(cs_obj)

radial_metrics <- seasonder_exportRadialMetrics(cs_obj, AngSeg = list(c(5, 30, 60)))
head(radial_metrics)

seasonder_exportRangeInfo
Export Range Information from a SeaSondeRCS Object

Description

This function computes and exports range-related information based on the MUSIC data stored in
a SeaSondeRCS object. The output table includes range cell identifiers, range values, noise levels
(for each antenna), first-order region (FOR) boundaries, and counts of detections classified as single
or dual solutions.

seasonder._exportRangelnfo 73

Usage

seasonder_exportRangeInfo(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data and associated metadata.

Details
The function performs the following operations:

1. Extracts key fields from the MUSIC data: range cell, range, and the retained solution type.
2. Aggregates counts of detections classified as single versus dual solutions.

3. Retrieves noise levels (in dB) for each antenna.
4

. Obtains FOR boundaries using a dedicated export function and adjusts them based on the
Doppler interpolation factor.

d

Merges the aggregated detection counts, noise levels, and FOR boundaries by range cell.

6. Selects and reorders the output columns.

Value
A data frame with the following columns:

SPRC Range cell identifier.

RNGC Range (in appropriate units).

NF01 Noise level (in dB) for antenna 1.

NF02 Noise level (in dB) for antenna 2.

NF03 Noise level (in dB) for antenna 3.

ALM1 Lower FOR boundary (after Doppler interpolation).

ALM?2 Upper FOR boundary (after Doppler interpolation) for the first boundary set.
ALM3 Lower FOR boundary (after Doppler interpolation) for the second boundary set.
ALM4 Upper FOR boundary (after Doppler interpolation) for the second boundary set.
NVSC Count of detections classified as "single".

NVDC Count of detections classified as "dual".

NVAC Total adjusted count (NVSC plus twice NVDC).

Examples

Prepare a SeaSondeRCS object with MUSIC data

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

FOR <- seasonder_getSeaSondeRCS_FOR(cs_obj)

74 seasonder_extractFOR

cs_obj <- seasonder_setSeaSondeRCS_FOR(cs_obj,FOR[4:5])
Run MUSIC algorithm to populate MUSIC data

cs_obj <- seasonder_runMUSICINFOR(cs_obj)

range_info <- seasonder_exportRangeInfo(cs_obj)
head(range_info)

seasonder_extractFOR Extract First Order Region (FOR) Spectral Data

Description

This function extracts the spectral power corresponding to the First Order Region (FOR) from a
given self-spectra (SS) matrix. It retrieves the spectral values within the Doppler bins identified as
part of the positive and negative Bragg regions.

Usage

seasonder_extractFOR(seasonder_cs_object, spectrum, FOR)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the spectral data.

spectrum A numeric matrix representing the self-spectra data for a single range cell.

FOR A list containing the Doppler bin indices defining the FOR region, with two
elements: - negative_FOR: A numeric vector of Doppler bins for the negative
Bragg region. - positive_FOR: A numeric vector of Doppler bins for the posi-
tive Bragg region.

Details

The function performs the following steps:

1. Initialize Empty Matrices: Creates empty matrices to store extracted spectral data.
2. Extract Negative FOR Data:

* If the negative FOR bins exist, calls seasonder_extractSeaSondeRCS_dopplerRanges_from_SSdata
to extract the corresponding spectral values.

3. Extract Positive FOR Data:
« If the positive FOR bins exist, extracts the spectral values using the same function.
4. Return Extracted Spectral Data: Outputs a list containing the extracted negative and posi-

tive Bragg region spectral data.

This function is primarily used for filtering and validating the first-order Bragg region in SeaSonde
radar processing.

seasonder_extractSeaSondeRCS_dopplerRanges_from_SSdata 75

Value
A list with two elements:

* negative_FOR: A matrix containing spectral power for the negative Bragg region.

* positive_FOR: A matrix containing spectral power for the positive Bragg region.

See Also

* seasonder_extractSeaSondeRCS_dopplerRanges_from_SSdata for extracting Doppler bin
subsets.

* seasonder_filterFORAmplitudes for filtering weak FOR detections.

seasonder_extractSeaSondeRCS_dopplerRanges_from_SSdata
Extract Doppler Ranges from Self-Spectra Data Matrix

Description

This function slices a self-spectra data matrix by selecting the columns corresponding to the speci-
fied Doppler cells.

Usage

seasonder_extractSeaSondeRCS_dopplerRanges_from_SSdata(SSmatrix, doppler_cells)

Arguments
SSmatrix A matrix containing self-spectra data, where columns represent Doppler bins.

doppler_cells A numeric vector specifying the indices of the Doppler bins to extract.

Details

The function extracts a subset of columns from the self-spectra matrix. No explicit validation is
currently performed to verify that the provided Doppler cell indices fall within the range of the
matrix columns.

Value

A matrix containing only the columns corresponding to the selected Doppler cells.

76 seasonder._extrapolateAPM

seasonder_extrapolateAPM
Extrapolate SeaSondeR APM Matrix

Description

This function performs linear extrapolation on the SeaSondeR APM measurement matrix. It adds n
extrapolated columns to both the left and right sides of the matrix.

Usage

seasonder_extrapolateAPM(seasonder_apm_object, n = 1)

Arguments

seasonder_apm_object
A matrix containing SeaSondeR APM measurements. Its attributes include
"BEAR" (numeric vector of bearings) and "BearingResolution" (numeric res-
olution).

n An integer specifying how many extrapolated columns to add on each side (de-
fault is 1).

Details

The function retrieves the original bearing vector from the APM object using seasonder_getSeaSondeRAPM_BEAR
and obtains the bearing resolution (attribute "BearingResolution"). If n == 0, the original matrix is

returned unchanged. For n > @, new bearings are generated for both sides using the resolution. The

left side is extrapolated using the slope computed from the first two columns of the matrix, and the

right side is extrapolated using the slope from the last two columns. The new columns are then

combined with the original matrix, and the column names and the "BEAR" attribute are updated to

reflect the complete set of bearings.

Value

A modified matrix with n extrapolated columns added to both sides. The column names and the
"BEAR" attribute are updated with the new bearings, while the "BearingResolution" attribute re-
mains unchanged.

Examples

Extrapolate loops for a test SeaSondeRAPM object

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

result <- seasonder_extrapolateAPM(obj, n = 1)

seasonder_filterFORAmplitudes 77

seasonder_filterFORAmplitudes
Filter First Order Region (FOR) Based on Amplitude Thresholds

Description

This function filters the First Order Region (FOR) Doppler bins based on amplitude thresholds. It
applies a combination of noise-based and peak power-based criteria to remove low-amplitude bins
that do not meet the required signal-to-noise ratio.

Usage

seasonder_filterFORAmplitudes(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral data and FOR parameters.

Details
Steps in FOR Amplitude Filtering:

1. Retrieve First Order Parameters:

* The function extracts f1lim (Null Below Peak Power) and noisefact (Signal-to-Noise
Factor) from seasonder_getFOR_parameters.

2. Compute Noise Levels:

 Calls seasonder_computeNoiselevel to estimate the average noise level across all range
cells.

» Converts the noise level into a filtering threshold by multiplying it by noisefact.

3. Extract Smoothed Self-Spectra Data:
* Retrieves the smoothed self-spectra (SSA3) using seasonder_getSeaSondeRCS_FOR_SS_Smoothed.
» Extracts the FOR spectral power for each range cell using seasonder_extractFOR.

4. Determine Filtering Thresholds:

* Computes a power threshold for each FOR region by taking the maximum amplitude in
the FOR region and dividing it by flim.

5. Apply Filtering Conditions:
* A Doppler bin is retained if its power is greater than:
— The noise threshold (computed from noisefact).
— The power threshold computed from f1lim.
6. Store Filtered FOR in Object:
» Updates the SeaSondeRCS object with the filtered FOR bins.

This filtering ensures that only strong, reliable first-order Bragg signals are retained, reducing the
impact of noise and second-order contamination.

78 seasonder_findFORNulls

Value

The updated SeaSondeRCS object with the filtered FOR bins.

See Also

* seasonder_computeNoiselLevel for computing noise levels.

* seasonder_getSeaSondeRCS_FOR_SS_Smoothed for retrieving smoothed self-spectra.
* seasonder_extractFOR for extracting FOR spectral power.

* seasonder_setSeaSondeRCS_FOR for storing the filtered FOR data.

seasonder_findFORNulls
Identify Nulls in First Order Region (FOR) Across All Range Cells

Description

This function locates the null points in the First Order Region (FOR) of a SeaSondeR cross-spectral
object. It smooths the self-spectra (SS) data, extracts the relevant Doppler bins, and determines the
boundaries of the first-order Bragg region for each range cell.

Usage

seasonder_findFORNulls(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral data and FOR parameters.

Details
The function follows these steps:

1. Smooth the Self-Spectra Data: Calls seasonder_SmoothFORSS to apply a running mean
filter.

2. Extract Smoothed Self-Spectra: Retrieves the processed SS matrix using seasonder_getSeaSondeRCS_FOR_SS_Smoc
3. Identify the Doppler Center Bin: Determines the central Doppler bin using seasonder_getCenterDopplerBin.
4. Segment the Spectrum: Splits the smoothed SS data into:

» The negative Bragg region (left side of the Doppler spectrum).

» The positive Bragg region (right side of the Doppler spectrum).
5. Find Nulls in Each Region: Uses seasonder_findFORNullsInSSMatrix to identify the null

positions.

6. Store Results: Extracts:

* The First Order Region (FOR).

¢ The maximum power (MAXP).

* The Doppler bin index of the maximum power (MAXP.bin).
7. Update the SeaSondeRCS Object: Saves the detected FOR boundaries and related metrics.

seasonder_findFORNullsInFOR 79

Value

The updated SeaSondeRCS object with the computed FOR nulls, maximum power, and bin indices.

See Also

* seasonder_findFORNullsInSpectrum for processing individual spectra.

* seasonder_findFORNullsInSSMatrix for batch processing spectra across multiple range
cells.

* seasonder_getSeaSondeRCS_FOR_SS_Smoothed for retrieving smoothed SS data.

seasonder_findFORNullsInFOR
Find Nulls in First Order Region (FOR)

Description

This function locates the null point in the First Order Region (FOR) spectrum, which separates the
first-order Bragg peak from second-order energy or the noise floor.

Usage

seasonder_findFORNullsInFOR(
FOR,
start_point_P,
doppler_bins,
left_region = FALSE

Arguments

FOR A numeric vector representing the power spectrum in the FOR region.

start_point_P A numeric value representing the power threshold at which the search for the
null point begins.

doppler_bins A numeric vector containing the Doppler bins corresponding to the spectrum in
FOR.

left_region A logical value indicating whether the null is being searched for in the negative
Bragg region. Default is FALSE.

Details
The function follows these steps to determine the null point:
1. If left_region is TRUE, the FOR spectrum and Doppler bins are reversed.

2. The power spectrum is transformed to facilitate peak identification:

* The absolute values of the power are taken and multiplied by -1.

80 seasonder_findFORNullsInSpectrum

e The start_point_P threshold is also inverted.

3. The function identifies the first local maximum in the transformed spectrum that exceeds
start_point_P.

4. The corresponding Doppler bin at the detected peak is returned as the null position.

The function relies on pracma: : findpeaks to identify the peak.

Value

A numeric value representing the Doppler bin at the detected null position.

See Also

* seasonder_findFORNullsInSpectrum for locating nulls in a full spectrum.

* findpeaks for peak detection.

seasonder_findFORNullsInSpectrum
Identify Nulls in First Order Region (FOR) Spectrum

Description

This function locates the null points in the First Order Region (FOR) of a Doppler spectrum. These
nulls define the boundaries separating the first-order Bragg peak from the surrounding noise or
second-order energy.

Usage

seasonder_findFORNullsInSpectrum(
seasonder_cs_object,
spectrum,
doppler_bins,
negative_Bragg_region = FALSE

Arguments
seasonder_cs_object
A SeaSondeRCS object containing the spectral data.
spectrum A numeric vector representing the power spectrum to analyze.
doppler_bins A numeric vector containing the Doppler bins corresponding to the spectrum.
negative_Bragg_region

A logical value indicating whether the function should analyze the negative
Bragg region. Default is FALSE.

seasonder_findFORNullsInSpectrum 81

Details

The function executes the following steps:

1.

Value

Retrieve First Order Settings: The function extracts the fdown parameter, which defines the
drop-off level relative to the maximum power.

Prepare the Spectrum:

» Convert all values to negative absolute magnitudes to facilitate peak detection.

* Reverse the spectrum and Doppler bins if analyzing the negative Bragg region.

. Find the Main Spectral Peak:

* The function identifies the first major peak using findpeaks with at least two consecutive
increases and decreases.

* The search is limited to the portion of the spectrum beyond this peak.

. Determine the First Order Boundaries:

* The maximum power (MAXP) is found along with its bin index (MAXP.bin).

* A threshold value start_point_P is computed as MAXP / fdown to establish the cutoff
point for the null search.

. Search for Nulls: The spectrum is split into left and right sections:

* The right-side spectrum is analyzed using seasonder_findFORNullsInFOR to find the
right null.

¢ The left-side spectrum undergoes the same process but reversed.
Output the Results: The function returns a list containing:

» The sequence of Doppler bins defining the FOR region.
¢ The maximum power detected (MAXP).
* The Doppler bin index where MAXP occurred (MAXP.bin).

A list with three elements:

* FOR: A sequence of Doppler bins defining the first order region.

* MAXP: The maximum power found in the spectrum.

e MAXP.bin: The Doppler bin index of the maximum power.

See Also

* seasonder_findFORNullsInFOR for detecting nulls within a selected region.

» findpeaks for peak identification.

* seasonder_getFOR_parameters for retrieving FOR settings.

82 seasonder_findFORNullsInSSMatrix

seasonder_findFORNullsInSSMatrix
Identify Nulls in First Order Region (FOR) for a Self-Spectra Matrix

Description

This function applies the null-finding algorithm to each row of a self-spectra (SS) matrix, determin-
ing the boundaries of the First Order Region (FOR) for each range cell.

Usage

seasonder_findFORNullsInSSMatrix(
seasonder_cs_object,
SS,
doppler_bins,
negative_Bragg_region = FALSE

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral data and FOR parameters.

SS A numeric matrix representing the self-spectra data, where rows correspond to
range cells and columns correspond to Doppler bins.

doppler_bins A numeric vector indicating the Doppler bins corresponding to the columns of
SS.

negative_Bragg_region
A logical value indicating whether to analyze the negative Bragg region. Default
is FALSE.

Details

This function processes each row of the self-spectra matrix, treating each row as an independent
spectrum for which the FOR nulls are identified. The nulls define the boundaries of the first-order
Bragg region.

Processing Steps:
1. Iterate through each row of the SS matrix.
2. Extract the power spectrum for the corresponding range cell.

3. Apply seasonder_findFORNullsInSpectrum to determine the null positions.

4. Store the results in a named list, where each entry corresponds to a range cell.

Value

A named list where each entry corresponds to a range cell, containing the detected FOR null posi-
tions.

seasonder_find_spectra_file_type 83

See Also

* seasonder_findFORNullsInSpectrum for detecting nulls in a single spectrum.

* seasonder_findFORNulls for high-level null detection across all spectra.

seasonder_find_spectra_file_type
Determine the Spectra File Type

Description

This function identifies the type of a spectra file (either "CS" or "CSSY") by reading its header
block based on YAML specifications. It first attempts to read a key size block using the CSSY
specifications, and if that fails, it reopens the file and tries to read the CS header block.

Usage

seasonder_find_spectra_file_type(filepath, endian = "big")

Arguments

filepath A character string specifying the path to the spectra file.

endian A character string indicating the file’s byte order ("big" by default).
Details

The function sets up error handling parameters and uses YAML specifications retrieved via seasonder_readYAMLSpecs
and seasonder_defaultSpecsFilePath. It opens the file in binary read mode and ensures the con-

nection is closed upon exit. If reading the key size block fails, it reopens the file to try reading the

CS header block. The final file type is determined by the key returned from the file block.

Value

A character string representing the spectra file type ("CS" or "CSSY").

84 seasonder._getBinsRadial Velocity

seasonder_getBinsRadialVelocity
Calculate Radial Velocities for Each Doppler Bin

Description

Computes the radial velocities for each Doppler bin interval’s high boundary for a SeaSonde radar
cross-section (CS) object, as typically visualized in SpectraPlotterMap. This function utilizes the
Doppler shift frequency alongside the radar’s wave number and Bragg frequency to transform fre-
quency measurements into radial velocities. The calculation is based on the relationship between
the Doppler shift frequency and the velocity of surface currents within the radar’s field of view.

Usage

seasonder_getBinsRadialVelocity(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object created using seasonder_createSeaSondeRCS. This
object contains the necessary data for calculating the Doppler bins frequencies
and, subsequently, radial velocities.

Details

Specifically, the radial velocity v = (Freq — BraggFreq)/(2 * ko) is used, where v is the radial
velocity, F'req is the Doppler shift frequency for the bin, BraggF'req is the Bragg frequency (neg-
ative for frequencies below 0 and positive for frequencies equal or above 0), and kg is the radar
wave number divided by 2.

Value

A numeric vector containing the radial velocities (in m/s) for each Doppler bin, calculated for the
high boundary of each Doppler bin interval. The velocities provide insight into the scatterers’ radial
movement within the radar’s observation area.

See Also

seasonder_getDopplerBinsFrequency, seasonder_getBraggDopplerAngularFrequency, seasonder_getRadarWaveN

seasonder._getBraggDopplerAngularFrequency 85

seasonder_getBraggDopplerAngularFrequency
Calculate the Bragg Doppler Angular Frequency

Description

This function computes the Bragg Doppler angular frequencies for a SeaSonde radar system. These
frequencies represent the characteristic Doppler shifts due to wave resonance at the Bragg wave-
length.

Usage

seasonder_getBraggDopplerAngularFrequency(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the necessary data to compute the radar wave
number.

Details

The Bragg Doppler angular frequency wp is calculated using the formula wp = /2 - g - k where:

e g is the gravitational acceleration (approximately 9.8 m/s?),

* k is the radar wave number in radians per meter.

The returned vector contains the negative (—wp) and positive (+wp) angular frequencies.

Value

A numeric vector of length two, containing the negative and positive Bragg Doppler angular fre-
quencies (in radians per second).

See Also

seasonder_getRadarWaveNumber to compute the radar wave number.

86 seasonder._getBraggl ineBins

seasonder_getBragglineBins
Get Bragg Line Doppler Bins

Description

This function calculates the Doppler bin indices corresponding to the first-order Bragg frequencies
(-1 and 1) for a SeaSonde Cross Spectra (CS) object.

Usage

seasonder_getBragglLineBins(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSonde Cross Spectra (CS) object created by seasonder_createSeaSondeRCS().
This object contains the metadata required for the computation, including the
normalized Doppler frequencies and their mapping to Doppler bins.

Details

This function uses the normalized Doppler frequencies for the first-order Bragg peaks (—1 and
1) and maps them to their corresponding Doppler bin indices. The mapping is performed using
the helper function seasonder_NormalizedDopplerFreq2Bins(), which converts normalized fre-
quencies to bin indices based on the spectral resolution and the Doppler range of the radar system.

The bins are critical for identifying the Doppler shifts associated with the first-order Bragg scat-
tering in HF radar systems, which correspond to surface waves with wavelengths half that of the
transmitted radar signal.

Value
A numeric vector of length 2, where:

* The first value is the Doppler bin corresponding to the -1 Bragg frequency.

* The second value is the Doppler bin corresponding to the 1 Bragg frequency.

See Also

seasonder_NormalizedDopplerFreq2Bins for the frequency-to-bin mapping logic.

seasonder._getBraggWaveLength 87

seasonder_getBraggWavelLength
Calculate the Bragg Wavelength

Description

This function computes the Bragg wavelength Ap for a SeaSonde radar system. The Bragg wave-
length is defined as half the radar wavelength and is used to identify the fundamental scattering
mechanisms in oceanographic radar measurements.

Usage

seasonder_getBraggWavelLength(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the necessary data to compute the radar wave-
length.

Details

The Bragg wavelength A\p is calculated as: A\p = % where:
*) is the radar wavelength in meters, obtained using seasonder_getRadarWavelLength.

The Bragg wavelength is a critical parameter in interpreting the resonance scattering from the sea
surface, which is fundamental to the operation of HF radar systems.

Value

A numeric value representing the Bragg wavelength (in meters).

See Also

seasonder_getRadarWavelLength to compute the radar wavelength.

88 seasonder_getCenterFreqMHz

seasonder_getCenterDopplerBin
Retrieve Center Doppler Bin

Description

This function calculates the center Doppler bin index for a SeaSondeRCS object. It obtains the total
number of Doppler cells from the object using seasonder_getnDopplerCells and computes the
center bin with seasonder_computeCenterDopplerBin.

Usage

seasonder_getCenterDopplerBin(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing metadata about Doppler bins.

Details

The center Doppler bin is computed by retrieving the total number of Doppler cells (via seasonder_getnDopplerCells)
and then processing that value with seasonder_computeCenterDopplerBin. Note that while CO-
DAR data files might use zero-based indexing, R uses one-based indexing.

Value

A numeric value representing the center Doppler bin.

seasonder_getCenterFregMHz
Retrieve Center Frequency in MHzZ

Description
This function extracts the center frequency (in MHz) from the header of a SeaSondeRCS object. It
accesses the header field named "CenterFreq" using seasonder_getSeaSondeRCS_headerField.
Usage

seasonder_getCenterFregMHz (seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing header information.

seasonder_getCSHeaderByPath 89

Value

A numeric value representing the center frequency in MHz.

seasonder_getCSHeaderByPath
Retrieve a value from the SeaSondeRCS header by a specific path

Description

This function retrieves a specific value from the SeaSondeRCS object’s header based on the pro-
vided path. The path can be a single field name or a list of nested field names.

Usage

seasonder_getCSHeaderByPath(seasonder_obj, path, warn_missing = TRUE)

Arguments

seasonder_obj A SeaSondeRCS object.
path A character vector specifying the field or nested fields to retrieve.

warn_missing Logical; if TRUE, a warning is issued if the specified path is not found in the
header.

Value

The value at the specified path in the header. If the path is not found, NULL is returned and a
warning is thrown.

Condition Management

This function utilizes the rlang package to manage errors and conditions, and provide detailed and
structured condition messages:

Condition Classes:

* seasonder_SeaSonderCS_field_not_found_in_header: Indicates that the specified path
was not found in the header.

Condition Cases:

* Field or nested fields specified by the path are not found in the header.

Examples

Minimal example for seasonder_getCSHeaderByPath

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
field_value <- seasonder_getCSHeaderByPath(cs_obj, c("nRangeCells"))
print(field_value)

90 seasonder_getDopplerBinsFrequency

seasonder_getDopplerBinsFrequency
Get Doppler Bins Frequency

Description

This function calculates the frequency limits for each Doppler bin within a SeaSonde Cross Spec-
trum (CS) object. It can return frequencies either in their original Hz values or normalized by
the second Bragg frequency. The frequencies are calculated as the high limit of each Doppler bin
interval, similar to what is displayed in SpectraPlotterMap.

Usage

seasonder_getDopplerBinsFrequency(seasonder_cs_object, normalized = FALSE)

Arguments

seasonder_cs_object
A SeaSonde Cross Spectrum (CS) object created by seasonder_createSeaSondeRCS().
This object contains the necessary metadata and spectral data to compute Doppler
bin frequencies.

normalized A logical value indicating if the returned frequencies should be normalized by
the second Bragg frequency. When TRUE, frequencies are divided by the second
Bragg frequency, returning dimensionless values relative to it. Default is FALSE,
returning frequencies in Hz.

Details

The function internally utilizes several helper functions such as seasonder_getCenterDopplerBin(),
seasonder_getnDopplerCells(), and seasonder_getDopplerSpectrumResolution() to cal-

culate the Doppler bin frequencies. Furthermore, when normalization is requested, it uses seasonder_getBraggDopplerAng
to obtain the second Bragg frequency for normalization purposes.

Value

A numeric vector of frequencies representing the high limit of each Doppler bin interval. If normalized
is TRUE, these frequencies are dimensionless values relative to the second Bragg frequency; other-
wise, they are in Hz.

seasonder_getDopplerSpectrumResolution 91

seasonder_getDopplerSpectrumResolution
Calculate the Doppler Spectrum Resolution

Description

This function computes the Doppler spectrum resolution for a given SeaSondeRCS object. The
resolution reflects the frequency difference between consecutive Doppler bins in the spectrum.

Usage

seasonder_getDopplerSpectrumResolution(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the necessary data and metadata for Doppler
spectrum analysis.

Details

The Doppler spectrum resolution is calculated using the formula: Spectral Resolution = SweepRate/NumberO f Dopple
where:

» SweepRate is the frequency repetition rate of the radar, obtained from the field fRepFreqgHz
in the object’s header.

* NumberOfDopplerCells is the total number of Doppler bins in the spectrum.

This calculation is fundamental for understanding the frequency spacing between adjacent Doppler
bins in the radar spectrum.

Value

A numeric value representing the Doppler spectrum resolution in Hertz (Hz).

See Also

seasonder_getnDopplerCells to retrieve the number of Doppler cells. seasonder_getSeaSondeRCS_headerField
to access specific header fields.

92 seasonder._getFOR_currmax

seasonder_getFORParameter
Retrieve a Specific FOR Parameter

Description

This function extracts a specified First Order Region (FOR) parameter from a SeaSondeRCS object.

Usage

seasonder_getFORParameter (seasonder_cs_object, FOR_parameter)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR parameters.

FOR_parameter A character string specifying the name of the FOR parameter to retrieve.

Details

The function retrieves the list of FOR parameters using seasonder_getFOR_parameters() and
extracts the value associated with FOR_parameter. If the parameter is not found, an error is logged.

Value

The value of the specified FOR parameter if found; otherwise, an error message is logged.

Examples

Minimal example for seasonder_getFORParameter

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
nsm_value <- seasonder_getFORParameter(cs_obj, "nsm")

print(nsm_value)

seasonder_getFOR_currmax
Retrieve FOR Maximum Radial Velocity Limit (currmax)

Description

This function retrieves the maximum radial velocity (’currmax’) parameter from the FOR parame-
ters in a SeaSondeRCS object.

seasonder_getFOR_fdown 93

Usage

seasonder_getFOR_currmax(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR parameters.

Value

The value of the ’currmax’ parameter.

Examples

Minimal example for seasonder_getFOR_currmax

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
currmax_value <- seasonder_getFOR_currmax(cs_obj)

print(currmax_value)

seasonder_getFOR_fdown
Retrieve FOR Power Dropoff Threshold (fdown)

Description

This function retrieves the power dropoff threshold ("fdown’) for First Order Region detection from
a SeaSondeRCS object.

Usage

seasonder_getFOR_fdown (seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR parameters.

Value

The value of the *’fdown’ parameter.

94 seasonder_getFOR_flim

Examples

Minimal example for seasonder_getFOR_fdown

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
fdown_value <- seasonder_getFOR_fdown(cs_obj)

print(fdown_value)

seasonder_getFOR_flim Retrieve FOR Null Limit (flim)

Description

This function retrieves the null limit ("flim’) parameter for FIRST Order Region processing from a
SeaSondeRCS object.

Usage

seasonder_getFOR_flim(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR parameters.

Value

The value of the *flim’ parameter.

Examples

Minimal example for seasonder_getFOR_flim

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
flim_value <- seasonder_getFOR_flim(cs_obj)

print(flim_value)

seasonder_getFOR_noisefact 95

seasonder_getFOR_noisefact
Retrieve FOR Noise Factor (noisefact)

Description

This function retrieves the noise factor ('noisefact’) used in FOR processing from a SeaSondeRCS
object.

Usage

seasonder_getFOR_noisefact(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR parameters.

Value

The value of the 'noisefact’ parameter.

Examples

Minimal example for seasonder_getFOR_noisefact

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
noise_factor <- seasonder_getFOR_noisefact(cs_obj)

print(noise_factor)

seasonder_getFOR_nsm Retrieve FOR Doppler Smoothing Factor (nsm)

Description
This function retrieves the Doppler smoothing factor ('nsm’) from the FOR parameters in a Sea-
SondeRCS object.

Usage

seasonder_getFOR_nsm(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR parameters.

96 seasonder._getFOR_parameters

Value

The value of the 'nsm’ parameter.

Examples

Minimal example for seasonder_getFOR_nsm

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
smoothing_factor <- seasonder_getFOR_nsm(cs_obj)

print(smoothing_factor)

seasonder_getFOR_parameters
Retrieve First Order Region (FOR) Parameters

Description

This function retrieves the First Order Region (FOR) parameters associated with a SeaSondeR
cross-spectral object. If no FOR parameters are found in the object’s attributes, it initializes them
using seasonder_validateFOR_parameters.

Usage

seasonder_getFOR_parameters(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR-related metadata.

Details

The function extracts the FOR parameters stored within the object. If the parameters are missing, the
function initializes them using seasonder_validateFOR_parameters and assigns default values
where necessary.

FOR Parameters:

* nsm: Doppler smoothing factor.

* fdown: Peak power dropoff threshold.

* flim: Null below peak power threshold.

* noisefact: Signal-to-noise threshold.

e currmax: Maximum velocity allowed.

* reject_distant_bragg: Flag to reject distant Bragg signals.

* reject_noise_ionospheric: Flag to reject ionospheric noise contamination.

seasonder_getLog 97

* reject_noise_ionospheric_threshold: Threshold (in dB) for rejecting noise-affected Bragg
signals.

* reference_noise_normalized_limits: Estimated limits for reference noise in normalized Doppler
frequency.

Value

A named list containing the validated FOR parameters.

See Also

seasonder_validateFOR_parameters for initializing and validating FOR parameters. seasonder_defaultFOR_paramete
for retrieving default parameter values.

seasonder_getLog Retrieve the Last Logs

Description

This function fetches the most recent log entries from the global log variable seasonder_the$log.

Usage

seasonder_getLog(n = 100)

Arguments

n An integer specifying the number of recent log entries to retrieve.

Value

A character vector of the n most recent log entries from the global log.

Examples

head(seasonder_getLog())

98 seasonder_getMUSICConfig

seasonder_getMUSICConfig
Retrieve the MUSIC Configuration from a SeaSondeRCS Object

Description

This function returns the key configuration parameters for the MUSIC algorithm from a SeaSon-
deRCS object.

Usage

seasonder_getMUSICConfig(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data and options.

Details

The configuration is aggregated from the MUSIC_data attribute of the object for easy access.

Value

A list containing:

* doppler_interpolation: The Doppler interpolation factor.

* MUSIC_parameters: The numeric vector of MUSIC parameters.

Examples

Minimal example for seasonder_getMUSICConfig

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
config <- seasonder_getMUSICConfig(cs_obj)

print(config)

seasonder_getMUSICDopplerInterpolation 99

seasonder_getMUSICDopplerInterpolation
Retrieve the Doppler Interpolation Factor from MUSIC Options

Description

This function obtains the Doppler interpolation factor used in the MUSIC algorithm from a Sea-
SondeRCS object.

Usage

seasonder_getMUSICDopplerInterpolation(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data and options.

Details

The function accesses the MUSIC_data attribute under MUSIC_options and retrieves the doppler_interpolation
parameter. If absent, it defaults to 1L.

Value

An integer representing the Doppler interpolation factor.

Examples

Assuming cs_object is a valid SeaSondeRCS object.

Minimal example for seasonder_getMUSICDopplerInterpolation

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
interp_factor <- seasonder_getMUSICDopplerInterpolation(cs_obj)
print(interp_factor)

seasonder_getMUSICDualSolutionsProportion
Retrieve Proportion of Dual Solutions from MUSIC Data

Description

This function extracts the proportion of dual solutions from the MUSIC data in a SeaSondeRCS
object.

100 seasonder._getMUSIClInterpolatedData

Usage

seasonder_getMUSICDualSolutionsProportion(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data.

Details

The function checks the MUSIC_data attribute for a dual_solutions_proportion value. If not avail-
able, it defaults to NA_real_.

Value

A numeric value representing the dual solutions proportion, or NA if not set.

Examples

Minimal example for seasonder_getMUSICDualSolutionsProportion

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
dual_prop <- seasonder_getMUSICDualSolutionsProportion(cs_obj)

print(dual_prop)

seasonder_getMUSICInterpolatedData
Retrieve Interpolated MUSIC Data from a SeaSondeRCS Object

Description

This function extracts the interpolated MUSIC cross-spectra data from a SeaSondeRCS object.

Usage

seasonder_getMUSICInterpolatedData(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing interpolated MUSIC data as an attribute.

Details

The function first checks if the interpolated data is set in the MUSIC_data attribute. If absent, it
initializes the data with seasonder_MUSICInitInterpolatedData().

seasonder._getMUSIClInterpolatedDopplerCellsIndex 101

Value

A list representing the interpolated cross-spectra data.

Examples

Minimal example for seasonder_getMUSICInterpolatedData

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
interp_data <- seasonder_getMUSICInterpolatedData(cs_obj)

str(interp_data)

seasonder_getMUSICInterpolatedDopplerCellsIndex

Retrieve Interpolated Doppler Cells Index from a SeaSondeRCS Ob-
Jject

Description
This function extracts the index of interpolated Doppler cells, stored in the MUSIC_data attribute
of a SeaSondeRCS object.

Usage

seasonder_getMUSICInterpolatedDopplerCellsIndex(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data.

Details

The interpolated doppler cells index is part of the MUSIC_data and is used to identify which
Doppler bins were introduced during the interpolation process.

Value

A vector of indices corresponding to the interpolated Doppler cells.

Examples

Minimal example for seasonder_getMUSICInterpolatedDopplerCellsIndex

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
doppler_index <- seasonder_getMUSICInterpolatedDopplerCellsIndex(cs_obj)
print(doppler_index)

102 seasonder_getnDopplerCells

seasonder_getMUSICOptions
Retrieve MUSIC Options from a SeaSondeRCS Object

Description

This function extracts the MUSIC options from a SeaSondeRCS object.

Usage

seasonder_getMUSICOptions(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data as an attribute.

Details

The function retrieves the MUSIC options from the object’s MUSIC_data attribute. In the absence

of user-defined options, it returns the default options provided by seasonder_defaul tMUSICOptions().

Value

A list of MUSIC options.

Examples

Minimal example for seasonder_getMUSICOptions

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

opts <- seasonder_getMUSICOptions(cs_obj)

print(opts)

seasonder_getnDopplerCells
Get the nDopplerCells value from a SeaSondeRCS object

Description

Get the nDopplerCells value from a SeaSondeRCS object

Usage

seasonder_getnDopplerCells(seasonder_obj)

seasonder._getnRangeCells 103

Arguments

seasonder_obj A SeaSondeRCS object.

Value

The nDopplerCells value.

Examples

Minimal example for seasonder_getnDopplerCells

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
n_doppler_cells <- seasonder_getnDopplerCells(cs_obj)

print(n_doppler_cells)

seasonder_getnRangeCells
Get the nRangeCells value from a SeaSondeRCS object

Description

Get the nRangeCells value from a SeaSondeRCS object

Usage

seasonder_getnRangeCells(seasonder_obj)

Arguments

seasonder_obj A SeaSondeRCS object.

Value

The nRangeCells value.

Examples

Minimal example for seasonder_getnRangeCells

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
n_range_cells <- seasonder_getnRangeCells(cs_obj)

print(n_range_cells)

104 seasonder._getRadarWaveLength

seasonder_getRadarWavelLength
Calculate the Radar Wavelength

Description

This function computes the radar wavelength based on the center frequency of the SeaSonde radar
system. The wavelength is derived using the speed of light and the radar’s center frequency.

Usage

seasonder_getRadarWavelLength(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing metadata about the radar system, including
its center frequency.

Details

The radar wavelength A is calculated using the formula: A = ? where:

e cis the speed of light (approximately 3 * 10% m/s),

* f is the radar’s center frequency in Hz, retrieved from the SeaSondeRCS object.

The center frequency is initially stored in MHz and is converted to Hz by multiplying it by 106.

Value

A numeric value representing the radar wavelength in meters (m).

See Also

seasonder_getCenterFreqMHz to retrieve the radar’s center frequency.

seasonder._getRadarWaveNumber 105

seasonder_getRadarWaveNumber
Calculate the Radar Wave Number

Description

This function computes the radar wave number k for a SeaSonde radar system based on its wave-
length. The wave number represents the spatial frequency of the radar wave.

Usage

seasonder_getRadarWaveNumber (seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the necessary data to compute the radar wave-
length.

Details

The radar wave number k is calculated using the formula: k = QT’T where:

*) is the radar wavelength in meters, calculated using seasonder_getRadarWaveLength.

» 27 represents the relationship between the wavelength and wave number.

The wave number is an essential parameter for analyzing radar signals and their interaction with the
medium being measured.

Value

A numeric value representing the radar wave number k in radians per meter.

See Also

seasonder_getRadarWavelLength to compute the radar wavelength.

106 seasonder._getRadial VelocityResolution

seasonder_getRadialVelocityResolution
Calculate Radial Velocity Resolution

Description

Computes the radial velocity resolution for a SeaSonde radar cross-section (CS) object. This mea-
surement indicates the smallest change in velocity that the radar can discern between different
targets or scatterers within its observation area. The calculation is based on the Doppler spectrum
resolution and the radar wave number, providing a crucial parameter for analyzing the radar’s capa-
bility to distinguish between velocities.

Usage

seasonder_getRadialVelocityResolution(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object created using seasonder_createSeaSondeRCS. This
object contains the necessary data to calculate the Doppler spectrum resolution
and, subsequently, the radial velocity resolution.

Details

The radial velocity resolution v, is determined using the formula:

SpectraRes
U’I‘ES = 5 7
2-ko

where v, is the radial velocity resolution, SpectraRes is the Doppler spectrum resolution, and kg is
the radar wave number divided by 27. This formula reflects the relationship between the frequency
resolution of the radar’s Doppler spectrum and the corresponding velocity resolution, taking into
account the wave number which is a fundamental characteristic of the radar system.

Value

A single numeric value representing the radial velocity resolution in meters per second (m/s), indi-
cating the radar’s ability to differentiate between closely spaced velocities.

See Also

seasonder_getDopplerSpectrumResolution, seasonder_getRadarWaveNumber

seasonder._getReceiverGain_dB 107

seasonder_getReceiverGain_dB
Retrieve Receiver Gain in Decibels

Description
This function retrieves the receiver gain value (in decibels) from the header of a given SeaSondeRCS
object. If the receiver gain field is missing or NULL, a default value of -34.2 dB is returned.
Usage

seasonder_getReceiverGain_dB(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing header information about the radar system.
Details

The function extracts the value of the header field fReferenceGainDB using seasonder_getSeaSondeRCS_headerField.
If the field is not present or has a NULL value, the function defaults to a receiver gain of -34.2 dB
(CODAR, 2016).

Value

A numeric value representing the receiver gain in decibels (dB).

References

Cross Spectra File Format Version 6, CODAR. (2016).

See Also

seasonder_getSeaSondeRCS_headerField to retrieve specific fields from the SeaSondeRCS header.

seasonder_getSeaSondeRAPM_AmplitudeFactors
Getter for AmplitudeFactors

Description

Getter for AmplitudeFactors

Usage

seasonder_getSeaSondeRAPM_AmplitudeFactors(seasonde_apm_obj)

108 seasonder_getSeaSondeRAPM_AntennaBearing

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The AmplitudeFactors attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_AmplitudeFactors

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

amplitude_factors <- seasonder_getSeaSondeRAPM_AmplitudeFactors(apm_obj)
print(amplitude_factors)

seasonder_getSeaSondeRAPM_AntennaBearing
Getter for AntennaBearing

Description

Getter for AntennaBearing

Usage

seasonder_getSeaSondeRAPM_AntennaBearing(seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The AntennaBearing attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_AntennaBearing

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

antenna_bearing <- seasonder_getSeaSondeRAPM_AntennaBearing(apm_obj)
print(antenna_bearing)

seasonder._getSeaSondeRAPM_BEAR 109

seasonder_getSeaSondeRAPM_BEAR
Getter for BEAR

Description

Getter for BEAR

Usage

seasonder_getSeaSondeRAPM_BEAR (seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The BEAR attribute (bearing values) from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_BEAR

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

bear <- seasonder_getSeaSondeRAPM_BEAR (apm_obj)

print(bear)

seasonder_getSeaSondeRAPM_BearingResolution
Getter for BearingResolution

Description

Getter for BearingResolution

Usage

seasonder_getSeaSondeRAPM_BearingResolution(seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

110 seasonder_getSeaSondeRAPM_CommentLine

Value

The BearingResolution attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_BearingResolution
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

bearing_resolution <- seasonder_getSeaSondeRAPM_BearingResolution(apm_obj)
print(bearing_resolution)

seasonder_getSeaSondeRAPM_CommentLine
Getter for CommentLine

Description

Getter for CommentLine

Usage

seasonder_getSeaSondeRAPM_CommentLine (seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The CommentLine attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_CommentLine

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

comment_line <- seasonder_getSeaSondeRAPM_CommentLine(apm_obj)
print(comment_line)

seasonder._getSeaSondeRAPM_CreateTimeStamp 111

seasonder_getSeaSondeRAPM_CreateTimeStamp
Getter for CreateTimeStamp

Description

Getter for CreateTimeStamp

Usage

seasonder_getSeaSondeRAPM_CreateTimeStamp (seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The CreateTimeStamp attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_CreateTimeStamp

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

create_time_stamp <- seasonder_getSeaSondeRAPM_CreateTimeStamp(apm_obj)
print(create_time_stamp)

seasonder_getSeaSondeRAPM_Creator
Getter for Creator

Description

Getter for Creator

Usage

seasonder_getSeaSondeRAPM_Creator (seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

112 seasonder._getSeaSondeRAPM_FileID

Value

The Creator attribute from the object.

Examples

Create a default SeaSondeRAPM object
obj <- seasonder_createSeaSondeRAPM()
creator <- seasonder_getSeaSondeRAPM_Creator (obj)

seasonder_getSeaSondeRAPM_FileID
Getter for FileID

Description

Getter for FileID

Usage

seasonder_getSeaSondeRAPM_FileID(seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The FileID attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_FileID

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

file_id <- seasonder_getSeaSondeRAPM_FileID(apm_obj)

print(file_id)

seasonder._getSeaSondeRAPM_FileName 113

seasonder_getSeaSondeRAPM_FileName
Getter for FileName

Description

Getter for FileName

Usage

seasonder_getSeaSondeRAPM_FileName (seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The FileName attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_FileName

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

file_name <- seasonder_getSeaSondeRAPM_FileName (apm_obj)

print(file_name)

seasonder_getSeaSondeRAPM_PhaseCorrections
Getter for PhaseCorrections

Description

Getter for PhaseCorrections

Usage

seasonder_getSeaSondeRAPM_PhaseCorrections(seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

114 seasonder_getSeaSondeRAPM_ProcessingSteps

Value

The PhaseCorrections attribute from the object.

Examples

Create a default SeaSondeRAPM object
obj <- seasonder_createSeaSondeRAPM()
phase_corrections <- seasonder_getSeaSondeRAPM_PhaseCorrections(obj)

seasonder_getSeaSondeRAPM_ProcessingSteps
Getter for ProcessingSteps

Description

Getter for ProcessingSteps

Usage

seasonder_getSeaSondeRAPM_ProcessingSteps(seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The ProcessingSteps attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_ProcessingSteps

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

processing_steps <- seasonder_getSeaSondeRAPM_ProcessingSteps(apm_obj)
print(processing_steps)

seasonder._getSeaSondeRAPM_quality_matrix 115

seasonder_getSeaSondeRAPM_quality_matrix
Getter for quality_matrix

Description

Getter for quality_matrix

Usage

seasonder_getSeaSondeRAPM_quality_matrix(seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The quality_matrix attribute from the object.

Examples

Create a default SeaSondeRAPM object
obj <- seasonder_createSeaSondeRAPM()
quality_matrix <- seasonder_getSeaSondeRAPM_quality_matrix(obj)

seasonder_getSeaSondeRAPM_SiteName
Getter for SiteName

Description

Getter for SiteName

Usage

seasonder_getSeaSondeRAPM_SiteName (seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The SiteName attribute from the object.

116 seasonder_getSeaSondeRAPM_Smoothing

Examples

Minimal example for seasonder_getSeaSondeRAPM_SiteName

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

site_name <- seasonder_getSeaSondeRAPM_SiteName (apm_obj)

print(site_name)

seasonder_getSeaSondeRAPM_SiteOrigin
Getter for SiteOrigin

Description

Getter for SiteOrigin

Usage

seasonder_getSeaSondeRAPM_SiteOrigin(seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The SiteOrigin attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_SiteOrigin

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

site_origin <- seasonder_getSeaSondeRAPM_SiteOrigin(apm_obj)
print(site_origin)

seasonder_getSeaSondeRAPM_Smoothing
Getter for Smoothing

Description

Getter for Smoothing

Usage

seasonder_getSeaSondeRAPM_Smoothing(seasonde_apm_obj)

seasonder._getSeaSondeRAPM_StationCode 117

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The Smoothing attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_Smoothing

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

smoothing <- seasonder_getSeaSondeRAPM_Smoothing(apm_obj)

print(smoothing)

seasonder_getSeaSondeRAPM_StationCode
Getter for StationCode

Description

Getter for StationCode

Usage

seasonder_getSeaSondeRAPM_StationCode (seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The StationCode attribute from the object.

Examples

Minimal example for seasonder_getSeaSondeRAPM_StationCode

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

station_code <- seasonder_getSeaSondeRAPM_StationCode(apm_obj)
print(station_code)

118 seasonder_getSeaSondeRCS_antenna_SSdata

seasonder_getSeaSondeRAPM_Type
Getter for Type

Description

Getter for Type

Usage

seasonder_getSeaSondeRAPM_Type (seasonde_apm_obj)

Arguments

seasonde_apm_obj
SeaSonderAPM object

Value

The Type attribute from the object.

Examples

Create a default SeaSondeRAPM object
obj <- seasonder_createSeaSondeRAPM()
type <- seasonder_getSeaSondeRAPM_Type(obj)

seasonder_getSeaSondeRCS_antenna_SSdata

Retrieve Self-Spectra Data for a Specific Antenna from a SeaSon-
deRCS Object

Description
This function extracts the self-spectra (SSA) data matrix for a given antenna from a SeaSondeRCS
object.

Usage

seasonder_getSeaSondeRCS_antenna_SSdata(seasonder_cs_object, antenna)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral data.

antenna An integer specifying the antenna number (1, 2, or 3).

seasonder._getSeaSondeRCS_APM 119

Details
The function constructs the matrix name dynamically by appending the antenna number to the
prefix "SSA" (e.g., "SSA1", "SSA2", or "SSA3"). It then retrieves the corresponding matrix from the
SeaSondeRCS data using seasonder_getSeaSondeRCS_dataMatrix.

Value
A matrix containing the self-spectra data for the specified antenna. If the antenna number is invalid,
an error is thrown.

See Also

seasonder_getSeaSondeRCS_dataMatrix for extracting specific data matrices. seasonder_getSeaSondeRCS_data
for retrieving the complete data structure.

seasonder_getSeaSondeRCS_APM
Retrieve the APM Attribute from a SeaSondeRCS Object

Description
This function extracts the APM (Antenna Pattern Matrix or similar metadata) attribute from a Sea-
SondeRCS object. This attribute is stored as an attribute named "APM" within the object.

Usage

seasonder_getSeaSondeRCS_APM(seasonder_cs_object)

Arguments

seasonder_cs_object

A SeaSondeRCS object.
Details
The function uses attr (..., exact = TRUE) to ensure that the correct attribute is retrieved.
Value

The value of the "APM" attribute from the SeaSondeRCS object.

Examples

Create a minimal SeaSondeRCS object

cs_obj <- structure(list(data = list(a =1, b = 2)), class = "SeaSondeRCS")
apm_value <- seasonder_getSeaSondeRCS_APM(cs_obj)

print(apm_value)

120 seasonder_getSeaSondeRCS_dataMatrix

seasonder_getSeaSondeRCS_data
Getter for data

Description

Getter for data

Usage

seasonder_getSeaSondeRCS_data(seasonder_cs_object)

Arguments

seasonder_cs_object
SeaSondeRCS object

Value
A list containing the data matrices for the SeaSondeRCS object. If the data is not set, it initializes
the data structure with the number of range and Doppler cells.

See Also

seasonder_getnRangeCells seasonder_getnDopplerCells seasonder_initCSDataStructure

Examples

Create a minimal SeaSondeRCS object

cs_obj <- structure(list(data = list(a =1, b = 2)), class = "SeaSondeRCS")
data_list <- seasonder_getSeaSondeRCS_data(cs_obj)

print(data_list)

seasonder_getSeaSondeRCS_dataMatrix
Retrieve a Specific Data Matrix from a SeaSondeRCS Object

Description
This function extracts a specific data matrix from a SeaSondeRCS object. The available matrices
correspond to self-spectra and cross-spectra components used in SeaSonde radar processing.
Usage

seasonder_getSeaSondeRCS_dataMatrix(seasonder_cs_object, matrix_name)

seasonder._getSeaSondeRCS_FOR 121

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the spectral data.

matrix_name A string specifying the name of the matrix to retrieve. Must be one of:

e "SSA1": Self-spectra for antenna 1.

e "SSA2": Self-spectra for antenna 2.

e "SSA3": Self-spectra for antenna 3.

e "CS12": Cross-spectra between antennas 1 and 2.
e "CS13": Cross-spectra between antennas 1 and 3.
* "CS23": Cross-spectra between antennas 2 and 3.
e "QC": Quality control matrix.

Details

The function first verifies that the provided matrix_name is valid. If the name is not in the list
of accepted values, it logs an error and aborts execution using seasonder_logAndAbort. Once
validated, the function extracts the requested matrix from the data component of the SeaSondeRCS
object.

Value

A matrix containing the requested spectral data. If the matrix name is invalid, an error is thrown.

See Also

seasonder_getSeaSondeRCS_data for retrieving the complete data structure. seasonder_logAndAbort
for error handling.

seasonder_getSeaSondeRCS_FOR
Retrieve First Order Region (FOR) Data from SeaSondeRCS Object

Description
This function extracts the First Order Region (FOR) data from a SeaSondeRCS object. If the FOR
data is not found in the object’s attributes, it is initialized using seasonder_initSeaSondeRCS_FOR().
Usage

seasonder_getSeaSondeRCS_FOR (seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR-related data.

122 seasonder_getSeaSondeRCS_FORConfig

Details

The function attempts to retrieve the 'FOR’ element from the object’s "FOR_data" attribute. If it
does not exist, it calls seasonder_initSeaSondeRCS_FOR() to initialize the FOR data.

Value

The FOR data structure.

Examples

Minimal example for seasonder_getSeaSondeRCS_FOR

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
FOR_data <- seasonder_getSeaSondeRCS_FOR(cs_obj)

head(FOR_data)

seasonder_getSeaSondeRCS_FORConfig
Retrieve First Order Region (FOR) Configuration from a SeaSon-
deRCS Object

Description

This function extracts the configuration related to the First Order Region (FOR) from a SeaSon-
deRCS object. It returns a list containing the FOR parameters and the noise level assigned to the
object.

Usage

seasonder_getSeaSondeRCS_FORConfig(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR-related metadata.
Details

The FOR configuration is composed of parameters that define the first order region and the noise
level used during FOR processing. This function aggregates these components by calling seasonder_getFOR_parameters()
and seasonder_getSeaSondeRCS_NoiselLevel ().

Value

A list with two components:

* FOR_parameters: A list of parameters used for FOR processing.

* NoiselLevel: The noise level values retrieved from the object.

seasonder._getSeaSondeRCS_FOR_SS_Smoothed 123

Examples

Create a minimal SeaSondeRCS object

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
config <- seasonder_getSeaSondeRCS_FORConfig(cs_obj)

print(config)

seasonder_getSeaSondeRCS_FOR_SS_Smoothed
Retrieve Smoothed Self-Spectra for First Order Region (FOR)

Description

This function retrieves the smoothed self-spectra (SS) matrix stored in the FOR_data attribute of a
SeaSondeRCS object. The smoothed self-spectra are used in First Order Region (FOR) processing
to refine the detection of the first-order boundaries.

Usage

seasonder_getSeaSondeRCS_FOR_SS_Smoothed(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing smoothed self-spectra data.
Details

The function extracts the matrix assigned by seasonder_setSeaSondeRCS_FOR_SS_Smoothed. If
no smoothed self-spectra are found, the function returns NULL.

The smoothed self-spectra are typically generated using seasonder_SmoothSS and applied to the
self-spectra of antenna 3. This smoothing aids in detecting the nulls that separate first- and second-
order regions.

Value

A matrix representing the smoothed self-spectra, or NULL if no smoothed data is stored.

See Also

* seasonder_SmoothFORSS for applying smoothing and storing the result.

* seasonder_setSeaSondeRCS_FOR_SS_Smoothed for setting smoothed self-spectra.

124 seasonder_getSeaSondeRCS_headerField

seasonder_getSeaSondeRCS_header
Getter for header

Description

Getter for header

Usage

seasonder_getSeaSondeRCS_header (seasonder_cs_object)

Arguments

seasonder_cs_object
SeaSondeRCS object

Value

A list containing the header data of the SeaSondeRCS object.

Examples

Create a minimal SeaSondeRCS object with a header attribute
cs_obj <- structure(list(data = list(a =1, b = 2)), class = "SeaSondeRCS")
attr(cs_obj, "header"”) <- list(
nSiteCodeName = "Stationl”,
nDateTime = Sys.time(),
nDopplerCells = 2,
nRangeCells = 3
)
header_data <- seasonder_getSeaSondeRCS_header(cs_obj)
print(header_data)

seasonder_getSeaSondeRCS_headerField
Retrieve a Specific Field from a SeaSondeRCS Header

Description

This function extracts a specific field from the header of a SeaSondeRCS object.

Usage

seasonder_getSeaSondeRCS_headerField(seasonder_cs_object, field)

seasonder._getSeaSondeRCS_MUSIC 125

Arguments

seasonder_cs_object
A SeaSondeRCS object.

field A string specifying the field name to retrieve from the header.

Details

This function first retrieves the full header using seasonder_getSeaSondeRCS_header and then
attempts to extract the requested field using pluck. The header is flattened before extraction to
accommodate nested structures.

Value

The value of the specified field from the header. If the field is not found, NULL is returned.

See Also

seasonder_getSeaSondeRCS_header for retrieving the full header. pluck for selective element
extraction.

seasonder_getSeaSondeRCS_MUSIC
Retrieve MUSIC Data from a SeaSondeRCS Object

Description

This function extracts the MUSIC data structure from a SeaSondeRCS object.

Usage

seasonder_getSeaSondeRCS_MUSIC(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data as an attribute.

Details

If the MUSIC data does not exist in the object, the function initializes it via seasonder_initSeaSondeRCS_MUSIC().

Value

The MUSIC data structure, typically a data frame or tibble with MUSIC results.

126 seasonder_getSeaSondeRCS_MUSIC_BinsRadial Velocity

Examples

Minimal example for seasonder_getMUSIC

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
music_data <- seasonder_getSeaSondeRCS_MUSIC(cs_obj)

print(music_data)

seasonder_getSeaSondeRCS_MUSIC_BinsRadialVelocity
Retrieve Radial Velocities for MUSIC Doppler Bins

Description
This function calculates the radial velocities for MUSIC Doppler bins based on the given SeaSonde
cross-spectral object.

Usage

seasonder_getSeaSondeRCS_MUSIC_BinsRadialVelocity(seasonder_cs_object)

Arguments

seasonder_cs_object

A SeaSondeRCS object representing the cross-spectral data structure. It con-
tains necessary metadata and Doppler frequency information.

Details

The function uses the following process:

* Itretrieves the Doppler bin frequencies using seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency.

* It computes the radial velocities associated with the bins using seasonder_computeBinsRadialVelocity.

The computed velocities are returned as a numeric vector, which can be used in subsequent analyses
or visualizations.

Value

A numeric vector containing the radial velocities corresponding to each MUSIC Doppler bin.

See Also

seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency, seasonder_computeBinsRadialVelocity

seasonder._getSeaSondeRCS_MUSIC_CenterDopplerBin 127

seasonder_getSeaSondeRCS_MUSIC_CenterDopplerBin
Retrieve the Center Doppler Bin for MUSIC Analysis

Description

This function calculates the center Doppler bin for a SeaSondeRCS object. The center bin corre-
sponds to the Doppler bin representing zero frequency, and the computation accounts for adjust-
ments from the MUSIC Doppler interpolation.

Usage

seasonder_getSeaSondeRCS_MUSIC_CenterDopplerBin(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing data and parameters for MUSIC analysis.

Details

The function performs the following steps:

1. Retrieves the total number of Doppler cells, including adjustments for MUSIC interpolation,
using seasonder_getSeaSondeRCS_MUSIC_nDopplerCells.

2. Computes the center Doppler bin using seasonder_computeCenterDopplerBin, which de-
termines the bin corresponding to zero frequency.

The center Doppler bin is a key parameter for organizing Doppler frequency data around zero and
is critical for spectral analysis.

Value

An integer representing the center Doppler bin.

See Also

seasonder_getSeaSondeRCS_MUSIC_nDopplerCells to retrieve the adjusted number of Doppler
cells. seasonder_computeCenterDopplerBin for the center bin calculation.

128 seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency

seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency
Calculate Doppler Bins Frequencies for MUSIC Analysis

Description

This function computes the Doppler bin frequencies for a given SeaSondeRCS object, incorporating
adjustments from the MUSIC analysis. The computation accounts for Doppler interpolation and
the spectrum resolution.

Usage

seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency(
seasonder_cs_object,
normalized = FALSE

Arguments
seasonder_cs_object
A SeaSondeRCS object containing the data and parameters for MUSIC analysis.

normalized Logical. If TRUE, the returned frequencies are normalized by the positive Bragg
frequency. Default is FALSE, returning frequencies in Hz.

Details

The function performs the following steps:

1. Retrieves the central Doppler bin corresponding to 0 frequency using seasonder_getSeaSondeRCS_MUSIC_CenterDop
2. Retrieves the total number of Doppler cells (adjusted for interpolation) using seasonder_getSeaSondeRCS_MUSIC_nDo
3. Retrieves the Doppler spectrum resolution using seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolution.
4. Computes the Doppler bin frequencies using seasonder_computeDopplerBinsFrequency.

The resulting Doppler bins frequencies are crucial for analyzing the spectral properties of the MU-
SIC output.

Value

A numeric vector representing the frequency values for each Doppler bin. If normalized = TRUE,
these values are dimensionless, relative to the positive Bragg frequency. Otherwise, they are in Hz.

See Also

seasonder_getSeaSondeRCS_MUSIC_CenterDopplerBin to retrieve the central bin. seasonder_getSeaSondeRCS_MUSIC_
for the number of Doppler cells. seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolution

for the adjusted spectrum resolution. seasonder_computeDopplerBinsFrequency for the fre-

quency calculation.

seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolution 129

seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolution
Retrieve the Adjusted Doppler Spectrum Resolution for MUSIC Anal-
ySis

Description

This function calculates the Doppler spectrum resolution adjusted by the Doppler interpolation
factor for a given SeaSondeRCS object. The adjustment ensures that the spectrum resolution reflects
the impact of interpolation applied in the MUSIC analysis.

Usage

seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolution(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the data and parameters for MUSIC analysis.

Details
The function performs the following steps:
1. Retrieves the base Doppler spectrum resolution using seasonder_getDopplerSpectrumResolution.

2. Obtains the Doppler interpolation factor using seasonder_getSeaSondeRCS_MUSIC_doppler_interpolation.

3. Divides the base resolution by the interpolation factor to compute the adjusted resolution.

This adjustment is critical for accurately interpreting MUSIC data in cases where Doppler interpo-
lation has been applied.

Value

A numeric value representing the adjusted Doppler spectrum resolution.

See Also

seasonder_getDopplerSpectrumResolution to retrieve the base Doppler spectrum resolution.
seasonder_getSeaSondeRCS_MUSIC_doppler_interpolation to retrieve the Doppler interpola-
tion factor.

130 seasonder._getSeaSondeRCS_MUSIC_nDopplerCells

seasonder_getSeaSondeRCS_MUSIC_nDopplerCells
Retrieve the Interpolated Number of Doppler Cells for MUSIC

Description

This function calculates the interpolated number of Doppler cells for the MUSIC data in a given
SeaSondeRCS object. It applies a Doppler interpolation factor to the original number of Doppler
cells.

Usage

seasonder_getSeaSondeRCS_MUSIC_nDopplerCells(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing metadata and configurations related to MU-
SIC data processing.

Details
The function performs the following steps:
1. Retrieves the total number of Doppler cells using seasonder_getnDopplerCells.

2. Retrieves the Doppler interpolation factor using seasonder_getSeaSondeRCS_MUSIC_doppler_interpolation.

3. Multiplies the number of Doppler cells by the interpolation factor to compute the interpolated
number of Doppler cells.

Value

An integer representing the number of Doppler cells adjusted by the Doppler interpolation factor.

See Also

seasonder_getnDopplerCells to obtain the base number of Doppler cells. seasonder_getSeaSondeRCS_MUSIC_doppler.
to retrieve the Doppler interpolation factor.

seasonder._getSeaSondeRCS_MUSIC_parameters 131

seasonder_getSeaSondeRCS_MUSIC_parameters
Retrieve MUSIC Parameters from a SeaSondeRCS Object

Description

This function extracts the MUSIC algorithm parameters from a SeaSondeRCS object.

Usage

seasonder_getSeaSondeRCS_MUSIC_parameters(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data as an attribute.

Details

The function checks for the presence of MUSIC parameters in the object’s MUSIC_data attribute.
If not found, it defaults to the values returned by seasonder_defaultMUSIC_parameters().

Value

A numeric vector of MUSIC parameters.

Examples

Minimal example for seasonder_getSeaSondeRCS_MUSIC_parameters

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
params <- seasonder_getSeaSondeRCS_MUSIC_parameters(cs_obj)

print(params)

seasonder_getSeaSondeRCS_ProcessingSteps
Getter for ProcessingSteps

Description

Getter for ProcessingSteps

Usage

seasonder_getSeaSondeRCS_ProcessingSteps(seasonder_cs_object)

132 seasonder_getSeaSondeRCS_reference_noise_normalized_limits_estimation_interval

Arguments

seasonder_cs_object
SeaSonderCS object

Value

A list containing the processing steps of the SeaSondeRCS object.

Examples

Create a SeaSondeRCS object for examples

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

Retrieve processing steps

processing_steps <- seasonder_getSeaSondeRCS_ProcessingSteps(cs_obj)
print(processing_steps)

seasonder_getSeaSondeRCS_reference_noise_normalized_limits_estimation_interval
Retrieve the Reference Noise Normalized Limits Estimation Interval

Description

This function extracts the reference noise normalized limits estimation interval from a SeaSon-
deRCS object’s attributes. These limits are stored under the attribute name "reference_noise_normalized_limits_estim:

Usage

seasonder_getSeaSondeRCS_reference_noise_normalized_limits_estimation_interval(
seasonder_cs_object

)

Arguments

seasonder_cs_object
A SeaSondeRCS object.

Details

This interval is typically used during the noise level estimation process for the SeaSondeRCS object.

Value

The reference noise normalized limits estimation interval as stored in the object.

seasonder._getSeaSondeRCS_SelfSpectra 133

Examples

Create a minimal SeaSondeRCS object

cs_obj <- structure(list(data = list(a =1, b = 2)), class = "SeaSondeRCS")

interval <- seasonder_getSeaSondeRCS_reference_noise_normalized_limits_estimation_interval(cs_obj)
print(interval)

seasonder_getSeaSondeRCS_SelfSpectra
Retrieve Self-Spectra Power Matrices for Specified Antenna, Range,
and Doppler Intervals

Description

This function returns a list of power spectra extracted from a SeaSondeRCS object for each com-
bination of the specified antennae, range intervals, and Doppler intervals. It allows users to focus
on subregions of the self-spectra data. Additionally, the resulting nested list can be collapsed into a
single-level list.

Usage

seasonder_getSeaSondeRCS_SelfSpectra(
seasonder_cs_object,
antennae,
dist_ranges = NULL,
doppler_ranges = NULL,
dist_in_km = FALSE,
collapse = FALSE,
smoothed = FALSE

Arguments
seasonder_cs_object
A SeaSondeRCS object containing spectral data.

antennae A vector specifying the antenna(s) from which to extract self-spectra. If not
named, the antennae will be automatically named as "A1", "A2", etc.

dist_ranges Optional. A list (or vector) of range cell indices or ranges of interest. If not
provided, it defaults to using the full range available.

doppler_ranges Optional. A list (or vector) of Doppler bin indices or ranges of interest. If not
provided, defaults to the complete Doppler range.

dist_in_km Logical; if TRUE, the distance ranges provided in kilometers are converted into
range cell numbers.

collapse Logical; if TRUE, the nested list structure of the output is flattened into a single
list.

smoothed Logical; if TRUE, smoothed self-spectra data is used (via seasonder_SmoothSS);

otherwise, raw self-spectra data is used.

134

Details

seasonder_getVersion

The function operates as follows:

1.

Value

If doppler_ranges is not provided, it sets a default list with the full Doppler range, using the
total number of Doppler cells.

. If dist_ranges is not provided, it sets a default list with the full range, using the total number

of range cells.

. If any of antennae, dist_ranges, or doppler_ranges are not named, they are automatically

named using a default naming scheme.

. Based on the smoothed flag, the function retrieves either smoothed self-spectra data via

seasonder_SmoothSS or raw self-spectra data via seasonder_getSeaSondeRCS_antenna_SSdata.

. If dist_in_km is TRUE, the distance ranges provided in kilometers are converted to range cell

numbers using seasonder_rangeCellsDists2RangeNumber.

. For each self-spectra matrix, the function slices the matrix over the specified range and Doppler

intervals.

. Finally, if collapse = TRUE, the nested list is flattened into a single-level list.

A (potentially nested) list of self-spectra power matrices corresponding to each combination of
antenna, range interval, and Doppler interval. If collapse = TRUE, the list is flattened.

seasonder_getVersion Get the version value from a SeaSondeR object

Description

Get the version value from a SeaSondeR object

Usage

seasonder_getVersion(seasonder_obj)

Arguments

seasonder_obj A SeaSondeR object.

Value

The version value.

seasonder._getVersion.SeaSondeRAPM 135

Examples

Get version from a SeaSondeRCS object

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
value <- seasonder_getVersion(cs_obj)

print(value)

seasonder_getVersion.SeaSondeRAPM
Get the version value from a SeaSondeRAPM object

Description

Get the version value from a SeaSondeRAPM object

Usage

S3 method for class 'SeaSondeRAPM'
seasonder_getVersion(seasonder_obj)

Arguments

seasonder_obj A SeaSondeRAPM object.

Value

The version value.

Examples

Create a default SeaSondeRAPM object

obj <- seasonder_createSeaSondeRAPM()

Retrieve version via the generic function
version <- seasonder_getVersion(obj)
print(version)

136 seasonder._get_enabled_debug_points

seasonder_getVersion.SeaSondeRCS
Get the version value from a SeaSondeRCS object

Description

Get the version value from a SeaSondeRCS object

Usage

S3 method for class 'SeaSondeRCS'
seasonder_getVersion(seasonder_obj)

Arguments

seasonder_obj A SeaSondeRCS object.

Value

The version value.

Examples

Get version from a SeaSondeRCS object

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
value <- seasonder_getVersion(cs_obj)

print(value)

seasonder_get_enabled_debug_points
Get enabled debug points in SeaSondeR

Description

This function returns the currently enabled debug points.

Usage

seasonder_get_enabled_debug_points()

Value

A character vector of enabled debug points.

seasonder_initCSDataStructure 137

Examples

seasonder_get_enabled_debug_points()

seasonder_initCSDataStructure

Initialize Cross-Spectra Data Structure for SeaSondeR

Description

This function initializes a data structure for storing cross-spectra data related to SeaSonde radar
measurements. It creates a list of matrices, each corresponding to different components of the
SeaSonde data.

Usage

seasonder_initCSDataStructure(nRanges, nDoppler)

Arguments
nRanges Integer, number of range cells in the radar measurement. Specifies the number
of rows in each matrix.
nDoppler Integer, number of Doppler bins in the radar measurement. Specifies the number
of columns in each matrix.
Value

A list containing matrices for different cross-spectra components:

SSAT: Matrix for SSA1 component, filled with NA_real_.
SSA2: Matrix for SSA2 component, filled with NA_real_.
SSA3: Matrix for SSA3 component, filled with NA_real_.

CS12: Matrix for CS12 component, complex numbers with NA_real_ real and imaginary
parts.

CS13: Matrix for CS13 component, complex numbers with NA_real_ real and imaginary
parts.

CS23: Matrix for CS23 component, complex numbers with NA_real_ real and imaginary
parts.

QC: Quality control matrix, filled with NA_real_.

138

seasonder_initialize AttributesSeaSondeRAPM

seasonder_initializeAttributesSeaSondeRAPM

Initialize Attributes for a SeaSondeRAPM Object

Description

This function initializes attributes for a SeaSondeRAPM object, including metadata and properties.

Usage

seasonder_initializeAttributesSeaSondeRAPM(calibration_matrix, ...)

Arguments

calibration_matrix

Details

A 2 x b complex matrix, where b is the number of bearings for calibration.
Additional named attributes that may override the defaults.

The function initializes the following attributes:

quality_matrix: A 3 x b complex matrix for quality data, where b is the number of bearings.
BEAR: A numeric vector for bearings (degrees CCW from the site bearing).

Type: Character string for antenna pattern type.

Creator: Object creator name. Default is an empty character vector.

SiteName: Site name (not the same as SiteCode). Default is an empty character vector.
SiteOrigin: Numeric vector with two elements representing the Station GPS location. De-
fault is c(0,0).

FileName: Default is an empty character vector.

CreateTimeStamp: APM file creation time. Default is current system date and time.

ProcessingSteps: Processing steps applied to this object. Default is an empty character
vector.

AmplitudeFactors: Numeric vector with two elements for the amplitude factors. Default is
c(0,0).

AntennaBearing: Site bearing (CW degrees from true north). Default is an empty numeric
vector.

StationCode: 4-character station code. Default is an empty character vector.
BearingResolution: In degrees. Default is an empty numeric vector.

Smoothing: Numeric vector indicating smoothing applied to the antenna pattern. Default is
an empty numeric vector.

CommentLine: Metadata lines in the data file not matching any other attribute. Default is an
empty character vector.

FileID: File’s UUID. Default is an empty character vector.

PhaseCorrections: Numeric vector with two elements for phase corrections. Default is
c(9,0).

seasonder_initMUSICData 139

Value

A list containing initialized attributes for a SeaSondeRAPM object.

See Also

seasonder_createSeaSondeRAPM, seasonder_validateAttributesSeaSondeRAPM

Examples

Initialize attributes for a dummy calibration matrix
attrs <- seasonder_initializeAttributesSeaSondeRAPM(matrix(1:6, nrow = 3))

seasonder_initMUSICData
Initialize MUSIC Data for SeaSondeR

Description

This function initializes the MUSIC data structure for a SeaSondeR cross-spectral object, including
optional interpolation, parameter setup, and pre-computed placeholders for MUSIC analysis.

Usage

seasonder_initMUSICData(
seasonder_cs_object,
range_cells = NULL,
doppler_bins = NULL,
NULL_MUSIC = FALSE

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing metadata about the radar system.

range_cells An optional vector specifying the range cells to include. Defaults to all range
cells in the object.

doppler_bins An optional vector specifying the Doppler bins to include. Defaults to all Doppler
bins in the object.

NULL_MUSIC Logical. If TRUE, initializes the MUSIC structure with a NULL placeholder (see
seasonder_NULLSeaSondeRCS_MUSIC). Defaults to FALSE.

140 seasonder_initSeaSondeRCS_MUSIC

Details

The function performs the following steps:

1. Ensures the SeaSondeR object has valid interpolation and parameter settings for MUSIC anal-
ysis.

2. Initializes the MUSIC data structure. If NULL_MUSIC is FALSE, the structure is populated with
range cell and Doppler bin combinations.

3. Computes proportion of dual solutions for MUSIC using seasonder_MUSICComputePropDualSols.

4. Initializes interpolated data for cross-spectral analysis using seasonder_MUSICInitInterpolatedData.

The final object is ready for further MUSIC analysis steps, such as computing Direction of Arrival
(DOA).

Value

The updated SeaSondeR cross-spectral object with initialized MUSIC-related attributes.

See Also

seasonder_NULLSeaSondeRCS_MUSIC for initializing a NULL structure. seasonder_initSeaSondeRCS_MUSIC
for range and Doppler-based initialization. seasonder_MUSICInitInterpolatedData for interpo-
lated data initialization.

Examples

Minimal example for initializing MUSIC data (all range cells and Doppler bins)
cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
music_obj <- seasonder_initMUSICData(cs_obj)

Example: specific range cells and Doppler bins
music_obj2 <- seasonder_initMUSICData(

cs_obj,

range_cells = c(1, 2),

doppler_bins = c(1, 2, 5, 10)
)

seasonder_initSeaSondeRCS_MUSIC
Initialize SeaSondeR MUSIC Data Structure

Description

This function initializes a data structure for storing MUSIC analysis results for a given SeaSondeR
cross-spectral object.

seasonder_initSeaSondeRCS_MUSIC 141

Usage

seasonder_initSeaSondeRCS_MUSIC(
seasonder_cs_object,
range_cells = NULL,
doppler_bins = NULL

)

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing metadata about the radar system.

range_cells An optional vector specifying the range cells to include. Defaults to all range
cells in the object.

doppler_bins An optional vector specifying the Doppler bins to include. Defaults to all Doppler
bins in the object.

Details

The function creates a tibble with pre-computed range, frequency, and radial velocity values for the
specified range cells and Doppler bins. It also initializes placeholders for MUSIC-related parame-
ters such as covariance matrices, eigen decompositions, projections, DOA solutions, and more.

Columns in the resulting tibble include:

* range_cell: Range cell indices.

* doppler_bin: Doppler bin indices.

* range: Computed range values for the specified range cells.

» freq: Computed frequency values for the specified Doppler bins.

* radial_v: Computed radial velocities for the specified Doppler bins.

e cov: Initialized covariance matrices (see seasonder_MUSICInitCov).

* eigen: Initialized eigen decompositions (see seasonder_MUSICInitEigenDecomp).

* projections: Initialized projection matrices (see seasonder_MUSICInitProjections).
e DOA_solutions: Initialized DOA solutions (see seasonder_MUSICInitDOASolutions).
* eigen_values_ratio: Placeholder for the ratio of eigenvalues.

* P1_check: Logical placeholder for the P1 criterion (default is TRUE).

* retained_solution: Placeholder for the type of retained solution ("dual” by default).
* DOA: Placeholder for final DOA results.

* lonlat: Placeholder for longitude and latitude data as a data frame.

Value

A tibble with initialized MUSIC analysis data for the specified range cells and Doppler bins.

142 seasonder_int_to_raw

See Also

seasonder_NULLSeaSondeRCS_MUSIC for a NULL initialized structure. seasonder_MUSICInitCov,
seasonder_MUSICInitEigenDecomp, seasonder_MUSICInitProjections, seasonder_MUSICInitDOASolutions
for initializing individual components.

seasonder_int_to_raw Convert an integer to raw bytes using a 64-bit representation

Description

This function converts an integer to a raw byte representation using a 64-bit (8-byte) format. It
leverages the bit64 package to handle the 64-bit integer representation and conversion.

Usage

seasonder_int_to_raw(x)

Arguments

X An integer to be converted to raw bytes.

Details

The function follows these steps:

1. Convert the integer to a 64-bit format using bit64::as.integer64.
. Convert the 64-bit integer to a bit string.
. Split the bit string into individual bits.

. Reorder the bits into groups of 8, reversing the order within each group.

wm A~ W N

. Convert the reordered bits back to raw bytes.

Value

A raw vector representing the 64-bit format of the provided integer.

seasonder_is_debug_point_enabled 143

seasonder_is_debug_point_enabled
Check if a debug point is enabled in SeaSondeR

Description

This function checks whether the provided debug point is enabled.

Usage

seasonder_is_debug_point_enabled(debug_point)

Arguments

debug_point A character string specifying the debug point.

Value

TRUE if the debug point is enabled, FALSE otherwise.

Examples

seasonder_is_debug_point_enabled("example_debug")

seasonder_lastLog Retrieve the Last Log Entry

Description

This function fetches and splits the log entries, then returns the last entry.

Usage

seasonder_lastLog(...)

Arguments

Arguments passed to seasonder_splitlog.

Value

A character vector representing the last log entry.

144 seasonder_limitFORCurrentRange

Examples

Enable logging

seasonder_enablelogs()

Log a test message
seasonder_log("Test log entry”, "info")
Retrieve the last log entry
head(seasonder_lastLog())

seasonder_limitFORCurrentRange
Limit First Order Region (FOR) Based on Maximum Radial Velocity

Description

This function removes Doppler bins from the detected First Order Region (FOR) if their corre-
sponding radial velocity exceeds a predefined maximum threshold.

Usage

seasonder_limitFORCurrentRange (seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral data and FOR parameters.

Details
Steps in Current Range Limiting:

1. Retrieve Maximum Velocity Threshold:

 Extracts the currmax parameter from seasonder_getFOR_parameters.
2. Obtain Current FOR Detection Results:

* Retrieves the existing FOR Doppler bin indices from seasonder_getSeaSondeRCS_FOR.
3. Compute Radial Velocities for Doppler Bins:

* Calls seasonder_getBinsRadialVelocity to convert Doppler bins into radial veloci-
ties.

4. Identify Bins Exceeding Maximum Velocity:

* Finds the Doppler bins where the absolute radial velocity is greater than or equal to
currmax.

5. Filter Out Exceeding Bins:

» Uses setdiff to remove bins exceeding currmax from the FOR region.
. Store Updated FOR Data in Object:

» Updates the SeaSondeRCS object with the filtered FOR results.

[*))

This function ensures that only Doppler bins corresponding to physically realistic radial velocities
are included in the first-order Bragg region.

seasonder._log 145

Value

The updated SeaSondeRCS object with the FOR bins filtered based on maximum velocity.

See Also

* seasonder_getBinsRadialVelocity for computing radial velocities.
* seasonder_getSeaSondeRCS_FOR for retrieving FOR bin indices.

* seasonder_setSeaSondeRCS_FOR for storing updated FOR data.

seasonder_log seasonder_log function

Description

This function creates a logging message and signals a seasonder_log condition.

Usage
seasonder_log(message, level = "info")
Arguments
message A character string indicating the message to be logged.
level A character string that defines the level of the log. It can be "info", "error", or
"fatal". Default is "info".
Value

Invisibly returns the generated log message string.

Examples

seasonder_log("This is an info message")
seasonder_log("This is an error message”, "error")
seasonder_log("This is a fatal message”, "fatal”)

146 seasonder._logAndMessage

seasonder_logAndAbort Log and Abort Message in SeaSondeR

Description

This function logs a message to the SeaSondeR logging system and aborts execution. It prefixes the
abort message with the name of the calling function.

Usage

seasonder_logAndAbort(msg, calling_function = NULL, ...)
Arguments

msg A character string indicating the message.

calling_function
Function where the condition occurred. If NULL (default), the code determines
the caller.

Additional arguments passed to rlang: : abort.

Value

This function does not return as it always aborts execution.

Examples

my_function <- function() {
seasonder_logAndAbort("This is a message")

3

Demonstrate abort without stopping execution

try(my_function(), silent = TRUE)

seasonder_logAndMessage
Log and Inform Message in SeaSondeR

Description

This function logs a message to the SeaSondeR logging system and also informs the message to the
console. It prefixes the message with the name of the calling function.

Usage

seasonder_logAndMessage(msg, log_level = "info", calling_function = NULL, ...)

seasonder_logArchiver 147

Arguments
msg A character string indicating the message to be logged and informed.
log_level A character string indicating the level of the log ("info", "error", "fatal"). Default

is "info".

calling_function
Function where the condition occurred. If NULL (default), the code determines
the caller.

Additional arguments passed to rlang: : inform (if log_level="info") or rlang: :warn
(if log_level="error").

Value

Invisibly returns no value; used solely for its side effects of logging and messaging.

Examples

my_function <- function() {
seasonder_logAndMessage("This is a message”, "info")

}

my_function()

seasonder_logArchiver Archive Log Entries

Description

Archives log entries based on their levels: INFO, ERROR, or FATAL. If paths are not provided,
temporary files will be used.

Usage

seasonder_logArchiver(
log_path = NULL,
log_info_path = log_path,
log_error_path = log_info_path,
log_fatal_path = log_error_path
)

Arguments

log_path Path to the main log file.
log_info_path Path to the INFO level log file.
log_error_path Path to the ERROR level log file.
log_fatal_path Path to the FATAL level log file.

148 seasonder_MUSICBearing2GeographicalBearing

Value
When temporary files are used, returns a character string with the main log file path; otherwise,
returns an invisible value indicating that logs were archived.

Examples

seasonder_logArchiver()

seasonder_MUSICBearing2GeographicalBearing
Convert MUSIC Bearings to Geographic Bearings

Description

This function converts MUSIC bearings (relative to the antenna) into geographic bearings using the
antenna’s bearing information from a SeaSondeRAPM object.

Usage

seasonder_MUSICBearing2GeographicalBearing(bearings, seasonder_apm_object)

Arguments

bearings A list of numeric vectors containing MUSIC bearings in degrees. Each vector
corresponds to a set of bearings relative to the antenna.
seasonder_apm_object

A SeaSondeRAPM object containing the antenna’s metadata, including the an-
tenna’s bearing.

Details
The geographic bearing is calculated by:

1. Multiplying the MUSIC bearings by -1 to invert their direction.
2. Adjusting the angles to the range [0, 360) using modulo 360.
3. Adding the antenna bearing to each value and wrapping the result to the range [0, 360) again

using modulo 360.

The formula for each bearing is: geopearing = ((—1 * musicpearing
%
%360) + antennapearing)

%o
%360.

Value

A list of numeric vectors containing the geographic bearings in degrees.

seasonder_MUSICCheckEigen ValueRatio 149

See Also

* seasonder_getSeaSondeRAPM_AntennaBearing
* %>%

* map

seasonder_MUSICCheckEigenValueRatio
Validate Eigenvalue Ratio Using MUSIC Algorithm

Description

This function implements the P1 test for solutions derived using the MUSIC algorithm. The test
checks the ratio between the largest and the second-largest eigenvalues, which serves as an indicator
of signal quality.

Usage

seasonder_MUSICCheckEigenValueRatio(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the MUSIC solutions and related data.

Details

The P1 test is based on the ratio of the largest eigenvalue (lambdal) to the second-largest eigenvalue
(lambda2):

Ratio = lambdal / lambda2

This ratio is compared to a threshold defined in the MUSIC parameters to determine whether the
solution is considered valid. Solutions failing this test are marked as "single."
Value

The updated SeaSondeRCS object with the following modifications:

* A new column eigen_values_ratio in the MUSIC data.
* A logical column P1_check indicating whether each solution passes the P1 test.

* Updated retained_solution values for solutions that fail the test.

See Also

seasonder_getSeaSondeRCS_MUSIC, seasonder_setSeaSondeRCS_MUSIC

150 seasonder_MUSICCheckSignalMatrix

seasonder_MUSICCheckSignalMatrix
Validate Signal Matrix Power Ratios Using MUSIC Algorithm

Description

This function implements the P3 test for solutions derived using the MUSIC algorithm. The test
evaluates the ratio between the diagonal (P_diag) and off-diagonal (P_off-diag) elements of the
signal covariance matrix. Specifically, the ratio is computed as:

Usage

seasonder_MUSICCheckSignalMatrix(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data (including DOA solutions and
power matrices).

Details

Ratio = P_off_diag / P_diag
where P_diag is the product of the absolute values of the diagonal elements and P_off_diag is the
square of the absolute value of the upper-left off-diagonal element.

The computed ratio is compared with the threshold parameter (the third element in the MUSIC
parameters). For each dual-bearing solution (i.e. when exactly two bearings are present), if the
ratio is less than the reciprocal of the threshold, the solution passes the P3 test; otherwise, it is
marked as "single".

For each entry in the MUSIC data, the function:

1. Extracts the covariance matrix power from the dual DOA solution (DOA_sol$dual$P).

2. Computes the ratio by taking the product of the absolute diagonal elements and the square of
the absolute off-diagonal element.

3. Retrieves the threshold parameter for the P3 test.
4. Validates each solution by checking that:

* The solution has exactly two bearings.
» The computed ratio is available (not NA) and less than 1 divided by the threshold.

5. Updates the retained_solution field to "single" for solutions that do not pass the test.

Value
The updated SeaSondeRCS object in which:

¢ A new column diag_off_diag_power_ratio is added to the MUSIC data.
* A logical column P3_check indicates if each solution passes the P3 test.

* The retained_solution field of solutions that fail the test is updated to "single".

seasonder_MUSICCheckSignalPowers 151

See Also

seasonder_getSeaSondeRCS_MUSIC to retrieve MUSIC data, seasonder_setSeaSondeRCS_MUSIC
to update MUSIC data, and seasonder_getSeaSondeRCS_MUSIC_parameters to retrieve MUSIC
parameters.

seasonder_MUSICCheckSignalPowers
Validate Signal Power Ratios Using MUSIC Algorithm

Description
This function implements the P2 test for solutions derived using the MUSIC algorithm. The test
evaluates the ratio between the largest and smallest signal powers for dual-bearing solutions.
Usage

seasonder_MUSICCheckSignalPowers(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the MUSIC solutions and related data.

Details
The P2 test is based on the ratio of the largest signal power (P,,4;) to the smallest signal power

(Pm1n)

max

Ratio =

min
This ratio is compared to a threshold defined in the MUSIC parameters. Only solutions that meet
the following criteria are retained:

* The solution has two bearings.
* The signal power ratio is below the threshold.

Solutions failing this test are marked as "single."

Value
The updated SeaSondeRCS object with the following modifications:

¢ A new column signal_power_ratio in the MUSIC data.
* A logical column P2_check indicating whether each solution passes the P2 test.
* Updated retained_solution values for solutions that fail the test.

See Also

seasonder_getSeaSondeRCS_MUSIC, seasonder_setSeaSondeRCS_MUSIC

152 seasonder_MUSICComputeCov

seasonder_MUSICComputeCov

Calculate the MUSIC Covariance Matrix for each Given Cell Range
and Doppler Bin

Description

This function computes the Multiple Signal Classification (MUSIC) covariance matrix for each cell
range and Doppler bin from SeaSonde Cross Spectra (CS) data. The MUSIC algorithm is used in
direction finding and spectral estimation.

Usage

seasonder_MUSICComputeCov(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the cross-spectra data.

Details

The MUSIC algorithm estimates the direction of arrival (DOA) of signals, requiring the compu-
tation of a covariance matrix from sensor data. This function constructs the covariance matrix by
iterating through the auto-spectra (SSA{i}) and cross-spectra (CSi j) fields of the cross-spectra data.

For diagonal elements (i = j), the matrix uses data from the auto-spectra field corresponding to the
antenna index (SSA1, SSA2, or SSA3). Negative values in SSA3, which indicate noise or interference,
are converted to their absolute values before use, as per the Cross Spectra File Format Version 6
guidelines.

Off-diagonal elements (i # j) are derived from cross-spectra fields, such as CS12 or CS23. If the
row index is greater than the column index, the conjugate of the value is used.

Value

A SeaSondeRCS object updated with a computed 3x3 complex covariance matrix for each cell range
and Doppler bin. The covariance matrix is stored in the MUSIC data field. Each matrix element
Cj; is calculated based on auto-spectra (for diagonal elements) or cross-spectra (for off-diagonal
elements). - Diagonal elements (¢ = j) are derived from auto-spectra SSA{i}. - Off-diagonal
elements (i # j) are derived from cross-spectra CSij. - Auto-spectra values for the third antenna
(SSA3) are taken as absolute values to comply with CODAR’s recommendation to handle negative
values indicating noise or interference.

References

Cross Spectra File Format Version 6, CODAR. (2016). Paolo, T. de, Cook, T. & Terrill, E. Properties
of HF RADAR Compact Antenna Arrays and Their Effect on the MUSIC Algorithm. OCEANS
2007 1-10 (2007) doi:10.1109/0ceans.2007.4449265.

seasonder_MUSICComputeDOA Projections 153

See Also

seasonder_getSeaSondeRCS_MUSIC, seasonder_setSeaSondeRCS_MUSIC

seasonder_MUSICComputeDOAProjections
Compute DOA Functions Using the MUSIC Algorithm

Description

This function calculates the Direction of Arrival (DOA) functions based on the MUSIC algorithm
for a given SeaSonde cross-spectra (CS) object. It projects the antenna patterns onto the noise
subspace for each Doppler bin and computes single and dual signal solutions, following the MUSIC
method.

Usage

seasonder_MUSICComputeDOAProjections(seasonder_cs_object)

Arguments

seasonder_cs_object
An object representing the cross-spectra (CS) data from SeaSonde.

Details
The function operates as follows:

1. It sets a processing step indicating the start of DOA function computation.
2. Retrieves the Antenna Pattern Measurement (APM) and bearings associated with the CS ob-
ject.
3. Iteratively computes projections of antenna pattern responses into the noise subspace for each
Doppler bin using the MUSIC algorithm. This includes:
* Initializing storage for projection results.

» Calculating projections for single (m = 1) and dual (m = 2) signal solutions using the
eigenvectors defining the noise subspace.

» For each bearing, projecting the antenna manifold vector onto the noise subspace, as
described by the formula:

1

DoAW) = B Aw)

where:
- FE, is the eigenvector matrix of the noise subspace.
— A(0) is the antenna pattern response vector at bearing 6.
— A*(0) is its conjugate transpose.
4. Appends the computed DOA functions to the MUSIC data of the CS object.

5. Updates the processing step to indicate completion.

154 seasonder_MUSICComputePropDualSols

Value

The updated seasonder_cs_object with the MUSIC DOA functions computed and appended.

References

* Paolo, T. de, Cook, T., & Terrill, E. (2007). Properties of HF RADAR Compact Antenna Ar-
rays and Their Effect on the MUSIC Algorithm. OCEANS 2007, 1-10. doi:10.1109/oceans.2007.4449265.

See Also

seasonder_compute_antenna_pattern_proyections for computing projections.

seasonder_MUSICComputePropDualSols
Compute the Proportion of Dual Solutions in MUSIC Data

Description

This function calculates the proportion of "dual" solutions in the MUSIC data associated with a
given SeaSondeRCS object. It updates the object with the computed proportion as a new attribute.

Usage

seasonder_MUSICComputePropDualSols(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data and other related attributes.

Details
The function performs the following steps:

1. Extracts the MUSIC data from the provided SeaSondeRCS object.

2. Computes the proportion of entries in the retained_solution column of the MUSIC data
that are labeled as "dual".

3. Updates the SeaSondeRCS object by adding the computed proportion as an attribute using
seasonder_setSeaSondeRCS_MUSIC_dual_solutions_proportion.
Value
A SeaSondeRCS object with the calculated proportion of "dual" solutions stored as an attribute. This
attribute can be accessed using a relevant getter function.
See Also

seasonder_getSeaSondeRCS_MUSIC to retrieve the MUSIC data. seasonder_setSeaSondeRCS_MUSIC_dual_solutions_j
to set the computed proportion.

seasonder_MUSICComputeSignalPowerMatrix 155

seasonder_MUSICComputeSignalPowerMatrix
Compute Signal Power Matrix for MUSIC Algorithm

Description

This function computes the signal power matrix for each direction of arrival (DOA) solution ob-
tained from the MUSIC algorithm. It updates the MUSIC data in the provided SeaSondeRCS
object with the computed power matrices.

Usage

seasonder_MUSICComputeSignalPowerMatrix(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC data, including eigenvalues, eigen-
vectors, and DOA solutions.

Details

The function performs the following steps:

1. Retrieves the MUSIC data from the SeaSondeRCS object.
2. Defines an internal function to update the DOA solutions with computed power matrices:

* For dual steering vectors (DOA_sol$dual$a), computes the power matrix using seasonder_computePowerMatrix
and updates DOA_sol$dual$P.

* For single steering vectors (DOA_sol$single$a), computes the power matrix using seasonder_computePowerMat
and updates DOA_sol$single$P.

3. Iterates through the MUSIC data, applying the update function to each set of eigenvalues and
DOA solutions.

4. Updates the SeaSondeRCS object with the modified MUSIC data.

Value
The updated SeaSondeRCS object with the MUSIC data containing the computed power matrices
for both dual and single solutions.

See Also

seasonder_computePowerMatrix

156 seasonder_MUSICCovDecomposition

seasonder_MUSICCovDecomposition
Eigen Decomposition of the MUSIC Covariance Matrix

Description

Performs the eigen decomposition of a MUSIC covariance matrix to obtain the eigenvalues and
eigenvectors. This decomposition is a critical step in the MUSIC algorithm for spectral estimation
and direction finding, as it enables the identification of the signal and noise subspaces.

Usage

seasonder_MUSICCovDecomposition(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the covariance matrices derived from cross-
spectra data.

Details

The covariance matrix represents one Doppler cell of the averaged cross-spectra of three received
signals. This matrix captures the summation of signals from all bearings (plus noise) received by
the antennas. To estimate the direction of arrival (DOA), the covariance matrix is subjected to
eigenvalue decomposition (diagonalization) to estimate the signal and noise subspaces.

In practical HF radar systems, there are two primary sources of noise:
1. System (thermal) noise: Generated by the receiving equipment and assumed to be uncorrelated
between antennas.
2. Spatial noise field: Includes wind-wave noise and current noise, modeled as Gaussian, which
introduces correlation.

The eigenvalue decomposition produces:

* Three eigenvalues, ordered from largest to smallest.

* Three corresponding eigenvectors forming a 3-dimensional orthonormal basis.
Based on the largest eigenvalues:

« If there is one signal present, the first eigenvector defines a 1-dimensional signal subspace,
and the remaining eigenvectors represent a 2-dimensional noise subspace.

 If two signals are present, the first two eigenvectors form a 2-dimensional signal subspace,
while the remaining eigenvector represents a 1-dimensional noise subspace.

The signal and noise subspaces are orthogonal. This decomposition facilitates identifying the sig-
nal’s direction by finding the antenna manifold that best fits the signal subspace.

seasonder MUSICExtractDOASolutions 157

Value

An updated SeaSondeRCS object where each Doppler cell includes the eigenvalues and eigenvec-
tors of its covariance matrix. The eigenvalues are sorted in descending order, and the eigenvectors
are aligned accordingly. The updates include:

» eigen$values: A numeric vector containing the sorted eigenvalues for each Doppler cell.

» eigen$vectors: A 3x3 matrix of the corresponding eigenvectors for each Doppler cell,
aligned with the eigenvalues.
References
Paolo, T. de, Cook, T. & Terrill, E. Properties of HF RADAR Compact Antenna Arrays and Their
Effect on the MUSIC Algorithm. OCEANS 2007 1-10 (2007) doi:10.1109/oceans.2007.4449265.
See Also

seasonder_MUSICComputeCov for computing the covariance matrix.

seasonder_MUSICExtractDOASolutions
Extract Direction of Arrival (DOA) Solutions Using the MUSIC Algo-
rithm

Description

This function processes a set of MUSIC projection data to extract Direction of Arrival (DOA)
solutions for radar signals. It implements the approach described in Paolo and Terril (2007) for HF
radar analysis by first reversing the projection distances to enhance peak visibility, then detecting
peaks for both single and dual solution cases. Finally, it maps the detected peak locations back to
bearing values.

Usage

seasonder_MUSICExtractDOASolutions(
projections,
valid_bearings,
seasonder_apm_obj

)

Arguments

projections A numeric matrix of projection data where each column represents a set of MU-
SIC spectra for single and dual solutions. The matrix must have an attribute
named "bearings” that contains the corresponding bearing angles (in degrees)
for each column.

valid_bearings A numeric vector of valid bearing values (in degrees) that are acceptable. De-
tected bearing peaks falling outside this set will be disregarded.

158 seasonder MUSICExtractDOASolutions

seasonder_apm_obj
A matrix or similar object representing the Antenna Pattern Matrix (APM). The
columns of seasonder_apm_obj correspond to bearings and are used to extract
antenna response information for the detected peaks.

Details

The function proceeds as follows:

1. It retrieves the bearing angles from the attribute "bearings” of the projections matrix.

2. It computes the inverse of the absolute projection values for both ’single’ and ’dual’ solution
modes to enhance peaks.

3. For single solutions, it detects the highest peak using findpeaks, then checks if the corre-
sponding bearing is within the set of valid bearings.

4. If a valid single peak is found, it calculates the response in dB and determines the peak width
by finding the indices where the response exceeds the (peak response - 3 dB) threshold.

5. For dual solutions, it similarly detects up to two peaks, filters them by valid bearings, and
computes the response and peak width for each.

6. Finally, the function populates and returns a DOA solutions structure containing both single
and dual solution fields.

Value

A list with two components corresponding to single and dual DOA solutions. Each component is a
list containing:

* bearing: The detected bearing(s) for the solution (in degrees).
* a: A subset of the APM data (columns) corresponding to the detected peak.
* peak_resp: The peak response value(s) at the detected peak(s), expressed in dB.

* peak_width: The width of the peak(s) calculated from the 3 dB limit, in degrees.

References
Paolo, S., & Terril, E. (2007). Detection and characterization of signals in HF radar cross-spectra
using the MUSIC algorithm. Journal of Atmospheric and Oceanic Technology.

See Also

seasonder_MUSICExtractPeaks, findpeaks

seasonder_MUSICEXxtractPeaks 159

seasonder_MUSICExtractPeaks
Extract and Validate DOA Peaks Using MUSIC Algorithm

Description

This function processes a SeaSondeRCS object to extract Direction of Arrival (DOA) solutions using
the MUSIC algorithm and validates the retained solutions based on the extracted peaks.

Usage

seasonder_MUSICExtractPeaks(seasonder_cs_object)

Arguments

seasonder_cs_object
An object of class SeaSondeRCS containing cross-spectra data processed with
the MUSIC algorithm.

Details

The function performs the following operations:

. Initializes the peak extraction process and logs the start.
. Extracts DOA solutions for each set of projections using seasonder _MUSICExtractDOASolutions.
. Validates and adjusts the retained solution types using seasonder _MUSICExtractPeaksCheckRetainedSolution.

. Updates the SeaSondeRCS object with the extracted and validated solutions.

D A W N =

. Logs the completion of the peak extraction process.
The MUSIC algorithm’s implementation follows the theoretical framework outlined by Paolo and
Terril (2007), emphasizing the identification of signal directions in HF radar cross-spectra.

Value
An updated SeaSondeRCS object with the following fields modified:

e MUSIC: Contains the extracted DOA solutions.

* ProcessingSteps: Includes a log of the peak extraction process.

References
Paolo, S., & Terril, E. (2007). Detection and characterization of signals in HF radar cross-spectra
using the MUSIC algorithm. Journal of Atmospheric and Oceanic Technology.

See Also

seasonder_MUSICExtractDOASolutions, seasonder_MUSICExtractPeaksCheckRetainedSolution

160 seasonder MUSICExtractPeaksCheckRetainedSolution

seasonder_MUSICExtractPeaksCheckRetainedSolution
Validate Retained Solution in MUSIC Algorithm Peak Extraction

Description
This function verifies and adjusts the retained solution type ("single" or "dual") based on the Direc-
tion of Arrival (DOA) solutions extracted using the MUSIC algorithm.

Usage

seasonder_MUSICExtractPeaksCheckRetainedSolution(ret_sol, DOA_sol)

Arguments
ret_sol A character string specifying the initial solution type to retain. Valid values are
"single” or "dual”.
DOA_sol A list containing extracted DOA solutions, as returned by seasonder_MUSICExtractDOASolutions.
Details

The function performs the following checks:

1. If the retained solution is "dual” but no valid dual solution bearings exist, it defaults to "single"
if valid.

2. If the retained solution is "single" but no valid single solution bearings exist, it defaults to
"none".

This validation ensures the output solutions are consistent with the detected peaks, addressing po-
tential discrepancies in the initial assumptions about the solution type.
Value
A character string indicating the validated solution type:
* "single": If only one single solution bearing is valid.

* "dual”: If valid dual solution bearings are detected.

* "none”: If no valid bearings are found.

See Also

seasonder_MUSICExtractPeaks, seasonder_MUSICExtractDOASolutions

seasonder_ MUSICInitCov 161

seasonder_MUSICInitCov
Initialize Covariance Matrix for MUSIC Algorithm

Description

This function initializes a covariance matrix for use in the MUSIC algorithm.

Usage

seasonder_MUSICInitCov()

Details

The covariance matrix is initialized as a 3 x 3 matrix filled with complex NA values. This structure
is specifically designed for three-channel antenna configurations commonly used in SeaSondeR
applications.

Value

A 3 x 3 matrix of complex values, each initialized to NA_complex_.

See Also

seasonder_defaultMUSIC_parameters for default MUSIC parameters.

seasonder_MUSICInitDOASolutions
Initialize Direction of Arrival (DOA) Solutions for MUSIC Algorithm

Description

This function initializes the data structure for storing Direction of Arrival (DOA) solutions calcu-
lated by the MUSIC algorithm.

Usage

seasonder_MUSICInitDOASolutions()

162 seasonder_MUSIClInitEigenDecomp

Details

The function returns a list containing two sub-lists, one for "single"” solutions and another for
"dual” solutions:
* "single": Contains placeholders for single DOA solutions:

— bearing: The bearing angle (NA_real_ by default).
— a: The complex steering vector (NA_complex_ by default).
— P: The power spectrum value (NA_complex_ by default).

* "dual”: Contains placeholders for dual DOA solutions:

— bearing: The bearing angle (NA_real_ by default).
— a: The complex steering vector (NA_complex_ by default).

— P: A 2 x 2 complex matrix initialized to NA_complex_.

Value

A list with initialized placeholders for "single” and "dual” DOA solutions.

See Also

seasonder_MUSICInitCov for initializing covariance matrices. seasonder_MUSICInitProjections
for initializing projection matrices.

seasonder_MUSICInitEigenDecomp
Initialize Eigenvalue Decomposition Structure for MUSIC Algorithm

Description
This function initializes the data structure for storing the eigenvalue decomposition results used in
the MUSIC algorithm.

Usage

seasonder_MUSICInitEigenDecomp()

Details

The function returns a list with the following components:

* values: A vector of length 3, initialized with NA_complex_, to hold the eigenvalues.

* vectors: A 3 x 3 matrix, initialized with NA_complex_, to hold the eigenvectors.

This structure is designed to support three-channel antenna configurations typical in SeaSondeR
applications.

seasonder_MUSIClnitInterpolatedData 163

Value

A list with two elements:

* values: Eigenvalues as a complex vector.

* vectors: Eigenvectors as a complex matrix.

See Also

seasonder_MUSICInitCov for initializing covariance matrices.

seasonder_MUSICInitInterpolatedData
Initialize Interpolated Data for MUSIC Algorithm

Description

This function initializes the data structure for storing interpolated cross-spectral data to be used in
the MUSIC algorithm.

Usage

seasonder_MUSICInitInterpolatedData(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing metadata about the number of
Doppler cells and range cells.

Details

The function retrieves the number of Doppler cells and range cells from the provided cross-spectral
object and uses this information to initialize the interpolated data structure. The resulting structure
is compatible with the dimensions of the cross-spectral data used in SeaSondeR.

The data structure is initialized using seasonder_initCSDataStructure, ensuring it contains
placeholders for components such as SSA1, SSA2, SSA3, CS12, CS13, CS23, and QC.

Value
A list containing the initialized interpolated data structure with placeholders for cross-spectral com-
ponents.

See Also

seasonder_initCSDataStructure for details on the cross-spectral data structure.

164 seasonder_MUSIClInitProjections

seasonder_MUSICInitProjections
Initialize Projection Matrix for MUSIC Algorithm

Description

This function initializes a projection matrix for use in the MUSIC algorithm.

Usage

seasonder_MUSICInitProjections(bearings = 0)

Arguments
bearings A numeric vector representing the bearings (in degrees) for which projections
are initialized. Defaults to .
Details

The function creates a 2 x n complex matrix, where n is the number of bearings. The matrix rows
are labeled:

* "single": For single projections.

e "dual”: For dual projections.

An attribute "bearings” is attached to the matrix, storing the input bearings vector.

Value

A 2 x n matrix of complex values, each initialized to NA_complex_, with row names "single” and
"dual”. The input bearings are stored as an attribute.

See Also

seasonder_MUSICInitCov for initializing covariance matrices.

seasonder MUSICLonLat 165

seasonder_MUSICLonLat Map MUSIC Bearings to Geographic Coordinates

Description

This function calculates geographic coordinates (latitude and longitude) for each MUSIC detection
based on the range and direction of arrival (DOA) bearings from a SeaSondeRCS object.

Usage

seasonder_MUSICLonLat(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC detection data.

Details

This function performs the following operations:

1. Retrieves MUSIC data and original geographic coordinates (latitude and longitude) from the
seasonder_cs_object. If these coordinates are not available, the origin is derived from the
associated Antenna Pattern (APM) data.

2. Converts DOA bearings from MUSIC detections into geographic bearings using the APM
object.

3. Computes latitude and longitude for each MUSIC detection based on the range and geographic
bearings using seasonder_computeLonLatFromOriginDistBearing

4. Updates the seasonder_cs_object with the newly computed coordinates.

Value

A SeaSondeRCS object with updated MUSIC data, including geographic coordinates for each de-
tection.

See Also
* seasonder_getSeaSondeRCS_MUSIC
e seasonder_getSeaSondeRCS_APM
* seasonder_MUSICBearing2GeographicalBearing

* seasonder_computeLonLatFromOriginDistBearing

166 seasonder MUSICSelectDOA

Examples

Create a SeaSondeRCS object for MUSIC example

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_initMUSICData(

cs_obj,

range_cells = c(rep(5,11), rep(4,11)),

doppler_bins = c(c(669:679),c(674:684))

)
cs_obj <- seasonder_runMUSIC(cs_obj)
updated_obj <- seasonder_MUSICLonLat(cs_obj)
print(updated_obj)

seasonder_MUSICSelectDOA
Select Direction of Arrival (DOA) from MUSIC Algorithm Results

Description

This function processes the results of the MUSIC algorithm, selects the relevant Direction of Arrival
(DOA) based on the specified retained solution, and updates the corresponding SeaSondeRCS object
with the selected DOA and updated processing steps.

Usage

seasonder_MUSICSelectDOA(seasonder_cs_object)

Arguments

seasonder_cs_object

A SeaSondeRCS object containing the results of the MUSIC algorithm and as-
sociated metadata.

Details

The function performs the following steps:

1. Updates the processing steps to indicate the start of the DOA selection process.
2. Retrieves the MUSIC algorithm results from the SeaSondeRCS object.

3. Maps the retained solution index to the corresponding DOA solution for each entry in the
MUSIC results.

4. Stores the updated MUSIC results, including the selected DOA, back into the SeaSondeRCS
object.

5. Updates the processing steps to indicate the end of the DOA selection process.

seasonder MUSICTestDualSolutions 167

Value
An updated SeaSondeRCS object with the selected DOA stored in the MUSIC results and updated
processing steps.

Processing Steps

The function appends the following processing steps to the ProcessingSteps attribute of the
SeaSondeRCS object:

e Start of DOA selection.
¢ End of DOA selection.

See Also

seasonder_setSeaSondeRCS_ProcessingSteps to manage processing steps. seasonder_getSeaSondeRCS_MUSIC
to retrieve MUSIC results. seasonder_setSeaSondeRCS_MUSIC to update MUSIC results.

seasonder_MUSICTestDualSolutions
Test Dual-Bearing Solutions Using MUSIC Algorithm

Description

This function applies a sequence of tests (P1, P2, and P3) to validate dual-bearing solutions derived
using the MUSIC algorithm. The tests evaluate the quality of solutions based on eigenvalue ratios,
signal power ratios, and covariance matrix power ratios.

Usage

seasonder_MUSICTestDualSolutions(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing MUSIC solutions and related data.

Details
The function applies the following sequence of tests:
1. P1: Eigenvalue Ratio Test:
» Evaluates the ratio between the largest and second-largest eigenvalues.
2. P2: Signal Power Ratio Test:
 Validates the ratio of signal powers for dual-bearing solutions.
3. P3: Signal Matrix Power Ratio Test:

* Checks the ratio of diagonal to off-diagonal powers in the covariance matrix.

168 seasonder_MUSIC_Bins2DopplerFreq

Each test updates the MUSIC solutions in the input object, marking solutions that fail the tests
as "single." The function also logs the start and end of the testing process as part of the object’s
processing steps.

Value
The updated SeaSondeRCS object with validated dual-bearing solutions and recorded processing
steps.

See Also

seasonder_MUSICCheckEigenValueRatio, seasonder_MUSICCheckSignalPowers, seasonder_MUSICCheckSignalMatr:
seasonder_setSeaSondeRCS_ProcessingSteps

seasonder_MUSIC_Bins2DopplerFreq
Map Doppler Bins to Doppler Frequencies

Description

This function retrieves the Doppler frequencies corresponding to specified Doppler bins for a given
SeaSonde cross-spectral object.

Usage

seasonder_MUSIC_Bins2DopplerFreq(seasonder_cs_object, bins)

Arguments

seasonder_cs_object
A SeaSondeRCS object representing the cross-spectral data structure. It con-
tains metadata and configuration for Doppler frequency and bin mapping.

bins A numeric or integer vector of bin indices for which Doppler frequencies are
needed.
Details

The function retrieves the full set of unnormalized Doppler bin frequencies using seasonder_getSeaSondeRCS_MUSIC_Dopp
and returns the frequencies corresponding to the provided bin indices. This is useful for translating
bin-domain indices into physical Doppler frequency values for analysis or visualization.

Value

A numeric vector of Doppler frequencies corresponding to the input bin indices.

See Also

seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency

seasonder_MUSIC_DopplerFreq2Bins 169

seasonder_MUSIC_DopplerFreq2Bins
Map Doppler Frequencies to Doppler Bins

Description
This function maps specified Doppler frequency values to the corresponding Doppler bins for a
given SeaSonde cross-spectral object.

Usage

seasonder_MUSIC_DopplerFreq2Bins(seasonder_cs_object, doppler_values)

Arguments

seasonder_cs_object

A SeaSondeRCS object representing the cross-spectral data structure. It con-
tains metadata and configuration for Doppler frequency and bin mapping.

doppler_values A numeric vector of Doppler frequency values to be mapped to Doppler bins.

Details
The function performs the following steps:
* Retrieves the unnormalized Doppler bin frequencies using seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequer
* Retrieves the Doppler spectrum resolution using seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolution.

* Retrieves the total number of Doppler cells using seasonder_getSeaSondeRCS_MUSIC_nDopplerCells.

* Computes the Doppler bin indices corresponding to the input Doppler frequency values using
seasonder_computeDopplerFreg2Bins.

This mapping is essential for translating frequency-domain values into bin indices used in further
data processing or visualization.
Value

A numeric vector of Doppler bins corresponding to the input Doppler frequency values.

See Also

seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency, seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumRi
seasonder_getSeaSondeRCS_MUSIC_nDopplerCells, seasonder_computeDopplerFreq2Bins

170 seasonder_NormalizedDopplerFreq2Bins

seasonder_NormalizedDopplerFreq2Bins
Convert Normalized Doppler Frequencies to Doppler Bins

Description

This function converts a set of normalized Doppler frequencies into their corresponding Doppler
bin indices within a SeaSondeR object.

Usage

seasonder_NormalizedDopplerFreq2Bins(seasonder_cs_object, doppler_values)

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing metadata about the Doppler bins.

doppler_values A numeric vector specifying the normalized Doppler frequencies to be converted
into bin indices.

Details

This function first retrieves the list of normalized Doppler frequencies from the given SeaSondeR
object using seasonder_getDopplerBinsFrequency. The bin boundaries are computed using the
first-order difference of these frequencies.

The function then applies findInterval to determine the corresponding bin index for each input
Doppler frequency. The search process is affected by the following options:
* rightmost.closed = TRUE: The last bin interval is closed on the right, ensuring that the max-
imum normalized frequency is included in the last bin.

* all.inside = FALSE: Values that fall outside the range of the computed boundaries are as-
signed values below 1 or above the maximum bin index.

» left.open = TRUE: The left interval is open, meaning that values exactly equal to a boundary
are assigned to the higher bin.

After findInterval determines the bin indices, values that are out of range (bins <1 or bins >
nDoppler) are set to NA.
Value

An integer vector indicating the Doppler bin indices corresponding to the input normalized Doppler
frequencies. Values that fall outside the valid bin range are assigned NA.

See Also

seasonder_Bins2NormalizedDopplerFreq for the inverse operation.

seasonder_NormalizedDopplerFreq2DopplerFreq 171

seasonder_NormalizedDopplerFreq2DopplerFreq
Convert Normalized Doppler Frequencies to Doppler Frequencies

Description

This function converts normalized Doppler frequencies into their corresponding Doppler frequen-
cies (in Hz) within a SeaSondeR object.

Usage

seasonder_NormalizedDopplerFreq2DopplerFreq(
seasonder_cs_object,
doppler_values

)

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing metadata about the Doppler bins.

doppler_values A numeric vector specifying the normalized Doppler frequencies to be converted
into Doppler frequencies (Hz).

Details
The function follows these steps:

1. Calls seasonder_NormalizedDopplerFreq2Bins to convert the input normalized Doppler
frequencies into Doppler bin indices.

2. Calls seasonder_Bins2DopplerFreq to obtain the corresponding Doppler frequencies in Hz.
The relationship between the normalized and absolute Doppler frequencies is defined as:

fdoppler = fnorm X fbragg

where:

* fdoppler is the Doppler frequency in Hz,
* fnorm is the normalized Doppler frequency,
* foragg is the Bragg frequency, computed based on radar wavelength.

Value

A numeric vector of Doppler frequencies (in Hz) corresponding to the input normalized Doppler
frequencies.

See Also

seasonder_NormalizedDopplerFreq2Bins for converting normalized Doppler frequencies to bin
indices. seasonder_Bins2DopplerFreq for converting bin indices to Doppler frequencies in Hz.

172 seasonder NULLSeaSondeRCS_MUSIC

seasonder_NULLSeaSondeRCS_MUSIC
Initialize NULL Data Structure for SeaSondeR MUSIC Analysis

Description

This function initializes a NULL data structure for storing results of the MUSIC analysis in Sea-
SondeR. The structure is designed as a tibble with pre-defined columns for range cells, Doppler
bins, and various MUSIC-related parameters.

Usage
seasonder_NULLSeaSondeRCS_MUSIC()

Details
The initialized tibble contains the following columns:

* range_cell: Numeric vector representing range cell indices.

* doppler_bin: Numeric vector for Doppler bin indices.

* range: Numeric vector for range values.

* freq: Numeric vector for frequencies.

* radial_v: Numeric vector for radial velocities.

* cov: A list to store covariance matrices.

* eigen: A list to store eigenvalue decompositions.

* projections: A list to store projection matrices.

¢ DOA_solutions: A list to store Direction of Arrival (DOA) solutions.
* eigen_values_ratio: Numeric vector for the ratio of eigenvalues.

* P1_check: Logical vector indicating if the P1 criterion is satisfied.

* retained_solution: Character vector for the type of retained solution ("single" or "dual™).
* DOA: A list to store final DOA results.

* lonlat: A list containing a data frame with longitude (1on) and latitude (lat) values.

Value
A tibble with pre-defined columns and empty values, ready to be populated with MUSIC analysis
results.

See Also

seasonder_MUSICInitCov for initializing covariance matrices. seasonder_MUSICInitEigenDecomp
for initializing eigenvalue decompositions. seasonder_MUSICInitProjections for initializing
projection matrices. seasonder_MUSICInitDOASolutions for initializing DOA solutions.

seasonder._plotAPMLoops 173

seasonder_plotAPMLoops
Plot APM Loops in a Polar Coordinate System

Description

This function generates a polar plot of the antenna pattern loops from a SeaSonde RAPM object.

Usage

seasonder_plotAPMLoops (seasonder_apm_obj)

Arguments

seasonder_apm_obj
A SeaSonde RAPM object containing the antenna pattern data.

Value

A ggplot object displaying the magnitude of the two loops as a function of bearings.

Examples

Plot loops from a test SeaSondeRAPM object

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

plot <- seasonder_plotAPMLoops(obj)

seasonder_raw_to_int Convert a Raw Vector to a 64-bit Integer

Description
This function converts a raw vector to a 64-bit integer, handling both signed and unsigned conver-
sions.

Usage

seasonder_raw_to_int(r, signed = FALSE)

Arguments
r A raw vector to be converted.
signed Logical, indicating whether the conversion should consider the value as signed

(default is FALSE for unsigned).

174 seasonder_readCSField

Value

A 64-bit integer representation of the raw vector.

seasonder_readCSField Read a CSField from a Binary Connection

Description

This function reads specific data types from a binary connection, supporting various types including
integer, float, double, complex, and strings.

Usage
seasonder_readCSField(con, type, endian = "big")
Arguments
con A connection object to a binary file.
type A character string identifying the type of data to read.
endian A character string indicating the byte order. Options are "big" and "little" (de-
fault is "big").
Value

The value obtained from reading the CSField according to the specified type.

Supported Data Types

This function provides support for reading a variety of data types from a binary connection. The
following data types are recognized and can be used for the type argument:

CharN Reads N characters from the connection where N is a positive integer. For example, Char5
would read five characters.

UInt8 Reads an 8-bit unsigned integer.

SInt8 Reads an 8-bit signed integer.

UInt16 Reads a 16-bit unsigned integer.

SInt16 Reads a 16-bit signed integer.

UInt32 Reads a 32-bit unsigned integer.

SInt32 Reads a 32-bit signed integer.

Float Reads a single-precision floating-point number.
Double Reads a double-precision floating-point number.
UInt64 Reads a 64-bit unsigned integer.

SInt64 Reads a 64-bit signed integer.

seasonder _readCSField 175

Complex Reads a complex number by separately reading the real and imaginary parts, which are
each represented as double-precision floating-point numbers.

String Reads a null-terminated string.

If the provided type does not match any of the supported data types, the function raises an error.

Condition Management

This function utilizes the rlang package to manage conditions and provide detailed and structured
condition messages:

Condition Classes:
» seasonder_cs_field_reading_error: General error related to reading a CSField from the
binary connection.
* seasonder_cs_field_skipped: Condition that indicates a CSField was skipped due to a
reading error.

Condition Cases:

» Connection is not open.
* Error while reading value from connection.
* Read value of length 0 from connection (likely reached end of file).

» Unrecognized data type specified.

Restart Options: This function provides a structured mechanism to recover from errors during its
execution using the rlang: :withRestarts function. The following restart option is available:

seasonder_skip_cs_field(cond, value) This allows for the graceful handling of reading er-
rors. If this restart is invoked, the function will log an error message indicating that a specific
CSField reading was skipped and will return the value specified. The restart takes two ar-
guments: cond (the condition or error that occurred) and value (the value to return if this
CSField reading is skipped). To invoke this restart during a condition or error, you can use the
helper function seasonder_skip_cs_field(cond, value).

» Usage: In a custom condition handler, you can call seasonder_skip_cs_field(cond,
yourDesiredReturnValue) to trigger this restart and skip the current CSField reading.

o Effect: If invoked, the function logs an error message detailing the reason for skipping,
and then returns the value specified in the restart function call.

See Also

seasonder_skip_cs_field, seasonder_raw_to_int

176 seasonder._readCSSWBodyRangeCell

seasonder_readCSSWBody
Read CSSW Body

Description

Reads the body section of a CSSW file, processing each cell block until the designated endpoint.

Usage
seasonder_readCSSWBody (
connection,
specs,
size,
dbRef,
endian = "big",
specs_key_size = NULL
)
Arguments
connection A binary connection from which the body is read.
specs A list specifying the body keys and formats.
size The total number of bytes to read for the body section.
dbRef Numeric decibel reference used for scaling.
endian A character specifying byte order.

specs_key_size Optional specification for the key size block.

Value

A list of processed body cells with applied sign corrections.

seasonder_readCSSWBodyRangeCell
Read a Body Range Cell and Apply Scaling if Required

Description

This function processes a block of keys from a binary connection according to a provided specifica-
tion (’specs’). Each key is interpreted by reading it with seasonder_readSeaSondeCSFileBlock
and processing it based on its key name. The key processing follows these rules:

seasonder _readCSSWFields 177

Usage
seasonder_readCSSWBodyRangeCell (
connection,
specs,
dbRef,
endian = "big",
specs_key_size = NULL
)
Arguments
connection A binary connection from which keys and data are read.
specs A list defining the expected keys and their formats.
dbRef A numeric value providing the dB reference used in scaling.
endian A string specifying the byte order ("big" or "little"). Defaults to "big".

specs_key_size Optional specification for the key size block.

Details

* Scaling Block (’scal’): Reads scaling parameters (fmax, fmin, fscale, dbRef) using seasonder_readCSSWFields
and stores them for later use.

* Reduced Data Blocks (e.g., >cs1a’, ’cs2a’, ’cs3a’, ’c13m’, ’c13a’, etc.): Reads the block us-
ing seasonder_read_reduced_encoded_data. If scaling parameters were set by a preceding
’scal’ block, the raw data is converted to voltage values using seasonder_SeaSondeRCSSWApplyScaling;
otherwise, the raw data is returned.

* Other Keys (e.g., ’csgn’ and ’asgn’): These keys invoke their specialized read functions for
processing.

The function continues reading keys until it detects the ’END * marker or a repeated ’indx’ key,
which signals the end of the block.
Value

A list with elements named after the keys read. For reduced data blocks, each element contains
either the raw decoded data or the scaled voltage values if a ’scal” block had been applied.

seasonder_readCSSWFields
Read CSSW Fields

Description

Processes a block of keys from the binary connection according to provided specifications.

Usage

seasonder_readCSSWFields(connection, specs, endian, parent_key = NULL)

178

seasonder _readCSSWHeader

Arguments
connection A binary connection.
specs A list specifying the expected keys.
endian A character indicating byte order.
parent_key Optional parent key information.
Value

A named list as returned by seasonder_readSeaSondeCSFileBlock consistent with the provided

specifications.

seasonder_readCSSWHeader

Read CSSW File Header

Description

This function reads the header section of a CSSW file from a binary connection. The CSSW file
header contains a set of key blocks formatted according to the SeaSonde CSSW specification. The
header section is processed recursively and terminates when one of the following conditions is met:

* A key with name "BODY" is encountered. In this case, the connection is rewound by 8 bytes
to allow subsequent processing of the body.

* A key that is not defined in current_specs but is already present in the keys_so_far vector
is encountered (indicative of repeated keys), which triggers termination.

Usage

seasonder_readCSSWHeader (

connection,

current_specs,

endian =

n h n
big",

parent_key = NULL,

keys_so_far

c("CSSW"”, "HEAD"),

specs_key_size = NULL

Arguments

connection

current_specs

A binary connection from which to read the CSSW file header.

A list representing the specification for the header; may contain nested subkeys.

endian A character string indicating the byte order for reading numeric values ("big" or
"little").
parent_key (Optional) A list with information from the parent key block, used when pro-

cessing nested keys.

seasonder_readCSSWLims 179

keys_so_far A character vector of keys already processed, used to avoid recursive loops.
Defaults to c("CSSW", "HEAD").

specs_key_size A specification for reading the key size block, often obtained from YAML specs.

Details
When no subkeys are specified in current_specs (i.e. current_specs comprises only simple field
definitions), the function delegates the processing to seasonder_readCSSWFields.

The function processes the CSSW header recursively:

* If current_specs contains only field definitions, seasonder_readCSSWFields is called.

* When a key named "BODY" is encountered, it signifies the beginning of the body section; the
function rewinds the connection 8 bytes and stops processing further keys.

* Ifakey is encountered that is not defined in current_specs but is already present in keys_so_far,
the function also rewinds the connection 8 bytes and terminates header reading.

» Otherwise, the function updates keys_so_far, handles special cases (e.g., key "cs4h"), and
calls itself recursively to process nested keys.
Value

A list containing the parsed CSSW header information. The returned list may be empty if a termi-
nation condition is encountered.

seasonder_readCSSWLims
Read CSSW Limits

Description

Reads a specified number of 32-bit unsigned integers from a binary connection and reshapes them
into a matrix representing CSSW limits.

Usage
seasonder_readCSSWLims(connection, n_values, endian = "big")
Arguments
connection A binary connection.
n_values The number of 32-bit unsigned integers to read.
endian A string specifying byte order ("big" or "little").
Value

A numeric matrix with four columns: LeftBraggl eftLimit, LeftBraggRightLimit, RightBraggl eft-
Limit, and RightBraggRightLimit.

180 seasonder._readCSSYBodyRangeCell

seasonder_readCSSYBodyRangeCell
Read a Body Range Cell and Apply Scaling if Required

Description

This function processes a block of keys from a binary connection according to a provided specifica-
tion (’specs’). Each key is interpreted by reading it with seasonder_readSeaSondeCSFileBlock
and processing it based on its key name. The key processing follows these rules:

Usage
seasonder_readCSSYBodyRangeCell (
connection,
specs,
dbRef,
endian = "big",
specs_key_size = NULL
)
Arguments
connection A binary connection from which keys and data are read.
specs A list defining the expected keys and their formats.
dbRef A numeric value providing the dB reference used in scaling.
endian A string specifying the byte order ("big" or "little"). Defaults to "big".

specs_key_size Optional specification for the key size block.

Details
* Scaling Block (’scal’): Reads scaling parameters (fmax, fmin, fscale, dbRef) using seasonder_readCSSYFields
and stores them for later use.

* Reduced Data Blocks (e.g., ’csla’, ’cs2a’, ’cs3a’, ’c13r’, ’c13i’, etc.): Reads the block us-
ing seasonder_read_reduced_encoded_data. If scaling parameters were set by a preceding
’scal’ block, the raw data is converted to voltage values using seasonder_SeaSondeRCSSYApplyScaling;
otherwise, the raw data is returned.

* Other Keys (e.g., ’csgn’ and ’asgn’): These keys invoke their specialized read functions for
processing.

The function continues reading keys until it detects the ’END * marker or a repeated "indx’ key,
which signals the end of the block.

Value

A list representing a cell in the CSSY body.

seasonder readCSSYHeader 181

seasonder_readCSSYHeader
Read CSSY File Header

Description

This function reads the header section of a CSSY file from a binary connection. The CSSY file
header contains a set of key blocks formatted according to the SeaSonde CSSY specification. The
header section is processed recursively and terminates when one of the following conditions is met:

* A key with name "BODY" is encountered. In this case, the connection is rewound by 8 bytes
to allow subsequent processing of the body.

* A key that is not defined in current_specs but is already present in the keys_so_far vector
is encountered (indicative of repeated keys), which triggers termination.

Usage

seasonder_readCSSYHeader (
connection,
current_specs,
endian = "big",
parent_key = NULL,
keys_so_far = c("CSSY", "HEAD"),
specs_key_size = NULL

Arguments

connection A binary connection from which to read the CSSY file header.

current_specs A list representing the specification for the header; may contain nested subkeys.

endian A character string indicating the byte order for reading numeric values ("big" or
"little").
parent_key (Optional) A list with information from the parent key block, used when pro-

cessing nested keys.

keys_so_far A character vector of keys already processed, used to avoid recursive loops.
Defaults to c("CSSY", "HEAD").

specs_key_size A specification for reading the key size block, often obtained from YAML specs.

Details

When no subkeys are specified in current_specs (i.e. current_specs comprises only simple field
definitions), the function delegates the processing to seasonder_readCSSYFields.

The function processes the CSSY header recursively:

e If current_specs contains only field definitions, seasonder_readCSSYFields is called.

182 seasonder_readPhaseFile

* When a key named "BODY" is encountered, it signifies the beginning of the body section; the
function rewinds the connection 8§ bytes and stops processing further keys.

 Ifakey is encountered that is not defined in current_specs but is already present in keys_so_far,
the function also rewinds the connection 8 bytes and terminates header reading.

* Otherwise, the function updates keys_so_far, handles special cases (e.g., key "cs4h"), and
calls itself recursively to process nested keys.

Value

A list containing the parsed CSSY header information. The returned list may be empty if a termi-
nation condition is encountered.

seasonder_readPhaseFile
Read Phase Correction File

Description

This function reads a phase correction file and extracts phase correction values.

Usage

seasonder_readPhaseFile(file_path)

Arguments

file_path The path to the phase correction file.

Value

A numeric vector with two elements: phase corrections for the two channels.

Examples

Read phase corrections from sample file
phase_file <- system.file("css_data/Phases.txt", package = "SeaSondeR")
phase_corrections <- seasonder_readPhaseFile(phase_file)

seasonder_readSeaSondeCSFile 183

seasonder_readSeaSondeCSFile
Read SeaSonde Cross Spectra (CS) File

Description

This function reads and processes a SeaSonde CS file, extracting both its header and data.

Usage

seasonder_readSeaSondeCSFile(filepath, specs_path, endian = "big")

Arguments
filepath A character string specifying the path to the SeaSonde CS file.
specs_path A character string specifying the path to the YAML specifications for the CS
file.
endian Character string indicating the byte order. Options are "big" (default) or "little".
Details

The function starts by establishing a connection to the CS file specified by filepath. It then reads
the necessary metadata and header specifications from the specs_path. Based on the CS file ver-
sion determined from its header, it applies specific adjustments to the header data. After processing
the header, the function validates the CS file data using seasonder_validateCSFileData and then
reads the data itself via seasonder_readSeaSondeCSFileData.

Value

A list containing two components:

* header: A list containing the processed header information of the CS file.

* data: A list containing the processed data of the CS file. The structure of this list depends on
the content of the CS file and can contain components such as SSAx, CSxy, and QC.

Condition Management

This function utilizes the rlang package to manage conditions and provide detailed and structured
condition messages:

Condition Classes:
* seasonder_read_cs_file_error: An error class that indicates a general problem when at-
tempting to read the SeaSonde CS file.
» seasonder_cs_file_skipped: Condition indicating that the processing of a CS file was

skipped due to an error.

Condition Cases:

184 seasonder_readSeaSondeCSFileBlock

* Failure to open a connection to the file.
» Unsupported version found in the specs file.

* Any other error that can arise from dependent functions such as seasonder_readSeaSondeCSFileHeader
and seasonder_readSeaSondeCSFileData.

Restart Options: This function provides a structured mechanism to recover from errors during its
execution using the rlang: :withRestarts function. The following restart option is available:

seasonder_skip_cs_file(cond) This allows for the graceful handling of file reading errors. If
this restart is invoked, the function will log an error message indicating that the processing of
a specific CS file was skipped and will return a list with header = NULL and data = NULL. The
restart takes one argument: cond (the condition or error that occurred).

» Usage: In a custom condition handler, you can call seasonder_skip_cs_file(cond) to
trigger this restart and skip the processing of the current CS file.

» Effect: If invoked, the function logs an error message detailing the reason for skipping
the file and then returns a list with both the header and data set to NULL.

References

Cross Spectra File Format Version 6. CODAR. 2016

See Also

seasonder_skip_cs_file, seasonder_validateCSFileData, seasonder_readSeaSondeCSFileHeader,
seasonder_readSeaSondeCSFileData, seasonder_readYAMLSpecs

Examples

spec_file <- seasonder_defaultSpecsFilePath("CS")

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs <- seasonder_readSeaSondeCSFile(cs_file, spec_file, endian = "big")

str(cs)

seasonder_readSeaSondeCSFileBlock
Read and Apply Quality Control to a Block of Fields

Description
Reads a block of fields from a binary file based on provided specifications. Each field is read and
then processed with a specified quality control function.

Usage

seasonder_readSeaSondeCSFileBlock(spec, connection, endian = "big")

seasonder_readSeaSondeCSFileBlock 185

Arguments

spec A named list of specifications for fields to read. Each specification should be in
the form: list(type = "data_type", qc_fun = "qc_function_name", qc_params =
list(param1 = valuel, ...)) Where:
* type: is the data type to read, which will be passed to seasonder_readCSField.

* gc_fun: is the name of a quality control function. This function should be
present in the shared environment seasonder_the and must accept field_value
as its first argument, followed by any other arguments specified in gc_params.

* gc_params: is a list of additional parameters to pass to the quality control
function.
connection A connection to the binary file.

endian A character string indicating the byte order. Options are "big" and "little" (de-
fault is "big").

Details

The quality control (QC) functions (qc_fun) specified within spec play a pivotal role in ensuring
the reliability of the data that’s read. Here’s the expected behavior of these QC functions:

* Input:
— field_value: Value of the field that has been read from the binary file using the seasonder_readCSField
function.
— ...: Additional parameters specified in qc_params that are passed to qc_fun for quality
control.

* Functioning: The QC function receives a read value and performs checks or transformations
based on defined rules or parameters.

— On QC failure:

* The QC function itself is responsible for determining the action to take. It can log an
error, return a default value, impute the value, and more.

+ For critical errors, the QC function could halt the execution. However, note that
logging is managed by the QC function and won’t necessarily halt execution in every
case.

— On success: The QC function will return the value (either unchanged or transformed).
* Output: Value that has been validated or transformed based on quality control rules.
* Additional Notes:

— The action on QC failure is directly implemented within the QC function.

— Reading errors are managed by the seasonder_readCSField function, which returns
NULL in the case of an error. It is up to the QC function to decide what to do if it
receives a NULL.

Value

A named list where each entry corresponds to a field that has been read. Each key is the field name,
and its associated value is the data for that field after quality control.

186 seasonder_readSeaSondeCSFileData

See Also

read_and_qc_field

Examples

spec <- list(fieldl = list(type = "UInt8", gc_fun = "qc_check_unsigned”, qc_params = list()))
con <- rawConnection(as.raw(c(0x01)))

block <- seasonder_readSeaSondeCSFileBlock(spec, con, endian = "big")

print(block)

close(con)

seasonder_readSeaSondeCSFileData
Read SeaSonde Cross Spectra (CS) File Data

Description

This function reads the SeaSonde CS file data based on the provided header information. The CS
file data includes the antenna voltage squared self spectra (SSA*) and the antenna cross spectra
(CSxy). Additionally, a quality matrix (QC) is read when the header’s nCsKind is greater than or

equal to 2.
Usage

seasonder_readSeaSondeCSFileData(connection, header, endian = "big")
Arguments

connection A connection object to the CS file.

header A list containing the header information. This is typically the output of the

seasonder_readSeaSondeCSFileHeader function.

endian Character string indicating the byte order. Options are "big" (default) or "little".

Details

* SSA*: Represents the Antenna * voltage squared self spectra. These are matrices where each
row corresponds to a range and each column to a Doppler cell.

* CSxy: Represents the cross spectra between two antennas x and y. These are complex matrices.

* QC: Quality matrix with values ranging from zero to one. A value less than one indicates that
the SpectraAverager skipped some data during averaging.

Value

A list containing the processed CS file data including matrices for SSA*, CSxy, and QC (if appli-
cable).

seasonder_readSeaSondeCSFileHeader 187

Condition Management

This function utilizes the rlang package to manage errors and conditions, providing detailed and
structured messages:

Error Classes:
* "seasonder_cs_data_reading_error": This error is thrown when there is a problem read-
ing the CS file data. This could be due to issues with the connection object or the file itself.
e "seasonder_cs_missing_header_info_error": Thrown if essential header information such
as nRangeCells, nDopplerCells, or nCsKind is missing or invalid.

Error Cases:

» Connection object is not properly opened or is invalid.
* Header information is incomplete or improperly formatted.
* File read operations fail due to incorrect data size, type, or unexpected end of file.

¢ Non-numeric values encountered where numeric spectra data is expected.

Examples

con <- rawConnection(as.raw(rep(@, 300)))

header <- list(nRangeCells = 1, nDopplerCells = 5, nCsKind = 2)

data <- seasonder_readSeaSondeCSFileData(con, header, endian = "big")
print(data)

close(con)

seasonder_readSeaSondeCSFileHeader
Read the SeaSonde CS File Header

Description

This function reads and processes the header of a SeaSonde CS file. It initially reads the general
header (Version 1) to determine the file version. Subsequent headers are processed based on the file

version.
Usage

seasonder_readSeaSondeCSFileHeader (specs, connection, endian = "big")
Arguments

specs List of header specifications for each version.

connection The file connection.

endian Character string indicating the byte order, either "big" (default) or "little".

188 seasonder_readSeaSondeCSFileHeaderV1

Value

A combined list of all processed headers up to the file version.

See Also

seasonder_readSeaSondeCSFileHeaderV1 process_version_header

seasonder_readSeaSondeCSFileHeaderV1
Read SeaSonde File Header (Version 1)

Description

Reads the header of a SeaSonde file (Version 1) based on the provided specifications. Transforms
the date-time fields and returns the results.

Usage
seasonder_readSeaSondeCSFileHeaderV1(
specs,
connection,
endian = "big",
prev_data = NULL
)
Arguments
specs A list containing specifications for reading the file.
connection Connection object to the file.
endian Character string specifying the endianness. Default is "big".
prev_data previous header data
Value

A list with the read and transformed results.

See Also

seasonder_check_specs seasonder_readSeaSondeCSFileBlock

seasonder_readSeaSondeCSFileHeaderV?2 189

seasonder_readSeaSondeCSFileHeaderV2
Read SeaSonde File Header (Version 2)

Description

Reads the header of a SeaSonde file (Version 2) based on the provided specifications.

Usage
seasonder_readSeaSondeCSFileHeaderV2(
specs,
connection,
endian = "big",
prev_data = NULL
)
Arguments
specs A list containing specifications for reading the file.
connection Connection object to the file.
endian Character string specifying the endianness. Default is "big".
prev_data previous header data
Value

A list with the read results.

See Also

seasonder_check_specs seasonder_readSeaSondeCSFileBlock

seasonder_readSeaSondeCSFileHeaderV3
Read SeaSonde File Header (Version 3)

Description

Reads the header of a SeaSonde file (Version 3) based on the provided specifications. Adds nRange-
Cells, nDopplerCells, and nFirstRangeCell as constant values to the results.

190 seasonder_readSeaSondeCSFileHeaderV4

Usage
seasonder_readSeaSondeCSFileHeaderV3(
specs,
connection,
endian = "big",
prev_data = NULL
)
Arguments
specs A list containing specifications for reading the file.
connection Connection object to the file.
endian Character string specifying the endianness. Default is "big".
prev_data previous header data
Value

A list with the read results.

See Also

seasonder_check_specs seasonder_readSeaSondeCSFileBlock

seasonder_readSeaSondeCSFileHeaderV4
Read SeaSonde File Header (Version 4)

Description

Reads the header of a SeaSonde file (Version 4) based on the provided specifications. Transforms
the CenterFreq field and returns the results.

Usage
seasonder_readSeaSondeCSFileHeaderV4(
specs,
connection,
endian = "big",
prev_data = NULL
)
Arguments
specs A list containing specifications for reading the file.
connection Connection object to the file.
endian Character string specifying the endianness. Default is "big".

prev_data previous header data

seasonder_readSeaSondeCSFileHeaderV5 191

Value

A list with the read and transformed results.

See Also

seasonder_check_specs seasonder_readSeaSondeCSFileBlock

seasonder_readSeaSondeCSFileHeaderV5
Read SeaSonde File Header (Version 5)

Description

Reads the header of a SeaSonde file (Version 5) based on the provided specifications. Performs
applicable transformations and returns the results.

Usage
seasonder_readSeaSondeCSFileHeaderV5(
specs,
connection,
endian = "big",
prev_data = NULL
)
Arguments
specs A list containing specifications for reading the file.
connection Connection object to the file.
endian Character string specifying the endianness. Default is "big".
prev_data previous header data
Value

A list with the read and transformed results.

See Also

seasonder_check_specs seasonder_readSeaSondeCSFileBlock

192 seasonder_readSeaSondeCSFileHeaderV6

seasonder_readSeaSondeCSFileHeaderVé
Read SeaSonde CS File Header V6

Description

This function reads the header of a SeaSonde CS File Version 6. It sequentially reads blocks based
on the provided specifications and returns the read data.

Usage
seasonder_readSeaSondeCSFileHeaderVeé(
specs,
connection,
endian = "big",
prev_data = NULL
)
Arguments
specs A list of specifications for reading the file header. It should contain three main
elements: nCS6ByteSize, block_spec, and blocks, each containing further
specifications for reading various parts of the header.
connection A connection object to the SeaSonde CS file.
endian The byte order for reading the file. Default is "big".
prev_data Previous data, if any, that might affect the current reading. Default is NULL.
Value

A list containing the read data, organized based on the block keys.

Condition Management

This function utilizes the rlang package to manage conditions and provide detailed and structured
condition messages:

Condition Classes:
* seasonder_v6_block_transformacion_skipped: Triggered when a transformation for a
specific block is skipped.

* seasonder_v6_transform_function_error: Triggered when there’s an error while apply-
ing the transformation function for a V6 header block.

* seasonder_v6_skip_block_error: Triggered when there’s an error while skipping a block.

Condition Cases:

The following are the scenarios when errors or conditions are raised:

seasonder_readSeaSondeRAPMFile 193

* Transformation Failure: If there’s a recognized block key and the transformation function
associated with it fails.

¢ Error in Transformation Function Application: If there’s an error while applying the transfor-
mation function for a recognized V6 header block.

* Error in Skipping Block: If there’s an error while skipping a block when the block key is not
recognized.

Restart Options:
The function provides the following restart option:

seasonder_v6_skip_transformation: This restart allows users to skip the transformation for a
specific block and instead return the provided value.

Effects of Restart Options:

Using the seasonder_v6_skip_transformation restart:

* The error message gets logged.
 The transformation that caused the error gets skipped.

* The provided value for that block is returned.

Proper error management ensures the integrity of the reading process and provides detailed feedback
to users regarding issues and potential resolutions.

See Also

seasonder_check_specs seasonder_readSeaSondeCSFileBlock readV6BlockData seasonder_v6_skip_transformat

seasonder_readSeaSondeRAPMFile
Read and Parse a SeaSonde APM File

Description

This function reads a SeaSonde APM file and returns a SeaSondeRAPM object containing the
parsed data.

Usage

seasonder_readSeaSondeRAPMFile(
file_path,
override_antenna_bearing = NULL,
override_phase_corrections = NULL,
override_amplitude_factors = NULL,
override_SiteOrigin = NULL,

194 seasonder_readSeaSondeRCSSWFile

Arguments

file_path The path to the SeaSonde APM file to read.

override_antenna_bearing
If not NULL, overrides the Antenna Bearing data in the file.

override_phase_corrections
If not NULL, overrides the phase corrections in the file.

override_amplitude_factors
If not NULL, overrides the amplitude factors in the file.

override_SiteOrigin
If not NULL, overrides the SiteOrigin attribute.

Additional arguments passed to the object creation function.

Value

A SeaSondeRAPM object containing the parsed data.

See Also

seasonder_createSeaSondeRAPM

seasonder_validateAttributesSeaSondeRAPM

Examples

Read a test SeaSondeRAPM object from sample file
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

seasonder_readSeaSondeRCSSWFile
Read SeaSonde RCSSW File and Create SeaSondeRCS Object

Description

This function reads a SeaSonde RCSSW file from a specified file path and parses its content into a
SeaSondeRCS object. The file is processed by reading its header and body sections using CSSW
specifications provided via a YAML file.

Usage

seasonder_readSeaSondeRCSSWFile(
filepath,
specs_path = seasonder_defaultSpecsFilePath(”"CSSW"),
endian = "big"

)

seasonder_readSeaSondeRCSSYFile 195

Arguments
filepath A character string specifying the path to the SeaSonde RCSSW file.
specs_path A character string specifying the path to the YAML file containing CSSW speci-
fications. Defaults to the output of seasonder_defaultSpecsFilePath("CSSW").
endian A character string indicating the byte order used in the file. Defaults to "big".
Details

The function executes the following steps:

Sets up error handling parameters specific to the function.

Retrieves YAML specifications for the key size block from the CSSW spec file.
Attempts to open the file in binary mode ("rb") with warnings suppressed.
Reads the file key and uses it to extract file specs.

Reads the header key, retrieves header specs, and parses the CSSW header.
Converts the CSSW header into a valid SeaSondeRCS header.

Reads the body key, retrieves body specs, and parses the CSSW body.
Transforms the CSSW body into a SeaSondeRCS data structure.

R T U ol

Combines the header and data into a SeaSondeRCS object.

Value

A SeaSondeRCS object containing the parsed header and data.

seasonder_readSeaSondeRCSSYFile
Read SeaSonde RCSSY File and Create SeaSondeRCS Object

Description

This function reads a SeaSonde RCSSY file from a specified file path and parses its content into a
SeaSondeRCS object. The file is processed by reading its header and body sections using CSSY
specifications provided via a YAML file.

Usage

seasonder_readSeaSondeRCSSYFile(
filepath,
specs_path = seasonder_defaultSpecsFilePath(”"CSSY"),
endian = "big"

)

196 seasonder._readYAMLSpecs

Arguments
filepath A character string specifying the path to the SeaSonde RCSSY file.
specs_path A character string specifying the path to the YAML file containing CSSY speci-
fications. Defaults to the output of seasonder_defaultSpecsFilePath("CSSY").
endian A character string indicating the byte order used in the file. Defaults to "big".
Details

The function executes the following steps:

. Sets up error handling parameters specific to the function.

. Retrieves YAML specifications for the key size block from the CSSY spec file.
. Attempts to open the file in binary mode ("rb") with warnings suppressed.

. Reads the file key and uses it to extract file specs.

. Reads the header key, retrieves header specs, and parses the CSSY header.

. Converts the CSSY header into a valid SeaSondeRCS header.

. Reads the body key, retrieves body specs, and parses the CSSY body.

. Transforms the CSSY body into a SeaSondeRCS data structure.

O 00 9 N L AW N =

. Combines the header and data into a SeaSondeRCS object.

Value

A SeaSondeRCS object containing the parsed header and data.

seasonder_readYAMLSpecs
Read Specifications from a YAML File

Description

This function reads a YAML file containing specifications, handles potential reading errors, and
extracts specific information based on a provided path.

Usage
seasonder_readYAMLSpecs(file_path, path = rlang::zap())

Arguments
file_path A string. The path to the YAML file.
path A character vector. Represents the path within the YAML file to access the

desired information. For example, to access fields of version V2 of the header,
the path would be c("header”, "versions”, "V2").

seasonder_read_reduced_encoded_data 197

Details

This function provides built-in error handling which aborts execution and logs detailed error mes-
sages in case of:

* File not found.

* Error in reading the YAML content.

* The read YAML content is not a list.

* No data found for the provided path in the YAML content.

Errors generated are of class "seasonder_read_yaml_file_error”. For logging and aborting,
this function uses seasonder_logAndAbort.
Value

A list. The information extracted from the YAML file based on the provided path.

See Also

read_yaml for the underlying YAML reading.

pluck for the data extraction mechanism used.

Examples

Example: Read the CS header specifications (version V1) from the default specs file
specs_path <- seasonder_defaultSpecsFilePath("CS")

result <- seasonder_readYAMLSpecs(specs_path, c("header”, "V1"))

str(result)

seasonder_read_reduced_encoded_data
Read Reduced Encoded Data from a Binary Connection

Description

This function reads an array of numbers from a binary connection using a custom command-based
protocol. A block of data is processed according to its size specified in key$size. Within the block,
the first byte read is a command byte that determines how the subsequent bytes are interpreted. The
function updates a running "tracking value" based on the commands encountered and returns a
vector of decoded numbers. The supported commands are:

Usage

seasonder_read_reduced_encoded_data(connection, key, endian = "big")

198 seasonder._rejectDistantBragg

Arguments
connection A binary connection from which the encoded data is read.
key A list containing a field size that indicates how many bytes of data to process.
endian A character string specifying the byte order; either "big"” or "little”. The
default is "big".
Details

0x9C Read 4 bytes as an unsigned 32-bit integer.
0x94 Read one count byte, then (count+1) unsigned 32-bit integers.
0xAC Read 3 bytes as a 24-bit signed integer; add its value to the current tracking value.

0xA4 Read one count byte, then (count+1) 24-bit signed integers; sequentially add each to the
tracking value.

0x89 Read 1 byte as a signed 8-bit integer; add it to the tracking value.
0x8A Read 2 bytes as a signed 16-bit integer; add it to the tracking value.

0x82 Read one count byte, then (count+1) signed 16-bit integers; sequentially add each to the
tracking value.

0x81 Read one count byte, then (count+1) signed 8-bit integers; sequentially add each to the track-
ing value.

A 24-bit signed integer is computed by reading 3 bytes and then adjusting the value by subtract-
ing 16777216 if the computed value is greater than or equal to 8388608 to account for the two’s
complement representation.

Value

An integer vector containing the decoded numbers.

seasonder_rejectDistantBragg
Apply Distant Bragg Peak Rejection to All Range Cells

Description

This function applies a proximity-based rejection test to all detected First Order Region (FOR)
peaks in a SeaSondeRCS object. Peaks that are too far from their corresponding Bragg indices are
removed, ensuring that only valid Bragg signals are retained.

Usage

seasonder_rejectDistantBragg(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the spectral data and FOR parameters.

seasonder_rejectDistantBraggPeak Test 199

Details

Reason for the Test: The function filters out peaks in the FOR that are not closely associated
with expected Bragg indices. These distant peaks could result from interference, noise, or other
non-Bragg sources, potentially leading to erroneous current velocity vectors. This ensures that only
physically valid Bragg signals are used in the processing pipeline.

Steps:
1. Retrieve Current FOR Data:
* Retrieves the detected FOR Doppler bin indices for all range cells using seasonder_getSeaSondeRCS_FOR.

2. Apply Rejection Test:

* Iterates over each range cell and each Bragg region (positive_FOR and negative_FOR).

 Calls seasonder_rejectDistantBraggPeakTest for each peak to evaluate its proximity
to the Bragg indices.

* Peaks that fail the test are removed (replaced with an empty vector).

3. Store Updated FOR Data:
» Updates the SeaSondeRCS object with the filtered FOR results using seasonder_setSeaSondeRCS_FOR.

This function is part of the FOR processing workflow and should be applied after the initial detection
of Bragg peaks.

Value

The updated SeaSondeRCS object with the filtered FOR bins.

References

COS. SpectraPlotterMap 12 User Guide. CODAR Ocean Sensors (COS), Mountain View, CA,
USA, 2016.

See Also

* seasonder_rejectDistantBraggPeakTest for the peak rejection logic.
* seasonder_getSeaSondeRCS_FOR for retrieving detected FOR bins.
* seasonder_setSeaSondeRCS_FOR for updating FOR data.

seasonder_rejectDistantBraggPeakTest
Reject Bragg Peaks Far from Expected Bragg Index

Description

This function evaluates Bragg peaks based on their proximity to expected Bragg index bins. If the
boundaries of a peak are farther from all Bragg indices than the width of the peak itself, the peak is
rejected by returning an empty integer vector.

200 seasonder._rejectDistantBraggPeak Test

Usage

seasonder_rejectDistantBraggPeakTest (
seasonder_cs_object,

peak,
range = NA,
peak_name = ""
)
Arguments

seasonder_cs_object
A SeaSondeRCS object containing the spectral data and Bragg indices.

peak A numeric vector indicating the Doppler bin positions of the peak under evalu-
ation.
range Optional; A numeric or integer value representing the range cell corresponding

to the peak. Defaults to NA.

peak_name Optional; A character string representing the name or identifier of the peak (e.g.,
"positive_FOR" or "negative_FOR"). Defaults to an empty string.

Details

Reason for the Test: The test ensures that peaks identified as part of the first-order Bragg region
are reasonably close to the expected Bragg index. Peaks that are distant from the Bragg index are
likely caused by noise, interference, or other sources unrelated to first-order Bragg scatter. These
invalid peaks, if included, can lead to erroneous current velocity vectors and degrade the quality of
radar-derived measurements.

Specifically, the test rejects peaks when:

* The distance from the left or right boundary of the peak to the nearest Bragg index exceeds
the width of the peak.

* This condition ensures that peaks with excessively large offsets from the Bragg index are
excluded.

Steps:

1. If the peak is empty, the function does nothing.

N

Calculates the width of the peak as the difference between its maximum and minimum Doppler
bin indices.

Computes the left and right boundaries of the peak.
Calculates the distance from each boundary to all Bragg indices.

Rejects the peak if both boundary distances exceed the peak width.

o kW

Logs the rejection information if applicable.

This test is particularly important in scenarios where strong non-Bragg signals, such as those from
ships or other high-intensity noise sources, might otherwise be misclassified as first-order Bragg.

seasonder._rejectNoiselonospheric 201

Value

A possibly modified version of the peak argument, where a rejected peak is returned as integer (@),
indicating that it does not pass the proximity test.

References

COS. SpectraPlotterMap 12 User Guide. CODAR Ocean Sensors (COS), Mountain View, CA,
USA, 2016.

See Also

* seasonder_rejectDistantBragg for applying this test to all range cells and Bragg regions.

* seasonder_getBragglineBins for retrieving Bragg index bins.

seasonder_rejectNoiselonospheric
Apply Noise/lonospheric Contamination Test to All Bragg Peaks

Description

This function evaluates and filters the First Order Region (FOR) detections across all range cells
by applying the noise/ionospheric contamination rejection test to both positive and negative Bragg
regions.

Usage

seasonder_rejectNoiseIonospheric(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the spectral data and FOR parameters.

Details

Reason for the Test: This function ensures that Bragg peaks contaminated by excessive noise or
ionospheric interference are removed from the detected First Order Region (FOR). Peaks where the
power in the surrounding non-Bragg region exceeds the power in the Bragg region by a specified
threshold are deemed invalid and are rejected. This step is critical for maintaining the accuracy of
radar-derived measurements.

Steps:
1. Retrieve Current FOR Data:
* Retrieves the detected FOR Doppler bin indices for all range cells using seasonder_getSeaSondeRCS_FOR.
2. Apply Noise/Ionospheric Rejection Test:

* Iterates over each range cell and evaluates both positive and negative Bragg regions.

202 seasonder._rejectNoiselonosphericTest

¢ Calls seasonder_rejectNoiseIonosphericTest to check each peak against the noise/ionospheric
criterion.
* Peaks that fail the test are removed (replaced with an empty vector).
3. Store Updated FOR Data:
» Updates the SeaSondeRCS object with the filtered FOR results using seasonder_setSeaSondeRCS_FOR.

Use Case: This function is particularly useful in environments where noise or ionospheric effects
are prevalent, ensuring that only valid first-order Bragg peaks are retained for further processing.

Value

The updated SeaSondeRCS object with the filtered FOR bins.

See Also

* seasonder_rejectNoiseIonosphericTest for the noise/ionospheric rejection logic.
* seasonder_getSeaSondeRCS_FOR for retrieving detected FOR bins.
* seasonder_setSeaSondeRCS_FOR for updating FOR data.

seasonder_rejectNoiseIonosphericTest
Reject Bragg Peaks Due to Noise/lonospheric Contamination

Description

This function evaluates Bragg peaks based on the power ratio between the Bragg region and the
surrounding non-Bragg region. If the non-Bragg power exceeds the Bragg power by a specified
threshold, the peak is rejected.

Usage

seasonder_rejectNoiseIonosphericTest(
seasonder_cs_object,

peak,
range = NA,
peak_name = ""
)
Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral data and FOR parameters.

peak A numeric vector indicating the Doppler bin positions of the peak under evalu-
ation.

range Optional; A numeric or integer value representing the range cell corresponding
to the peak. Defaults to NA.

peak_name Optional; A character string representing the name or identifier of the peak (e.g.,

"positive_FOR" or "negative_FOR"). Defaults to an empty string.

seasonder_rejectNoiselonosphericTest 203

Details

Reason for the Test: This test ensures that Bragg peaks are not contaminated by excessive noise or
ionospheric interference. Bragg regions with significantly higher non-Bragg power levels are likely
to be invalid and are rejected.

Steps:

1. Threshold Retrieval:

* Retrieves the reject_noise_ionospheric_threshold parameter, which defines the power
difference (in dB) allowed between the Bragg and non-Bragg regions.

2. Peak Region Determination:

* Determines whether the peak is in the positive or negative Bragg region based on its
location relative to the central Doppler bin.

3. Non-Bragg Region Extraction:
¢ Identifies the non-Bragg region by excluding the bins corresponding to the peak.
4. Power Calculations:

* Calculates the total power for the Bragg and non-Bragg regions and converts them to
decibels (dB).

5. Rejection Criterion:

* If the non-Bragg power exceeds the Bragg power by more than the threshold, the peak is
rejected.

* Logs a message detailing the rejection.

Use Case: This function is particularly useful in environments where noise or ionospheric effects
are prevalent, ensuring that only valid first-order Bragg peaks are retained.

Value

A possibly modified version of the peak argument, where a rejected peak is returned as integer (@),
indicating that it does not pass the noise/ionospheric test.

See Also

* seasonder_rejectDistantBraggPeakTest for evaluating peaks based on proximity to Bragg
indices.

* seasonder_getSeaSondeRCS_FOR_SS_Smoothed for retrieving smoothed spectra.

* seasonder_SelfSpectra2dB for power conversion to dB.

204 seasonder_rerun_qc_with_fun

seasonder_rerun_qc_with_fun
Structured Restart for Quality Control

Description

Provides a structured restart mechanism to rerun the quality control (QC) function with an alterna-
tive function during the execution of read_and_qgc_field. This allows for a flexible error recovery
strategy when the initial QC function fails or is deemed inadequate.

Usage

seasonder_rerun_qc_with_fun(cond, qc_fun)

Arguments
cond The condition object captured during the execution of the read_and_qgc_field
function.
gc_fun An alternate quality control function to apply. This function should accept the
value from the field as its sole argument and return a QC-applied value.
Details

This function is meant to be used within custom condition handlers for the read_and_qgc_field
function.

Value

The value returned by the alternate quality control function.

Examples

Example (expected to error due to missing restart):
val <- try(
seasonder_rerun_gc_with_fun(
list(seasonder_value = 42),
function(x) x * 2
),
silent = TRUE

)
print(val)

seasonder runMUSIC 205

seasonder_runMUSIC Execute the MUSIC Algorithm on a SeaSondeRCS Object

Description

This function performs the MUSIC (MUItiple SIgnal Classification) algorithm on a given SeaSon-
deRCS object, executing a series of processing steps to extract direction-of-arrival (DOA) informa-
tion and other related metrics from the radar cross-spectrum data.

Usage

seasonder_runMUSIC(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object that contains the radar cross-spectrum data and metadata.
This object is modified in place to include the results of the MUSIC algorithm.

Details

The MUSIC algorithm is executed in a series of sequential steps:

1. Log the start of the MUSIC algorithm.
2. Update the processing steps of the SeaSondeRCS object to include the MUSIC start text.
3. Perform the following computations:

* Compute the covariance matrix from the cross-spectrum data.

* Perform eigen decomposition on the covariance matrix.

* Compute the DOA functions using MUSIC-specific methods.

 Extract peaks from the DOA functions, corresponding to possible signal directions.
* Calculate the signal power matrix.

¢ Test for dual solutions and compute their proportions.

* Select the final set of DOAs from the computed data.

* Convert the selected DOAs to geographical coordinates (latitude and longitude).

4. Log the completion of the MUSIC algorithm.

Value
A SeaSondeRCS object with updated MUSIC-related attributes. Specifically:

* Processing steps annotated with the MUSIC start and end points.

» Updated attributes and fields for covariance matrix computations, DOA estimations, and other
MUSIC-related metrics.

206 seasonder_runMUSICInFOR

See Also

seasonder_MUSICComputeCov: Compute the covariance matrix. seasonder_MUSICCovDecomposition:

Perform eigen decomposition of the covariance matrix. seasonder_MUSICComputeDOAProjections:

Compute the direction-of-arrival functions. seasonder_MUSICExtractPeaks: Extract peaks from

the DOA functions. seasonder_MUSICComputeSignalPowerMatrix: Calculate the signal power

matrix. seasonder_MUSICTestDualSolutions: Test and analyze dual solutions in the DOA.
seasonder_MUSICComputePropDualSols: Compute proportions for dual solutions. seasonder_MUSICSelectDOA:
Select final DOA estimations. seasonder_MUSIC_LonLat: Convert DOA estimations to geograph-

ical coordinates.

Examples

Prepare a SeaSondeRCS object with MUSIC data

apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_initMUSICData(cs_obj)

cs_obj <- seasonder_initMUSICData(

cs_obj,

range_cells = c(rep(5,11), rep(4,11)),

doppler_bins = c(c(669:679),c(674:684))

)

cs_obj <- seasonder_SeaSondeRCSMUSICInterpolateDoppler(cs_obj)
Run the MUSIC algorithm
cs_obj <- seasonder_runMUSIC(cs_obj)
Check the updated processing steps
print(seasonder_getSeaSondeRCS_ProcessingSteps(cs_obj))

seasonder_runMUSICInFOR
Run MUSIC Algorithm on FOR Data

Description

This function integrates the MUSIC (Multiple Signal Classification) algorithm into a SeaSondeRCS
object that has First Order Regions (FOR) initialized. It first applies Doppler interpolation to the
cross-spectra data, then extracts the FOR boundaries for each range cell by transforming the nega-
tive and positive FOR Doppler bins into frequency values and subsequently mapping these frequen-
cies back to Doppler bins. Finally, the function initializes the MUSIC data structure and invokes
the full MUSIC algorithm to update the SeaSondeRCS object.

Usage

seasonder_runMUSICInFOR(seasonder_cs_object)

seasonder runMUSICInFOR 207

Arguments

seasonder_cs_object
A SeaSondeRCS object containing cross-spectra data and FOR information.
(Note: Although this parameter is specified as an argument in the documenta-
tion, the actual Doppler interpolation factor is retrieved from the MUSIC options
stored in the object.)

Details

This function performs the following sequence of operations:

1. It retrieves the Doppler interpolation factor from the MUSIC options of the input object.
2. It obtains the FOR data from the object using seasonder_getSeaSondeRCS_FOR.
3. For each range cell in the FOR data:

(a) It processes the negative FOR bins by:
i. Determining the frequency range corresponding to the negative bins via seasonder_Bins2DopplerFreq.

ii. Mapping these frequencies to new Doppler bin indices with seasonder_MUSIC_DopplerFreq2Bins
and adjusting the indices based on the interpolation factor.

(b) It processes the positive FOR bins in an analogous manner.

(c) If valid Doppler bin indices are obtained, a data frame is created recording the range cell
and Doppler bin information.

4. The function compiles the extracted FOR information from all range cells into a single data
frame.

5. It initializes the MUSIC data structure for the specified range cells and Doppler bins using
seasonder_initMUSICData.

6. Finally, it calls seasonder_runMUSIC to execute the MUSIC algorithm on the updated object.

Value

A SeaSondeRCS object with its MUSIC data updated after applying Doppler interpolation, FOR
extraction, and the complete MUSIC processing.

Examples

Prepare a SeaSondeRCS object with MUSIC data (including FOR segments)
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
FOR <- seasonder_getSeaSondeRCS_FOR(cs_obj)

cs_obj <- seasonder_setSeaSondeRCS_FOR(cs_obj,FOR[4:5])

Run MUSIC algorithm in FOR context

result <- seasonder_runMUSICInFOR(cs_obj)

View processing steps
print(seasonder_getSeaSondeRCS_ProcessingSteps(result))

208 seasonder_SeaSondeRCSExportFORBoundaries

seasonder_SeaSondeRCSExportFORBoundaries
Export First Order Region (FOR) Boundaries

Description

This function exports the boundaries of the First Order Region (FOR) for each range cell from a
SeaSondeRCS object, providing the first and last Doppler bins for both negative and positive Bragg
regions.

Usage

seasonder_SeaSondeRCSExportFORBoundaries(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing the computed FOR data.

Details

Purpose: This function retrieves the computed FOR data from the SeaSondeRCS object and ex-
tracts the boundary Doppler bins for each range cell. The result is a data frame with the following
columns:

* range_cell: The index of the range cell.

* first_neg_doppler_cell: The first Doppler bin in the negative Bragg region.

* last_neg_doppler_cell: The last Doppler bin in the negative Bragg region.

e first_pos_doppler_cell: The first Doppler bin in the positive Bragg region.

* last_pos_doppler_cell: The last Doppler bin in the positive Bragg region.

Steps:

1. Retrieve the FOR data using seasonder_getSeaSondeRCS_FOR.

2. Iterate through each range cell and extract the Doppler bins for both negative and positive
Bragg regions.

3. Determine the range (first and last bins) for each region.

4. Combine the results into a single data frame, omitting empty entries.

Use Case: This function is useful for exporting the computed FOR boundaries to a format that can
be further analyzed or visualized.

Value

A data frame with the boundaries of the FOR for each range cell.

seasonder_SeaSondeRCSMUSIClInterpolateDoppler 209

See Also

* seasonder_getSeaSondeRCS_FOR for retrieving the FOR data.

Examples

Set sample file paths

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
boundaries <- seasonder_SeaSondeRCSExportFORBoundaries(cs_obj)

head(boundaries)

seasonder_SeaSondeRCSMUSICInterpolateDoppler
Perform Doppler Interpolation for SeaSonde Cross-Spectra Data

Description

This function performs Doppler interpolation on the cross-spectra data of a SeaSondeRCS object,
preparing the data for MUSIC processing. Interpolation is achieved by inserting additional Doppler
bins using linear interpolation, potentially increasing the number of detected vectors while possibly
smoothing the radials. The function tries to mimic CODAR’s AnalyzeSpectra tool interpolation,
including the addition of a wraparound Doppler cell before interpolation.

Usage

seasonder_SeaSondeRCSMUSICInterpolateDoppler(seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing cross-spectra data and metadata for process-
ing.

Details

Doppler interpolation increases the number of Doppler bins by a factor of 2, 3, or 4 before radial pro-
cessing. This is accomplished by linearly interpolating between existing bins, increasing the num-
ber of radial vectors by approximately 15% for a 2x interpolation, and yielding smoother radials.
The interpolation factor is configurable via the SeaSondeRCS object’s doppler_interpolation
attribute and it’s setter seasonder_setSeaSondeRCS_MUSIC_doppler_interpolation. The num-
ber of Doppler bins after interpolation should not exceed 2048; exceeding this limit will result in an
error.

The interpolation process is as follows:

210 seasonder._SeaSondeRCSSWApplyScaling

1. A wraparound Doppler cell is added to the right of the data.

2. For non-quality-control (QC) matrices, linear interpolation is applied to fill in the newly added
Doppler bins.

3. QC matrices are updated with a default value (-1) for interpolated bins.

Value

A SeaSondeRCS object with updated interpolated cross-spectra data and metadata.

Note
* CODAR’s SeaSonde R8 Radial Config Setup documentation advises against using 3x or 4x
interpolation.
* The function ensures the number of Doppler bins after interpolation does not exceed 2048.
» Doppler interpolation is a preprocessing step typically performed by CODAR’s AnalyzeSpec-
tra tool before MUSIC processing.
See Also

seasonder_setSeaSondeRCS_MUSIC_interpolated_data for setting interpolated data, seasonder_getSeaSondeRCS_MUS
for retrieving the interpolation factor, seasonder_setSeaSondeRCS_MUSIC_doppler_interpolation

for setting the interpolation factor, seasonder_initCSDataStructure for initializing the interpo-

lated data structure.

Examples

Doppler interpolation

Create a SeaSondeRCS object for interpolation example

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

Perform Doppler interpolation

out <- seasonder_SeaSondeRCSMUSICInterpolateDoppler(cs_obj)

seasonder_SeaSondeRCSSWApplyScaling
Apply Scaling to SeaSondeRCSSW Data

Description

This function applies scaling to each vector of integer values contained in the list values by con-
verting them to floating point voltage values using a specified scaling procedure. For each integer
value:

* If the value equals OXFFFFFFFF, it returns NaN;

» Otherwise, it computes an intermediate value using the formula: intermediate = value * (fmax
- fmin) / fscale + fmin and then converts it to a voltage via: voltage = 10"((intermediate +
dbRef) / 10)

seasonder_SeaSondeRCSSWApplyScaling 211

Usage
seasonder_SeaSondeRCSSWApplyScaling(
values,
fmax,
fmin,
fscale,
dbRef,
computeVoltage = TRUE
)
Arguments
values A list of numeric vectors containing integer values to be scaled. Each vector is
expected to contain values read from a binary CSSW values block.
fmax A numeric value representing the maximum scaling value. Used to compute the
linear scaling factor.
fmin A numeric value representing the minimum scaling value. Acts as an offset for
the scaling.
fscale A numeric value representing the scaling factor. Must not be zero as it deter-
mines the divisor in the scaling formula.
dbRef A numeric value representing the decibel reference to be added before the volt-

age conversion step.

computeVoltage A logical value indicating whether to compute the voltage from the scaled val-
ues. If FALSE, it returns the intermediate scaled values.

Details

The function processes each vector in the input list and returns a new list having the same struc-
ture, but with each value converted into its corresponding voltage value. It also performs several
validations regarding input types and values.

The scaling process performs the following steps for each input value:
1. Checks whether the value equals OXFFFFFFFFE. If so, it returns NaN immediately because this
value indicates a missing or invalid measurement.

2. Otherwise, it computes the intermediate scaled value by applying a linear transformation:
intermediate = value * (fmax - fmin) / fscale + fmin

3. Finally, it converts the intermediate value to a voltage using: voltage = 10*((intermediate +
dbRef) / 10)

The function includes input validation to ensure that values is a list, and that fmax, fmin, fscale,
and dbRef are numeric. It also checks that no element in values is non-numeric and that fscale
is non-zero to prevent division errors.

Value

A list with the same structure as values, where each numeric vector has been transformed to a
vector of floating point voltage values. Special integer values equal to OxFFFFFFFF are converted
to NaN.

212 seasonder._SeaSondeRCSS YApplyScaling

seasonder_SeaSondeRCSSYApplyScaling
Apply Scaling to SeaSondeRCSSY Data

Description

This function applies scaling to each vector of integer values contained in the list values by con-
verting them to floating point voltage values using a specified scaling procedure. For each integer
value:

* If the value equals OXFFFFFFFF, it returns NaN;
» Otherwise, it computes an intermediate value using the formula: intermediate = value * (fmax
- fmin) / fscale + fmin and then converts it to a voltage via: voltage = 10°((intermediate +
dbRef) / 10)
Usage

seasonder_SeaSondeRCSSYApplyScaling(values, fmax, fmin, fscale, dbRef)

Arguments
values A list of numeric vectors containing integer values to be scaled. Each vector is
expected to contain values read from a binary CSSY values block.
fmax A numeric value representing the maximum scaling value. Used to compute the
linear scaling factor.
fmin A numeric value representing the minimum scaling value. Acts as an offset for
the scaling.
fscale A numeric value representing the scaling factor. Must not be zero as it deter-
mines the divisor in the scaling formula.
dbRef A numeric value representing the decibel reference to be added before the volt-
age conversion step.
Details

The function processes each vector in the input list and returns a new list having the same struc-
ture, but with each value converted into its corresponding voltage value. It also performs several
validations regarding input types and values.

The scaling process performs the following steps for each input value:
1. Checks whether the value equals OXFFFFFFFF. If so, it returns NaN immediately because this
value indicates a missing or invalid measurement.

2. Otherwise, it computes the intermediate scaled value by applying a linear transformation:
intermediate = value * (fmax - fmin) / fscale + fmin

3. Finally, it converts the intermediate value to a voltage using: voltage = 10”*((intermediate +
dbRef) / 10)

seasonder_SeaSondeRCS_plotSelfSpectrum 213

The function includes input validation to ensure that values is a list, and that fmax, fmin, fscale,
and dbRef are numeric. It also checks that no element in values is non-numeric and that fscale
is non-zero to prevent division errors.

Value

A list with the same structure as values, where each numeric vector has been transformed to a
vector of floating point voltage values. Special integer values equal to OxFFFFFFFF are converted
to NaN.

seasonder_SeaSondeRCS_plotSelfSpectrum
Plot Self-Spectrum for a SeaSondeRCS Object

Description

This function generates a plot of the self-spectrum (in dB) for a specified antenna and range cell
from a SeaSondeRCS object. The Doppler frequencies are converted to the desired units before
plotting. Optionally, it overlays additional elements such as smoothed self-spectrum lines, first-
order region (FOR) vertical lines, and noise level lines.

Usage

seasonder_SeaSondeRCS_plotSelfSpectrum(
seasonder_cs_object,
antenna,
range_cell,
doppler_units = "normalized doppler frequency”,
plot_FORs = FALSE

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral and metadata.

antenna An integer or vector specifying the antenna(s) to extract the self-spectrum from.
range_cell An integer indicating the range cell to extract the spectrum.

doppler_units A character string specifying the desired Doppler units for the plot. Commonly
"normalized doppler frequency" or "doppler frequency" (Hz). Default is "nor-
malized doppler frequency".

plot_FORs Logical. If TRUE, the function overlays elements related to the first order re-
gion (FOR) such as vertical lines at the FOR boundaries and the smoothed self-
spectrum. Default is FALSE.

214 seasonder_SelfSpectra2dB

Details

The function performs the following steps:

1. Retrieves the self-spectrum data for the given antenna and range cell using seasonder_getSeaSondeRCS_SelfSpectra
2. Converts the Doppler bin frequencies to the specified units using seasonder_SwapDopplerUnits.

3. Converts the self-spectrum to dB using seasonder_SelfSpectra2dB and combines it with
the Doppler values.

4. Retrieves the Bragg Doppler angular frequency for plotting a reference vertical line.
5. If plot_FORs is TRUE, overlays:

* An orange line for the smoothed self-spectrum.

 Blue vertical lines for FOR boundaries.

* Red lines indicating the noise level across the Doppler spectrum.

6. Finally, returns the ggplot object.

Value

A ggplot object representing the self-spectrum plot.

Examples

Prepare a SeaSondeRCS object for plotting self-spectrum

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

Plot self-spectrum for antenna 1, range cell 5

p <- seasonder_SeaSondeRCS_plotSelfSpectrum(cs_obj, antenna = 1, range_cell = 5)
print(p)

seasonder_SelfSpectra2dB
Convert Self-Spectra to dB Using a SeaSondeR Object

Description

This function transforms self-spectra power values into decibels (dB) by retrieving the receiver gain
from a given SeaSondeR object.

Usage

seasonder_SelfSpectra2dB(seasonder_cs_object, spectrum_values)

seasonder setFORParameter 215

Arguments
seasonder_cs_object
A SeaSondeR cross-spectral object.
spectrum_values
A numeric vector. The power values in linear scale.

Details

This function first extracts the receiver gain in decibels from the seasonder_cs_object using
seasonder_getReceiverGain_dB and then applies the conversion using:

dB = 10log,,(|P]) — G
where:

* \(dB)) is the power in decibels,
* \(P\) is the self-spectra power in linear scale,

* \(G)) is the receiver gain in decibels.

This function ensures consistency by obtaining the receiver gain directly from the SeaSondeR ob-
ject.

Value

A numeric vector of power values in decibels (dB).

See Also

self_spectra_to_dB for a generic power-to-dB transformation.

seasonder_setFORParameter
Set a Specific FOR Parameter for a SeaSondeRCS Object

Description

This function updates a single First Order Region (FOR) parameter in the SeaSondeRCS object. It
creates a single-parameter list and passes it to seasonder_setFOR_parameters().

Usage

seasonder_setFORParameter (seasonder_cs_object, FOR_parameter, value)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR-related metadata.

FOR_parameter A character string specifying the name of the parameter to set.

value The value to assign to the specified FOR parameter.

216 seasonder_setFOR_currmax

Value

The updated SeaSondeRCS object with the new parameter value.

Examples

Set sample file paths

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setFORParameter(cs_obj, "nsm”, 4)

seasonder_setFOR_currmax
Set FOR Maximum Velocity (currmax)

Description

This function sets the maximum radial velocity (currmax) allowed in the first-order region for the
SeaSondeRCS object.

Usage

seasonder_setFOR_currmax(seasonder_cs_object, currmax)

Arguments

seasonder_cs_object
A SeaSondeRCS object with FOR parameters.

currmax A numeric value specifying the new maximum radial velocity.

Value

The updated SeaSondeRCS object with the new currmax value.

Examples

Set sample file paths

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setFOR_currmax(cs_obj, 2.5)

seasonder_setFOR_fdown 217

seasonder_setFOR_fdown
Set FOR Dropoff Threshold (fdown)

Description

This function sets the power dropoff threshold (fdown) used to define the lower limit of the first-
order region.

Usage

seasonder_setFOR_fdown(seasonder_cs_object, fdown)

Arguments

seasonder_cs_object
A SeaSondeRCS object with FOR parameters.

fdown A numeric value specifying the new dropoff threshold.

Value

The updated SeaSondeRCS object with the new fdown value.

Examples

Set sample file paths

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setFOR_fdown(cs_obj, 12)

seasonder_setFOR_flim Set FOR Null Limit (flim)

Description
This function sets the null limit (f1im) used for defining the first-order region in the SeaSondeRCS
object.

Usage

seasonder_setFOR_flim(seasonder_cs_object, flim)

218 seasonder_setFOR_noisefact

Arguments

seasonder_cs_object
A SeaSondeRCS object with FOR parameters.

flim A numeric value specifying the new null limit.

Value

The updated SeaSondeRCS object with the new flim value.

Examples

Set sample file paths

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setFOR_flim(cs_obj, 100)

seasonder_setFOR_noisefact
Set FOR Noise Factor (noisefact)

Description

This function sets the noise factor (noisefact) used in FOR processing for the given SeaSondeRCS
object.

Usage

seasonder_setFOR_noisefact(seasonder_cs_object, noisefact)

Arguments

seasonder_cs_object
A SeaSondeRCS object with FOR parameters.

noisefact A numeric value that specifies the noise factor.

Value

The updated SeaSondeRCS object with the new noisefact value.

seasonder_setFOR_nsm 219

Examples

Set sample file paths

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setFOR_noisefact(cs_obj, 4)

seasonder_setFOR_nsm Set FOR Doppler Smoothing Factor (nsm)

Description

This function sets the Doppler smoothing factor (nsm) in the SeaSondeRCS object for FOR pro-
cessing.

Usage

seasonder_setFOR_nsm(seasonder_cs_object, nsm)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR-related information.

nsm A numeric value specifying the new smoothing factor.

Value

The updated SeaSondeRCS object with the new nsm value.

Examples

Set sample file paths

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setFOR_nsm(cs_obj, 3)

220 seasonder_setFOR_parameters

seasonder_setFOR_parameters
Set First Order Region (FOR) Parameters for a SeaSondeRCS Object

Description

This function validates and sets the FOR parameters in the SeaSondeRCS object. It updates the
"FOR_data" attribute with validated parameters and, if the noise factor has changed, recomputes
the noise level for all three antennas.

Usage

seasonder_setFOR_parameters(seasonder_cs_object, FOR_parameters)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing FOR-related metadata.

FOR_parameters A named list of parameters for first-order region detection.

Details

The provided parameters are validated using seasonder_validateFOR_parameters(), and then
stored in the object’s "FOR_data" attribute under FOR_parameters. If the noisefact parameter
changes, the noise level is recomputed for antennas 1, 2, and 3.

Value

The updated SeaSondeRCS object with the new FOR parameters.

Examples

Set sample file paths

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

Read the antenna pattern file to create a SeaSondeRAPM object

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

Create a SeaSondeRCS object from a spectral file

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
new_params <- list(nsm = 3, noisefact = 4, fdown = 12, flim = 80, currmax = 2.5)
cs_obj <- seasonder_setFOR_parameters(cs_obj, new_params)

seasonder._setMUSICOption 221

seasonder_setMUSICOption
Set a Specific MUSIC Option for a SeaSondeRCS Object

Description

This function updates a single MUSIC option in the MUSIC data of a SeaSondeRCS object. It
verifies that the provided option name is valid (i.e. exists in the default options), then updates that
field with the new value.

Usage

seasonder_setMUSICOption(seasonder_cs_object, option_name, option_value)

Arguments

seasonder_cs_object
A SeaSondeRCS object that contains the MUSIC data as an attribute.

option_name A character string specifying the name of the MUSIC option to update.

option_value The new value to assign to the specified MUSIC option.

Details

The function first checks if option_name is one of the valid options as provided by seasonder_defaultMUSICOptions().
If not, it calls seasonder_logAndAbort to log an error. Then, the current MUSIC options are re-
trieved, updated with the new value, and stored back into the object.

Value

The updated SeaSondeRCS object with the specified MUSIC option modified.

Examples

Example: set a specific MUSIC option on a minimal CS object
header <- list(nRangeCells = 1, nDopplerCells = 1)
data <- list(
SSA1 = matrix(@,1,1), SSA2 = matrix(@,1,1), SSA3 = matrix(0,1,1),
CS12 = matrix(complex(real=0,imaginary=0),1,1),
CS13 = matrix(complex(real=0,imaginary=0),1,1),
CS23 = matrix(complex(real=0,imaginary=0),1,1), QC = matrix(@,1,1)
)
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)
cs_obj <- seasonder_createSeaSondeRCS(list(header = header, data = data),
seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setMUSICOption(cs_obj, "smoothNoiselLevel”, TRUE)
opts <- seasonder_getMUSICOptions(cs_obj)
print(opts$smoothNoiselLevel)

222 seasonder._setMUSICOptions

seasonder_setMUSICOptions
Set MUSIC Options for a SeaSondeRCS Object

Description

This function updates the MUSIC options stored in a SeaSondeRCS object’s MUSIC data attribute.
It merges the provided options with the default MUSIC options, ensuring that any missing fields are
filled with the defaults.

Usage

seasonder_setMUSICOptions(

seasonder_cs_object,

MUSIC_options = seasonder_defaultMUSICOptions()
)

Arguments

seasonder_cs_object
A SeaSondeRCS object that contains the MUSIC data as an attribute.

MUSIC_options A named list of MUSIC options. Defaults to the output of seasonder_defaultMUSICOptions().

Details

The function uses modifyList to merge the default MUSIC options with any user-specified options.
This ensures that the resulting options list contains all required fields.

Value

The updated SeaSondeRCS object with the MUSIC options stored in its MUSIC data attribute.

Examples

Example: update MUSIC options on a minimal CS object
header <- list(nRangeCells = 1, nDopplerCells = 1)
data <- list(
SSA1T = matrix(0,1,1), SSA2 = matrix(@,1,1), SSA3 = matrix(@,1,1),
CS12 = matrix(complex(real=0,imaginary=0),1,1),
CS13 = matrix(complex(real=0,imaginary=0),1,1),
CS23 = matrix(complex(real=0,imaginary=0),1,1), QC = matrix(0,1,1)
)
apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)
cs_obj <- seasonder_createSeaSondeRCS(list(header = header, data = data),
seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setMUSICOptions(cs_obj, list(doppler_interpolation = 3))
opts <- seasonder_getMUSICOptions(cs_obj)
print(opts)

seasonder_setNoiseLevelEstimationInterval 223

seasonder_setNoiselLevelEstimationInterval
Set Noise Level Estimation Interval for a SeaSondeRCS Object

Description

This function sets the noise level estimation interval for a SeaSondeRCS object by updating the
object’s attribute and recalculating the reference noise normalized limits. It then updates the FOR
parameters with the new noise limits.

Usage

seasonder_setNoiselLevelEstimationInterval (seasonder_cs_object, interval_value)

Arguments

seasonder_cs_object
A SeaSondeRCS object.

interval_value A list containing the noise level estimation interval with two elements:

* low_limit: A numeric value between 0 and 1 representing the lower limit.
e high_limit: A numeric value between O and 1 representing the upper
limit.

The low_limit should be less than high_limit.

Details

The function updates the attribute "reference_noise_normalized_limits_estimation_interval”
of the SeaSondeRCS object with interval_value. It then computes new reference noise nor-
malized limits by calling seasonder_estimateReferenceNoiseNormalizedLimits with the pro-
vided lower and upper limits. Finally, it sets the new noise limits in the FOR parameters using
seasonder_setFORParameter.

Value

The updated SeaSondeRCS object with the new noise level estimation interval and reference noise
normalized limits.

Examples

new_interval <- list(low_limit = 0.9, high_limit = 1.0)
Prepare a SeaSondeRCS object with valid data
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)
cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
cs_obj <- seasonder_createSeaSondeRCS(
cs_file,
specs_path = seasonder_defaultSpecsFilePath("CS"),

224 seasonder_setSeaSondeRAPM_AmplitudeFactors

seasonder_apm_object = apm_obj
)
cs_obj <- seasonder_setNoiselLevelEstimationInterval(cs_obj, new_interval)
print(attr(cs_obj, "reference_noise_normalized_limits_estimation_interval”))
noise_limits <- seasonder_getFOR_parameters(cs_obj)$reference_noise_normalized_limits
print(noise_limits)

seasonder_setSeaSondeRAPM_AmplitudeFactors
Setter for AmplitudeFactors

Description

Setter for AmplitudeFactors

Usage

seasonder_setSeaSondeRAPM_AmplitudeFactors(seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated AmplitudeFactors.

Examples

Minimal example for seasonder_setSeaSondeRAPM_AmplitudeFactors

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_factors <- c(1, 2)

apm_obj <- seasonder_setSeaSondeRAPM_AmplitudeFactors(apm_obj, new_factors)
print(attributes(apm_obj)$AmplitudeFactors)

seasonder._setSeaSondeRAPM_AntennaBearing 225

seasonder_setSeaSondeRAPM_AntennaBearing
Setter for AntennaBearing

Description

Setter for AntennaBearing

Usage

seasonder_setSeaSondeRAPM_AntennaBearing(seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated AntennaBearing.

Examples

Minimal example for seasonder_setSeaSondeRAPM_AntennaBearing

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_bearing <- 45

apm_obj <- seasonder_setSeaSondeRAPM_AntennaBearing(apm_obj, new_bearing)
print(attributes(apm_obj)$AntennaBearing)

seasonder_setSeaSondeRAPM_BEAR
Setter for BEAR

Description

Setter for BEAR

Usage

seasonder_setSeaSondeRAPM_BEAR(seasonde_apm_obj, new_value)

226 seasonder_setSeaSondeRAPM_BearingResolution

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated BEAR.

Examples

Minimal example for seasonder_setSeaSondeRAPM_BEAR

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_bear <- attributes(apm_obj)$BEAR

apm_obj <- seasonder_setSeaSondeRAPM_BEAR(apm_obj, new_bear)
print(attributes(apm_obj)$BEAR)

seasonder_setSeaSondeRAPM_BearingResolution
Setter for BearingResolution

Description

Setter for BearingResolution

Usage

seasonder_setSeaSondeRAPM_BearingResolution(seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated BearingResolution.

Examples

Minimal example for seasonder_setSeaSondeRAPM_BearingResolution

apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_bearing_resolution <- 1.0

apm_obj <- seasonder_setSeaSondeRAPM_BearingResolution(apm_obj, new_bearing_resolution)
print(attributes(apm_obj)$BearingResolution)

seasonder_setSeaSondeRAPM _CommentLine 227

seasonder_setSeaSondeRAPM_CommentLine
Setter for CommentLine

Description

Setter for CommentLine

Usage

seasonder_setSeaSondeRAPM_CommentLine (seasonde_apm_obj, new_value)

Arguments
seasonde_apm_obj
SeaSonderAPM object
new_value new value

Value

The modified SeaSondeRAPM object with updated CommentLine.

Examples

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_comment_line <- "Test comment”

apm_obj <- seasonder_setSeaSondeRAPM_CommentLine(apm_obj, new_comment_line)
print(attributes(apm_obj)$CommentLine)

seasonder_setSeaSondeRAPM_CreateTimeStamp
Setter for CreateTimeStamp

Description

Setter for CreateTimeStamp

Usage

seasonder_setSeaSondeRAPM_CreateTimeStamp(seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

228 seasonder_setSeaSondeRAPM _Creator

Value

The modified SeaSondeRAPM object with updated CreateTimeStamp.

Examples

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_create_time_stamp <- as.POSIXct("2000-01-01 00:00:00", tz = "UTC")

apm_obj <- seasonder_setSeaSondeRAPM_CreateTimeStamp(apm_obj, new_create_time_stamp)
print(attributes(apm_obj)$CreateTimeStamp)

seasonder_setSeaSondeRAPM_Creator
Setter for Creator

Description

Setter for Creator

Usage

seasonder_setSeaSondeRAPM_Creator (seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated Creator.

Examples

Minimal example for seasonder_setSeaSondeRAPM_Creator

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_creator <- attributes(apm_obj)$Creator

apm_obj <- seasonder_setSeaSondeRAPM_Creator(apm_obj, new_creator)
print(attributes(apm_obj)$Creator)

seasonder_setSeaSondeRAPM_FilelD 229

seasonder_setSeaSondeRAPM_FilelD
Setter for FileID

Description

Setter for FileID

Usage

seasonder_setSeaSondeRAPM_FileID(seasonde_apm_obj, new_value)

Arguments
seasonde_apm_obj
SeaSonderAPM object
new_value new value

Value

The modified SeaSondeRAPM object with updated FilelD.

Examples

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_file_id <- attributes(apm_obj)$FileID

apm_obj <- seasonder_setSeaSondeRAPM_FileID(apm_obj, new_file_id)
print(attributes(apm_obj)$FilelID)

seasonder_setSeaSondeRAPM_FileName
Setter for FileName

Description

Setter for FileName

Usage

seasonder_setSeaSondeRAPM_FileName (seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

230 seasonder_setSeaSondeRAPM_PhaseCorrections

Value

The modified SeaSondeRAPM object with updated FileName.

Examples

Minimal example for seasonder_setSeaSondeRAPM_FileName

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_file_name <- "new.txt"

apm_obj <- seasonder_setSeaSondeRAPM_FileName(apm_obj, new_file_name)
print(attributes(apm_obj)$FileName)

seasonder_setSeaSondeRAPM_PhaseCorrections
Setter for PhaseCorrections

Description

Setter for PhaseCorrections

Usage

seasonder_setSeaSondeRAPM_PhaseCorrections(seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated PhaseCorrections.

Examples

Minimal example for seasonder_setSeaSondeRAPM_PhaseCorrections

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_phase_corrections <- attributes(apm_obj)$PhaseCorrections

apm_obj <- seasonder_setSeaSondeRAPM_PhaseCorrections(apm_obj, new_phase_corrections)
print(attributes(apm_obj)$PhaseCorrections)

seasonder_setSeaSondeRAPM_ProcessingSteps 231

seasonder_setSeaSondeRAPM_ProcessingSteps
Setter for ProcessingSteps

Description

Setter for ProcessingSteps

Usage

seasonder_setSeaSondeRAPM_ProcessingSteps(
seasonde_apm_obj,
new_value,
append = TRUE

)

Arguments

seasonde_apm_obj

SeaSonderAPM object

new_value new value

append Append the new step to existing steps if TRUE; otherwise, replace previous
steps.

Value

The modified SeaSondeRAPM object with updated ProcessingSteps.

Examples

Minimal example for seasonder_setSeaSondeRAPM_ProcessingSteps

apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_processing_steps <- "step1”

apm_obj <- seasonder_setSeaSondeRAPM_ProcessingSteps(apm_obj, new_processing_steps)
print(attributes(apm_obj)$ProcessingSteps)

seasonder_setSeaSondeRAPM_quality_matrix
Setter for quality_matrix

Description

Setter for quality_matrix

232 seasonder_setSeaSondeRAPM _SiteName

Usage

seasonder_setSeaSondeRAPM_quality_matrix(seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated quality_matrix.

Examples

Create a default SeaSondeRAPM object

obj <- seasonder_createSeaSondeRAPM()

Retrieve the existing quality_matrix

new_quality_matrix <- attributes(obj)$quality_matrix

Update quality_matrix in the object

obj <- seasonder_setSeaSondeRAPM_quality_matrix(obj, new_quality_matrix)

seasonder_setSeaSondeRAPM_SiteName
Setter for SiteName

Description

Setter for SiteName

Usage

seasonder_setSeaSondeRAPM_SiteName (seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated SiteName.

seasonder_setSeaSondeRAPM_SiteOrigin

Examples

Minimal example for seasonder_setSeaSondeRAPM_SiteName

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_site_name <- attributes(apm_obj)$SiteName

apm_obj <- seasonder_setSeaSondeRAPM_SiteName(apm_obj, new_site_name)
print(attributes(apm_obj)$SiteName)

233

seasonder_setSeaSondeRAPM_SiteOrigin
Setter for SiteOrigin

Description

Setter for SiteOrigin

Usage

seasonder_setSeaSondeRAPM_SiteOrigin(seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated SiteOrigin.

Examples

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_site_origin <- attributes(apm_obj)$SiteOrigin

apm_obj <- seasonder_setSeaSondeRAPM_SiteOrigin(apm_obj, new_site_origin)
print(attributes(apm_obj)$SiteOrigin)

234 seasonder_setSeaSondeRAPM _StationCode

seasonder_setSeaSondeRAPM_Smoothing
Setter for Smoothing

Description

Setter for Smoothing

Usage

seasonder_setSeaSondeRAPM_Smoothing(seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated Smoothing.

Examples

Minimal example for seasonder_setSeaSondeRAPM_Smoothing

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_smoothing <- 3

apm_obj <- seasonder_setSeaSondeRAPM_Smoothing(apm_obj, new_smoothing)
print(attributes(apm_obj)$Smoothing)

seasonder_setSeaSondeRAPM_StationCode
Setter for StationCode

Description

Setter for StationCode

Usage

seasonder_setSeaSondeRAPM_StationCode (seasonde_apm_obj, new_value)

seasonder._setSeaSondeRAPM_Type 235

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated StationCode.

Examples

Minimal example for seasonder_setSeaSondeRAPM_StationCode

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_station_code <- attr(apm_obj, "StationCode")

apm_obj <- seasonder_setSeaSondeRAPM_StationCode(apm_obj, new_station_code)
print(attributes(apm_obj)$StationCode)

seasonder_setSeaSondeRAPM_Type
Setter for Type

Description

Setter for Type

Usage

seasonder_setSeaSondeRAPM_Type (seasonde_apm_obj, new_value)

Arguments

seasonde_apm_obj
SeaSonderAPM object

new_value new value

Value

The modified SeaSondeRAPM object with updated Type.

Examples

Minimal example for seasonder_setSeaSondeRAPM_Type

apm_file <- system.file("css_data/MeasPattern.txt”, package = "SeaSondeR")
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

new_type <- attributes(apm_obj)$Type

apm_obj <- seasonder_setSeaSondeRAPM_Type(apm_obj, new_type)
print(attributes(apm_obj)$Type)

236 seasonder_setSeaSondeRCS_APM

seasonder_setSeaSondeRCS_APM
Set APM for a SeaSondeRCS Object

Description

This function assigns the provided APM object to the SeaSondeRCS object by setting its "APM"
attribute. (Note: Validation of the APM object is to be implemented.)

Usage

seasonder_setSeaSondeRCS_APM(seasonder_cs_object, seasonder_apm_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object.

seasonder_apm_object

An object representing the APM (Antenna Pattern Matrix or similar metadata)
to be assigned to the SeaSondeRCS object.

Details

The function simply sets the "APM" attribute of the provided SeaSondeRCS object to the given
APM object. Further validation of the APM object should be performed (TODO).

Value

The updated SeaSondeRCS object with the new APM attribute set.

Examples

Minimal example for seasonder_setSeaSondeRCS_APM

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
cs_obj <- seasonder_setSeaSondeRCS_APM(cs_obj, apm_obj)

print(attr(cs_obj, "APM"))

seasonder_setSeaSondeRCS _data

237

seasonder_setSeaSondeRCS_data
Setter for data

Description

Setter for data

Usage

seasonder_setSeaSondeRCS_data(seasonder_cs_object, data)

Arguments

seasonder_cs_object
SeaSondeRCS object

data new value

Value

A SeaSondeRCS object with updated data.

See Also

seasonder_validateCSDataStructure

Examples

Minimal example for seasonder_setSeaSondeRCS_data

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
new_data <- seasonder_getSeaSondeRCS_data(cs_obj)

cs_obj <- seasonder_setSeaSondeRCS_data(cs_obj, new_data)
str(seasonder_getSeaSondeRCS_data(cs_obj))

seasonder_setSeaSondeRCS_FOR
Set First Order Region Data in a SeaSondeRCS Object

Description

This function assigns First Order Region (FOR) data to a SeaSondeRCS object. The FOR data is
stored within the object’s attributes under the "FOR_data" element. Currently, no explicit validation
is performed on the provided FOR data.

238 seasonder_setSeaSondeRCS_FOR _MAXP

Usage

seasonder_setSeaSondeRCS_FOR(seasonder_cs_object, FOR)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral and metadata information.

FOR A data structure containing the First Order Region (FOR) data. This is typi-
cally a list with elements such as negative_FOR and positive_FOR represent-
ing Doppler bin indices.

Details

This low-level setter function updates the SeaSondeRCS object by assigning the provided FOR data
to the "FOR" field within the object’s "FOR_data" attribute. It is intended to be used internally as
part of the FOR processing workflow.

Value

The updated SeaSondeRCS object with the specified FOR data stored in its attributes.

Examples

Set sample file paths
cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
Read the antenna pattern file to create a SeaSondeRAPM object
apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)
Create a SeaSondeRCS object from a spectral file
cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)
sample_FOR <- list(
negative_FOR = c(1, 2, 3),
positive_FOR = c(10, 11, 12)
)
cs_obj <- seasonder_setSeaSondeRCS_FOR(cs_obj, sample_FOR)

seasonder_setSeaSondeRCS_FOR_MAXP
Set Maximum Power (MAXP) for First Order Region (FOR)

Description
This function assigns the computed maximum power values (MAXP) for each range cell in the First
Order Region (FOR) to the SeaSondeRCS object.

Usage

seasonder_setSeaSondeRCS_FOR_MAXP (seasonder_cs_object, FOR_MAXP)

seasonder_setSeaSondeRCS_FOR_MAXP.bin 239

Arguments

seasonder_cs_object
A SeaSondeRCS object to which the MAXP values will be assigned.

FOR_MAXP A list containing the maximum power values for each range cell.

Details

The maximum power (MAXP) represents the highest spectral power detected in the first-order region.
This value is extracted from the self-spectra and used for setting first-order boundaries.

Validation Considerations:

* The function does not currently perform explicit validation on FOR_MAXP.

* Future improvements should ensure that FOR_MAXP contains numeric values corresponding to
each range cell.
Value

The updated SeaSondeRCS object with the MAXP values stored in the FOR_data attribute.

See Also

* seasonder_findFORNulls for computing MAXP.

* seasonder_setSeaSondeRCS_FOR_MAXP.bin for setting maximum power bin indices.

seasonder_setSeaSondeRCS_FOR_MAXP.bin
Set Maximum Power Bin Indices for First Order Region (FOR)

Description

This function assigns the Doppler bin indices corresponding to the maximum power (MAXP.bin) for
each range cell in the First Order Region (FOR) to the SeaSondeRCS object.

Usage

seasonder_setSeaSondeRCS_FOR_MAXP.bin(seasonder_cs_object, FOR_MAXP.bin)

Arguments

seasonder_cs_object
A SeaSondeRCS object to which the MAXP.bin values will be assigned.

FOR_MAXP.bin A list containing the Doppler bin indices of the maximum power for each range
cell.

240 seasonder_setSeaSondeRCS_FOR_method

Details

The maximum power bin (MAXP.bin) represents the Doppler bin index at which the highest spectral
power was detected in the first-order region. This information is used to refine first-order boundary
detection.

Validation Considerations:

* The function does not currently validate the format of FOR_MAXP.bin.

* Future improvements should ensure that FOR_MAXP . bin consists of integer values correspond-
ing to Doppler bins.

Value

The updated SeaSondeRCS object with the MAXP.bin values stored in the FOR_data attribute.

See Also

* seasonder_findFORNulls for computing MAXP.bin.

* seasonder_setSeaSondeRCS_FOR_MAXP for setting maximum power values.

seasonder_setSeaSondeRCS_FOR_method
Set First Order Region Processing Method for SeaSondeRCS Object

Description

This function sets the First Order Region (FOR) processing method for a SeaSondeRCS object. It
validates the provided method using seasonder_validateFORMethod and assigns it to the object’s
FOR_data attribute under FOR_method.

Usage

seasonder_setSeaSondeRCS_FOR_method(seasonder_cs_object, FOR_method)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing spectral and metadata information.

FOR_method A character string specifying the desired FOR processing method. Currently,
only "SeaSonde" is supported.

Details

The function first validates the provided method. If the method is valid, it is stored in the FOR_data
attribute of the SeaSondeRCS object under the FOR_method field. This setting is later used in the
processing workflow to guide FOR computation.

seasonder_setSeaSondeRCS_FOR_SS Smoothed 241

Value

The updated SeaSondeRCS object with the specified FOR processing method set.

seasonder_setSeaSondeRCS_FOR_SS_Smoothed
Set Smoothed Self-Spectra for First Order Region (FOR)

Description

This function assigns a smoothed self-spectra (SS) matrix to the First Order Region (FOR) data
within a SeaSondeRCS object. This smoothed matrix is used in FOR processing to improve the
detection of the first-order region.

Usage

seasonder_setSeaSondeRCS_FOR_SS_Smoothed(seasonder_cs_object, FOR_SS_Smoothed)

Arguments

seasonder_cs_object

A SeaSondeRCS object to which the smoothed FOR self-spectra will be as-
signed.

FOR_SS_Smoothed
A matrix containing the smoothed self-spectra data.

Details

The function assigns the provided smoothed self-spectra matrix to the FOR_data attribute of the
SeaSondeRCS object. This matrix is typically generated using seasonder_SmoothSS and applied to
antenna 3.

Validation Considerations:

* The function currently lacks explicit validation for FOR_SS_Smoothed.

 Future improvements should include checking whether FOR_SS_Smoothed is a matrix and
ensuring its dimensions match the original self-spectra structure.
Value

The updated SeaSondeRCS object with the smoothed self-spectra stored in the FOR_data attribute.

See Also

* seasonder_SmoothSS for generating the smoothed self-spectra.

* seasonder_SmoothFORSS for applying smoothing and setting the result.

242 seasonder_setSeaSondeRCS _header

seasonder_setSeaSondeRCS_header
Setter for header

Description

Setter for header

Usage

seasonder_setSeaSondeRCS_header (seasonder_cs_object, header)

Arguments

seasonder_cs_object
SeaSondeRCS object

header new value

Value

A SeaSondeRCS object with updated header.

See Also

seasonder_validateCSHeaderStructure

Examples

Set sample file paths and create SeaSondeRCS object

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

Retrieve and set header

new_header <- seasonder_getSeaSondeRCS_header(cs_obj)

cs_obj <- seasonder_setSeaSondeRCS_header(cs_obj, new_header)
print(seasonder_getSeaSondeRCS_header(cs_obj))

seasonder_setSeaSondeRCS_MUSIC 243

seasonder_setSeaSondeRCS_MUSIC
Set MUSIC Data in a SeaSondeRCS Object

Description

This function assigns MUSIC analysis results to a SeaSondeRCS object. The MUSIC data is stored
within the object’s MUSIC_data attribute under the field MUSIC. Currently, no explicit validation is
performed on the provided MUSIC data.

Usage
seasonder_setSeaSondeRCS_MUSIC(seasonder_cs_object, MUSIC)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing cross-spectral data and metadata.

MUSIC A data structure containing the MUSIC algorithm results. This is typically a list
or tibble produced during the MUSIC processing workflow.
Details

This low-level setter function updates the SeaSondeRCS object’s MUSIC data by assigning the
provided MUSIC results to the MUSIC field within the MUSIC_data attribute. It is intended for use
during the MUSIC processing workflow.

Value

The updated SeaSondeRCS object with the specified MUSIC data stored in its attributes.

seasonder_setSeaSondeRCS_MUSIC_doppler_interpolation
Set the Doppler Interpolation Factor in a SeaSondeRCS Object

Description

This function validates and assigns the Doppler interpolation factor in the SeaSondeRCS object,
updating the corresponding option in the MUSIC_data field.

Usage

seasonder_setSeaSondeRCS_MUSIC_doppler_interpolation(
seasonder_cs_object,
doppler_interpolation

)

244 seasonder_setSeaSondeRCS_MUSIC_dual_solutions_proportion

Arguments

seasonder_cs_object

A SeaSondeRCS object containing radar data and metadata.
doppler_interpolation

An integer specifying the Doppler interpolation factor. Must be 1, 2, 3, or 4.

Details
The function performs the following operations:

1. Validates the value of doppler_interpolation using the function SeaSondeRCS_MUSIC_validate_doppler_interp

2. Updates the attribute MUSIC_options$doppler_interpolation of the SeaSondeRCS object
with the validated value.

Value

The SeaSondeRCS object with the updated Doppler interpolation option.

See Also

SeaSondeRCS_MUSIC_validate_doppler_interpolation for Doppler interpolation factor vali-
dation.

Examples

Create a valid SeaSondeRCS object for examples

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_object <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

Set the Doppler interpolation factor to 2 (internal alias)

cs_object <- seasonder_setSeaSondeRCS_MUSIC_doppler_interpolation(cs_object, 2)

seasonder_setSeaSondeRCS_MUSIC_dual_solutions_proportion
Set Dual Solutions Proportion for MUSIC Analysis

Description

This function assigns the dual solutions proportion to the MUSIC data of a SeaSondeRCS object.
The dual solutions proportion represents the fraction of solutions identified as dual in the MUSIC
processing workflow. Currently, no explicit validation of the provided value is performed.

Usage

seasonder_setSeaSondeRCS_MUSIC_dual_solutions_proportion(
seasonder_cs_object,
dual_solutions_proportion

)

seasonder._setSeaSondeRCS_MUSIC _interpolated_data 245

Arguments

seasonder_cs_object

A SeaSondeRCS object containing MUSIC analysis results.
dual_solutions_proportion

A numeric value representing the proportion of dual solutions.

Details
The function updates the dual_solutions_proportion field within the MUSIC_data attribute.
This value is later used to assess the prevalence of dual bearing solutions in the MUSIC results.
Value

The updated SeaSondeRCS object with the dual solutions proportion stored in its MUSIC data.

seasonder_setSeaSondeRCS_MUSIC_interpolated_data
Set Interpolated MUSIC Data in a SeaSondeRCS Object

Description

This function assigns the interpolated cross-spectral data to the MUSIC data attribute of a SeaSon-
deRCS object. It stores the provided interpolated data into the interpolated_data field of the MU-
SIC data. If no data is provided, it defaults to the output of seasonder_MUSICInitInterpolatedData().

Usage

seasonder_setSeaSondeRCS_MUSIC_interpolated_data(
seasonder_cs_object,
interpolated_data

)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing cross-spectral and MUSIC data.
interpolated_data
A data structure (typically a list or tibble) representing the interpolated cross-
spectral data. If NULL, the function uses seasonder_MUSICInitInterpolatedData()
to initialize the structure.

Details

The function assigns the provided interpolated data (or initializes a new data structure) to the
interpolated_data field within the MUSIC data attribute. This structure is intended for use in
further MUSIC processing steps, where interpolated cross-spectral data is required for refining the
estimation of Doppler bins.

246 seasonder_setSeaSondeRCS_MUSIC_parameters

Value

The updated SeaSondeRCS object with the interpolated_data field set in its MUSIC data at-
tribute.

seasonder_setSeaSondeRCS_MUSIC_parameters
Set MUSIC Parameters for a SeaSondeRCS Object

Description

This function updates the MUSIC algorithm parameters stored in a SeaSondeRCS object’s MUSIC
data attribute. The parameters are updated in the MUSIC options under the MUSIC_parameters
field. Currently, no explicit validation of the provided parameters is performed.

Usage

seasonder_setSeaSondeRCS_MUSIC_parameters(
seasonder_cs_object,
MUSIC_parameters = seasonder_defaultMUSIC_parameters()

)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing cross-spectral data and metadata.

MUSIC_parameters
A numeric vector of parameters for the MUSIC algorithm. Defaults to the result
of seasonder_defaul tMUSIC_parameters().

Details

The function assigns the provided MUSIC_parameters vector to the MUSIC_parameters field within
the MUSIC_options list, which is stored in the object’s MUSIC_data attribute. These parameters are
used in various steps of the MUSIC processing workflow.

Value

The updated SeaSondeRCS object with the new MUSIC parameters stored in its MUSIC options.

seasonder_setSeaSondeRCS_NoiseLevel 247

seasonder_setSeaSondeRCS_Noiselevel
Set Noise Level for SeaSondeRCS Object

Description

This function updates the noise level for a specified antenna within a SeaSondeRCS object. It
retrieves the current "NoiseLevel" attribute (or initializes it with the default if missing), updates the
noise level for the given antenna, and stores it back in the object.

Usage

seasonder_setSeaSondeRCS_Noiselevel (
seasonder_cs_object,
NoiselLevel,
antenna = 3

Arguments

seasonder_cs_object
A SeaSondeRCS object.

Noiselevel A numeric value representing the new noise level to be set.
antenna An integer specifying the antenna for which the noise level is updated. Default
is 3.
Value

The updated SeaSondeRCS object with the modified "NoiseLevel" attribute.

seasonder_setSeaSondeRCS_ProcessingSteps
Setter for ProcessingSteps

Description

Setter for ProcessingSteps

Usage

seasonder_setSeaSondeRCS_ProcessingSteps(
seasonder_cs_object,
processing_steps,
append = TRUE

)

248 seasonder_skip_cs_field

Arguments

seasonder_cs_object
SeaSondeRCS object

processing_steps
new value

append append the new step or replace previous steps? Default: TRUE

Value

A SeaSondeRCS object with updated ProcessingSteps.

Examples

Create a valid SeaSondeRCS object for examples

cs_file <- system.file("css_data/CSS_TORA_24_04_04_0700.cs", package = "SeaSondeR")
apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")

apm_obj <- seasonder_readSeaSondeRAPMFile(apm_file)

cs_obj <- seasonder_createSeaSondeRCS(cs_file, seasonder_apm_object = apm_obj)

Define and append new processing steps

new_steps <- "Example processing step”

cs_obj <- seasonder_setSeaSondeRCS_ProcessingSteps(cs_obj, new_steps)
print(seasonder_getSeaSondeRCS_ProcessingSteps(cs_obj))

seasonder_skip_cs_field
Skip Reading a CSField and Return a Specified Value

Description

This function is a convenience mechanism to invoke the seasonder_skip_cs_field restart option.
It can be used in custom condition handlers when reading a CSField from a binary connection
encounters an error or condition. When called, it indicates the intention to skip reading the current
CSField and return a specific value.

Usage

seasonder_skip_cs_field(cond, value)

Arguments
cond A condition or error that occurred while reading the CSField.
value The desired return value to use in place of the CSField reading that encountered

an error.

seasonder_skip_cs_file 249

Details

During the execution of the seasonder_readCSField function, errors or conditions can occur. To
provide a structured mechanism to handle such cases, the function utilizes the rlang: :withRestarts
mechanism, offering a restart option named seasonder_skip_cs_field. This restart allows the
function to gracefully handle reading errors by logging a relevant error message and returning a
specified value.

The seasonder_skip_cs_field function provides an easy way to invoke this restart. When called
within a custom condition handler, it signals the intention to skip the current CSField reading due
to an error and specifies a return value.

Value

The value specified in the ’value’ parameter.

Examples

Example: Skip reading a CSField using a withRestarts handler to return a default value
r <- withRestarts(

seasonder_skip_cs_field(simpleError("test error"”), "default"),

seasonder_skip_cs_field = function(cond, value) value

)
print(r)

seasonder_skip_cs_file
Skip SeaSonde Cross Spectra (CS) File Reading

Description

This function serves as a restart for seasonder_readSeaSondeCSFile. When invoked, it provides
a mechanism to gracefully handle file reading errors by logging an error message and skipping the
current file processing.

Usage

seasonder_skip_cs_file(cond)

Arguments

cond The condition or error that occurred during the file reading process. This is used
to log a detailed error message indicating the reason for skipping the file.

250 seasonder _smoothAPM

Details

This function is meant to be used within a custom condition handler. When a problematic condition
arises during the processing of a SeaSonde CS file, you can call seasonder_skip_cs_file(cond)
to trigger this restart, which allows for a graceful degradation by logging an error message and
returning a specified value.

The effect of invoking this restart is twofold:

1. An error message detailing the reason for skipping the file is logged.

2. The calling function (seasonder_readSeaSondeCSFile) will immediately return a list with
header = NULL and data = NULL.

Value

A list with header = NULL and data = NULL.

Examples

Example: Skip file reading using a withRestarts handler to return NULL header and data
result <- withRestarts(

seasonder_skip_cs_file(simpleError("test error”)),

seasonder_skip_cs_file = function(cond) list(header = NULL, data = NULL)

)
print(result)

seasonder_smoothAPM Smooth APM Data

Description

This function smooths the antenna pattern data for each channel of a SeaSonde RAPM object by
applying a moving average with a specified number of points.

Usage

seasonder_smoothAPM(seasonder_apm_object, smoothing)

Arguments

seasonder_apm_object
A SeaSonde RAPM object containing raw antenna pattern data.

smoothing The number of points to use for the moving average smoothing.

Value

The SeaSonde RAPM object with smoothed antenna pattern data and an updated processing step.

seasonder SmoothFORSS 251

Examples

Smooth antenna pattern data from a test SeaSondeRAPM object

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

smoothed_obj <- seasonder_smoothAPM(obj, 5)

seasonder_SmoothFORSS Smooth Self-Spectra for First Order Region (FOR)

Description

This function applies a smoothing operation to the self-spectra (SS) matrix of antenna 3 in a Sea-
SondeR cross-spectral object, specifically for First Order Region (FOR) processing. The smoothed
self-spectra are stored as an attribute within the object.

Usage

seasonder_SmoothFORSS (seasonder_cs_object)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing self-spectra data.

Details

The function retrieves the default Doppler smoothing factor (nsm) from seasonder_getFOR_parameters
and applies the smoothing operation using seasonder_SmoothSS on the self-spectra of antenna 3.

Steps:
1. Retrieve the Doppler smoothing factor (nsm).

2. Apply the sliding mean smoothing to the self-spectra of antenna 3.

3. Store the smoothed matrix as an attribute within the SeaSondeRCS object.

The smoothing process helps stabilize the estimation of nulls between first- and second-order re-
gions, preventing over-smoothing that could distort boundaries or under-smoothing that could in-
troduce jagged edges.

Value

The input SeaSondeRCS object with the smoothed self-spectra stored as an attribute.

See Also

* seasonder_SmoothSS for performing the smoothing operation.
* seasonder_setSeaSondeRCS_FOR_SS_Smoothed for storing the smoothed self-spectra.

* seasonder_getFOR_parameters for retrieving default nsm values.

252 seasonder SmoothSS

seasonder_SmoothsSS Smooth Self-Spectra Matrix Using a Sliding Window

Description

This function applies a smoothing operation to the self-spectra (SS) matrix of a specific antenna in a
SeaSondeR cross-spectral object. The smoothing is performed using a sliding mean over a specified
number of Doppler bins.

Usage

seasonder_SmoothSS(seasonder_cs_object, antenna, smoothing = NULL)

Arguments

seasonder_cs_object
A SeaSondeRCS object containing self-spectra data.

antenna A character or numeric identifier of the antenna whose self-spectra will be smoothed.

smoothing Optional. An integer specifying the number of Doppler bins used for smooth-
ing. If NULL, the function retrieves the default smoothing factor (nsm) from
seasonder_getFOR_parameters.

Details

The smoothing process is performed using a centered sliding mean filter with a window of nsm bins.
The window extends symmetrically before and after each bin, with adjustments based on whether
nsmis even or odd:

* If nsmis even, the window includes nsm/2 bins before and after the target bin.

 If nsmis odd, the window includes (nsm - 1) /2 bins before and (nsm - 1)/2 + 1 bins after.
The function utilizes s1ide_mean to apply the smoothing operation row-wise across the self-spectra
matrix.

This smoothing implementation mimics the one performed by the tool AnalyzeSpectra of CODAR’s
Radial Suite RS8.

Value

A matrix with the same dimensions as the input self-spectra matrix, but with smoothed values.

See Also

* seasonder_getFOR_parameters for retrieving default nsm values.
* seasonder_getSeaSondeRCS_antenna_SSdata for accessing self-spectra data.

* slide_mean for applying the sliding window mean operation.

seasonder._splitLog 253

seasonder_splitlLog Split Logs Based on Time Thresholds

Description

The function splits the log entries into blocks based on time gaps between timestamps. The thresh-
old for splitting can be provided or calculated based on the gaps in the log timestamps.

Usage

seasonder_splitLog(
threshold = NULL,
threshold_factor = 4,

threshold_quantile = 0.9,
min_threshold_secs = 10
)
Arguments
threshold The time difference threshold for splitting the logs. If NULL, it’s calculated.

threshold_factor
Multiplicative factor applied to the calculated threshold.

threshold_quantile
Quantile used for threshold calculation if threshold is NULL.

min_threshold_secs
Minimum threshold in seconds.

Value

A list of log blocks, each block being a vector of log entries.

Examples

Enable logging
seasonder_enablelLogs()
Log some messages

seasonder_log("First log entry”, "info")
Sys.sleep(@.1)
seasonder_log("Second log entry”, "info")

Split logs into blocks (using a 1-second threshold)
blocks <- seasonder_splitLog(threshold = as.difftime(300, units = "secs"))
str(blocks)

254 seasonder_SwapDopplerUnits

seasonder_SwapDopplerUnits
Convert Between Different Doppler Frequency Units

Description

This function converts Doppler-related values between different units, including normalized Doppler
frequency, Doppler bins, and absolute Doppler frequency (Hz), within a SeaSondeR object.

Usage

seasonder_SwapDopplerUnits(seasonder_cs_object, values, in_units, out_units)

Arguments

seasonder_cs_object
A SeaSondeR cross-spectral object containing Doppler bin metadata.

values A numeric vector specifying the Doppler values to be converted.
in_units A character string specifying the current unit of values. Must be one of:

* "normalized doppler frequency"”: Values are normalized by the Bragg
frequency.

e "bins": Values represent Doppler bin indices.
e "doppler frequency": Values are in Hz.

out_units A character string specifying the target unit for conversion. Must be one of the
same three options as in_units.

Details

The function first validates that the input and output units are among the allowed options. If
in_units and out_units are the same, the function returns the original values without modifi-
cation.

The unit conversions follow this logic:

1. If converting from "normalized doppler frequency”:

e To "bins": Uses seasonder_NormalizedDopplerFreq2Bins.
e To "doppler frequency": Uses seasonder_NormalizedDopplerFreg2DopplerFreq.

2. If converting from "bins":

e To "normalized doppler frequency”: Uses seasonder_Bins2NormalizedDopplerFreq.
e To "doppler frequency": Uses seasonder_Bins2DopplerFreq.

3. If converting from "doppler frequency":

e To "bins": Uses seasonder_DopplerFreq2Bins.
* To "normalized doppler frequency”: Uses seasonder_DopplerFreq2NormalizedDopplerFreq.

Overall, the functions used for Doppler units conversion mimic the implementation of Doppler units
displayed in SpectraPlotterMap 12 in Radial Suite RS

seasonder trimAPM 255

Value

A numeric vector with the converted Doppler values in the specified output unit.

References
COS. SeaSonde Radial Suite Release 8; CODAR Ocean Sensors (COS): Mountain View, CA, USA,
2016.

See Also

seasonder_NormalizedDopplerFreq2Bins, seasonder_Bins2NormalizedDopplerFreq, seasonder_DopplerFreq2Bin:
and related functions for unit-specific conversions.

seasonder_trimAPM Trim APM Data

Description

This function trims a specified number of points from the beginning and end of the antenna pattern
data.

Usage

seasonder_trimAPM(seasonder_apm_object, trimming)

Arguments

seasonder_apm_object
A SeaSonde RAPM object containing the antenna pattern data.

trimming The number of points to trim from each end.

Value

The SeaSonde RAPM object with trimmed antenna pattern data and updated attributes.

Examples

Trim loops for a test SeaSondeRAPM object

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

trimmed_obj <- seasonder_trimAPM(obj, 3)

256 seasonder._v6_skip_transformation

seasonder_v6_skip_transformation
Trigger Restart for Skipping Transformation

Description

This function provides a mechanism to invoke a restart during the reading and transformation pro-
cess of the SeaSonde CS File Version 6 header. It allows users to skip transformations that may
have caused errors and proceed with a provided value.

Usage

seasonder_v6_skip_transformation(cond, value)

Arguments

cond The condition object that triggered the restart.

value The provided value to be used when the transformation is skipped.
Details

This function specifically triggers the seasonder_v6_skip_transformation restart that allows for
skipping a block transformation in the reading process of the SeaSonde CS File Version 6 header.
When triggered, it logs an error message, skips the problematic transformation, and returns the
provided value for the block.

Value

This function triggers a restart and does not return a usual value.

Integration with SeaSonde CS File Reading

The restart mechanism of this function is integrated within the seasonder_readSeaSondeCSFileHeaderVé
function. If an error occurs during the transformation process of a specific block, the restart provides
users with an option to skip the problematic transformation and proceed with a fallback value.

Examples

Example: Skip transformation using a restart handler

res <- withRestarts(
seasonder_v6_skip_transformation(simpleError(”test error”), "default"),
seasonder_v6_skip_transformation = function(cond, value) value

)

print(res)

seasonder_validateAttributesSeaSondeRAPM 257

seasonder_validateAttributesSeaSondeRAPM
Validate Attributes for a SeaSondeRAPM Object

Description

This function validates the attributes of a given SeaSondeRAPM object to ensure they meet the
required specifications.

Usage

seasonder_validateAttributesSeaSondeRAPM(seasonde_apm_obj)

Arguments

seasonde_apm_obj
A SeaSondeRAPM object whose attributes are to be validated.

Details
The function performs validation on the following attributes of the SeaSondeRAPM object:

* quality_matrix

* BEAR

* Type

* Creator

* SiteName

* SiteOrigin

* FileName

* CreateTimeStamp
* ProcessingSteps
* AmplitudeFactors
* AntennaBearing
* StationCode

* BearingResolution
* Smoothing

* CommentLine

* FileID

* PhaseCorrections

It internally calls specific validation functions for each of these attributes. If any of the attributes
are found to be invalid, the function will stop execution and display an error message.

258 seasonder_validateCalibrationMatrixSeaSondeRAPM

Value

TRUE if all attributes are valid. The function will stop execution and display an error message if
any of the attributes are invalid.

See Also

validate_SeaSondeRAPM_quality_matrix, validate_SeaSondeRAPM_BEAR, validate_SeaSondeRAPM_Type,
validate_SeaSondeRAPM_Creator, validate_SeaSondeRAPM_SiteName, validate_SeaSondeRAPM_SiteOrigin,
validate_SeaSondeRAPM_FileName, validate_SeaSondeRAPM_CreateTimeStamp, validate_SeaSondeRAPM_Processi
validate_SeaSondeRAPM_AmplitudeFactors, validate_SeaSondeRAPM_AntennaBearing, validate_SeaSondeRAPM_S
validate_SeaSondeRAPM_BearingResolution, validate_SeaSondeRAPM_Smoothing, validate_SeaSondeRAPM_Comme
validate_SeaSondeRAPM_FilelD, validate_SeaSondeRAPM_PhaseCorrections

Examples

Create a test SeaSondeRAPM object by reading sample file

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

valid <- seasonder_validateAttributesSeaSondeRAPM(obj)

seasonder_validateCalibrationMatrixSeaSondeRAPM
Validate Calibration Matrix for a SeaSondeRAPM Object

Description
This function validates the input calibration_matrix to ensure it meets the required specifications
for use in a SeaSondeRAPM object.

Usage

seasonder_validateCalibrationMatrixSeaSondeRAPM(matrix)

Arguments

matrix A 3 x b complex matrix for calibration, where b is the number of bearings.

Details
The function performs the following validation checks:

1. Confirms that the input is a matrix.
2. Verifies that the matrix has exactly three rows.
3. Checks that the matrix contains only complex numbers.

If any of these validation steps fail, the function will log a fatal error and stop the execution using
rlang: :abort.

seasonder_validateCSDataStructure 259

Value

TRUE if the matrix is valid. The function will stop execution and display an error message if the
matrix is invalid.

See Also

seasonder_createSeaSondeRAPM

Examples

valid <- seasonder_validateCalibrationMatrixSeaSondeRAPM(
matrix(complex(real = 1, imaginary = @), nrow = 3, ncol = 5)

)

seasonder_validateCSDataStructure
Validate the Data Structure of CrossSpectra Data

Description

This function checks the validity of the data structure for CrossSpectra (CS) data. It ensures that
all required fields are present, the dimensions of the matrices are correct based on nRanges and
nDoppler, and that the types of the data fields are as expected.

Usage

seasonder_validateCSDataStructure(data, nRanges, nDoppler)

Arguments
data A list representing the CrossSpectra (CS) data. It should contain fields "SSA1",
"SSA2", "SSA3", "CS12", "CS13", "CS23", and "QC".
nRanges An integer specifying the expected number of range cells.
nDoppler An integer specifying the expected number of Doppler cells.
Details

The function expects the following structure for the data list:

e SSA1, SSA2, SSA3, QC: Matrices with numeric values, with dimensions nRanges x nDoppler.

e CS12,CS13, CS23: Matrices with complex values, with dimensions nRanges x nDoppler.

Value

Invisible NULL if the data structure is valid. Otherwise, an error is thrown.

260 seasonder_validateCSFileData

Error Management

This function utilizes the rlang package to manage errors and provide detailed and structured error
messages:

Condition Classes:

* seasonder_CS_data_structure_validation_error: An error class indicating a problem
with the data structure of the CrossSpectra (CS) data.

Condition Cases:

* Missing fields in the data.
¢ Incorrect dimensions for the matrices in the data.

* Incorrect data type for the fields in the data.

Examples

Example with all required fields

data <- list(
SSA1 matrix(rep(NA_real_, 10 x 20), ncol = 20, byrow = TRUE),
SSA2 = matrix(rep(NA_real_, 10 * 20), ncol = 20, byrow = TRUE),
SSA3 = matrix(rep(NA_real_, 10 * 20), ncol = 20, byrow = TRUE),
CS12 = matrix(complex(real = NA, imaginary = NA), nrow = 10, ncol = 20),
CS13 = matrix(complex(real = NA, imaginary = NA), nrow = 10, ncol = 20),
CS23 = matrix(complex(real = NA, imaginary = NA), nrow = 10, ncol = 20),
QC = matrix(rep(NA_real_, 10 * 20), ncol = 20, byrow = TRUE)

)

seasonder_validateCSDataStructure(data, 10, 20)

seasonder_validateCSFileData
Validate SeaSondeR CS File Data

Description
This function performs multiple validation checks on a provided CS file in the SeaSondeR system.
It checks the file for various conditions to determine if it meets the SeaSondeR standards.

Usage

seasonder_validateCSFileData(filepath, header)

Arguments

filepath A character string indicating the path to the CS file to validate.

header A list containing header information of the CS file.

seasonder_validateCSHeaderStructure 261

Details
The function performs the following validation checks:
1. Verifies that the file size is greater than 10 bytes.

2. Validates the nCsFileVersion field in the header to ensure it’s between 1 and 32.

3. Depending on the nCsFileVersion, verifies the appropriate file size, and the extent of various
version headers (nV1Extent, nV2Extent, etc.).

4. Validates the nRangeCells and nDopplerCells fields to ensure they are within permissible
ranges.

5. Depending on the nCsKind value, validates the file size against expected sizes based on
nRangeCells, nSpectraChannels, and nDopplerCells.
Value
NULL invisibly. The function mainly serves to validate and will stop execution and log an error
using seasonder_logAndAbort if any condition fails.
Condition Management

This function utilizes the rlang package to manage conditions and provide detailed and structured
condition messages:

Condition Classes:

* seasonder_validate_cs_file_error: Anerror class that indicates a validation requirement
was not met.

Condition Cases:

* Failure on any validation test.

References

Cross Spectra File Format Version 6. CODAR. 2016

seasonder_validateCSHeaderStructure
Validate the Header of CrossSpectra Data

Description

This function validates the structure of a header list that is expected to represent the metadata for a
cross spectra file. It checks if the header is indeed a list and whether mandatory elements, such as
the number of range cells and the number of Doppler cells, are present.

Usage

seasonder_validateCSHeaderStructure(header)

262 seasonder_validateFORMethod

Arguments

header A list representing the header metadata of a cross spectra file.

Value

Invisible NULL if the header structure is valid. Otherwise, an error is thrown.

Details
The function primarily checks for two conditions:

* Whether the provided header argument is a list.

* Whether the nRangeCells and nDopplerCells are present in the header.

Condition Management

This function utilizes the rlang package to manage conditions and provide detailed and structured
condition messages:

Condition Classes:

* seasonder_CS_header_is_not_a_list: Triggered when the header parameter is not a list.

* seasonder_CS_missing_nRange_nDoppler_error: Triggered when either nRangeCells or
nDopplerCells is missing from the header.

Examples

header <- list(nRangeCells = 100, nDopplerCells = 256)
seasonder_validateCSHeaderStructure(header)

seasonder_validateFORMethod
Validate First Order Region (FOR) Processing Method

Description
This function checks whether the specified method for First Order Region (FOR) detection is sup-
ported. If an unsupported method is provided, it logs an error and aborts execution.

Usage

seasonder_validateFORMethod(method)

Arguments

method A character string specifying the FOR processing method. Currently, only "SeaSonde”
is supported.

seasonder._validateFOR_parameters 263

Details

The function verifies that the method argument is valid. If the method is not recognized, an error is
raised using seasonder_logAndAbort.

Supported Methods:

» "SeaSonde": Implements first-order region detection based on CODAR’s SeaSonde method-
ology.
Value

The function returns the input method invisibly if it is valid.

See Also

* seasonder_validateFOR_parameters for FOR parameter validation.

* seasonder_logAndAbort for error handling and logging.

seasonder_validateFOR_parameters
Validate First Order Region (FOR) Parameters

Description

This function validates and assigns default values to the parameters used in defining the First Order
Region (FOR) in a SeaSondeR cross-spectral object. It ensures that all necessary parameters are
present and assigns appropriate defaults where values are missing.

Usage

seasonder_validateFOR_parameters(
seasonder_cs_object,
FOR_parameters,
method = "SeaSonde”

Arguments

seasonder_cs_object
A SeaSondeRCS object containing metadata about the Doppler spectrum.

FOR_parameters A named list containing the parameters for first-order region detection.

method A character string specifying the validation method. Default is "SeaSonde”.
Currently, only "SeaSonde" is supported.

264 self_spectra_to_dB

Details

The function validates FOR parameters and assigns default values where necessary. If the selected
method is "SeaSonde", the function ensures that each parameter is defined and, if missing, assigns
it a default value based on seasonder_defaul tFOR_parameters.

The parameters validated include:

* nsm (Doppler Smoothing): Number of points used for spectral smoothing.

e fdown (Peak Power Dropoff): Defines how far below peak power the algorithm descends
before searching for the null.

* flim (Null Below Peak Power): Specifies a power threshold for identifying the first-order
region.

* noisefact (Signal to Noise): Threshold above the noise floor that a spectral bin must exceed
to be considered first-order.

* currmax (Maximum Velocity): Maximum radial velocity allowed in the first-order region.

* reject_distant_bragg: Logical flag indicating whether to reject Bragg regions that are too
distant from the central Bragg frequency.

* reject_noise_ionospheric: Logical flag indicating whether to reject Bragg regions affected
by ionospheric noise.

* reject_noise_ionospheric_threshold: Threshold (in dB) for rejecting first-order regions based
on noise contamination.

* reference_noise_normalized_limits: Estimated reference noise range in normalized Doppler
frequency, computed using seasonder_estimateReferenceNoiseNormalizedLimits.
Value

A named list containing validated and completed FOR parameters.

See Also

* seasonder_defaultFOR_parameters for default FOR settings.
* seasonder_estimateReferenceNoiseNormalizedLimits for computing reference noise lim-
its.

* seasonder_validateFORMethod for validating the processing method.

self_spectra_to_dB Convert Self-Spectra Power to dB

Description
This function converts self-spectra power values from a linear scale to decibels (dB). The transfor-
mation considers the receiver gain to adjust the power measurements accordingly.

Usage

self_spectra_to_dB(spectrum_values, receiver_gain)

summary.SeaSondeRAPM 265

Arguments

spectrum_values
A numeric vector. The power values in linear scale.

receiver_gain A numeric scalar. The receiver gain in decibels (dB).

Details

The conversion follows the equation:

where:

* \(dB)) is the power in decibels,
* \(P\) is the self-spectra power in linear scale,

* \(G)) is the receiver gain in decibels.

Absolute values of power are used to ensure valid logarithmic calculations.

Value

A numeric vector of power values in decibels (dB).

See Also

dB_to_self_spectra for the reverse conversion.

summary . SeaSondeRAPM Summarizes a SeaSondeRAPM Object

Description

This function prints a summary of a SeaSondeRAPM object by displaying its processing steps. The
processing steps provide a record of the transformations and operations applied to the object, which
can be useful for debugging and understanding the data workflow.

Usage
S3 method for class 'SeaSondeRAPM'
summary (object, ...)
Arguments
object An object of class "SeaSondeRAPM". This object should be created using the

seasonder_createSeaSondeRAPM() function and must include a calibration ma-
trix, a quality matrix, the BEAR attribute, and a StationCode.

Additional arguments that might be passed to other methods; currently not used.

266 summary.SeaSondeRCS

Details

The function first verifies that the provided object inherits from the "SeaSondeRAPM" class. It then

retrieves the processing steps associated with the object via the seasonder_getSeaSondeRAPM_ProcessingSteps()
function. These steps are concatenated into a single string, which is printed alongside a header in-

dicating that they represent the processing steps. This method is primarily used for diagnostic

purposes and for verifying that the object has undergone the intended series of operations.

Value

Invisibly returns the input SeaSondeRAPM object. This allows the function to be used in a sequence
of operations (e.g., chaining) without printing the object again after the summary is displayed.

Examples

Summarize a test SeaSondeRAPM object

apm_file <- system.file("”css_data/MeasPattern.txt”, package = "SeaSondeR")
obj <- seasonder_readSeaSondeRAPMFile(apm_file)

summary (obj)

summary . SeaSondeRCS Summary Method for SeaSondeRCS Object

Description

Provides a concise summary of a SeaSondeRCS object by printing the processing steps that have
been applied to the data contained in the object.

Usage
S3 method for class 'SeaSondeRCS'
summary (object, ...)
Arguments
object An object of class "SeaSondeRCS". This object should contain at least a header

list with metadata (such as station name, date/time, and cell counts) and process-
ing step information retrieved by the function seasonder_getSeaSondeRCS_ProcessingSteps.

Additional arguments. Currently not used, but supplied for compatibility with
generic summary methods.

Details

This method first validates that the input object inherits from the "SeaSondeRCS" class. It then re-
trieves the processing steps applied to the data using seasonder_getSeaSondeRCS_ProcessingSteps,
formats them into a readable string, and outputs the result via the cat function. The function is de-
signed for interactive use, and its output facilitates quick inspection of the object.

validate_SeaSondeRAPM_AmplitudeFactors

Value

Invisibly returns the original SeaSondeRCS object.

Examples

obj <- list(header = list(nSiteCodeName = "Station1”,
nDateTime = Sys.time(),
nDopplerCells = 256,
nRangeCells = 100))

class(obj) <- "SeaSondeRCS”

summary (obj)

267

validate_SeaSondeRAPM_AmplitudeFactors
Validate AmplitudeFactors Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided AmplitudeFactors is a numeric vector of length 2.

Usage

validate_SeaSondeRAPM_AmplitudeFactors(factors)

Arguments

factors The numeric vector to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_AntennaBearing
Validate AntennaBearing Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided AntennaBearing is a numeric value.

Usage

validate_SeaSondeRAPM_AntennaBearing(bearing)

Arguments

bearing The numeric value to be validated.

268 validate_SeaSondeRAPM_BearingResolution

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_BEAR
Validate BEAR Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided BEAR is a numeric vector and if its length matches the
number of columns in the calibration_matrix of the given SeaSondeRAPM object. It also validates
that the bearings are between -180 and 180 degrees.

Usage

validate_SeaSondeRAPM_BEAR(vector, seasonde_apm_obj)

Arguments

vector The numeric vector to be validated.
seasonde_apm_obj
The SeaSondeRAPM object for compatibility check.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_BearingResolution
Validate BearingResolution Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided BearingResolution is a numeric value.

Usage

validate_SeaSondeRAPM_BearingResolution(resolution)

Arguments

resolution The numeric value to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_CommentLine 269

validate_SeaSondeRAPM_CommentLine
Validate CommentLine Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided CommentLine is a character string.

Usage

validate_SeaSondeRAPM_CommentLine (comment)

Arguments

comment The character string to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_CreateTimeStamp
Validate CreateTimeStamp Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided CreateTimeStamp is a POSIXct Date object.

Usage

validate_SeaSondeRAPM_CreateTimeStamp(timestamp)

Arguments

timestamp The Date object to be validated.

Value

Returns TRUE if the validation passes.

270 validate_SeaSondeRAPM_FilelID

validate_SeaSondeRAPM_Creator
Validate Creator Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided Creator is a character string.

Usage

validate_SeaSondeRAPM_Creator(creator)

Arguments

creator The character string to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_FileID
Validate FilelID Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided FileID is a unique character string.

Usage

validate_SeaSondeRAPM_FileID(id)

Arguments

id The unique character string to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_FileName 271

validate_SeaSondeRAPM_FileName
Validate FileName Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided FileName is a character string.

Usage

validate_SeaSondeRAPM_FileName(file_name)

Arguments

file_name The character string to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_PhaseCorrections
Validate PhaseCorrections Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided PhaseCorrections attribute is a numeric vector of length 2.

Usage

validate_SeaSondeRAPM_PhaseCorrections(corrections)

Arguments

corrections The numeric vector to be validated.

Value

Returns TRUE if the validation passes.

272 validate_SeaSondeRAPM_quality_matrix

validate_SeaSondeRAPM_ProcessingSteps
Validate ProcessingSteps Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided ProcessingSteps is a character vector.

Usage

validate_SeaSondeRAPM_ProcessingSteps(steps)

Arguments

steps The character vector to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_quality_matrix
Validate quality_matrix Attribute for a SeaSondeRAPM Object

Description
This function validates if the provided quality_matrix is a 3-row complex matrix. It also checks if
the number of columns matches that of the calibration_matrix in the given SeaSondeRAPM object.
Usage

validate_SeaSondeRAPM_quality_matrix(matrix, seasonde_apm_obj)

Arguments

matrix The matrix to be validated.
seasonde_apm_obj
The SeaSondeRAPM object for compatibility check.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_SiteName 273

validate_SeaSondeRAPM_SiteName
Validate SiteName Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided SiteName is a character string.

Usage

validate_SeaSondeRAPM_SiteName(site_name)

Arguments

site_name The character string to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_SiteOrigin
Validate SiteOrigin Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided SiteOrigin is a numeric vector of length 2.

Usage

validate_SeaSondeRAPM_SiteOrigin(site_origin)

Arguments

site_origin The numeric vector to be validated.

Value

Returns TRUE if the validation passes.

274 validate_SeaSondeRAPM _StationCode

validate_SeaSondeRAPM_Smoothing
Validate Smoothing Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided Smoothing is a numeric value.

Usage

validate_SeaSondeRAPM_Smoothing(smoothing)

Arguments

smoothing The numeric value to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_StationCode
Validate StationCode Attribute for a SeaSondeRAPM Object

Description
This function validates if the provided StationCode is an empty character string or a 4-character
string of length 1.

Usage

validate_SeaSondeRAPM_StationCode(code)

Arguments

code The character string to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRAPM_Type 275

validate_SeaSondeRAPM_Type
Validate Type Attribute for a SeaSondeRAPM Object

Description

This function validates if the provided Type is a character string.

Usage
validate_SeaSondeRAPM_Type(type)

Arguments

type The character string to be validated.

Value

Returns TRUE if the validation passes.

validate_SeaSondeRCS_ProcessingSteps
Validate ProcessingSteps Attribute for a SeaSondeRCS Object

Description

This function validates if the provided ProcessingSteps is a character vector.

Usage

validate_SeaSondeRCS_ProcessingSteps(steps)

Arguments

steps The character vector to be validated.

Value

Returns TRUE if the validation passes.

Index

%>%, 149 seasonder_computeBinsRadialVelocity,
31, 126
dB_to_self_spectra, 9, 265 seasonder_computeCenterDopplerBin, 32,
destPoint, 39 127
) seasonder_computeDopplerBinsFrequency,
flndInterVal, 35, 170 33. 128
findpeaks, 80, 81, 158 ’

- seasonder_computeDopplerFreq2Bins, 34,
fwrite, 66 62,169

seasonder_computeFORs, 35

map, 149
seasonder_computeFORsSeaSondeMethod,
new_SeaSondeRCS, 10, 45—47 36,37
seasonder_computeLonLatFromOriginDistBearing,
parse_metadata_line, 11 38, 165
pluck, 125, 197 seasonder_computeNoiselevel, 39, 77, 78
print.SeaSondeRAPM, 11 seasonder_computePowerMatrix, 41, 155
print.SeaSondeRCS, 12 seasonder_createSeaSondeRAPM, 43, 139,
process_version_header, 13, 188 194,259
seasonder_createSeaSondeRCS, 27, 28, 44
qc_check_range, 14 seasonder_createSeaSondeRCS. character,
gc_check_type, 14 45
qc_check_unsigned, 15 seasonder_createSeaSondeRCS.list, 47

seasonder_CSSW2CSData, 48
seasonder_CSSW2CSHeader, 49
seasonder_CSSW_read_asign, 50
seasonder_CSSY2CSData, 51
seasonder_CSSY2CSHeader, 52

seasonder’_applyAPMAmplitudeAndPhaseCorrection%‘?""sc’”de"—CS‘SY—r'ead—""Sig”’53

read_and_qc_field, 17, 186
read_matrix_row, 19
read_yaml, 197
readVé6BlockData, /6, 16, 193

25 seasonder_CSSY_read_csign, 53
seasonder_applyCSSWSigns, 25 seasonder_defaultFOR_parameters, 54, 97,
seasonder_arelLogsEnabled, 26 264
seasonder_areMessagesEnabled, 26 seasonder_defaul tMUSIC_options
seasonder_asJSONSeaSondeRCSData, 27 (seasonder_defaul tMUSICOptions),
seasonder_asJSONSeaSondeRCSHeader, 28 57
seasonder_Bins2DopplerFreq, 29, 171, 254 seasonder_defaul tMUSIC_parameters, 58,
seasonder_Bins2NormalizedDopplerFreq, 161

29, 35,62, 63, 170, 254, 255 seasonder_defaultMUSICOptions, 57
seasonder_check_specs, 30, 188-191, 193 seasonder_defaultSpecsFilePath, 46, 59,
seasonder_compute_antenna_pattern_proyections, 60

42, 154 seasonder_defaultSpecsPathForFile, 59

276

INDEX

seasonder_disable_all_debug_points, 61
seasonder_disablelogs, 60
seasonder_disableMessages, 60
seasonder_DopplerFreq2Bins, 29, 61, 63,

254, 255
seasonder_DopplerFreq2NormalizedDopplerFreq,

62, 254
seasonder_enable_debug_points, 64
seasonder_enablelogs, 63
seasonder_enableMessages, 64

277

34,62,91, 106, 129
seasonder_getFOR_currmax, 92
seasonder_getFOR_fdown, 93
seasonder_getFOR_flim, 94
seasonder_getFOR_noisefact, 95
seasonder_getFOR_nsm, 95
seasonder_getFOR_parameters, 40, 77, 81,

96, 144, 251, 252
seasonder_getFORParameter, 92
seasonder_getlLog, 97

seasonder_estimateReferenceNoiseNormalizedlLimgéssonder_getMUSICConfig, 98

65, 264
seasonder_exportCSYMUSICTable, 66
seasonder_exportCTFRangelInfo, 67
seasonder_exportLLUVRadialMetrics, 68
seasonder_exportMUSICTable, 66, 69
seasonder_exportRadialMetrics, 71
seasonder_exportRangeInfo, 72
seasonder_extractFOR, 74, 77, 78

seasonder_getMUSICDopplerInterpolation
99
seasonder_getMUSICDualSolutionsProportion,
99
seasonder_getMUSICInterpolatedData,
100
seasonder_getMUSICInterpolatedDopplerCellsIndex,
101

seasonder_extractSeaSondeRCS_dopplerRanges_fremasSsaaden, getMUSICOptions, 102

74, 75,75
seasonder_extrapolateAPM, 76
seasonder_filterFORAmplitudes, 37, 38,

75,77
seasonder_find_spectra_file_type, 46,
60, 83
seasonder_findFORNulls, 37, 38, 78, 83,
239, 240

seasonder_findFORNullsInFOR, 79, 81
seasonder_findFORNullsInSpectrum, 79,
80, 80, 82, 83
seasonder_findFORNullsInSSMatrix, 78,
79, 82
seasonder_get_enabled_debug_points,
136
seasonder_getBinsRadialVelocity, 84,
144, 145
seasonder_getBraggDopplerAngularFrequency,
32, 34, 84, 85
seasonder_getBragglineBins, 86, 201
seasonder_getBraggWavelLength, 87
seasonder_getCenterDopplerBin, 34, 78,
88
seasonder_getCenterFreqMHz, 88, 104
seasonder_getCSHeaderByPath, 89
seasonder_getDopplerBinsFrequency, 29,
30, 62, 66, 84, 90, 170
seasonder_getDopplerSpectrumResolution,

seasonder_getMUSICParameters

(seasonder_getSeaSondeRCS_MUSIC_parameters),

131
seasonder_getnDopplerCells, 24, 62, 91,

102, 120, 130
seasonder_getnRangeCells, 103, 120
seasonder_getRadarWavelLength, 87, 104,

105
seasonder_getRadarWaveNumber, 32, 84, 85,

105, 106
seasonder_getRadialVelocityResolution,

106
seasonder_getReceiverGain_dB, 107, 215
seasonder_getSeaSondeRAPM_AmplitudeFactors

107
seasonder_getSeaSondeRAPM_AntennaBearing,

70, 108, 149
seasonder_getSeaSondeRAPM_BEAR, 109
seasonder_getSeaSondeRAPM_BearingResolution,

109
seasonder_getSeaSondeRAPM_CommentLine,

110
seasonder_getSeaSondeRAPM_CreateTimeStamp,

111
seasonder_getSeaSondeRAPM_Creator, 111
seasonder_getSeaSondeRAPM_FilelD, 112
seasonder_getSeaSondeRAPM_FileName,

113

278 INDEX

seasonder_getSeaSondeRAPM_PhaseCorrections, 33,127, 128, 130, 169

113 seasonder_getSeaSondeRCS_MUSIC_parameters,
seasonder_getSeaSondeRAPM_ProcessingSteps, 131, 151

114 seasonder_getSeaSondeRCS_ProcessingSteps,
seasonder_getSeaSondeRAPM_quality_matrix, 131

115 seasonder_getSeaSondeRCS_reference_noise_normalized_limits
seasonder_getSeaSondeRAPM_SiteName, 132

115 seasonder_getSeaSondeRCS_SelfSpectra,
seasonder_getSeaSondeRAPM_SiteOrigin, 40, 133

116 seasonder_getVersion, 134
seasonder_getSeaSondeRAPM_Smoothing, seasonder_getVersion.SeaSondeRAPM, 135

116 seasonder_getVersion.SeaSondeRCS, 136
seasonder_getSeaSondeRAPM_StationCode, seasonder_initCSDataStructure, 120, 137,

117 163,210

seasonder_initializeAttributesSeaSondeRAPM,
43, 44, 138

seasonder_getSeaSondeRAPM_Type, 118
seasonder_getSeaSondeRCS_antenna_SSdata,

118, 252 seasonder_initMUSICData, 139
seasonder_getSeaSondeRCS_APM, 119, 165 seasonder_initSeaSondeRCS_MUSIC, /40,
seasonder_getSeaSondeRCS_data, 27, 119, 140

120, 121 seasonder_int_to_raw, 142
seasonder_getSeaSondeRCS_dataMatrix, seasonder_is_debug_point_enabled, 143

119,120 seasonder_lastlLog, 143

seasonder_getSeaSondeRCS_FOR, 121, /144
145, 199, 201, 202, 208, 209
seasonder_getSeaSondeRCS_FOR_SS_Smoothed,

seasonder_limitFORCurrentRange, 38, 144
seasonder_log, 145
seasonder_logAndAbort, 24, 121, 146, 197,

77-79, 123, 203 263
seasonder_getSeaSondeRCS_FORConfig, seasonder_logAndMessage, 146

122 seasonder_logArchiver, 147
seasonder_getSeaSondeRCS_header, 28, seasonder_MUSIC_Bins2DopplerFreq, 168

124, 125 seasonder_MUSIC_DopplerFreq2Bins, 169
seasonder_getSeaSondeRCS_headerField, seasonder_MUSIC_LonLat, 206

91,107,124 seasonder_MUSIC_LonLat

seasonder_getSeaSondeRCS_MUSIC, 70, 125, (seasonder_MUSICLonLat), 165

151,153, 154, 165, 167 seasonder_MUSICBearing2GeographicalBearing,
seasonder_getSeaSondeRCS_MUSIC_BinsRadialVelocity, 70, 148, 165

126 seasonder_MUSICCheckEigenValueRatio,
seasonder_getSeaSondeRCS_MUSIC_CenterDopplerBin, 149, 168

127, 128 seasonder_MUSICCheckSignalMatrix, 150,
seasonder_getSeaSondeRCS_MUSIC_doppler_interpolation, 168

129, 130,210 seasonder_MUSICCheckSignalPowers, 151,
seasonder_getSeaSondeRCS_MUSIC_doppler_interpolation 168

(seasonder_getMUSICDopplerInterpolatiseasonder_MUSICComputeCov, 152, 157, 206

99 seasonder_MUSICComputeDOAProjections,
seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency, 153, 206

126, 128, 168, 169 seasonder_MUSICComputePropDualSols
seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolutiéf, 154, 206

128,129, 169 seasonder_MUSICComputeSignalPowerMatrix,
seasonder_getSeaSondeRCS_MUSIC_nDopplerCells, 155, 206

INDEX 279
seasonder_MUSICCovDecomposition, 156, 184, 187

206 seasonder_readSeaSondeCSFileHeaderVi1,
seasonder_MUSICExtractDOASolutions, 188, 188

157, 159, 160 seasonder_readSeaSondeCSFileHeaderV2,
seasonder_MUSICExtractPeaks, 158, 159, 14, 189

160, 206 seasonder_readSeaSondeCSFileHeaderVs,
seasonder_MUSICExtractPeaksCheckRetainedSolution, 14, 189

159, 160 seasonder_readSeaSondeCSFileHeaderV4,
seasonder_MUSICInitCov, 141, 142, 161, 14, 190

162-164, 172 seasonder_readSeaSondeCSFileHeaderV5,
seasonder_MUSICInitDOASolutions, /41, 14, 191

142,161, 172 seasonder_readSeaSondeCSFileHeaderVe,
seasonder_MUSICInitEigenDecomp, /41, 14, 192

142,162, 172 seasonder_readSeaSondeRAPMFile, 193
seasonder_MUSICInitInterpolatedData, seasonder_readSeaSondeRCSSWFile, 45, 46,

140, 163 194
seasonder_MUSICInitProjections, 141, seasonder_readSeaSondeRCSSYFile, 46,

142,162,164, 172 195

seasonder_MUSICLonLat, 165
seasonder_MUSICSelectDOA, 166, 206
seasonder_MUSICTestDualSolutions, 58,
167, 206
seasonder_NormalizedDopplerFreq2Bins
86,170, 171, 254, 255

seasonder_NormalizedDopplerFreq2DopplerFreq,

171, 254
seasonder_NULLSeaSondeRCS_MUSIC, 739,

140, 142, 172
seasonder_plotAPMLoops, 173
seasonder_raw_to_int, 173, 175
seasonder_read_reduced_encoded_data,

197
seasonder_readCSField, /8, 174
seasonder_readCSSWBody, 176
seasonder_readCSSWBodyRangeCell, 176
seasonder_readCSSWFields, 177
seasonder_readCSSWHeader, 178
seasonder_readCSSWLims, 179
seasonder_readCSSYBodyRangeCell, 180
seasonder_readCSSYHeader, 181
seasonder_readPhaseFile, 182
seasonder_readSeaSondeCSFile, 45, 46,

183
seasonder_readSeaSondeCSFileBlock, 184,
188-191, 193
seasonder_readSeaSondeCSFileData, /83,
184, 186

seasonder_readSeaSondeCSFileHeader,

seasonder_readYAMLSpecs, 184, 196
seasonder_rejectDistantBragg, 38, 198,
201
seasonder_rejectDistantBraggPeakTest,
199,199, 203
seasonder_rejectNoiseIonospheric, 38,
201
seasonder_rejectNoiseIonosphericTest,
202,202
seasonder_rerun_qc_with_fun, 18, 204
seasonder_runMUSIC, 205
seasonder_runMUSIC_in_FOR
(seasonder_runMUSICInFOR), 206
seasonder_runMUSICInFOR, 206
seasonder_SeaSondeRCS_plotSelfSpectrum,
213

seasonder_SeaSondeRCSExportFORBoundaries,

208

seasonder_SeaSondeRCSMUSICInterpolateDoppler,

209
seasonder_SeaSondeRCSSWApplyScaling,

210
seasonder_SeaSondeRCSSYApplyScaling,

212
seasonder_SelfSpectra2dB, 203, 214
seasonder_setFOR_currmax, 216
seasonder_setFOR_fdown, 217
seasonder_setFOR_flim, 217
seasonder_setFOR_noisefact, 218
seasonder_setFOR_nsm, 219

280

seasonder_setFOR_parameters, 11, 36, 220
seasonder_setFORParameter, 215
seasonder_setMUSICDopplerInterpolation

(seasonder_setSeaSondeRCS_MUSIC_dopplseasoheepokatbeafondeRCS_header, 17

243
seasonder_setMUSICOption, 221
seasonder_setMUSICOptions, 222
seasonder_setNoiselLevelEstimationInterval,

223
seasonder_setSeaSondeRAPM_AmplitudeFactors,

224
seasonder_setSeaSondeRAPM_AntennaBearing,

225
seasonder_setSeaSondeRAPM_BEAR, 225
seasonder_setSeaSondeRAPM_BearingResolution,

226
seasonder_setSeaSondeRAPM_CommentLine,

227
seasonder_setSeaSondeRAPM_CreateTimeStamp,

227
seasonder_setSeaSondeRAPM_Creator, 228
seasonder_setSeaSondeRAPM_FilelD, 229
seasonder_setSeaSondeRAPM_FileName,

229
seasonder_setSeaSondeRAPM_PhaseCorrections,

230
seasonder_setSeaSondeRAPM_ProcessingSteps,

231
seasonder_setSeaSondeRAPM_quality_matrix

231
seasonder_setSeaSondeRAPM_SiteName,

232
seasonder_setSeaSondeRAPM_SiteOrigin

233
seasonder_setSeaSondeRAPM_Smoothing,

234
seasonder_setSeaSondeRAPM_StationCode,

234
seasonder_setSeaSondeRAPM_Type, 235
seasonder_setSeaSondeRCS_APM, 236
seasonder_setSeaSondeRCS_data, /7, 237
seasonder_setSeaSondeRCS_FOR, /1, 78,

145, 199, 202, 237
seasonder_setSeaSondeRCS_FOR_MAXP, 238,

240
seasonder_setSeaSondeRCS_FOR_MAXP.bin,

239,239
seasonder_setSeaSondeRCS_FOR_method,

INDEX

36, 240
seasonder_setSeaSondeRCS_FOR_SS_Smoothed,

123,241, 251

242
seasonder_setSeaSondeRCS_MUSIC, /51,

153,167,243
seasonder_setSeaSondeRCS_MUSIC_doppler_interpolation,

210,243
seasonder_setSeaSondeRCS_MUSIC_dual_solutions_proportion,

154,244
seasonder_setSeaSondeRCS_MUSIC_interpolated_data,

210, 245
seasonder_setSeaSondeRCS_MUSIC_parameters,

246
seasonder_setSeaSondeRCS_Noiselevel,

40, 247

seasonder_setSeaSondeRCS_ProcessingSteps,
45-47, 167, 168, 247
seasonder_skip_cs_field, 175, 248
seasonder_skip_cs_file, 184, 249
seasonder_smoothAPM, 250
seasonder_SmoothFORSS, 78, 123, 241, 251
seasonder_SmoothSS, 123, 241, 251, 252
seasonder_splitlLog, 253
seasonder_SwapDopplerUnits, 40, 254
seasonder_trimAPM, 255
seasonder_v6_skip_transformation, 193,

256
seasonder_validateAttributesSeaSondeRAPM,
139, 194,257
seasonder_validateCalibrationMatrixSeaSondeRAPM,
43, 44,258
seasonder_validateCSDataStructure, 237,
259
seasonder_validateCSFileData, /83, 184,
260
seasonder_validateCSHeaderStructure,
242,261
seasonder_validateFOR_parameters, 96,
97,263, 263

seasonder_validateFORMethod, 262, 264

SeaSondeRAPM_amplitude_and_phase_corrections_step_text

19

SeaSondeRAPM_amplitude_factors_override_step_text,

20

SeaSondeRAPM_antenna_bearing_override_step_text,

20

INDEX 281

SeaSondeRAPM_creation_step_text, 21
SeaSondeRAPM_phase_correction_override_step_text
21
SeaSondeRAPM_SiteOrigin_override_step_text,
22
SeaSondeRAPM_smoothing_step_text, 22
SeaSondeRAPM_trimming_step_text, 23
SeaSondeRCS_creation_step_text, 23, 46,
47
SeaSondeRCS_MUSIC_validate_doppler_interpolation
24, 244
self_spectra_to_dB, 9, 215, 264
setdiff, 144
slide_mean, 252
summary . SeaSondeRAPM, 265
summary . SeaSondeRCS, 266

validate_SeaSondeRAPM_AmplitudeFactors,
258, 267
validate_SeaSondeRAPM_AntennaBearing,
258, 267
validate_SeaSondeRAPM_BEAR, 258, 268
validate_SeaSondeRAPM_BearingResolution,
258, 268
validate_SeaSondeRAPM_CommentLine, 258,
269
validate_SeaSondeRAPM_CreateTimeStamp,
258, 269
validate_SeaSondeRAPM_Creator, 258, 270
validate_SeaSondeRAPM_FilelID, 258, 270
validate_SeaSondeRAPM_FileName, 258,
271
validate_SeaSondeRAPM_PhaseCorrections,
258,271
validate_SeaSondeRAPM_ProcessingSteps,
258,272
validate_SeaSondeRAPM_quality_matrix
258,272
validate_SeaSondeRAPM_SiteName, 258,
273
validate_SeaSondeRAPM_SiteOrigin, 258,
273
validate_SeaSondeRAPM_Smoothing, 258,
274
validate_SeaSondeRAPM_StationCode, 258,
274
validate_SeaSondeRAPM_Type, 258, 275
validate_SeaSondeRCS_ProcessingSteps
275

	dB_to_self_spectra
	new_SeaSondeRCS
	parse_metadata_line
	print.SeaSondeRAPM
	print.SeaSondeRCS
	process_version_header
	qc_check_range
	qc_check_type
	qc_check_unsigned
	readV6BlockData
	read_and_qc_field
	read_matrix_row
	SeaSondeRAPM_amplitude_and_phase_corrections_step_text
	SeaSondeRAPM_amplitude_factors_override_step_text
	SeaSondeRAPM_antenna_bearing_override_step_text
	SeaSondeRAPM_creation_step_text
	SeaSondeRAPM_phase_correction_override_step_text
	SeaSondeRAPM_SiteOrigin_override_step_text
	SeaSondeRAPM_smoothing_step_text
	SeaSondeRAPM_trimming_step_text
	SeaSondeRCS_creation_step_text
	SeaSondeRCS_MUSIC_validate_doppler_interpolation
	seasonder_applyAPMAmplitudeAndPhaseCorrections
	seasonder_applyCSSWSigns
	seasonder_areLogsEnabled
	seasonder_areMessagesEnabled
	seasonder_asJSONSeaSondeRCSData
	seasonder_asJSONSeaSondeRCSHeader
	seasonder_Bins2DopplerFreq
	seasonder_Bins2NormalizedDopplerFreq
	seasonder_check_specs
	seasonder_computeBinsRadialVelocity
	seasonder_computeCenterDopplerBin
	seasonder_computeDopplerBinsFrequency
	seasonder_computeDopplerFreq2Bins
	seasonder_computeFORs
	seasonder_computeFORsSeaSondeMethod
	seasonder_computeLonLatFromOriginDistBearing
	seasonder_computeNoiseLevel
	seasonder_computePowerMatrix
	seasonder_compute_antenna_pattern_proyections
	seasonder_createSeaSondeRAPM
	seasonder_createSeaSondeRCS
	seasonder_createSeaSondeRCS.character
	seasonder_createSeaSondeRCS.list
	seasonder_CSSW2CSData
	seasonder_CSSW2CSHeader
	seasonder_CSSW_read_asign
	seasonder_CSSY2CSData
	seasonder_CSSY2CSHeader
	seasonder_CSSY_read_asign
	seasonder_CSSY_read_csign
	seasonder_defaultFOR_parameters
	seasonder_defaultMUSICOptions
	seasonder_defaultMUSIC_parameters
	seasonder_defaultSpecsFilePath
	seasonder_defaultSpecsPathForFile
	seasonder_disableLogs
	seasonder_disableMessages
	seasonder_disable_all_debug_points
	seasonder_DopplerFreq2Bins
	seasonder_DopplerFreq2NormalizedDopplerFreq
	seasonder_enableLogs
	seasonder_enableMessages
	seasonder_enable_debug_points
	seasonder_estimateReferenceNoiseNormalizedLimits
	seasonder_exportCSVMUSICTable
	seasonder_exportCTFRangeInfo
	seasonder_exportLLUVRadialMetrics
	seasonder_exportMUSICTable
	seasonder_exportRadialMetrics
	seasonder_exportRangeInfo
	seasonder_extractFOR
	seasonder_extractSeaSondeRCS_dopplerRanges_from_SSdata
	seasonder_extrapolateAPM
	seasonder_filterFORAmplitudes
	seasonder_findFORNulls
	seasonder_findFORNullsInFOR
	seasonder_findFORNullsInSpectrum
	seasonder_findFORNullsInSSMatrix
	seasonder_find_spectra_file_type
	seasonder_getBinsRadialVelocity
	seasonder_getBraggDopplerAngularFrequency
	seasonder_getBraggLineBins
	seasonder_getBraggWaveLength
	seasonder_getCenterDopplerBin
	seasonder_getCenterFreqMHz
	seasonder_getCSHeaderByPath
	seasonder_getDopplerBinsFrequency
	seasonder_getDopplerSpectrumResolution
	seasonder_getFORParameter
	seasonder_getFOR_currmax
	seasonder_getFOR_fdown
	seasonder_getFOR_flim
	seasonder_getFOR_noisefact
	seasonder_getFOR_nsm
	seasonder_getFOR_parameters
	seasonder_getLog
	seasonder_getMUSICConfig
	seasonder_getMUSICDopplerInterpolation
	seasonder_getMUSICDualSolutionsProportion
	seasonder_getMUSICInterpolatedData
	seasonder_getMUSICInterpolatedDopplerCellsIndex
	seasonder_getMUSICOptions
	seasonder_getnDopplerCells
	seasonder_getnRangeCells
	seasonder_getRadarWaveLength
	seasonder_getRadarWaveNumber
	seasonder_getRadialVelocityResolution
	seasonder_getReceiverGain_dB
	seasonder_getSeaSondeRAPM_AmplitudeFactors
	seasonder_getSeaSondeRAPM_AntennaBearing
	seasonder_getSeaSondeRAPM_BEAR
	seasonder_getSeaSondeRAPM_BearingResolution
	seasonder_getSeaSondeRAPM_CommentLine
	seasonder_getSeaSondeRAPM_CreateTimeStamp
	seasonder_getSeaSondeRAPM_Creator
	seasonder_getSeaSondeRAPM_FileID
	seasonder_getSeaSondeRAPM_FileName
	seasonder_getSeaSondeRAPM_PhaseCorrections
	seasonder_getSeaSondeRAPM_ProcessingSteps
	seasonder_getSeaSondeRAPM_quality_matrix
	seasonder_getSeaSondeRAPM_SiteName
	seasonder_getSeaSondeRAPM_SiteOrigin
	seasonder_getSeaSondeRAPM_Smoothing
	seasonder_getSeaSondeRAPM_StationCode
	seasonder_getSeaSondeRAPM_Type
	seasonder_getSeaSondeRCS_antenna_SSdata
	seasonder_getSeaSondeRCS_APM
	seasonder_getSeaSondeRCS_data
	seasonder_getSeaSondeRCS_dataMatrix
	seasonder_getSeaSondeRCS_FOR
	seasonder_getSeaSondeRCS_FORConfig
	seasonder_getSeaSondeRCS_FOR_SS_Smoothed
	seasonder_getSeaSondeRCS_header
	seasonder_getSeaSondeRCS_headerField
	seasonder_getSeaSondeRCS_MUSIC
	seasonder_getSeaSondeRCS_MUSIC_BinsRadialVelocity
	seasonder_getSeaSondeRCS_MUSIC_CenterDopplerBin
	seasonder_getSeaSondeRCS_MUSIC_DopplerBinsFrequency
	seasonder_getSeaSondeRCS_MUSIC_DopplerSpectrumResolution
	seasonder_getSeaSondeRCS_MUSIC_nDopplerCells
	seasonder_getSeaSondeRCS_MUSIC_parameters
	seasonder_getSeaSondeRCS_ProcessingSteps
	seasonder_getSeaSondeRCS_reference_noise_normalized_limits_estimation_interval
	seasonder_getSeaSondeRCS_SelfSpectra
	seasonder_getVersion
	seasonder_getVersion.SeaSondeRAPM
	seasonder_getVersion.SeaSondeRCS
	seasonder_get_enabled_debug_points
	seasonder_initCSDataStructure
	seasonder_initializeAttributesSeaSondeRAPM
	seasonder_initMUSICData
	seasonder_initSeaSondeRCS_MUSIC
	seasonder_int_to_raw
	seasonder_is_debug_point_enabled
	seasonder_lastLog
	seasonder_limitFORCurrentRange
	seasonder_log
	seasonder_logAndAbort
	seasonder_logAndMessage
	seasonder_logArchiver
	seasonder_MUSICBearing2GeographicalBearing
	seasonder_MUSICCheckEigenValueRatio
	seasonder_MUSICCheckSignalMatrix
	seasonder_MUSICCheckSignalPowers
	seasonder_MUSICComputeCov
	seasonder_MUSICComputeDOAProjections
	seasonder_MUSICComputePropDualSols
	seasonder_MUSICComputeSignalPowerMatrix
	seasonder_MUSICCovDecomposition
	seasonder_MUSICExtractDOASolutions
	seasonder_MUSICExtractPeaks
	seasonder_MUSICExtractPeaksCheckRetainedSolution
	seasonder_MUSICInitCov
	seasonder_MUSICInitDOASolutions
	seasonder_MUSICInitEigenDecomp
	seasonder_MUSICInitInterpolatedData
	seasonder_MUSICInitProjections
	seasonder_MUSICLonLat
	seasonder_MUSICSelectDOA
	seasonder_MUSICTestDualSolutions
	seasonder_MUSIC_Bins2DopplerFreq
	seasonder_MUSIC_DopplerFreq2Bins
	seasonder_NormalizedDopplerFreq2Bins
	seasonder_NormalizedDopplerFreq2DopplerFreq
	seasonder_NULLSeaSondeRCS_MUSIC
	seasonder_plotAPMLoops
	seasonder_raw_to_int
	seasonder_readCSField
	seasonder_readCSSWBody
	seasonder_readCSSWBodyRangeCell
	seasonder_readCSSWFields
	seasonder_readCSSWHeader
	seasonder_readCSSWLims
	seasonder_readCSSYBodyRangeCell
	seasonder_readCSSYHeader
	seasonder_readPhaseFile
	seasonder_readSeaSondeCSFile
	seasonder_readSeaSondeCSFileBlock
	seasonder_readSeaSondeCSFileData
	seasonder_readSeaSondeCSFileHeader
	seasonder_readSeaSondeCSFileHeaderV1
	seasonder_readSeaSondeCSFileHeaderV2
	seasonder_readSeaSondeCSFileHeaderV3
	seasonder_readSeaSondeCSFileHeaderV4
	seasonder_readSeaSondeCSFileHeaderV5
	seasonder_readSeaSondeCSFileHeaderV6
	seasonder_readSeaSondeRAPMFile
	seasonder_readSeaSondeRCSSWFile
	seasonder_readSeaSondeRCSSYFile
	seasonder_readYAMLSpecs
	seasonder_read_reduced_encoded_data
	seasonder_rejectDistantBragg
	seasonder_rejectDistantBraggPeakTest
	seasonder_rejectNoiseIonospheric
	seasonder_rejectNoiseIonosphericTest
	seasonder_rerun_qc_with_fun
	seasonder_runMUSIC
	seasonder_runMUSICInFOR
	seasonder_SeaSondeRCSExportFORBoundaries
	seasonder_SeaSondeRCSMUSICInterpolateDoppler
	seasonder_SeaSondeRCSSWApplyScaling
	seasonder_SeaSondeRCSSYApplyScaling
	seasonder_SeaSondeRCS_plotSelfSpectrum
	seasonder_SelfSpectra2dB
	seasonder_setFORParameter
	seasonder_setFOR_currmax
	seasonder_setFOR_fdown
	seasonder_setFOR_flim
	seasonder_setFOR_noisefact
	seasonder_setFOR_nsm
	seasonder_setFOR_parameters
	seasonder_setMUSICOption
	seasonder_setMUSICOptions
	seasonder_setNoiseLevelEstimationInterval
	seasonder_setSeaSondeRAPM_AmplitudeFactors
	seasonder_setSeaSondeRAPM_AntennaBearing
	seasonder_setSeaSondeRAPM_BEAR
	seasonder_setSeaSondeRAPM_BearingResolution
	seasonder_setSeaSondeRAPM_CommentLine
	seasonder_setSeaSondeRAPM_CreateTimeStamp
	seasonder_setSeaSondeRAPM_Creator
	seasonder_setSeaSondeRAPM_FileID
	seasonder_setSeaSondeRAPM_FileName
	seasonder_setSeaSondeRAPM_PhaseCorrections
	seasonder_setSeaSondeRAPM_ProcessingSteps
	seasonder_setSeaSondeRAPM_quality_matrix
	seasonder_setSeaSondeRAPM_SiteName
	seasonder_setSeaSondeRAPM_SiteOrigin
	seasonder_setSeaSondeRAPM_Smoothing
	seasonder_setSeaSondeRAPM_StationCode
	seasonder_setSeaSondeRAPM_Type
	seasonder_setSeaSondeRCS_APM
	seasonder_setSeaSondeRCS_data
	seasonder_setSeaSondeRCS_FOR
	seasonder_setSeaSondeRCS_FOR_MAXP
	seasonder_setSeaSondeRCS_FOR_MAXP.bin
	seasonder_setSeaSondeRCS_FOR_method
	seasonder_setSeaSondeRCS_FOR_SS_Smoothed
	seasonder_setSeaSondeRCS_header
	seasonder_setSeaSondeRCS_MUSIC
	seasonder_setSeaSondeRCS_MUSIC_doppler_interpolation
	seasonder_setSeaSondeRCS_MUSIC_dual_solutions_proportion
	seasonder_setSeaSondeRCS_MUSIC_interpolated_data
	seasonder_setSeaSondeRCS_MUSIC_parameters
	seasonder_setSeaSondeRCS_NoiseLevel
	seasonder_setSeaSondeRCS_ProcessingSteps
	seasonder_skip_cs_field
	seasonder_skip_cs_file
	seasonder_smoothAPM
	seasonder_SmoothFORSS
	seasonder_SmoothSS
	seasonder_splitLog
	seasonder_SwapDopplerUnits
	seasonder_trimAPM
	seasonder_v6_skip_transformation
	seasonder_validateAttributesSeaSondeRAPM
	seasonder_validateCalibrationMatrixSeaSondeRAPM
	seasonder_validateCSDataStructure
	seasonder_validateCSFileData
	seasonder_validateCSHeaderStructure
	seasonder_validateFORMethod
	seasonder_validateFOR_parameters
	self_spectra_to_dB
	summary.SeaSondeRAPM
	summary.SeaSondeRCS
	validate_SeaSondeRAPM_AmplitudeFactors
	validate_SeaSondeRAPM_AntennaBearing
	validate_SeaSondeRAPM_BEAR
	validate_SeaSondeRAPM_BearingResolution
	validate_SeaSondeRAPM_CommentLine
	validate_SeaSondeRAPM_CreateTimeStamp
	validate_SeaSondeRAPM_Creator
	validate_SeaSondeRAPM_FileID
	validate_SeaSondeRAPM_FileName
	validate_SeaSondeRAPM_PhaseCorrections
	validate_SeaSondeRAPM_ProcessingSteps
	validate_SeaSondeRAPM_quality_matrix
	validate_SeaSondeRAPM_SiteName
	validate_SeaSondeRAPM_SiteOrigin
	validate_SeaSondeRAPM_Smoothing
	validate_SeaSondeRAPM_StationCode
	validate_SeaSondeRAPM_Type
	validate_SeaSondeRCS_ProcessingSteps
	Index

