Package 'SurrogateRank'

May 20, 2025
Type Package
Title Rank-Based Test to Evaluate a Surrogate Marker
Version 2.0
Description Uses a novel rank-based nonparametric approach to evaluate a surrogate marker in a small sample size setting. Details are described in Parast et al (2024) <doi:10.1093 biomtc="" ujad035=""> and Hughes A et al (2025) <doi:10.48550 arxiv.2502.03030="">. A tutorial for this package can be found at <https: surrogaterank="" www.laylaparast.com=""> and a Shiny App implementing the package can be found at <https: parastlab.shinyapps.io="" surrogaterankapp=""></https:>.</https:></doi:10.48550></doi:10.1093>
License GPL
Encoding UTF-8
Imports stats,dplyr,ggplot2,pbmcapply
Suggests roxygen2
RoxygenNote 7.3.2
Config/testthat/edition 3
NeedsCompilation no
Author Layla Parast [aut, cre], Arthur Hughes [aut]
Maintainer Layla Parast <pre><pre></pre></pre>
Depends R (>= $3.5.0$)
Repository CRAN
Date/Publication 2025-05-20 13:40:02 UTC
Contents
delta.calculate

2 delta.calculate

rise.screen test.surrogate			 																												. 9 . 11
test.surrogate.exte test.surrogate.rise																															
Index																															17
	a.calculate	Cai	lcu	la	tes	th	e i	ran	ık-i	ba	se	d t	esi	t S1	tat	isi	tic	fo	r	Y a	ınc	l S	a	na	l tł	ne	di	iff	er	en	 ce,

Description

Calculates the rank-based test statistic for Y and the rank-based test statistic for S and the difference, delta, along with corresponding standard error estimates

Usage

```
delta.calculate(full.data = NULL, yone = NULL, yzero = NULL, sone = NULL, szero = NULL)
```

Arguments

full.data	either full.data or yone, yzero, sone, szero must be supplied; if full data is supplied it must be in the following format: one observation per row, Y is in the first column, S is in the second column, treatment group (0 or 1) is in the third column.
yone	primary outcome, Y, in group 1
yzero	primary outcome, Y, in group 0
sone	surrogate marker, S, in group 1
szero	surrogate marker, S, in group 0
alue	
u.v	rank-based test statistic for Y

Va

u.y	rank-based test statistic for Y
u.s	rank-based test statistic for S
delta	difference, u.y-u.s
sd.u.y	standard error estimate of u.y
sd.u.s	standard error estimate of u.s
sd.delta	standard error estimate of delta

Author(s)

Layla Parast

delta.calculate.extension 3

Examples

```
data(example.data)
delta.calculate(yone = example.data$y1, yzero = example.data$y0, sone = example.data$s1,
szero = example.data$s0)
```

delta.calculate.extension

Calculates the rank-based test statistic for Y and S and the difference, delta, accomodating paired data and allowing for a two-sided test

Description

This function calculates the difference in treatment effects on a univariate marker and on a continuous primary response. This extends the delta.calculate() function to the case where samples may be paired instead of independent, and where a two sided test is desired.

Usage

```
delta.calculate.extension(yone, yzero, sone, szero, paired = FALSE)
```

Arguments

yone	numeric vector of primary response values in the treated group.
yzero	numeric vector of primary response values in the untreated group.
sone	matrix or dataframe of surrogate candidates in the treated group with dimension $n1 \times p$ where $n1$ is the number of treated samples and p the number of candidates. Sample ordering must match exactly yone.
szero	matrix or dataframe of surrogate candidates in the untreated group with dimension $n0 \times p$ where $n0$ is the number of untreated samples and p the number of candidates. Sample ordering must match exactly yzero.
paired	logical flag giving if the data is independent or paired. If FALSE (default), samples are assumed independent. If TRUE, samples are assumed to be from a paired design. The pairs are specified by matching the rows of yone and sone to the rows of yzero and szero.

Details

This function estimates the difference (delta) between two rank-based statistics (e.g., Wilcoxon statistics or paired ranks) for a primary outcome and a surrogate, under either an independent or paired design.

est.power

Value

A list with the following elements:

- u.y: Rank-based test statistic for the primary outcome
- u.s: Rank-based test statistic for the surrogate
- delta.estimate: Estimated difference between outcome and surrogate statistics
- sd.u.y: Standard deviation of the outcome statistic
- sd.u.s: Standard deviation of the surrogate statistic
- sd.delta: Standard error of the delta estimate

Author(s)

Arthur Hughes, Layla Parast

Examples

```
# Load data
data("example.data")
yone <- example.data$y1
yzero <- example.data$y0
sone <- example.data$s1
szero <- example.data$s0
delta.calculate.extension.result <- delta.calculate.extension(
    yone, yzero, sone, szero,
    paired = TRUE
)</pre>
```

est.power

Estimated power to detect a valid surrogate

Description

Calculates the estimated power to detect a valid surrogate given a total sample size and specified alternative

Usage

```
est.power(n.total, rho = 0.8, u.y.alt, delta.alt, power.want.s = 0.7)
```

```
n.total total sample size in study
rho rank correlation between Y and S in group 0, default is 0.8
u.y.alt specified alternative for u.y
delta.alt specified alternative for u.s
desired power for u.s, default is 0.7
```

example.data 5

Value

estimated power

Author(s)

Layla Parast

Examples

```
est.power(n.total = 50, rho = 0.8, u.y.alt=0.9, delta.alt = 0.1)
```

example.data

Example data

Description

Example data use to illustrate the functions

Usage

```
data("example.data")
```

Format

A list with 4 elements representing 25 observations from a treatment group (group 1) and 25 observations from a control group (group 0):

```
y1 the primary outcome, Y, in group 1
```

y0 the primary outcome, Y, in group 0

s1 the surrogate marker, S, in group 1

 $\mathfrak{s0}$ the surrogate marker, \mathbf{S} , in group $\mathbf{0}$

```
data(example.data)
```

6 rise.evaluate

example.data.highdim Example data for the high-dimensional functions

Description

A simulated high-dimensional dataset for demonstrating the RISE methodology implemented in this package. The data contains primary response and 1000 surrogate candidates from 25 treated individuals and 25 untreated individuals, where 10% of the surrogate candidates are "valid".

Usage

```
data("example.data.highdim")
```

Format

A list containing:

- y1 primary response in treated
- y0 primary response in untreated
- s1 1000 surrogate candidates in treated
- s0 1000 surrogate candidates in untreated

hyp for each surrogate, null false if the surrogate is valid (note that this is from simulated data and is used to demonstrate the method; this would be unknown in practice)

Source

Simulated for package examples.

Examples

```
data("example.data.highdim")
```

rise.evaluate

Performs the evaluation stage of RISE: Two-Stage Rank-Based Identification of High-Dimensional Surrogate Markers

Description

A set of high-dimensional surrogate candidates are evaluated jointly. Strength of surrogacy is assessed through a rank-based measure of the similarity in treatment effects on a candidate surrogate and the primary response.

rise.evaluate 7

Usage

```
rise.evaluate(
 yone,
 yzero,
  sone,
  szero,
 alpha = 0.05,
 power.want.s = NULL,
  epsilon = NULL,
  u.y.hyp = NULL,
  p.correction = "BH",
  n.cores = 1,
  alternative = "less",
 paired = FALSE,
  return.all.evaluate = TRUE,
  return.plot.evaluate = TRUE,
  evaluate.weights = TRUE,
  screening.weights = NULL,
 markers = NULL
)
```

yone	numeric vector of primary response values in the treated group.
yzero	numeric vector of primary response values in the untreated group.
sone	matrix or dataframe of surrogate candidates in the treated group with dimension n1 x p where n1 is the number of treated samples and p the number of candidates. Sample ordering must match exactly yone.
szero	matrix or dataframe of surrogate candidates in the untreated group with dimension $n0 \times p$ where $n0$ is the number of untreated samples and p the number of candidates. Sample ordering must match exactly yzero.
alpha	significance level for determining surrogate candidates. Default is 0.05.
power.want.s	numeric in $(0,1)$ - power desired for a test of treatment effect based on the surrogate candidate. Either this or epsilon argument must be specified.
epsilon	numeric in $(0,1)$ - non-inferiority margin for determining surrogate validity. Either this or power.want.s argument must be specified.
u.y.hyp	hypothesised value of the treatment effect on the primary response on the probability scale. If not given, it will be estimated based on the observations.
p.correction	character. Method for p-value adjustment (see p.adjust() function). Defaults to the Benjamini-Hochberg method ("BH").
n.cores	numeric giving the number of cores to commit to parallel computation in order to improve computational time through the pbmcapply() function. Defaults to 1.
alternative	character giving the alternative hypothesis type. One of c("less", "two.sided"), where "less" corresponds to a non-inferiority test and "two.sided" corresponds to a two one-sided test procedure. Default is "less".

8 rise.evaluate

paired

logical flag giving if the data is independent or paired. If FALSE (default), samples are assumed independent. If TRUE, samples are assumed to be from a paired design. The pairs are specified by matching the rows of yone and sone to the rows of yzero and szero.

return.all.evaluate

logical flag. If TRUE (default), a dataframe will be returned giving the evaluation of each individual marker passed to the evaluation stage.

return.plot.evaluate

logical flag. If TRUE (default), a ggplot2 object will be returned allowing the user to visualise the association between the composite surrogate on the individual-scale.

evaluate.weights

logical flag. If TRUE (default), the composite surrogate is constructed with weights as the absolute value of the inverse of the delta values of each candidate, such that surrogates which are predicted to be stronger receive more weight.

screening.weights

dataframe with columns marker and weight giving the weight in for the evaluation. Typically this is taken directly from the screening stage as the output from the rise.screen() function. Must be given if evaluate.weights is TRUE.

markers

a vector of marker names (column names of szero and sone) to evaluate. If not given, will default to evaluating all markers in the dataframes.

Value

A list with:

- individual.metrics If return.all.evaluate = TRUE, a dataframe of evaluation results for each significant marker.
- gamma.s A list with elements gamma.s.one and gamma.s.zero, giving the combined surrogate marker in the treated and untreated groups, respectively.
- gamma.s.evaluate A dataframe giving the evaluation of gamma.s.
- gamma.s.plot A ggplot2 plot showing gamma.s against the primary response on the rank-scale.

Author(s)

Arthur Hughes

```
# Load high-dimensional example data
data("example.data.highdim")
yone <- example.data.highdim$y1
yzero <- example.data.highdim$y0
sone <- example.data.highdim$s1
szero <- example.data.highdim$s0</pre>
rise.evaluate.result <- rise.evaluate(yone, yzero, sone, szero, power.want.s = 0.8)
```

rise.screen 9

rise.screen	Perform the screening stage of RISE: Two-Stage Rank-Based Identifi-
	cation of High-Dimensional Surrogate Markers

Description

A set of high-dimensional surrogate candidates are screened one-by-one to identify strong candidates. Strength of surrogacy is assessed through a rank-based measure of the similarity in treatment effects on a candidate surrogate and the primary response. P-values corresponding to hypothesis testing on this measure are corrected for the high number of statistical tests performed.

Usage

```
rise.screen(
  yone,
  yzero,
  sone,
  szero,
  alpha = 0.05,
  power.want.s = NULL,
  epsilon = NULL,
  u.y.hyp = NULL,
  p.correction = "BH",
  n.cores = 1,
  alternative = "less",
  paired = FALSE,
  return.all.screen = TRUE
)
```

yone	numeric vector of primary response values in the treated group.
yzero	numeric vector of primary response values in the untreated group.
sone	matrix or dataframe of surrogate candidates in the treated group with dimension n1 x p where n1 is the number of treated samples and p the number of candidates. Sample ordering must match exactly yone.
szero	matrix or dataframe of surrogate candidates in the untreated group with dimension $n0 \times p$ where $n0$ is the number of untreated samples and p the number of candidates. Sample ordering must match exactly yzero.
alpha	significance level for determining surrogate candidates. Default is 0.05.
power.want.	numeric in $(0,1)$ - power desired for a test of treatment effect based on the surrogate candidate. Either this or epsilon argument must be specified.
epsilon	numeric in $(0,1)$ - non-inferiority margin for determining surrogate validity. Either this or power want s argument must be specified.

10 rise.screen

u.y.hyp
 hypothesised value of the treatment effect on the primary response on the probability scale. If not given, it will be estimated based on the observations.
 p.correction
 character. Method for p-value adjustment (see p.adjust() function). Defaults to the Benjamini-Hochberg method ("BH").
 n.cores
 numeric giving the number of cores to commit to parallel computation in order

numeric giving the number of cores to commit to parallel computation in order to improve computational time through the pbmcapply() function. Defaults to

١.

alternative character giving the alternative hypothesis type. One of c("less", "two.sided"),

where "less" corresponds to a non-inferiority test and "two.sided" corresponds

to a two one-sided test procedure. Default is "less".

paired logical flag giving if the data is independent or paired. If FALSE (default), sam-

ples are assumed independent. If TRUE, samples are assumed to be from a paired design. The pairs are specified by matching the rows of yone and sone to the

rows of yzero and szero.

return.all.screen

logical flag. If TRUE (default), a dataframe will be returned giving the screening results for all candidates. Else, only the significant candidates will be returned.

Value

a list with elements

- screening.metrics: dataframe of screening results (for each candidate marker delta, CI, sd, epsilon, p-values).
- significant.markers: character vector of markers with p_adjusted < alpha
- screening.weights: dataframe giving marker names and the inverse absolute value of the associated deltas.

Author(s)

Arthur Hughes

```
# Load high-dimensional example data
data("example.data.highdim")
yone <- example.data.highdim$y1
yzero <- example.data.highdim$y0
sone <- example.data.highdim$s1
szero <- example.data.highdim$s0
rise.screen.result <- rise.screen(yone, yzero, sone, szero, power.want.s = 0.8)</pre>
```

test.surrogate 11

Description

Calculates the rank-based test statistic for Y and the rank-based test statistic for S and the difference, delta, along with corresponding standard error estimates, then tests whether the surrogate is valid

Usage

```
test.surrogate(full.data = NULL, yone = NULL, yzero = NULL, sone = NULL, szero = NULL, epsilon = NULL, power.want.s = 0.7, u.y.hyp = NULL)
```

Arguments

full.data	either full.data or yone, yzero, sone, szero must be supplied; if full data is supplied it must be in the following format: one observation per row, Y is in the first column, S is in the second column, treatment group (0 or 1) is in the third column.
yone	primary outcome, Y, in group 1
yzero	primary outcome, Y, in group 0
sone	surrogate marker, S, in group 1
szero	surrogate marker, S, in group 0
epsilon	threshold to use for delta, default calculates epsilon as a function of desired power for S
power.want.s	desired power for S, default is 0.7
u.y.hyp	hypothesized value of u.y used in the calculation of epsilon, default uses estimated valued of u.y

Value

u.y	rank-based test statistic for Y
u.s	rank-based test statistic for S
delta	difference, u.y-u.s
sd.u.y	standard error estimate of u.y
sd.u.s	standard error estimate of u.s
sd.delta	standard error estimate of delta
ci.delta	1-sided confidence interval for delta
epsilon.used	the epsilon value used for the test
is.surrogate	logical, TRUE if test indicates S is a good surrogate, FALSE otherwise

Author(s)

Layla Parast

12 test.surrogate.extension

Examples

```
data(example.data)
test.surrogate(yone = example.data$y1, yzero = example.data$y0, sone = example.data$s1,
szero = example.data$s0)
```

test.surrogate.extension

Tests whether the surrogate is valid, extended to the paired, two sided test setting

Description

Calculates the rank-based test statistic for Y and the rank-based test statistic for S and the difference, delta, along with corresponding standard error estimates, then tests whether the surrogate is valid. This extends the test.surrogate() function to the case where samples may be paired instead of independent, and where a two sided test is desired.

Usage

```
test.surrogate.extension(
  yone,
  yzero,
  sone,
  szero,
  alpha = 0.05,
  power.want.s = NULL,
  epsilon = NULL,
  u.y.hyp = NULL,
  alternative = "less",
  paired = FALSE
)
```

yone	numeric vector of primary response values in the treated group.
yzero	numeric vector of primary response values in the untreated group.
sone	matrix or dataframe of surrogate candidates in the treated group with dimension n1 x p where n1 is the number of treated samples and p the number of candidates. Sample ordering must match exactly yone.
szero	matrix or dataframe of surrogate candidates in the untreated group with dimension n0 x p where n0 is the number of untreated samples and p the number of candidates. Sample ordering must match exactly yzero.
alpha	significance level for determining surrogate candidates. Default is 0.05.
power.want.s	numeric in $(0,1)$ - power desired for a test of treatment effect based on the surrogate candidate. Either this or epsilon argument must be specified.

test.surrogate.extension 13

epsilon	numeric in $(0,1)$ - non-inferiority margin for determining surrogate validity. Either this or power.want.s argument must be specified.
u.y.hyp	hypothesised value of the treatment effect on the primary response on the probability scale. If not given, it will be estimated based on the observations.
alternative	character giving the alternative hypothesis type. One of c("less", "two.sided"), where "less" corresponds to a non-inferiority test and "two.sided" corresponds to a two one-sided test procedure. Default is "less".
paired	logical flag giving if the data is independent or paired. If FALSE (default), samples are assumed independent. If TRUE, samples are assumed to be from a paired design. The pairs are specified by matching the rows of yone and sone to the rows of yzero and szero.

Value

A list containing:

- u.y Estimated rank-based treatment effect on the outcome.
- u.s Estimated rank-based treatment effect on the surrogate.
- delta.estimate Estimated difference in treatment effects: u.y u.s.
- sd.u.y Standard deviation of u.y.
- sd.u.s Standard deviation of u.s.
- sd.delta Standard deviation of delta.estimate.
- ci.delta One-sided confidence interval upper bound for delta.estimate.
- p.delta p-value for validity of trial-level surrogacy.
- epsilon.used Non-inferiority threshold used in the test.
- is.surrogate TRUE if the surrogate passes the test, else FALSE.

Author(s)

Arthur Hughes, Layla Parast

```
# Load data
data("example.data")
yone <- example.data$y1
yzero <- example.data$y0
sone <- example.data$s1
szero <- example.data$s0
test.surrogate.extension.result <- test.surrogate.extension(
    yone, yzero, sone, szero,
    power.want.s = 0.8, paired = TRUE, alternative = "two.sided"
)</pre>
```

14 test.surrogate.rise

Description

RISE (Rank-Based Identification of High-Dimensional Surrogate Markers) is a two-stage method to identify and evaluate high-dimensional surrogate candidates of a continuous response.

In the first stage (called screening), the high-dimensional candidates are screened one-by-one to identify strong candidates. Strength of surrogacy is assessed through a rank-based measure of the similarity in treatment effects on a candidate surrogate and the primary response. P-values corresponding to hypothesis testing on this measure are corrected for the high number of statistical tests performed.

In the second stage (called evaluation), candidates with an adjusted p-value below a given significance level are evaluated by combining them into a single synthetic marker. The surrogacy of this marker is then assessed with the univariate test as described before.

To avoid overfitting, the two stages are performed on separate data.

Usage

```
test.surrogate.rise(
 yone,
 yzero,
  sone,
  szero,
  alpha = 0.05,
  power.want.s = NULL,
  epsilon = NULL,
  u.y.hyp = NULL,
  p.correction = "BH",
  n.cores = 1,
  alternative = "less",
  paired = FALSE,
  screen.proportion = 0.66,
  return.all.screen = TRUE,
  return.all.evaluate = TRUE,
  return.plot.evaluate = TRUE,
  evaluate.weights = TRUE
)
```

Arguments

yone numeric vector of primary response values in the treated group.

yzero numeric vector of primary response values in the untreated group.

test.surrogate.rise 15

matrix or dataframe of surrogate candidates in the treated group with dimension sone n1 x p where n1 is the number of treated samples and p the number of candidates. Sample ordering must match exactly yone. matrix or dataframe of surrogate candidates in the untreated group with dimenszero sion n0 x p where n0 is the number of untreated samples and p the number of candidates. Sample ordering must match exactly yzero. alpha significance level for determining surrogate candidates. Default is 0.05. numeric in (0,1) - power desired for a test of treatment effect based on the surpower.want.s rogate candidate. Either this or epsilon argument must be specified. epsilon numeric in (0,1) - non-inferiority margin for determining surrogate validity. Either this or power.want.s argument must be specified. u.y.hyp hypothesised value of the treatment effect on the primary response on the probability scale. If not given, it will be estimated based on the observations. p.correction character. Method for p-value adjustment (see p.adjust() function). Defaults to the Benjamini-Hochberg method ("BH"). numeric giving the number of cores to commit to parallel computation in order n.cores to improve computational time through the pbmcapply() function. Defaults to alternative character giving the alternative hypothesis type. One of c("less", "two.sided"), where "less" corresponds to a non-inferiority test and "two.sided" corresponds to a two one-sided test procedure. Default is "less". logical flag giving if the data is independent or paired. If FALSE (default), sampaired ples are assumed independent. If TRUE, samples are assumed to be from a paired design. The pairs are specified by matching the rows of yone and sone to the rows of yzero and szero.

screen.proportion

numeric in (0,1) - proportion of data to be used for the screening stage. The default is 2/3. If 1 is given, screening and evaluation will be performed on the same data.

return.all.screen

logical flag. If TRUE (default), a dataframe will be returned giving the screening results for all candidates. Else, only the significant candidates will be returned.

return.all.evaluate

logical flag. If TRUE (default), a dataframe will be returned giving the evaluation of each individual marker passed to the evaluation stage.

return.plot.evaluate

logical flag. If TRUE (default), a ggplot2 object will be returned allowing the user to visualise the association between the composite surrogate on the individual-scale.

evaluate.weights

logical flag. If TRUE (default), the composite surrogate is constructed with weights as the absolute value of the inverse of the delta values of each candidate, such that surrogates which are predicted to be stronger receive more weight.

16 test.surrogate.rise

Value

a list with

- screening.results: a list with
 - screening.metrics: dataframe of screening results (for each candidate marker delta, CI, sd, epsilon, p-values).
 - significant_markers: character vector of markers with p_adjusted < alpha.
- evaluate.results: a list with
 - individual.metrics if return.all.evaluate=TRUE, a dataframe of evaluation results for each significant marker.
 - gamma.s a list with elements gamma.s.one and gamma.s.zero, giving the combined surrogate marker in the treated and untreated groups, respectively.
 - gamma.s.evaluate: a dataframe giving the evaluation of gamma.s
 - gamma.s.plot: a ggplot2 plot showing gamma.s against the primary response on the rank-scale.

Author(s)

Arthur Hughes

```
# Load high-dimensional example data
data("example.data.highdim")
yone <- example.data.highdim$y1
yzero <- example.data.highdim$y0
sone <- example.data.highdim$s1
szero <- example.data.highdim$s0
rise.result <- test.surrogate.rise(yone, yzero, sone, szero, power.want.s = 0.8)</pre>
```

Index

```
* datasets
    example.data.highdim, 6

delta.calculate, 2
delta.calculate.extension, 3

est.power, 4
example.data, 5
example.data.highdim, 6

rise.evaluate, 6
rise.screen, 9

test.surrogate, 11
test.surrogate.extension, 12
test.surrogate.rise, 14
```