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agriTutorial Tutorial Analysis of Agricultural Experiments
Description

The agriTutorial package provides R software for the analysis of five agricultural example data
sets as discussed in the paper: ’A tutorial on the statistical analysis of factorial experiments with
qualitative and quantitative treatment factor levels’ by Piepho and Edmondson (2018). See: View

Details
Code

The example code produces statistical analysis for the five agricultural data sets in Piepho & Ed-
mondson (2018) and also produces additional graphical analysis. The data for each example is
provided as a data frame which loads automatically whenever the package is loaded and the code
for each analysis is provided as a set of examples.

Printed output defaults to the device terminal window but can be diverted to a suitable text file
by using a sink file command: see help(sink), if required. Similarly, graphical output defaults
to the device graphics window but can be diverted to a suitable graphics device if required: see
vignette('agriTutorial') for further details,

The example code demonstrates some basic methodology for the analysis of data from designed ex-
periments but there are other methods available in R and it is straightforward to extend the example
code by adding functionality from other packages. One source of package information is the set of
’task views’ available at: Task Views.

Polynomials

The polynomials used in this tutorial are either raw polynomials or orthogonal polynomials.

A raw polynomial is a weighted sum of the powers and cross-products of a set of treatment or
nuisance effect vectors.


http://dx.doi.org/10.1111/jac.12267
https://cran.r-project.org/
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An orthogonal polynomial is a weighted sum of orthogonal combinations of the powers and cross-
products of a set of treatment or nuisance effect vectors.

Raw polynomials have a direct interpretation as a fitted polynomial model but can be numerically
unstable whereas orthogonal polynomials are numerically stable but give coefficients which are
linear combinations of the required polynomial model coefficients and are difficult to interpret.

Raw polynomials are the polynomials of choice for most analyses but sometimes orthogonal poly-
nomials can be useful when, for example, fitting higher-degree polynomials in a long series of
repeated measures (see example 4).

Functional marginality

Polynomial expansions are based on a Taylor series expansion and normally must include all poly-
nomial terms up to and including the maximum degree of the expansion. This is the property of
functional marginality and applies to any polynomial or response surface model including models
with polynomial interaction effects (Nelder, 2000). In this tutorial, all polynomial and response
surface models will be assumed to conform with the requirements of functional marginality.

Packages

The example code depends on a number of R packages each of which must be installed on the user
machine before the example code can be properly executed. The required packages are ImerTest,
emmeans, pbkrtest, lattice, nlme and ggplot2, all of which should install automatically. If, for any
reason, packages need to be installed by hand, this can be done by using install.packages("package
name").

NB. It is important to keep packages updated using the update.packages() command.

Examples:

1. examplel : split-plot design with one quantitative and one qualitative treatment factor
2. example2 : block design with one qualitative treatment factor

3. example3 : response surface design with two quantitative treatment factors

4. example4 : repeated measures design with one quantitative treatment factor

5. exampleb5 : block design with transformed quantitative treatment levels

References

Piepho, H. P, and Edmondson. R. N. (2018). A tutorial on the statistical analysis of factorial
experiments with qualitative and quantitative treatment factor levels. Journal of Agronomy and
Crop Science. DOI: 10.1111/jac.12267. View

Taylor series. From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Taylor_series

Nelder, J. A. (2000). Functional marginality and response-surface fitting. Journal of Applied Statis-
tics, 26, 109-122.
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beet Beet data for Example 2

Description

Petersen (1994, p. 125) describes an experiment conducted to assess the effects of five different
quantities of N-fertiliser (0, 35, 70, 105 and 140 kg N/ha) on root dry matter yield of sugar beets
(t/ha) with three complete replications laid out in three randomized complete blocks. One objective
of this experiment is to determine the amount of fertilizer maximizing yield. Petersen, R.G. (1994).
Agricultural field experiments. Design and analysis. New York: Marcel Dekker.

Usage

data(beet)

Format

An object of class data. frame with 15 rows and 3 columns.

example1l Example 1: Split-plot design with one qualitative and one quantitative
level factor

Description

Gomez & Gomez (1984, p. 143) report a rice experiment with three management practices (min-
imum, optimum, intensive), five different amounts of nitrogen (N) fertilizer (0, 50, 80, 110, 140
kg/ha), and three varieties (V1, V2, V3). The experiment involved variety and management as
qualitative treatment factors and nitrogen fertilizer as a quantitative treatment factor. Overall, there
were 45 treatments with three replicates in complete replicate blocks. The fertilizer treatments were
applied to main plots, the management practices to split-plots and the varieties to split-split-plots.

Details

Section 1

Section 1 examines treatment effects by fitting qualitative factorial models and the first analysis
calculates a full analysis of variance (Table 1) for main plots (nitrogen), split-plots (management)
and split-split-plots (variety). Each type of experimental unit (or "stratum") requires a separate error
term in the fitted analysis.

The second analysis (Table 2) uses a REML mixed model analysis to find treatment means and SE’s
for each marginal treatment classification averaged over all the other treatment factors, together with
estimates of pairwise contrasts of treatment means and the SE’s of the pairwise treatment compar-
isons. This analysis fits the full set of nitrogen-by-variety interaction effects assuming additive
management effects and the fit of the model is tested by a graphical plot of the model residuals.
Residual plots provide an important check on model assumptions but many more options for model
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testing are available and further methods for diagnostic testing are examined in the subsequent
examples.

The third analysis (Table 3) shows a mixed model analysis of the full factorial model fitted by
REML using the Imer function of the Ime4 package. Generally with mixed models, determination
of the denominator degrees of freedom for Wald-type F- and t-statistics becomes an issue, and here
we use the method proposed by Kenward & Roger (1997).

Section 2

Section 2 examines treatment effects by fitting polynomial models and the first step calculates a full
set of four raw polynomials for the 5-levels of N using the poly() function. The N rates are re-scaled
by division by 100 to improve numerical stability.

The second step fits a mixed model polynomial analysis of nitrogen effects assuming additive man-
agement effects (Table 7). In this analysis, most of the nitrogen treatment effect can be explained
by linear and quadratic trend effects. but it is important to note that there is a non-negligible Variety
x Cubic N interaction effect. This suggests that not all the varieties responded in a similar way to
the N treatments and that some further analysis of the data may be required (see also the N plots of
individual varieties and replicates in Fig 1).

The third step fits the required model for the actual fitted model coefficients (Table 8). When
estimating model effects, only effects that are significant for the fitted model or that are marginal
to those effects (functional marginality) should be included in the model therefore only linear and
quadratic nitrogen effects are included in this model. The fitted model for the nitrogen effects fits
the actual actual nitrogen levels used in the experiment therefore this model provides the required
coefficients for the actual applied nitrogen levels.

Section 3
Section 3 provides checks on some of the assumptions underlying the blocks-by-treatments model.

The first analysis in this section shows a complete partition of the blocks-by-treatments interac-
tion effects into factorial mean square terms where all the terms that contain a replicate:variety
interaction effect are estimates of the split-split-plot error variance. If the blocks-by-treatments as-
sumptions are valid, all the estimates of the split-split-plot error variance are expected to have the
same error mean square. However, the Replicate:variety effect has a mean square of 1.54 on 4 de-
grees of freedom whereas the Replicate:management:variety:nitrogen effect has a mean square of
0.26 on 32 degrees of freedom. The ratio of these mean squares is 5.92 with an F-probability of
0.00110 on 4 and 32 degrees of freedom, which means that the Replicate:variety interaction effect
is significantly inflated relative to the Replicate:management:variety:nitrogen effect. This shows
that the assumptions underlying the blocks-by-treatments analysis of the model are invalid with a
high level of probability.

The 4 degrees of freedom in the Replicate:variety interaction effect are the differences between
the three varieties differenced between the three replicate blocks. Fig S1 shows graphical plots of
variety effects in each replicate block averaged over management effects, and there is clear evidence
that the effects of Variety 1 in blocks 1 and 2 were different from the effects of Variety 1 in block 3.

The second analysis in Section 3 shows a complete partition of the blocks-by-treatments interaction
effects into factorial mean square terms ignoring Variety 1. This analysis shows a reasonably good
fit to the assumed additive block which supports the hypothesis that the non-additivity of the block-
and-treatment effects in the full unrestricted analysis is mainly due to Variety 1.

The final analysis in Section 3 shows an analysis of variance of the treatment effects ignoring
Variety 1. In this analysis, the management:variety interaction effect becomes significant at the
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0.00992 probability level compared with a non-significant management:variety interaction effect in
the analysis of the full data set.

Such anomalies are not uncommon in the analysis of real data sets and it is the task of the statis-
tician to identify anomalies as and when they occur. Factorial designs can be very powerful for
practical research but, as demonstrated with this data set, the analysis of such designs is complex
and anomalies can be easily missed. Unless an anomaly is due to an easily identified cause such
as an incorrectly recorded data point, it is likely that the anomaly will need to be investigated by
further discussion with the research workers. It is a mistake to suppose that data from a designed
experiment can be analysed statistically in isolation from the research workers who conducted the
experiment.

agriTutorial: return to home page if you want to select a different example

References

Gomez, K.A., & Gomez, A.A. (1984). Statistical procedures for agricultural research, 2nd edn.
New York: Wiley.

Kenward, M.G., & Roger, J.H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

Piepho, H. P, and Edmondson. R. N. (2018). A tutorial on the statistical analysis of factorial
experiments with qualitative and quantitative treatment factor levels. Journal of Agronomy and
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Examples

## KER K KRR KRR AR AR R AR R R AR R R AR R AR R AR R AR R A AR R AR KR AR KA AR AR R KRR A KR AR KR AR R KRR AR A AR A AR A AR ARk kA A Rk kkhkk)k
## How to run the code

it Kkxkxk *Kkkk *Kkkk *Kkkk

## Either type example(”examplel”) to run ALL the examples succesively
## or copy and paste examples sucessively, as required

b R R R R R R R R R R R R R R R R R R R R e R e S S S T e T

#it Options and required packages
R R R E T T R T R L R R R L R T R L P R L P P T T P T T e T

## Packages lmerTest, emmeans and pbkrtest MUST be installed
require(lmerTest)

require(emmeans)

require(pbkrtest)

options(contrasts = c('contr.treatment', 'contr.poly'))

#it

#i Section 1: Qualitative analysis of factorial treatment effects
## KR AR KRR KRR AR R AR R AR R R AR R AR R AR R A A R R A R R AR R A AR A AR A AR KA AR A AR A AR KA R KRR AKR KA KA KA AR A AR ARk h**)

## Table 1 Full analysis of rice data assuming qualitative nitrogen effects
rice.aovl = aov(yield ~ Replicate + management * variety * nitrogen +
Error(Replicate/Main/Sub), rice)
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summary(rice.aovl, ddf = "Kenward-Roger”, type = 1)

## Table 2 REML means and se's for additive management and qualitative nitrogen effects
rice.means = lmer(yield ~ Replicate + management + nitrogen * variety +
(1|Replicate:Main) + (1|Replicate:Main:Sub), data = rice)

anova(rice.means, ddf = "Kenward-Roger"”, type = 1)

plot(rice.means, sub.caption = NA, ylab = "Residuals”, xlab = "Fitted”,
main = "Full analysis with full nitrogen effects”)

emmeans: :emmeans(rice.means, ~ nitrogen)

emmeans: :emmeans(rice.means, ~ variety)

emmeans: :emmeans(rice.means, ~ nitrogen * variety)

## REML contrasts and sed's for additive management and qualitative nitrogen effects

n.v = emmeans::emmeans(rice.means, ~ nitrogen|variety)
emmeans: :contrast(n.v, alpha = 0.05, method = "pairwise"”)
v.n = emmeans::emmeans(rice.means, ~ variety|nitrogen)
emmeans: :contrast(v.n, alpha = 0.05, method = "pairwise"”)

## Table 3 Mixed model effects for rice data with significance tests

rice.lmer = lmer(yield ~ Replicate + nitrogen * management * variety + (1|Replicate:Main) +
(1|Replicate:Main:Sub), data = rice)

anova(rice.lmer, ddf = "Kenward-Roger", type = 1)

b O R R R R R R S S T s 2

#it Section 2: Quantitative analysis of factorial treatment effects
##

## adds raw N polynomials to data frame: note that the nrate is re-scaled
N = poly((rice$nrate/100), 4, raw = TRUE)

colnames(N) = c("Linear_N", "Quadratic_N", "Cubic_N", "Quartic_N")

rice = cbind(rice, N)

## Table 7: Mixed model fitting raw polynomials for nitrogen effects

rice.fullN = Imer(yield ~ Replicate + management + variety * (Linear_N + Quadratic_N +
Cubic_N + Quartic_N) + (1|Replicate:Main) + (1|Replicate:Main:Sub), data = rice)
anova(rice.fullN, ddf = "Kenward-Roger", type = 1)

## Table 8 Coefficients for separate linear and common quadratic N with additive management
rice.quadN = Ilmer(yield ~ Replicate + management + variety * Linear_N + Quadratic_N +
(1|Replicate:Main) + (1|Replicate:Main:Sub), data = rice)

summary(rice.quadN, ddf = "Kenward-Roger")

HE % Kk kkkkk Kk kkkkk Kk kkkkk

#i# Section 3: Model assumptions

i xokxokxok *kkk Kk k ok ko kK k Kk k ok ko *kkk Kk k ok ko

## Full analysis of variance of block and treatment effects showing large mean square error
## due to variety-by-replicates interaction effects

rice.fullaov = aov(yield ~ Replicate*management * variety * nitrogen, rice)
summary(rice.fullaov, ddf = "Kenward-Roger", type = 1)
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## Fig S1 Nitrogen response per variety per plot showing anomalous behaviour of Variety 1
## in Blocks 1 and 2 compared with Block 3
Rice = aggregate(rice$yield, by = list(rice$Replicate, rice$nitrogen, rice$variety),
FUN = mean, na.rm = TRUE)
colnames(Rice) = c("Reps”, "Nlev", "Vars"”, "Yield")
wideRice = reshape(Rice, timevar = "Nlev”, idvar = c("Vars", "Reps”), direction = "wide")
wideRice = wideRice[,-c(1, 2)]
N = c(0, 50, 80, 110, 140)
par(mfrow = c(3, 3), oma = c(@, @, 2, 0))
for (i in 1:3) {
for (j in 1:3) {
plot(N, wideRice[(i - 1) * 3 + j, 1, type = "1", ylab = "yield",
main = paste("Variety”,i,"Block"”,j), ylim = c(@, max(wideRice)))
3
3

title(main = "Fig S1. Variety response to nitrogen for individual replicate blocks”, outer = TRUE)

## Subset of data excluding variety 1
riceV2V3=droplevels(rice[rice$variety != "V1", ])

## Restricted analysis of variance of block and treatment effects excluding variety 1
## compare variety-by-replicates interaction effects of full and restricted analysis
rice.fullaov = aov(yield ~ Replicate*management * variety * nitrogen, riceV2Vv3)
summary(rice.fullaov, ddf = "Kenward-Roger"”, type = 1)

## Restricted analysis assuming qualitative nitrogen effects excluding variety 1
rice.aovl = aov(yield ~ Replicate + management * variety * nitrogen +
Error(Replicate/Main/Sub), riceV2v3)

summary(rice.aovl, ddf = "Kenward-Roger", type = 1)
example?2 Example 2: Lack-of-fit and marginality for a single quantitative treat-
ment factor
Description

Petersen (1994, p. 125) describes an experiment conducted to assess the effects of five different
quantities of N-fertiliser (0, 35, 70, 105 and 140 kg N/ha) on root dry matter yield of sugar beet
(t/ha) with three complete replications laid out in three randomized complete blocks. One objective
of this experiment was to determine the amount of fertilizer for maximizing yield.

Details

The first stage of the analysis is the calculation of raw polynomial powers of N using the poly()
function. The N rates are re-scaled by division by 100 to improve numerical stability.

The second stage fits a full polynomial analysis of variance based on polynomial contrasts which
are fitted in sequence from the lowest to the highest. This is equivalent to the analysis shown in
Tables 4 and 5 of Piepho and Edmondson (2018) except that a complete partition into single degree
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of freedom polynomial contrasts is shown here compared with the pooled ’lack of fit’ term shown
in Tables 4 and 5.

The third stage fits a quadratic regression model with linear and quadratic terms only. This model
provides the model coefficients, standard errors and the confidence intervals shown in Table 6 of
Piepho and Edmondson (2018). A set of diagnostic plots are fitted for the fitted quadratic regression
model to check the validity of the model assumptions.

Finally, a smoothed quadratic graph of the yield versus the N rate is plotted to show the goodness of
fit of the quadratic regression model. This plot corresponds to plot Fig 3 in Piepho and Edmondson
(2018).

agriTutorial: return to home page if you want to select a different example

References

Petersen, R.G. (1994). Agricultural field experiments. Design and analysis. New York: Marcel
Dekker.

Piepho, H. P, and Edmondson. R. N. (2018). A tutorial on the statistical analysis of factorial
experiments with qualitative and quantitative treatment factor levels. Journal of Agronomy and
Crop Science. DOI: 10.1111/jac.12267. View

Examples
H#H# x% FhKIKIK IR K AR FhKIKIK IR KA FhKIKIK IR KA
## How to run the code
HHE Kkxkxk * * KKk * * kKK * * kKK

## Either type example(”example2") to run ALL the examples succesively
## or copy and paste examples sucessively, as required

b R R e R Rt R R R R R R R R R R R R R R R S S S T e 2

#it Options and required packages
e R R E T T R R R R R R T P R L P T T T T e T

options(contrasts = c('contr.treatment', 'contr.poly'))
## ggplot2 MUST be installed
require(ggplot2)

b R R R R R e R T 2

## Polynomial analysis and graphical plots of factorial treatment effects
##t

N = poly((beet$nrate/100), degree = 4, raw = TRUE)
colnames(N) = c("Linear_N", "Quadratic_N", "Cubic_N", "Quartic_N")
beet = cbind(beet, N)

## Tables 4 and 5: Full polynomial analysis of variance based on raw polynomials
anova(lm(yield ~ Replicate + Linear_N + Quadratic_N + Cubic_N + Quartic_N, data = beet))

## Table 6: showing quadratic model coefficients with standard errors and confidence intervals
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quadratic = Im(yield ~ Replicate + Linear_N + Quadratic_N, data = beet)
summary (quadratic)
confint(quadratic, level = 0.95)

par(mfrow = c(2, 2), oma = c(@, @, 2, 0))
plot(quadratic, sub.caption = NA)
title(main = "Diagnostic plots for quadratic nitrogen effects model”, outer = TRUE)

ggplot(beet, aes(x = nrate, y = yield)) +

ggtitle("Fig 3 Yield versus N for sugar beet with 95% confidence band") +
geom_point(shape = 1) + stat_summary(fun.y = mean, geom = "point") +
geom_smooth(method = 1Im, formula = y ~ poly(x, 2)) + theme_bw()

example3 Example 3: Polynomial regression model with two quantitative level
treatment factors

Description

(Gomez & Gomez, 1984, p. 401) report a two-factor nitrogen uptake greenhouse experiment on
rice involving duration of water stress (W) and level of nitrogen application (N) with four complete
replicates of each treatment. The experiment had four water-stress levels (0, 10, 20 and 40 days)
applied as main-plot treatments and four nitrogen rates (0, 90, 180 and 270 kg/ha) applied as sub-
plot treatments. The four sub-plot treatments were randomized within main plots and the four main
plot treatments were randomized within complete replicate blocks.

Details

The first stage of the analysis is the calculation of polynomial powers of N and W using the poly()
function. The N rates are re-scaled by division by 100 while the W rates are re-scaled by division
by 10.

The second stage shows a Pearson residual plot of the untransformed N uptake data versus a Pearson
residual plot of the log transformed N uptake data. Comparison of the two plots shows that the
untransformed residuals increase as the fitted values increase whereas the log transformed N uptake
residuals are approximately constant over the full range of the fitted values. This shows that a log
transformation of the N uptake data gives a dependent variate with constant variance over the full
range of fitted values which shows that a simple unweighted analysis of variance is valid for the
effects of the treatment factors.

Sometimes the original scale of measurement is the proper scale of measurement for an analysis,
e.g. an analysis of actual measured crop yields, and then it might be appropriate to fit a weighted
analysis of variance in the original scale of measurement of the dependent variable (see Faraway
2002 Chapter 5). However, the log transformation model assumes a proportional rather than an
additive model for treatment effects and, in this example, a proportional model for nitrogen uptake
may well be a more natural physiological model than a simple additive model.

The next stage compares the fit of a first-order linear model (Table 9) versus a second-order quadratic
model (Table 10). The first-order model shows significant lack-of-fit and is not adequate for the data.
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The second-order model is also not fully adequate for the data as there is a significant N lack of fit
term indicating a significant cubic effect. However, the magnitude of the cubic effect is relatively
small and it will be assumed here that a quadratic model is adequate for the data.

The final stage fits regression coefficients for the quadratic response surface model on the re-scaled
water stress and re-scaled nitrogen rate treatments. The fitted coefficients are then used to plot the
fitted quadratic log uptake curves versus the nitrogen rate treatments and the water stress treatments,
as shown in Fig 4.

Note that in this analysis all the polynomial models are built by adding individual polynomial effects
in accordance with the requirements of functional marginality.

agriTutorial: return to home page if you want to select a different example

References

Faraway J (2002) Practical Regression and Anova using R. https://cran.r-project.org/doc/contrib/Faraway-
PRA .pdf

Gomez, K.A., & Gomez, A.A. (1984). Statistical procedures for agricultural research, 2nd edn.
New York: Wiley.

Piepho, H. P, and Edmondson. R. N. (2018). A tutorial on the statistical analysis of factorial
experiments with qualitative and quantitative treatment factor levels. Journal of Agronomy and
Crop Science. DOI: 10.1111/jac.12267. View

Examples

## KER K KRR KRR KRR KRR R R AR R R AR R AR R AR R AR KRR AR KRR AR AR KA AR AR AR AR KA A KR AR R KRR AR A AR A AR A AR ARk AA Rk k%)
## How to run the code

it Kkxkxk *Kkkk *Kkkk *Kkkk

## Either type example(”example3"”) to run ALL the examples succesively
## or copy and paste examples sucessively, as required

b R R R R R R R R R R R R R R R R R R R R e R e S S S T e T

#it Options and required packages
R R R E T T R T R L R R R L R T R L P R L P P T T P T T e T

require(lmerTest)
require(lattice)
require(pbkrtest)
options(contrasts = c('contr.treatment', 'contr.poly'))

b e R R e R R R R R R R R R R R R R R R R R R e e S S e e e 2

#it Section 1: Polynomial powers of N and W
b R R R E T T R R L R R R L L R L R T P L P L P P T T P T T e T

greenrice$loguptake = log(greenrice$uptake)
greenrice$Nitrogen = factor(greenrice$N)
greenrice$Water = factor(greenrice$W)

PolW = poly((greenrice$W/10), degree = 2, raw = TRUE)
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colnames(PolW) = c("Linear_W", "Quadratic_W")

PoIN = poly((greenrice$N/100), degree = 2, raw = TRUE)
colnames(PolIN) = c("Linear_N", "Quadratic_N")
greenrice = cbhind(greenrice, PolW, PolN)

## residual plot of untransformed N uptake data

greenrice.uptake = lmer(uptake ~ Replicate + factor(N) * factor(W) +
(1|Replicate:Main), data = greenrice)

plot(greenrice.uptake, main = "Pearson residual plot for untransformed N uptake”,
ylab = "Residuals N uptake")

## residual plot of log transformed N uptake data

greenrice.loguptake = lmer(loguptake ~ Replicate + factor(N) x factor(W) +
(1|Replicate:Main), data = greenrice)

plot(greenrice.loguptake, main = "Pearson residual plot for log transformed N uptake”,
ylab = "Residuals log N uptake")

## Table 9: first-order model of log uptake with Wald tests

greenrice.lmer1 = lmer(loguptake ~ Linear_N + Linear_W + Nitrogen * Water +
(1|Replicate) + (1|Replicate:Main), data = greenrice)

anova(greenrice.lmerl1, ddf = "Kenward-Roger”, type = 1)

## Table 10: second-order model of log uptake with Wald tests

greenrice.lmer2 = lmer(loguptake ~ Linear_N * Linear_W + Quadratic_N + Quadratic_W +
Nitrogen * Water + (1|Replicate) + (1|Replicate:Main), data = greenrice)
anova(greenrice.lmer2, ddf = "Kenward-Roger", type = 1)

b O R R R L R R R R S S e T e 2

#it Section 2 : Fitted regression models and quadratic log uptake curves
#H#

## Regression coefficients of quadratic response model of W and N
greenrice.lmer® = lmer(loguptake ~ Linear_N * Linear_W + Quadratic_N +
Quadratic_W + (1|Replicate) + (1|Replicate:Main), data = greenrice)

summary(greenrice.lmer@, ddf = "Kenward-Roger”, type = 1)

## Fig 4a fitted quadratic loguptake curve versus water stress treatments
panel.plot = function(x, y) {
panel.xyplot(x, y) # shows observed points
Nitrogen = c(@, .90, 1.80, 2.70)[panel.number()]
panel.curve(-1.16 + 0.17603 * x - 0.11599 * x * x + 0.68 * Nitrogen -
0.0938 * Nitrogen * Nitrogen - ©0.09072 * x * Nitrogen,
from = @, to = 4.0, type = "1", 1lwd = 2)
3
xyplot(loguptake ~ Linear_W|factor(Linear_N), data = greenrice,
scales = list(x = list(at = c(0, 1, 2, 4), labels = c(0, 10, 20, 40))),
main = "Fig 4a: logN uptake versus water stress”,
xlab = " Water stress (days)”, ylab = "Log nitrogen uptake (g/pot)”,
strip = strip.custom(strip.names = TRUE,
factor.levels = c("0", "90", "180", "270")),
panel = panel.plot)
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## Fig 4b fitted quadratic quadratic loguptake curve versus nitrogen rate treatments
panel.plot = function(x, y) {
panel.xyplot(x, y) # shows observed points
Water = c(@, 1.0, 2.0, 4.09)[panel.number()]
panel.curve( -1.16 + 0.17603 * Water - 0.11599 * Water * Water +
0.68 * x - 0.0938 * x * X - 0.09072 *x Water * x ,
from = @, to = 2.70, type = "1", lwd = 2)
3
xyplot(loguptake ~ Linear_N|factor(Linear_W), data = greenrice,
scales = list(x = list(at = c(0, .9, 1.8, 2.7), labels = c(0, 90, 180, 270))),
main = "Fig 4b: logN uptake versus nitrogen rate”,
xlab = "Nitrogen (kg/ha)", ylab = "Log nitrogen uptake (g/pot)”,
strip = strip.custom(strip.names = TRUE,
factor.levels = c("@", "10", "20", "40")),
panel = panel.plot)

## Fig 4a backtransformed quadratic loguptake curve versus water stress treatments
panel.plot = function(x, y) {

panel.xyplot(x, y) # shows observed points

Nitrogen = c(@, .90, 1.80, 2.70)[panel.number()]

panel.curve( exp(-1.16 + 0.17603 * x - ©.11599 * x * x + 0.68 * Nitrogen -

0.0938 * Nitrogen * Nitrogen - 0.09072 * x * Nitrogen),

from = @, to = 4.0, type = "1", 1lwd = 2)

3

xyplot(uptake ~ Linear_W|factor(Linear_N), data = greenrice,

scales = list(x = list(at = c(0, 1, 2, 4), labels = c(0, 10, 20, 40))),
main = "Fig 4a: Back transformed N uptake versus water stress”,

xlab = " Water stress (days)”, ylab = "Nitrogen uptake (g/pot)”,

strip = strip.custom(strip.names = TRUE,

factor.levels = c("0", "90", "180", "270")),

panel = panel.plot)

## Fig 4b back transformed quadratic loguptake curve versus nitrogen rate treatments
panel.plot = function(x, y) {
panel.xyplot(x, y) # shows observed points
Water = c(0, 1.0, 2.0, 4.0)[panel.number()]
panel.curve(exp(-1.16 + 0.17603 * Water - 0.11599 * Water * Water +
0.68 * x - 0.0938 * x * x - 0.09072 * Water * x),
from = @, to = 2.70, type = "1", lwd = 2)
3
xyplot(uptake ~ Linear_N|factor(Linear_W), data = greenrice,
scales = list(x = list(at = c(0, .9, 1.8, 2.7), labels = c(0, 90, 180, 270))),
main = "Fig 4b: Back transformed N uptake versus nitrogen rate”,
xlab = "Nitrogen (kg/ha)", ylab = "Nitrogen uptake (g/pot)",
strip = strip.custom(strip.names = TRUE,
factor.levels = c("0", "10", "20", "40")),
panel = panel.plot)
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example4 Example 4: One qualitative treatment factor with repeated measure-
ments over time.

Description

Milliken & Johnson (1992, p. 429) discuss data which they describe as repeated leaf index mea-
surements on sorghum. Their data set comprises five replicate blocks of four sorghum varieties and
they assume equally spaced repeated measurements on each plot in each block on five consecutive
occasions starting two weeks after emergence. No further information is given but it appears that the
data is simulated or made-up rather than real. Although real data is more authentic, it can sometimes
be useful to discuss the analysis of an example data set from the literature, even when the data is
simulated. Milliken & Johnson discuss multivariate analysis of variance of the data but this method
take no account of the ordered relationship between repeated observations or the likely correlation
structure of the data and we will discuss alternative correlation models that are specifically intended
to account for the underlying structure of repeated measures data. The interested reader can, if
desired, refer to Milliken & Johnson (1992) Chapter 31 for comparison of the different approaches.

Details

Section 1 calculates polynomials for weeks and blocks using the poly() function. Two sets of
polynomials for weeks, raw and orthogonal, are calculated and saved as sorghum$rawWeeks and
sorghum$polWeeks respectively. Orthogonal polynomials for blocks are calculated and saved as
sorghum$polBlocks. It is important to note that the poly() function calculates all polynomial
contrasts up to the required degree but does NOT include the zero-degree polynomial. Additionally,
the block variable varblock is saved as a factor factblock.

Section 2 compares five different correlation structures for the repeated measures analysis using
the gls() function of the nlme package. Each analysis fits a full factorial model for the variety-
by-weeks and blocks-by-weeks effects assuming block and treatment additivity. The goodness of
fit of the five models is compared by AIC statistics where the smaller the AIC the better the fit.
Here, the AR(1)+nugget model fitted by the corExp() function gave the best fitting model. See
help(corExp)for further information about the corExp() function. Note that corSymm represents a
general correlation structure and will, presumably, give an analysis similar to a multivariate anal-
ysis of variance. Although this structure appears to give the best fit according to the negative log
likelihood statistic, this criterion takes no account of the number of estimated variance parameters
p in the variance model which, in the case of the corSymm model, is p = 15, compared to only p =2
for the AR(1) model. When assessed by the AIC statistic, the corSymm model gave the least good fit
of any of the non-null correlation structures which is strong evidence that the multivariate analysis
of variance method discussed by Milliken & Johnson (1992) will lack power.

Section 3 fits a full regression model over the five weeks of repeated measures and tests for pos-
sible variety and variety-by-weeks interactions effects. The weeks factor is decomposed into indi-
vidual polynomial contrasts (see Table A2 and Table 14) to test the significance of each individual
variety-by-weeks polynomial effect. The analysis of polynomial contrasts shows that the variety-
by-weeks interaction is due mainly to the degree-1 = variety:rawWeeks[, 1] and the degree-2 =
variety:rawWeeks[, 2] effects, although there is also some evidence of higher-degree variety-by-
weeks interaction effects. The analysis also shows the corExp() range and nugget statistics for
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the full fitted model and these are used to calculate the correlation coefficient usingthe formula
rho=(1-nugget)*exp(-1/range). Note that this formula is different from the the formula used in
Tables Al and A2 and will give a different value of rho: see help(corkxp).

Section 4 fits a quadratic regression model for weeks assuming the degree-3 and degree-4 polyno-
mial week effects are zero. The average effects of blocks are fitted by polBlocks and the interac-
tions between the blocks and the weeks are fitted by polBlocks: (rawWeeks[, 1] + rawWeeks[, 2]
+ polWeeks[, 3]+ polWeeks[,4]). The gls() algorithm requires the same polynomial weeks con-
trasts in both the blocks and the varieties models which is why raw degree-1 and degree-2 weeks
contrasts have been used for the blocks-by-weeks interaction model. However, orthogonal poly-
nomials have better numerical stability than raw polynomials so orthogonal polynomial contrasts
have been used for the degree-3 and degree-4 weeks contrasts. The summary analysis shows all
variety effects as differences from the intercept which, in this analysis, is variety 1 therefore all
model effects in Table 15 can be derived by adding appropriate effects to the intercept. If SED’s
are required, these must be calculated from the variance/covariance matrix which can be extracted
by the code vcov (). Using this matrix, the SED for variety differences was calculated to be 0.172,
the SED for the variety-by-linear weeks slope parameters was calculated to be 0.117 and the SED
for the variety-by-quadratic weeks slope parameters was calculated to be 0.0192. These estimates
are approximately 2-3 percent larger than those shown in Table 15 but it is not clear if the discrep-
ancies are due to the model specification or to a difference between the R and the SAS software.
Possibly the implementation of the Kenward-Roger method of adjusting the denominator d.f. and
the estimated variance-covariance matrix of the estimated fixed effects might be different for the
two algorithms. The range, nugget and correlation coefficient are extracted and displayed and a
graphical plot of the studentized residuals from the quadratic regression model is also shown.

Section 5 fits a quadratic regression model for variety-by-week interaction effects assuming a full
degree-4 polynomial model for weeks and blocks-by-weeks effects. The quadratic regression model
in Section 4 corresponds to the regression model used for Tables 14 and 15 of Piepho and Edmond-
son (2018) but the range = 3397131013 and nugget = 0.4605535 of this model are very different
from the range = 10.35774 and nugget = 0.1720444 of the full factorial model. As there is evidence
from Table A2 that the degree-3 and degree-4 polynomial weeks effects are non-negligible, the
quadratic model for weeks effects in Section 4 may be inadequate for the data and the model may
be underfitted. In this section, the assumption that the degree-3 and degree-4 polynomial weeks ef-
fects are zero is relaxed and a full degree-4 model for weeks and block-by-weeks interaction effects
is fitted. The fitted model for treatment effects needs to be as parsimonious as possible to ensure that
estimates of treatment effects are robust against model assumptions and a degree-2 regression model
for variety-by-weeks effects appears to be the most appropriate treatment model for this data. With
this model, the values of the auto-correlation parameters are: range = 42.75763, nugget = 0.3586337
and correlation = 0.6265403 which are much closer to the autocorrelation parameters from the full
factorial model than are those from Section 4. As the model fits the full polynomial weeks model,
it is not necessary to use polynomial blocks contrasts which gives a substantial simplification in
coding.

Comment The model fitted in Section 5 appears to be the best model available based on the gen-
eralized least squares method but it is clear from the graphical plots of studentized residuals that
the fitted data contains outliers that are not well accommodated by the fitted model. If the data
was from a real experiment, further information about the data might be available but as the data
seems to be artificial this option is not available. In this situation, various robust methods of model
fitting or regression analysis that can accommodate non-standard distributions or model outliers are
available. However, these methods are beyond the scope of this tutorial and will not be discussed
further here.
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## KRR KRR KRR AR R AR R R R R R A R R AR R AR R A A R A AR R AR R A AR A AR A AR R AR KR AR KRR A KR AR R KA AR R AKRRAR KR AR KRR AR R ARk A k)%
#it How to run the code
## *kk *kk *kk

## Either type example(”example4") to run ALL the examples succesively
## or copy and paste examples sucessively, as required

it Kkxkkkkkkkkkxkkk Kk kkkkkkkkkkkkkkk Kk kkkkkkkkkkkkkkk *Kkkkkkkkkk

#it Options and required packages
B R R R B R R R R B R R R R R R e P T L S P T P e e T

options(contrasts = c('contr.treatment', 'contr.poly'))
require(nlme)

b R R R R e R S T T

#i# Section 1: Polynomials for weeks and blocks contrasts

it Kkxkxk *Kkkk *Kkkk *Kkkk

sorghum$rawWeeks = poly(sorghum$varweek, degree = 4 = TRUE)
sorghum$polWeeks = poly(sorghum$varweek, degree = 4, raw = FALSE)
sorghum$polBlocks = poly(sorghum$varblock, degree = 4, raw = FALSE)
sorghum$factblock = factor(sorghum$varblock)

S

Q

=
1

b R R R R D R T e T

## Section 2: Various correlation models assuming full factorial blocks and weeks model
##

AIC = NULL
loglik = NULL
Model = c("ID"”, "CS", "AR(1)", "AR(1) + nugget”, "UN")

## independent uncorrelated random plots

full_indy = gls(y ~ factweek * (Replicate + variety), sorghum)
anova(full_indy)

AIC = c(AIC, AIC(full_indy))

loglik = c(logLik, loglLik(full_indy))

## corCompSymm compound symmetry
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corCompSymm = gls(y ~ factweek x (Replicate + variety),
corr = corCompSymm(form = ~ varweek|factplot), sorghum)
anova(corCompSymm)

AIC = c(AIC, AIC(corCompSymm))

loglik = c(logLik, loglLik(corCompSymm))
Variogram(corCompSymm)

## corExp without nugget

corExp = gls(y ~ factweek * (Replicate + variety),
corr = corExp(form = ~ varweek|factplot), sorghum)
anova(corkxp)

AIC = c(AIC, AIC(corExp))

loglik = c(loglLik, loglLik(corExp))

Variogram(corExp)

## corExp with nugget
corExp_nugget = gls(y ~ factweek * (Replicate + variety),
corr = corExp(form = ~ varweek|factplot, nugget = TRUE), sorghum)
anova(corExp_nugget)
AIC = c(AIC, AIC(corExp_nugget))
loglik = c(loglLik, logLik(corExp_nugget))
Variogram(corExp)

## corSymm unstructured

corSymm = gls(y ~ factweek * (Replicate + variety), corr = corSymm(form = ~ 1|factplot),
weights = varIdent(form = ~ 1|varweek), sorghum)
anova(corSymm)

AIC = c(AIC, AIC(corSymm))
loglik = c(logLik, logLik(corSymm))
Variogram(corSymm)

## Table 11 Comparison of log Likelihood and AIC statistics for different correlation structures
dAIC = AIC - AIC[4]

loglik = -2 * loglLik

dlogLik = loglLik - logLik[4]

AICtable = data.frame(Model, round(logLik, 2), round(dloglLik, 2), round(AIC, 2), round(dAIC, 2))
colnames(AICtable) = c("Covar_Model”, "-2logLr"”, "-diff2logLr"”, "AIC", "diffAIC")

AICtable

b e R R R R R R R R R R R R R S e T T 2

## Section 3: Factorial block and variety effects assuming full polynomial week effects
#H# Kkk K%k k%

## Table A2 (cf Table 14) Sequential Wald tests for full model sorghum data

pol_Wald =

gls(y ~ (factblocktvariety) * (rawWeeks[,1] + rawWeeks[,2] + polWeeks[,3] + polWeeks[,4]),
corr = corExp(form = ~ varweek | factplot, nugget = TRUE), sorghum)

anova(pol_Wald)

range=coef (pol_Wald$modelStruct$corStruct,unconstrained=FALSE)[1]

nugget=coef (pol_Wald$modelStruct$corStruct,unconstrained=FALSE)[2]
rho=(1-nugget)*exp(-1/range)

cat("Range =", range, "\n")

cat("Nugget =", nugget, "\n")
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cat("Correlation =", rho, "\n")
ACF (pol_Wald)
plot(pol_Wald,sub.caption = NA, main = "Residuals from full polynomial weeks model")

HHE Jokkokkokok ok ok skok ok ok ok ok ok ook ook ook ook ook ko ko ok ok ok ook ok ook ook ok ko ok ok ok ke ok ook ok ook ok ko ok ko ok ook ok ok ok ok ok ko
## Section 4: Degree-2 model for weeks-by-variety and weeks-by-blocks effects assuming
## degree-3 and degree-4 week effects are zero

## R R R R e R S S R e R S R S R e S S R e R S R S e T e e e e 2 e

## Table 15 coefficients assuming a quadratic weeks model for both block and treatment effects
quad_Wald = gls(y ~ polBlocks + variety + rawWeeks[,1] + rawWeeks[,2] +
polBlocks: (rawWeeks[,1] + rawWeeks[,2]+ polWeeks[,3] + polWeeks[,4]) +

variety: (rawWeeks[,1] + rawWeeks[,2]),

corr = corExp(form = ~ varweek | factplot, nugget=TRUE), sorghum)
anova(quad_Wald)

summary (quad_Wald)$tTable

vecov (quad_Wald)

range=coef (quad_Wald$modelStruct$corStruct,unconstrained=FALSE)[1]
nugget=coef (quad_Wald$modelStruct$corStruct,unconstrained=FALSE)[2]
rho=(1-nugget)*exp(-1/range)

cat("Range =", range, "\n")

cat("Nugget =", nugget, "\n")

cat("Correlation =", rho, "\n")

plot(quad_Wald,sub.caption = NA, main = "Residuals from quadratic regression model"”)

HHE Sokkokk ook ok ok ok ko ok ok ok ok ook ook ook ook ook ok ok ok ok ok ok ook ok ok ook ok ok ok ok ok ook ok ok ook ok ko ok ok ok ok ok ook ok ok ook ok ok ko

## Section 5: Quadratic model for weeks-by-variety effects assuming full degree-4 model
## for weeks and weeks-by-blocks effects

H#it R e e S e Tt

## Model assuming a quadratic variety-by-weeks model and quartic blocks-by-weeks model
quad_Wald = gls(y ~ Replicate * (rawWeeks[,1] + rawWeeks[,2] + polWeeks[,3] + polWeeks[,4]) +
variety * (rawWeeks[,1] + rawWeeks[,2]),
corr = corExp(form = ~ varweek | factplot, nugget = TRUE), sorghum)
anova(quad_Wald)
summary (quad_Wald)$tTable
range=coef (quad_Wald$modelStruct$corStruct,unconstrained=FALSE)[1]
nugget=coef (quad_Wald$modelStruct$corStruct,unconstrained=FALSE)[2]
rho=(1-nugget)*exp(-1/range)
cat("Range =", range, "\n")
cat("Nugget =", nugget, "\n")
cat("Correlation =", rho, "\n")
plot(quad_Wald,sub.caption = NA, main = "Quadratic treatment-by-weeks model with full
blocks-by-weeks model”)

exampleb Example 5: Transformation of treatment levels to improve model fit
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Description

Mead (1988, p. 323) describes an experiment on spacing effects with turnips, which was laid out in
three complete blocks. Five different seed rates (0.5, 2, 8, 20, 32 Ib/acre) were tested in combination
with four different row widths (4, 8, 16, 32 inches), giving rise to a total of 20 treatments.

Details

Transformation of the dependent variable will often stabilize the variance of the observations whereas
transformation of the regressor variables will often simplify the fitted model. In this example, the fit
of a regression model based on the original seed rate and row width variables is compared with the
fit of a regression model based on the log transformed seed rates and log transformed row widths.
In each case, the model lack-of-fit is examined by assessing the extra variability explained when the
Density and Spacing treatment factors and their interactions are added to the quadratic regression
models. All yields are logarithmically transformed to stabilize the variance.

The first analysis fits a quadratic regression model of log yields on the untransformed seed rates and
row widths (Table 16) while the second analysis fits a quadratic regression model of log yields on
the log transformed seed rates and log transformed row widths (Table 17). The analysis of variance
of the first model shows that significant extra variability is explained by the Density and Spacing
factors and this shows that a quadratic regression model is inadequate for the untransformed regres-
sor variables. The analysis of variance of the second model, however, shows no significant extra
variability explained by the Density and Spacing factors and this shows that the quadratic regression
model with the log transformed regressor variables gives a good fit to the data and therefore is the
preferred model for the observed data.

The superiority of the model with the log transformed regressor variables is confirmed by comparing
the fit of the quadratic regression model for the untransformed regressor variables (Figs 8 and 9)
versus the fit of the quadratic regression model for the log transformed regressor variables (Figs 10
and 11).

Fig 12a shows diagnostic plots for the fit of a quadratic model with untransformed regressor vari-
ables while Fig 12b shows corresponding diagnostic plots for the fit of a quadratic model with loge
transformed regressor variables. Each of the four types of diagnostic plots in the two figures shows
an improvement in fit for the transformed versus the untransformed regressor variables.

agriTutorial: return to home page if you want to select a different example
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# How to run the code
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b R R R D D e R S T T e 2

## Either type example(”example5") to run ALL the examples succesively
## or copy and paste examples sucessively, as required

#H#

## Options and required packages

HHE Jokkokkokok ok ok kok ok ok ok ok ok ook ook ook ook ook ok sk ok ok ok ok ook ok ook ook ok ok ok ok ok ok ook ook ok ook ok ko ok ok ko ok ook ok ok ok ok ok ko
options(contrasts = c('contr.treatment', 'contr.poly'))

require(lattice)

b O R R R R R e S S T e 2

##  Quadratic regression models with and without transformation of regressor variables
#H

RowSpacing = poly(turnip$rowspacing, 3, raw = TRUE)

colnames(RowSpacing) = c(”"linSpacing”, "quadSpacing"”, "cubSpacing")
Density = poly(turnip$density, 4, raw = TRUE)
colnames(Density) = c(”linDensity”, "quadDensity"”, "cubDensity", "quartDensity")

turnip = cbind(turnip, Density, RowSpacing)

## Log transformed row spacing and density polynomials

logRowSpacing = poly(log(turnip$rowspacing), 3, raw = TRUE)

colnames(logRowSpacing) = c(”linlogSpacing”, "quadlogSpacing”, "cublogSpacing")

logDensity = poly(log(turnip$density), 4, raw = TRUE)

colnames(logDensity) = c(”"linlogDensity"”, "quadlogDensity"”, "cublogDensity"”, "quartlogDensity")
turnip = cbind(turnip, logDensity, logRowSpacing)

## Table 16 Quadratic response surface for untransformed planting density by row spacing model
quad.mod = Im(log_yield ~ Replicate + linDensity * linSpacing + quadDensity + quadSpacing +
Density * Spacing, turnip)

anova(quad.mod)

## Table 17 Quadratic response surface for transformed log planting density by log row spacing
log.quad.mod = Im(log_yield ~ Replicate + linlogDensity * linlogSpacing +

quadlogDensity + quadlogSpacing + Density * Spacing, turnip)

anova(log.quad.mod)

B R R R B R R R R R R R R R R R L R e P T L e P T P e e T
##  Quadratic regression model plots with and without transformations

##  Averaged over replicate blocks to give mean of block effects
b R R R R E B R R D R R R R D R R R R R R R e P T L S P T P e e T

## Quadratic response surface for untransformed planting density by row spacing model
quad.mod = 1lm(log_yield ~ linDensity * linSpacing + quadDensity + quadSpacing , turnip)
quad.mod$coefficients

## Fig 8 Plot of loge yield (lb/plot) versus row width

panel.plot = function(x, y) {

panel.xyplot(x, y) # lattice plot shows observed points

SeedDensity = c(0.5,2,8,20,32)[panel.number()]

panel.curve(1.1146900855 + 0.0284788787 * x -0.0007748656 * x * x + 0.1564753713 *SeedDensity -
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0.0033192569 * SeedDensity* SeedDensity -0.0006749985 * x * SeedDensity,
from = 4, to = 32.0, type = "1", lwd = 2)
3
Seed_Rate=factor(turnip$linDensity)
xyplot(log_yield ~ linSpacing|Seed_Rate, data = turnip,
scales = list(x = list(at = c(10,20,30), labels = c(10,20,30))),
main = "Fig 8: loge yield versus row width”,
xlab = " Row Width ", ylab = "Loge yield ",
strip = strip.custom(strip.names = TRUE,
factor.levels = c("0.5", "2", "8", "20", "32")),
panel = panel.plot)

## Fig 9 Plot of loge yield (lb/plot) versus seed rate

panel.plot = function(x, y) {

panel.xyplot(x, y) # lattice plot shows observed points

RowWidth = c(4, 8, 16, 32)[panel.number()]

panel.curve(1.1146900855 + 0.1564753713 * x - 0.0033192569 * x * x + 0.0284788787 * RowWidth -
0.0007748656% RowWidth * RowWidth -0.0006749985 =* x * RowWidth,
from = 0.5, to = 32.0, type = "1", 1lwd = 2)

3
Row_Width=factor(turnip$linSpacing)
xyplot(log_yield ~ linDensity|Row_Width, data = turnip,

scales = list(x = list(at = c(0,10,20,30), labels = c(0,10,20,30))),
main = "Fig 9: loge yield versus seed rate”,

xlab = " Seed Rate”, ylab = "Loge yield ",

strip = strip.custom(strip.names = TRUE,

factor.levels = c("4", "8", "16", "32")),
panel = panel.plot)

## Quadratic response surface for log transformed planting density by log row spacing model

log.quad.mod = Im(log_yield ~ linlogDensity * linlogSpacing + quadlogDensity + quadlogSpacing,

turnip)

log.quad.mod$coefficients

## Fig 10 Plot of loge yield (lb/plot) versus log row width

panel.plot = function(x, y) {

panel.xyplot(x, y) # lattice plot shows observed points

LogSeedDensity = c(-0.6931472,0.6931472,2.0794415,2.9957323,3.4657359) [panel.number()]

panel.curve( 0.18414803 + 1.09137389 * x - 0.20987137 * x * x + 0.94207543 *LogSeedDensity -
0.10875560 * LogSeedDensity* LogSeedDensity -0.09440938 * x * LogSeedDensity,

from = 1.35, to =3.50, type = "1", 1lwd = 2)

3

xyplot(log_yield ~ linlogSpacing|Seed_Rate, data = turnip,

scales = list(x = list(at = ¢(1.5,2.0,2.5,3.0,3.5), labels = ¢(1.5,2.0,2.5,3.0,3.5))),

main = "Fig 10: loge yield versus loge row width"”,

xlab = " Loge Row Width ", ylab = "Loge yield ",

strip = strip.custom(strip.names = TRUE,

factor.levels = c("0.5", "2", "8", "20", "32")),

panel = panel.plot)

## Fig 11 Plot of loge yield (lb/plot) versus log seed rate
panel.plot = function(x, y) {

panel.xyplot(x, y) # lattice plot shows observed points

LogRowWidth = c(1.386294, 2.079442, 2.772589,3.465736)[panel.number()]
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panel.curve(0.18414803 + ©0.94207543 * x -0.10875560 * x * x + 1.09137389* LogRowWidth -
0.20987137* LogRowWidth * LogRowWidth -0.09440938 * x * LogRowWidth,
from = -0.7 , to = 3.5, type = "1", 1lwd = 2)

}

xyplot(log_yield ~ linlogDensity|Row_Width, data = turnip,

scales = list(x = list(at = ¢(0,1,2,3),labels = ¢(0,1,2,3))),

main = "Fig 11: loge yield versus loge seed rate”,

xlab = " Loge Seed Rate”, ylab = "Loge yield ",

strip = strip.custom(strip.names = TRUE,

factor.levels = c("4", "8", "16", "32")),

panel = panel.plot)

b R R R T B R R R R R L L R R R L R L R L P T T T T e e T
##  Quadratic regression model diagnostic plots with and without transformations
#H

## graphical plots of untransformed data
par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))
fit.quad.mod = Im(log_yield ~ linDensity * linSpacing + quadDensity + quadSpacing,
turnip)
plot(fit.quad.mod, sub.caption = NA)
title(main = "Fig 12a Diagnostics for untransformed sowing density and row spacing”, outer = TRUE)

## graphical plots of log transformed data

par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))

fit.log.quad.mod = 1m(log_yield ~ linlogDensity * linlogSpacing + quadlogDensity +
quadlogSpacing, turnip)

plot(fit.log.quad.mod, sub.caption = NA)

title(main = "Fig 12b Diagnostics for log transformed sowing density and row spacing”, outer = TRUE)

greenrice Rice data for Example 3

Description

(Gomez & Gomez, 1984, p. 401): Nitrogen uptake (g/pot) of rice was studied in a two-factor
greenhouse experiment involving duration of water stress (W) and level of nitrogen application (N).
The experiment had four water-stress levels (0, 10, 20 and 40 days) as main-plot treatments and four
nitrogen rates (0, 90, 180 and 270 kg/ha) as sub-plot treatments. The main plots were randomized in
four complete blocks. Gomez, K.A., & Gomez, A.A. (1984). Statistical procedures for agricultural
research, 2nd edn. New York: Wiley.

Usage

data(greenrice)

Format

An object of class data. frame with 64 rows and 5 columns.



rice 23

rice Rice data for Example 1

Description

Gomez & Gomez (1984, p. 143) report a rice experiment with three management practices (min-
imum, optimum, intensive), five different amounts of nitrogen (N) fertilizer (0, 50, 80, 110, 140
kg/ha), and three varieties (V1, V2, V3). The experiment involved variety and management as
qualitative treatment factors and nitrogen fertilizer as a quantitative treatment factor. Overall, there
were 45 treatment # Gomez, K.A., & Gomez, A.A. (1984). Statistical procedures for agricultural
research, 2nd edn. New York: Wiley.

Usage

data(rice)

Format

An object of class data. frame with 135 rows and 8 columns.

sorghum Sorghum data for Example 4

Description

Milliken & Johnson (1992, p. 429) describe an experiment with four sorghum varieties, in which
the leaf area index was assessed in five consecutive weeks starting two weeks after emergence. The
experiment was laid out in five randomized complete blocks. The observed data are plotted against
week in Figure 5. Milliken, G.A., & Johnson, D.E. (1992). Analysis of messy data. Volume I:
Designed experiments. Boca Raton: CRC Press.

Usage

data(sorghum)

Format

An object of class data. frame with 100 rows and 7 columns.
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turnip Turnip data for Example 5

Description

Mead (1988, p. 323) describes an experiment on spacing effects with turnips, which was laid out in
three complete blocks. Five different seed rates (0.5, 2, 8, 20, 32 Ib/acre) were tested in combination
with four row widths (4, 8, 16, 32 inches), giving rise to a total of 20 treatments. Turnip yields (in 1b
per plot) were logarithmically transformed for analysis because this stabilized the variance (Mead,
1988; also see Figure 12). Mead, R. (1988). The design of experiments. Statistical principles for
practical application. Cambridge: Cambridge University Press.

Usage

data(turnip)

Format

An object of class data. frame with 60 rows and 6 columns.
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