
Package ‘apollo’
March 12, 2025

Type Package

Title Tools for Choice Model Estimation and Application

Version 0.3.5

Description Choice models are a widely used technique across numerous scientific disci-
plines. The Apollo package is a very flexible tool for the estimation and application
of choice models in R. Users are able to write their own
model functions or use a mix of already available ones. Random heterogeneity,
both continuous and discrete and at the level of individuals and
choices, can be incorporated for all models. There is support for both standalone
models and hybrid model structures. Both classical
and Bayesian estimation is available, and multiple discrete
continuous models are covered in addition to discrete choice.
Multi-threading processing is supported for estimation and a large
number of pre and post-estimation routines, including for computing posterior
(individual-level) distributions are available.
For examples, a manual, and a support forum, visit
<http://www.ApolloChoiceModelling.com>. For more information on choice
models see Train, K. (2009) <isbn:978-0-521-74738-7> and Hess,
S. & Daly, A.J. (2014) <isbn:978-1-781-00314-5> for an overview
of the field.

License GPL-2

URL http://www.apolloChoiceModelling.com

BugReports http://www.apolloChoiceModelling.com/forum/

Encoding UTF-8

LazyData true

Depends R (>= 4.3.0), stats, utils

Imports Rcpp (>= 1.0.0), maxLik, mnormt, mvtnorm, graphics,
randtoolbox, numDeriv, parallel, Deriv, matrixStats, RSGHB,
coda, tibble, stringr, bgw (>= 0.1.3), cli, Rsolnp, rstudioapi

LinkingTo Rcpp, RcppArmadillo, RcppEigen

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

1

http://www.ApolloChoiceModelling.com
http://www.apolloChoiceModelling.com
http://www.apolloChoiceModelling.com/forum/

2 Contents

RoxygenNote 7.3.2

NeedsCompilation yes

Author Stephane Hess [aut, cre],
David Palma [aut],
Thomas Hancock [ctb]

Maintainer Stephane Hess <S.Hess@leeds.ac.uk>

Repository CRAN

Date/Publication 2025-03-12 17:00:02 UTC

Contents
.onAttach . 4
apollo_addCovariance . 5
apollo_attach . 5
apollo_avgInterDraws . 6
apollo_avgIntraDraws . 7
apollo_basTest . 9
apollo_bootstrap . 9
apollo_checkArguments . 12
apollo_choiceAnalysis . 13
apollo_classAlloc . 14
apollo_cnl . 15
apollo_cnl2 . 17
apollo_combineModels . 19
apollo_combineResults . 21
apollo_compareInputs . 22
apollo_conditionals . 23
apollo_deltaMethod . 24
apollo_detach . 25
apollo_dft . 26
apollo_diagnostics . 28
apollo_drugChoiceData . 29
apollo_dVdB . 31
apollo_dVdBOld . 31
apollo_el . 32
apollo_emdc . 34
apollo_emdc1 . 35
apollo_emdc2 . 37
apollo_estimate . 38
apollo_estimateHB . 40
apollo_expandLoop . 42
apollo_firstRow . 42
apollo_fitsTest . 43
apollo_fmnl . 44
apollo_fnl . 46
apollo_initialise . 48

Contents 3

apollo_insertComponentName . 48
apollo_insertFunc . 49
apollo_insertOLList . 50
apollo_insertRows . 50
apollo_insertRRMQuotes . 51
apollo_insertScaling . 52
apollo_keepRows . 52
apollo_lc . 53
apollo_lcConditionals . 54
apollo_lcEM . 55
apollo_lcUnconditionals . 57
apollo_llCalc . 57
apollo_loadModel . 58
apollo_longToWide . 59
apollo_lrTest . 59
apollo_makeCluster . 60
apollo_makeDraws . 61
apollo_makeGrad . 62
apollo_makeHessian . 63
apollo_makeLogLike . 64
apollo_mdcev . 65
apollo_mdcev2 . 67
apollo_mdcnev . 69
apollo_mixConditionals . 72
apollo_mixEM . 73
apollo_mixUnconditionals . 74
apollo_mlhs . 75
apollo_mnl . 76
apollo_modeChoiceData . 78
apollo_modelOutput . 79
apollo_modifyUserDefFunc . 80
apollo_nl . 81
apollo_normalDensity . 84
apollo_ol . 86
apollo_op . 88
apollo_outOfSample . 90
apollo_ownModel . 92
apollo_panelProd . 94
apollo_prediction . 95
apollo_prepareProb . 96
apollo_preprocess . 98
apollo_print . 99
apollo_readBeta . 100
apollo_rrm . 101
apollo_saveOutput . 103
apollo_searchStart . 105
apollo_setRows . 107
apollo_setWorkDir . 107

4 .onAttach

apollo_sharesTest . 108
apollo_sink . 109
apollo_speedTest . 110
apollo_swissRouteChoiceData . 111
apollo_timeUseData . 112
apollo_tobit . 113
apollo_unconditionals . 115
apollo_validate . 116
apollo_validateControl . 117
apollo_validateData . 118
apollo_validateHBControl . 119
apollo_validateInputs . 121
apollo_varcov . 124
apollo_varList . 125
apollo_weighting . 126
apollo_writeF12 . 127
apollo_writeTheta . 128
aux_validateRows . 128
print.apollo . 129
summary.apollo . 129

Index 131

.onAttach Prints package startup message

Description

This function is only called by R when attaching the package.

Usage

.onAttach(libname, pkgname)

Arguments

libname Name of library.

pkgname Name of package.

Value

Nothing

apollo_addCovariance 5

apollo_addCovariance Adds covariance matrix to Apollo model

Description

Receives an estimated model object, calculates its Hessian, and classical and robust covariance
matrix, and returns the same model object, but with these additional elements.

Usage

apollo_addCovariance(model, apollo_inputs)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Value

model.

apollo_attach Attaches predefined variables.

Description

Attaches parameters and data to allow users to refer to individual variables by name without refer-
ence to the object that contains them.

Usage

apollo_attach(apollo_beta, apollo_inputs)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This function should be called at the beginning of apollo_probabilities to make writing the
log-likelihood more user-friendly. If used, then apollo_detach should be called at the end of
apollo_probabilities, or more conveniently, using on.exit after the initial call to apollo_attach.
apollo_attach attaches apollo_beta, database, draws, and the output of apollo_randCoeff
and apollo_lcPars, if they are defined by the user.

6 apollo_avgInterDraws

Value

Nothing.

apollo_avgInterDraws Averages across inter-individual draws.

Description

Averages individual-specific likelihood across inter-individual draws.

Usage

apollo_avgInterDraws(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

apollo_avgIntraDraws 7

Value

Argument P with (for most functionalities) the original contents averaged over inter-individual
draws. Shape depends on argument functionality.

• "components": Returns P without changes.

• "conditionals": Returns P without averaging across draws. Drops all components except
"model".

• "estimate": Returns P containing the likelihood of the model averaged across inter-individual
draws. Drops all components except "model".

• "gradient": Returns P containing the gradient of the likelihood averaged across inter-individual
draws. Drops all components except "model".

• "output": Returns P containing the likelihood of all model components averaged across inter-
individual draws.

• "prediction": Returns P containing the probabilities/likelihoods of all alternatives for all
model components averaged across inter-individual draws.

• "preprocess": Returns P without changes.

• "raw": Returns P without changes.

• "report": Returns P without changes.

• "shares_LL": Returns P without changes.

• "validate": Returns P containing the likelihood of the model averaged across inter-individual
draws. Drops all components except "model".

• "zero_LL": Returns P without changes.

apollo_avgIntraDraws Averages across intra-individual draws.

Description

Averages observation-specific likelihood across intra-individual draws.

Usage

apollo_avgIntraDraws(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

8 apollo_avgIntraDraws

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

Argument P with (for most functionalities) the original contents averaged over intra-individual
draws. Shape depends on argument functionality.

• "components": Returns P without changes.
• "conditionals": Returns P containing the likelihood of the model averaged across intra-

individual draws. Drops all components except for "model".
• "estimate": Returns P containing the likelihood of the model averaged across intra-individual

draws. Drops all components except "model".
• "gradient": Returns P containing the gradient of the likelihood averaged across intra-individual

draws. Drops all components except "model".
• "output": Returns P containing the likelihood of all model components averaged across intra-

individual draws.
• "prediction": Returns P containing the probabilities of all alternatives for all model compo-

nents averaged across intra-individual draws.
• "preprocess": Returns P without changes.
• "raw": Returns P without changes.
• "report": Returns P without changes.
• "validate": Returns P containing the likelihood of the model averaged across intra-individual

draws. Drops all components but "model".
• "zero_LL": Returns P without changes.

apollo_basTest 9

apollo_basTest Ben-Akiva & Swait test

Description

Carries out the Ben-Akiva & Swait test for non-nested models and reports the corresponding p-
value.

Usage

apollo_basTest(model1, model2)

Arguments

model1 Either a character variable with the name (and possibly path) of a previously esti-
mated model, or an estimated model in memory, as returned by apollo_estimate.

model2 Either a character variable with the name (and possibly path) of a previously esti-
mated model, or an estimated model in memory, as returned by apollo_estimate.

Details

The two models need to both be discrete choice, and need to have been estimated on the same data.

Value

Ben-Akiva & Swait test p-value (invisibly)

apollo_bootstrap Bootstrap a model

Description

Samples individuals with replacement from the database, and estimates the model for each sample.

Usage

apollo_bootstrap(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings = list(estimationRoutine = "bgw", maxIterations = 200, writeIter =
FALSE, hessianRoutine = "none", printLevel = 2L, silent = FALSE, maxLik_settings =
list()),

bootstrap_settings = list(nRep = 30, samples = NA, calledByEstimate = FALSE, recycle =
TRUE)

)

10 apollo_bootstrap

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
estimate_settings

List. Options controlling the estimation process. See apollo_estimate. hessianRoutine="none"
by default.

bootstrap_settings

List containing settings for the sampling procedure. User input is required for
all settings except those with a default or marked as optional.

• calledByEstimate: Logical. TRUE if apollo_bootstrap is called by
apollo_estimate. FALSE by default.

• nRep: Numeric scalar. Number of times the model must be estimated with
different samples. Default is 30.

• recycle: Logical. If TRUE, the function will look for old output files and
append new repetitions to them. If FALSE, output files will be overwritten.

• samples: Numeric matrix or data.frame. Optional argument. Must have
as many rows as observations in the database, and as many columns as
number of repetitions wanted. Each column represents a re-sample, and
each element the number of times that observation must be included in the
sample. If this argument is provided, then nRep is ignored. Note that this
allows sampling at the observation rather than the individual level, which is
not recommended for panel data.

• seed: DEPRECATED, apollo_control$seed is used since v0.2.5. Nu-
meric scalar (integer). Random number generator seed to generate the boot-
strap samples. Only used if samples is NA. Default is 24.

Details

This function implements a basic block bootstrap. It estimates the model parameters on nRep dif-
ferent samples. Each new sample is constructed by sampling with replacement from the original
full sample. Each new sample has as many individuals as the original sample, though some of them
may be repeated. Sampling is done at the individual level, therefore if different individuals have
different number of observations, each re-sample does not necessarily have the same number of
observations.

apollo_bootstrap 11

If the sampling should be done at the individual level (not recommended for panel data), then the
optional bootstrap_settings$samples argument should be provided.

For each sample, only the parameters and log-likelihood are estimated. Standard errors are not
calculated (they may be added in future versions). The composition of the re-samples is stored in a
file, but is stable with the same seed.

This function writes three different files to the working or output directory:

• modelName_bootstrap_params.csv: estimated parameters, final log-likelihood, and number
of observations for each re-sample

• modelName_bootstrap_samples.csv: composition of each re-sample.

• modelName_bootstrap_vcov.csv: variance-covariance matrix of the estimated parameters
across re-samples.

The first two files are updated throughout the run of this function, while the last one is only written
once the function finishes.

When run, this function will look for the first two files above in the working/output directory. If
they are found, the function will attempt to pick up re-sampling from where those files left off. This
is useful in cases where the original bootstrapping was interrupted, or when additional re-sampling
runs are to be performed.

Value

List with three elements.

• estimates: Matrix containing the parameter estimates for each repetition. As many rows as
repetitions and as many columns as parameters.

• LL: Vector of final log-likelihoods of each repetition.

• varcov: Covariance matrix of the estimated parameters across the repetitions.

This function also writes three output files to the working/output directory, with the following names
(’x’ represents the model name):

• x_bootstrap_params.csv: Table containing the parameter estimates, log-likelihood, and num-
ber of observations for each repetition.

• x_bootstrap_samples.csv: Table containing the description of the sample used in each repe-
tition. Same format than bootstrap_settings$samples.

• x_bootstrap_vcov: Table containing the covariance matrix of estimated parameters across the
repetitions.

12 apollo_checkArguments

apollo_checkArguments Checks definitions of Apollo functions

Description

Checks that the user-defined functions used by Apollo are correctly defined by the user.

Usage

apollo_checkArguments(
apollo_probabilities = NA,
apollo_randCoeff = NA,
apollo_lcPars = NA

)

Arguments

apollo_probabilities

Function. Likelihood function as defined by the user.

apollo_randCoeff

Function. Used with mixing models. Constructs the random parameters of a
mixing model. Receives two arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: The output of this function (apollo_validateInputs).

apollo_lcPars Function. Used with latent class models. Constructs a list of parameters for each
latent class. Receives two arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: The output of this function (apollo_validateInputs).

Details

It only checks that the functions have the correct definition of inputs. It does not run the functions.

Value

Returns (invisibly) TRUE if definitions are correct, and FALSE otherwise.

apollo_choiceAnalysis 13

apollo_choiceAnalysis Reports market share for subsamples

Description

Compares market shares across subsamples in dataset, and conducts statistical tests.

Usage

apollo_choiceAnalysis(choiceAnalysis_settings, apollo_control, database)

Arguments

choiceAnalysis_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar. Note that these need not necessarily
be the alternatives as defined in the model, but could e.g. relate to cheap-
est/most expensive.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

• explanators: data.frame. Variables determining subsamples of the database.
Values in each column must describe a group or groups of individuals (e.g.
socio-demographics). Most usually a subset of columns from the database.

• printToScreen: Logical. TRUE for returning output to screen as well as
file. TRUE by default.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

apollo_control List. Options controlling the running of the code. See apollo_validateInputs.

database data.frame. Data used by model.

Details

Saves the output to a csv file in the working/output directory.

14 apollo_classAlloc

Value

Silently returns a matrix containing the mean value for each explanator for those cases where an
alternative is chosen and where it is not chosen, as well as the t-test comparing those means (H0:
equivalence). The table is also written to a file called modelName_choiceAnalysis.csv and printed
to screen.

apollo_classAlloc Calculates class allocation probabilities for a Latent Class model

Description

Calculates class allocation probabilities for a Latent Class model using a Multinomial Logit model
and can also perform other operations based on the value of the functionality argument.

Usage

apollo_classAlloc(classAlloc_settings)

Arguments

classAlloc_settings

List of inputs of the MNL model. It should contain the following.

• avail: Named list of numeric vectors or scalars. Availabilities of classes,
one element per class Names of elements must match those in classes.
Values can be 0 or 1. These can be scalars or vectors (of length equal to
rows in the database). A user can also specify avail=1 to indicate universal
availability, or omit the setting completely.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• utilities: Named list of deterministic utilities . Utilities of the classes in
class allocation model. Names of elements must match those in avail, if
provided.

Value

The returned object depends on the value of argument functionality, which it fetches from the
calling stack (see apollo_validateInputs).

• "components": Same as "estimate".

• "conditionals": Same as "estimate".

• "estimate": List of vector/matrices/arrays with the allocation probabilities for each class.

apollo_cnl 15

• "gradient": List containing the likelihood and gradient of the model component.

• "output": Same as "estimate".

• "prediction": Same as "estimate".

• "preprocess": Returns a list with pre-processed inputs, based on classAlloc_settings.

• "raw": Same as "estimate".

• "report": Same as "estimate".

• "shares_LL": List with probabilities for each class in an equal shares setting.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": List with probabilities for each class in an equal shares setting.

apollo_cnl Calculates Cross-Nested Logit probabilities

Description

Calculates the probabilities of a Cross-nested Logit model and can also perform other operations
based on the value of the functionality argument.

Usage

apollo_cnl(cnl_settings, functionality)

Arguments

cnl_settings List of inputs of the CNL model. User input is required for all settings except
those with a default or marked as optional.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

• cnlNests: List of numeric scalars or vectors. Lambda parameters for each
nest. Elements must be named according to nests. The lambda at the root
is fixed to 1, and therefore does not need to be defined.

• cnlStructure: Numeric matrix. One row per nest and one column per
alternative. Each element of the matrix is the alpha parameter of that (nest,
alternative) pair.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

16 apollo_cnl

• utilities: Named list of deterministic utilities . Utilities of the alterna-
tives. Names of elements must match those in alternatives.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

For the model to be consistent with utility maximisation, the estimated value of the lambda pa-
rameter of all nests should be between 0 and 1. Lambda parameters are inversely proportional to
the correlation between the error terms of alternatives in a nest. If lambda=1, there is no relevant
correlation between the unobserved utility of alternatives in that nest. Alpha parameters inside
cnlStructure should be between 0 and 1. Using a transformation to ensure this constraint is
satisfied is recommended for complex structures (e.g. logistic transformation).

Value

The returned object depends on the value of argument functionality as follows.

apollo_cnl2 17

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": Not implemented.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the chosen alternative probability.

• "preprocess": Returns a list with pre-processed inputs, based on cnl_settings.

• "raw": Same as "prediction".

• "report": List with tree structure and choice overview.

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate".

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

apollo_cnl2 Calculates Cross-Nested Logit probabilities

Description

Calculates the probabilities of a Cross-nested Logit model and can also perform other operations
based on the value of the functionality argument.

Usage

apollo_cnl2(cnl_settings, functionality)

Arguments

cnl_settings List of inputs of the CNL model. User input is required for all settings except
those with a default or marked as optional.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

18 apollo_cnl2

• cnlNests: List of numeric scalars or vectors. Lambda parameters for each
nest. Elements must be named according to nests. The lambda at the root
is fixed to 1, and therefore does not need to be defined.

• cnlStructure: Numeric matrix. One row per nest and one column per
alternative. Each element of the matrix is the alpha parameter of that (nest,
alternative) pair.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• utilities: Named list of deterministic utilities . Utilities of the alterna-
tives. Names of elements must match those in alternatives.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

For the model to be consistent with utility maximisation, the estimated value of the lambda pa-
rameter of all nests should be between 0 and 1. Lambda parameters are inversely proportional to

apollo_combineModels 19

the correlation between the error terms of alternatives in a nest. If lambda=1, there is no relevant
correlation between the unobserved utility of alternatives in that nest. Alpha parameters inside
cnlStructure should be between 0 and 1. Using a transformation to ensure this constraint is
satisfied is recommended for complex structures (e.g. logistic transformation).

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": Not implemented.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the chosen alternative probability.

• "preprocess": Returns a list with pre-processed inputs, based on cnl_settings.

• "raw": Same as "prediction".

• "report": List with tree structure and choice overview.

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate".

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

apollo_combineModels Combines separate model components.

Description

Combines model components to create likelihood for overall model.

Usage

apollo_combineModels(
P,
apollo_inputs,
functionality,
components = NULL,
asList = TRUE

)

20 apollo_combineModels

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
functionality Character. Setting instructing Apollo what processing to apply to the likelihood

function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.
components Character vector. Optional argument. Names of elements in P that should be

multiplied to construct the whole model likelihood. If a single element is pro-
vided, it is interpreted as a regular expression. Default is to include all compo-
nents in P.

asList Logical. Only used if functionality is "conditionals","estimate","validate","zero_LL"
or "output". If TRUE, it will return a list as described in the ’Value’ section. If
FALSE, it will only return a vector/matrix/3-dim array of the product of likeli-
hoods inside P. Default is TRUE.

Details

This function should be called inside apollo_probabilities after all model components have been
produced.

It should be called before apollo_avgInterDraws, apollo_avgIntraDraws, apollo_panelProd and
apollo_prepareProb, whichever apply, except where these functions are called inside any latent
class components of the overall model.

apollo_combineResults 21

Value

Argument P with (for most functionalities) an extra element called "model", which is the product of
all the other elements. Shape depends on argument functionality.

• "components": Returns P without changes.

• "conditionals": Returns P with an extra component called "model", which is the product
of all other elements of P.

• "estimate": Returns P with an extra component called "model", which is the product of all
other elements of P.

• "gradient": Returns P containing the gradient of the likelihood after applying the product
rule across model components.

• "output": Returns P with an extra component called "model", which is the product of all
other elements of P.

• "prediction": Returns P without changes.

• "preprocess": Returns P without changes.

• "raw": Returns P without changes.

• "shares_LL": Returns P with an extra component called "model", which is the product of all
other elements of P.

• "validate": Returns P with an extra component called "model", which is the product of all
other elements of P.

• "zero_LL": Returns P with an extra component called "model", which is the product of all
other elements of P.

apollo_combineResults Write model results to file

Description

Writes results from various models to a single csv file.

Usage

apollo_combineResults(combineResults_settings = NULL)

Arguments

combineResults_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• estimateDigits: Numeric scalar. Number of decimal places to print for
estimates. Default is 4.

• modelNames: Character vector. Optional names of models to combine.
Omit or use an empty vector to combine results from all models in the
working/output directory.

22 apollo_compareInputs

• pDigits: Numeric scalar. Number of decimal places to print for p-values.
Default is 2.

• printClassical: Boolean. TRUE for printing classical standard errors.
FALSE by default.

• printPVal: Boolean. TRUE for printing p-values. FALSE by default.

• printT1: Boolean. If TRUE, t-test for H0: apollo_beta=1 are printed.
FALSE by default.

• sortByDate: Boolean. If TRUE, models are ordered by date. Default is
TRUE.

• tDigits: Numeric scalar. Number of decimal places to print for t-ratios
values. Default is 2.

Value

Nothing, but writes a file called ’model_comparison_[date].csv’ in the working/output directory.

apollo_compareInputs Compares the content of apollo_inputs to their counterparts in the
global environment

Description

Compares the content of apollo_inputs to their counterparts in the global environment

Usage

apollo_compareInputs(apollo_inputs)

Arguments

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Value

Logical. TRUE if the content of apollo_inputs is the same than the one in the global environment,
FALSE otherwise.

apollo_conditionals 23

apollo_conditionals Calculates conditionals

Description

Calculates posterior expected values (conditionals) of random coefficient models (continuous or
discrete mixtures/latent class)

Usage

apollo_conditionals(model, apollo_probabilities, apollo_inputs)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This functions is only meant for use with models using either continuous distributions or latent
classes, not both at the same time

Value

Depends on whether the model uses continuous mixtures or latent class.

• If the model contains a continuous mixture, the function returns a list of matrices. Each
matrix has dimensions nIndiv x 3. One matrix per random component. Each row of each
matrix contains the indivID of an individual, and the posterior mean and s.d. of this random
component for this individual.

• If the model contains latent classes, the function returns a matrix with the posterior class
allocation probabilities for each individual.

• If the model contains both continuous mixtures and latent classes, the function fails.

24 apollo_deltaMethod

apollo_deltaMethod Delta method for Apollo models

Description

Applies the Delta method to calculate the standard errors of transformations of parameters.

Usage

apollo_deltaMethod(model, deltaMethod_settings)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
deltaMethod_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• expression: Character vector. A character vector with a single or multi-
ple arbitrary functions of the estimated parameters, as text. For example:
c(VTT="b1/b2*60"). Each expression can only contain model parameters
(estimated or fixed), numeric values, and operands. At least one of the pa-
rameters used needs to not have been fixed in estimation. Variables in the
database cannot be included. If the user does not provide a name for an
expression, then the expression itself is used in the output. If this setting is
provided, then operation, parName1, parName2, multPar1 and multPar2
are ignored.

• allPairs: Logical. If set to TRUE, Delta method calculations are carried
out for the ratio and difference for all pairs of parameters and returned as
two separate matrices with values and t-ratios. FALSE by default.

• varcov: Character. Type of variance-covariance matrix to use in calcula-
tions. It can take values "classical", "robust" and "bootstrap". De-
fault is "robust".

• printPVal: Logical or Scalar. TRUE or 1 for printing p-values for one-
sided test, 2 for printing p-values for two-sided test, FALSE for not printing
p-values. FALSE by default.

• operation: Character. Function to calculate the delta method for. See
details. Not used if expression is provided.

• parName1: Character. Name of the first parameter if operation is used.
See details. Not used if expression is provided.

• parName2: Character. Name of the second parameter if operation is used.
See details. Not used if expression is provided.. Optional depending on
operation.

• multPar1: Numeric scalar. An optional value to scale parName1. Not used
if expression is provided.

• multPar2: Numeric scalar. An optional value to scale parName2. Not used
if expression is provided.

apollo_detach 25

Details

apollo_deltaMethod can be used in two ways. The first and recommended way is to provide
an element called expression inside its argument deltaMethod_settings. expression should
contain the expression or expressions for which the standard error is/are to be calculated, as text.
For example, to calculate the ratio between parameters b1 and b2, expression=c(vtt="b1/b2")
should be used.

The second method is to provide the name of a specific operation inside deltaMethod_settings.
The following five operations are supported.

• diff: Calculates the s.e. of parName1 - parName2 and parName2 - parName1

• exp: Calculates the s.e. of exp(parName1)

• logistic: If only parName1 is provided, it calculates the s.e. of exp(parName1)/(1+exp(parName1))
and 1/(1+exp(parName1)). If parName1 and parName2 are provided, it calculates exp(par_i)/(1+exp(parName1)+exp(parName2))
for i=1, 2, and 3 (par_3 = 1).

• lognormal: Calculates the mean and s.d. of a lognormal distribution based on the mean
(parName1) and s.d. (parName2) of the underlying normal.

• prod: Calculates the s.e. of parName1*parName2

• ratio: Calculates the s.e. of parName1/parName2 and parName2/parName1

• sum: Calculates the s.e. of parName1 + parName2

By default, apollo_deltaMethod uses the robust covariance matrix. However, the user can change
this through the varcov setting.

Value

Matrix containing value, s.e. and t-ratio resulting from the requested expression or operation. This
is also printed to screen.

apollo_detach Detaches parameters and the database.

Description

Detaches variables attached by apollo_attach.

Usage

apollo_detach(apollo_beta = NA, apollo_inputs = NA)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

26 apollo_dft

Details

This function detaches the variables attached by apollo_attach. It should be called at the end of
apollo_probabilities, only if apollo_attach was called and the beginning. This can also be
achieved by adding the line on.exit(apollo_detach(apollo_beta, apollo_inputs)) right af-
ter calling apollo_attach. This function can also be called without any arguments, i.e. apollo_detach().

Value

Nothing.

apollo_dft Calculate DFT probabilities

Description

Calculate probabilities of a Decision Field Theory (DFT) model and can also perform other opera-
tions based on the value of the functionality argument.

Usage

apollo_dft(dft_settings, functionality)

Arguments

dft_settings List of settings for the DFT model. It should contain the following elements.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• altStart: A named list with as many elements as alternatives. Each ele-
ment can be a scalar or vector containing the starting preference value for
the alternative.

• attrScalings: A named list with as many elements as attributes, or fewer.
Each element is a factor that scale the attribute, and can be a scalar, a vector
or a matrix/array. They do not need to add up to one for each observation.
attrWeights and attrScalings are incompatible, and they should not be
both defined for an attribute. Default is 1 for all attributes.

• attrValues: A named list with as many elements as alternatives. Each
element is itself a named list of vectors of the alternative attributes for each
observation (usually a column from the database). All alternatives must
have the same attributes (can be set to zero if not relevant).

apollo_dft 27

• attrWeights: A named list with as many elements as attributes, or fewer.
Each element is the weight of the attribute, and can be a scalar, a vector with
as many elements as observations, or a matrix/array if random. They should
add up to one for each observation and draw (if present), and will be re-
scaled if they do not. attrWeights and attrScalings are incompatible,
and they should not be both defined for an attribute. Default is 1 for all
attributes.

• choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• procPars: A list containing the four DFT ’process parameters’
– error_sd: Numeric scalar or vector. The standard deviation of the the

error term in each timestep.
– timesteps: Numeric scalar or vector. Number of timesteps to consider.

Should be an integer bigger than 0.
– phi1: Numeric scalar or vector. Sensitivity.
– phi2: Numeric scalar or vector. Process parameter.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.

28 apollo_diagnostics

• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": Not implemented.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the chosen alternative probability.

• "preprocess": Returns a list with pre-processed inputs, based on dft_settings.

• "raw": Same as "prediction"

• "report": Choice overview.

• "shares_LL": Not implemented. Returns a vector of NA with as many elements as observa-
tions.

• "validate": Same as "estimate"

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

References

Hancock, T.; Hess, S. and Choudhury, C. (2018) Decision field theory: Improvements to current
methodology and comparisons with standard choice modelling techniques. Transportation Research
107B, 18 - 40. Hancock, T.; Hess, S. and Choudhury, C. (Submitted) An accumulation of prefer-
ence: two alternative dynamic models for understanding transport choices. Roe, R.; Busemeyer, J.
and Townsend, J. (2001) Multialternative decision field theory: A dynamic connectionist model of
decision making. Psychological Review 108, 370

apollo_diagnostics Pre-process input for common models return

Description

Pre-process input for common models return

apollo_drugChoiceData 29

Usage

apollo_diagnostics(inputs, modelType, apollo_inputs, data = TRUE, param = TRUE)

Arguments

inputs List of settings

modelType Character. Type of model, e.g. "mnl", "nl", "cnl", etc.

apollo_inputs List of main inputs to the model estimation process. See apollo_validateInputs.

data Boolean. TRUE for printing report related to dependent and independent vari-
ables. FALSE for not printing it. Default is TRUE.

param Boolean. TRUE for printing report related to estimated parameters (e.g. model
structure). FALSE for not printing it. Default is TRUE.

Value

(invisibly) TRUE if no error happend during execution.

apollo_drugChoiceData Simulated dataset of medication choice.

Description

A simulated dataset containing 10,000 stated medication choices among four alternatives.

Usage

apollo_drugChoiceData

Format

A data.frame with 10,000 rows and 33 variables:

ID Numeric. Identification number of the individual.

task Numeric. Index of choice situations for each individual, going from 1 to 10.

best Numeric. Index of alternative selected as best option.

second_pref Numeric. Index of alternative selected as second-best option.

third_pref Numeric. Index of alternative selected as third-best option.

worst Numeric. Index of alternative selected as worst option.

brand_1 Character. Brand for alternative 1.

country_1 Character. Country of origin for alternative 1.

char_1 Character. Characteristics of alternative 1 (standard, fast acting, or double strength).

side_effects_1 Numeric. Chance of suffering negative side effects with alternative 1 (out of 100,000).

price_1 Numeric. Cost of alternative 1 in Pounds sterling (GBP).

30 apollo_drugChoiceData

brand_2 Character. Brand for alternative 2.

country_2 Character. Country of origin for alternative 2.

char_2 Character. Characteristics of alternative 2 (standard, fast acting, or double strength).

side_effects_2 Numeric. Chance of suffering negative side effects with alternative 2 (out of 100,000).

price_2 Numeric. Cost of alternative 2 in Pounds sterling (GBP).

brand_3 Character. Brand for alternative 3.

country_3 Character. Country of origin for alternative 3.

char_3 Character. Characteristics of alternative 3 (standard, fast acting, or double strength).

side_effects_3 Numeric. Chance of suffering negative side effects with alternative 3 (out of 100,000).

price_3 Numeric. Cost of alternative 3 in Pounds sterling (GBP).

brand_4 Character. Brand for alternative 4.

country_4 Character. Country of origin for alternative 4.

char_4 Character. Characteristics of alternative 4 (standard, fast acting, or double strength).

side_effects_4 Numeric. Chance of suffering negative side effects with alternative 4 (out of 100,000).

price_4 Numeric. Cost of alternative 4 in Pounds sterling (GBP).

regular_user Numeric. 1 if the respondent is a regular user of headache medicine, 0 otherwise.

university_educated Numeric. 1 if the respondent holds a university degree, 0 otherwise.

over_50 Numeric. 1 if the respondent is 50 years old or older, 0 otherwise.

attitude_quality Numeric. Level of agreement from 1 (strongly disagree) to 5 (strongly agree)
with the phrase ’I am concerned about the quality of drugs developed by unknown companies’.

attitude_ingredients Numeric. Level of agreement from 1 (strongly disagree) to 5 (strongly agree)
with the phrase ’I believe that ingredients are the same no matter what brand’.

attitude_patent Numeric. Level of agreement from 1 (strongly disagree) to 5 (strongly agree) with
the phrase ’The original patent holders have valuable experience with their medicines’.

attitude_dominance Numeric. Level of agreement from 1 (strongly disagree) to 5 (strongly agree)
with the phrase ’I believe the dominance of big pharmaceutical companies is unhelpful’.

Details

This dataset is to be used for discrete choice modelling. Data comes from 1,000 individuals, each
with ten stated choice (SC) scenarios involving a choice among headache medication. There are
10,000 choices in total. Data is simulated. Each observation contains attributes of the alternatives,
characteristics of the respondent, and their answers to four attitudinal questions. All four alterna-
tives are always available for all individuals. Alternatives 1 and 2 are branded, while alternatives
3 and 4 are generic. Respondents provide a full ranking of alternatives for each choice task (i.e.
observation).

Source

http://www.apollochoicemodelling.com/

http://www.apollochoicemodelling.com/

apollo_dVdB 31

apollo_dVdB Calculates gradients of utility functions

Description

Calculates gradients (derivatives) of utility functions.

Usage

apollo_dVdB(apollo_beta, apollo_inputs, V)

Arguments

apollo_beta Named numeric vector of parameters.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

V List of functions

Value

Named list. Each element is itself a list of functions: the partial derivatives of the elements of V.

apollo_dVdBOld Calculates gradients of utility functions

Description

Calculates gradients (derivatives) of utility functions.

Usage

apollo_dVdBOld(apollo_beta, apollo_inputs, V)

Arguments

apollo_beta Named numeric vector of parameters.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

V List of functions

Value

Named list. Each element is a function that returns a list, where each element is the partial deriva-
tives of the elements of V.

32 apollo_el

apollo_el Calculates Exploded Logit probabilities

Description

Calculates the probabilities of an Exploded Logit model and can also perform other operations
based on the value of the functionality argument.

Usage

apollo_el(el_settings, functionality)

Arguments

el_settings List of inputs of the Exploded Logit model. It shoud contain the following.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceVars: List of numeric vectors. Contain choices for each position
of the ranking. The list must be ordered with the best choice first, second
best second, etc. It will usually be a list of columns from the database. Use
value -1 if a stage does not apply for a given observations (e.g. when some
individuals have shorter rankings).

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• utilities: Named list of deterministic utilities . Utilities of the alterna-
tives. Names of elements must match those in alternatives.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• scales: List of vectors. Scale factors of each Logit model. At least one
element should be normalized to 1. If omitted, scale=1 for all positions is
assumed.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

apollo_el 33

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

The function calculates the probability of a ranking as a product of Multinomial Logit models with
gradually reducing availability, where scale differences can be allowed for.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"
• "conditionals": Same as "estimate"
• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each

observation.
• "gradient": List containing the likelihood and gradient of the model component.
• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.
• "prediction": Not applicable (NA).
• "preprocess": Returns a list with pre-processed inputs, based on el_settings.
• "raw": Same as "estimate"
• "report": Choice overview across stages.
• "shares_LL": Not implemented. Returns a vector of NA with as many elements as observa-

tions.
• "validate": Same as "estimate"
• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all

parameters are zero.

34 apollo_emdc

apollo_emdc MDC model with exogenous budget

Description

Calculates the likelihood function of the MDC model with exogenous budget. Can also predict and
validate inputs.

Usage

apollo_emdc(emdc_settings, functionality = "estimate")

Arguments

emdc_settings List of settings for the model. It includes the following.

• avail: Named list of numeric vectors. Availability of each product. Can
also be called "A".

• budget: Optional numeric vector. Budget. Must be bigger that the expen-
diture on all inside goods. Can also be called "B".

• cost: Named list of numeric vectors. Price of each product.
• delta: Lower triangular numeric matrix, or list of lists. Complementar-

ity/substitution parameter.
• continuousChoice: Named list of numeric vectors. Amount consumed of

each inside good. Outside good must not be included. Can also be called
"X".

• gamma: Named list of numeric vectors. Satiation parameter of each product.
• nRep: Scalar positive integer. Number of repetitions used when prediction
• sigma: Numeric vector or scalar. Standard deviation of the error term.

Default is one.
• timeLimit: Positive scalar. Maximum amount of seconds the optimiser

can spend calculating a prediction before setting it to NA.
• tol: Positive scalar. Tolerance of the prediction algorithm.
• utilities: Named list of numeric vectors (or matrices or arrays). Base

utility of each product. Can also be called "V".
• utilityOutside: Numeric vector (or matrix or array). Shadow price of

the budget. Must be normalised to 0 for at least one individual. Default is
0 for every observation. Can also be called "V0".

functionality Character. Either "validate", "zero_LL", "estimate", "conditionals", "raw", "out-
put" or "prediction"

Details

This model extends the traditional multiple discrete-continuous (MDC) framework by (i) making
the marginal utility of the outside good deterministic, and (ii) including complementarity and sub-
stitution in the model formulation. See the following working paper for more details:

apollo_emdc1 35

Palma, D. & Hess, S. (2022) Extending the Multiple Discrete Continuous (MDC) modelling frame-
work to consider complementarity, substitution, and an unobserved budget. Transportation Reser-
arch 161B, 13 - 35. https://doi.org/10.1016/j.trb.2022.04.005

Value

The returned object depends on the value of argument functionality as follows.

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

• "conditionals": Same as "estimate"

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "raw": Same as "prediction"

apollo_emdc1 MDC model with exogenous budget

Description

Calculates the likelihood function of the MDC model with exogenous budget. Can also predict and
validate inputs.

Usage

apollo_emdc1(emdc_settings, functionality = "estimate")

Arguments

emdc_settings List of settings for the model. It includes the following.

• avail: Named list of numeric vectors. Availability of each product. Can
also be called "A".

• budget: Numeric vector. Budget. Must be bigger that the expenditure on
all inside goods. Can also be called "B".

• continuousChoice: Named list of numeric vectors. Amount consumed of
each inside good. Outside good must not be included. Can also be called
"X".

• cost: Named list of numeric vectors. Price of each product.
• delta: Lower triangular numeric matrix, or list of lists. Complementar-

ity/substitution parameter.
• gamma: Named list of numeric vectors. Satiation parameter of each product.

36 apollo_emdc1

• nRep: Scalar positive integer. Number of repetitions used when prediction

• sigma: Numeric vector or scalar. Standard deviation of the error term.
Default is one.

• timeLimit: Positive scalar. Maximum amount of seconds the optimiser
can spend calculating a prediction before setting it to NA.

• tol: Positive scalar. Tolerance of the prediction algorithm.

• utilities: Named list of numeric vectors (or matrices or arrays). Base
utility of each product. Can also be called "V".

• utilityOutside: Numeric vector (or matrix or array). Shadow price of
the budget. Must be normalised to 0 for at least one individual. Default is
0 for every observation. Can also be called "V0".

functionality Character. Either "validate", "zero_LL", "estimate", "conditionals", "raw", "out-
put" or "prediction"

Details

This model extends the traditional multiple discrete-continuous (MDC) framework by (i) making
the marginal utility of the outside good deterministic, and (ii) including complementarity and sub-
stitution in the model formulation. See the following working paper for more details:

Palma, D. & Hess, S. (2022) Extending the Multiple Discrete Continuous (MDC) modelling frame-
work to consider complementarity, substitution, and an unobserved budget. Transportation Reser-
arch 161B, 13 - 35. https://doi.org/10.1016/j.trb.2022.04.005

Value

The returned object depends on the value of argument functionality as follows.

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

• "conditionals": Same as "estimate"

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "raw": Same as "prediction"

apollo_emdc2 37

apollo_emdc2 Extended MDC

Description

Calculates the likelihood function of the extended MDC model. Can also predict and validate inputs.

Usage

apollo_emdc2(emdc_settings, functionality = "estimate")

Arguments

emdc_settings List of settings for the model. It includes the following.

• avail: Named list of numeric vectors. Availability of each product. Can
also be called "A".

• continuousChoice: Named list of numeric vectors. Amount consumed of
each inside good. Outside good must not be included. Can also be called
"X".

• cost: Named list of numeric vectors. Price of each product.
• delta: Lower triangular numeric matrix, or list of lists. Complementar-

ity/substitution parameter.
• gamma: Named list of numeric vectors. Satiation parameter of each product.
• sigma: Numeric scalar. Scale parameter.
• nIter: Vector of two positive integers. Number of maximum iterations

used during prediction, for the upper and lower iterative levels.
• nRep: Scalar positive integer. Number of repetitions used when predictiong
• rawPrediction: Scalar logical. When functionality is equal to "predic-

tion", it returns the full set of simulations. Defaults is FALSE.
• tolerance: Positive scalar Tolerance of the prediction algorithm.
• utilities: Named list of numeric vectors (or matrices or arrays). Base

utility of each product. Can also be called "V".
• utilityOutside: Numeric vector (or matrix or array). Shadow price of

the budget. Must be normalised to 0 for at least one individual. Default is
0 for every observation. Can also be called "V0".

functionality Character. Either "validate", "zero_LL", "estimate", "conditionals", "raw", "out-
put" or "prediction"

Details

This model extends the traditional multiple discrete-continuous (MDC) framework by (i) dropping
the need to define a budget, (ii) making the marginal utility of the outside good deterministic,
and (iii) including complementarity and substitution in the model formulation. See the following
working paper for more details:

38 apollo_estimate

Palma, D. & Hess, S. (Working Paper) Some adaptations of Multiple Discrete-Continuous Extreme
Value (MDCEV) models for a computationally tractable treatment of complementarity and substi-
tution effects, and reduced influence of budget assumptions

Avilable at: http://stephanehess.me.uk/publications.html

Value

The returned object depends on the value of argument functionality as follows.

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

• "conditionals": Same as "estimate"

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "raw": Same as "prediction"

apollo_estimate Estimates model

Description

Estimates a model using the likelihood function defined by apollo_probabilities.

Usage

apollo_estimate(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings = NA

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

apollo_estimate 39

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
estimate_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• bgw_settings: List. Additional arguments to the BGW optimisation method.
See bgw_mle for more details.

• bootstrapSE: Numeric. Number of bootstrap samples to calculate standard
errors. Default is 0, meaning no bootstrap s.e. will be calculated. Number
must zero or a positive integer. Only used if apollo_control$estMethod!="HB".

• bootstrapSeed: Numeric scalar (integer). Random number generator seed
to generate the bootstrap samples. Only used if bootstrapSE>0. Default is
24.

• constraints: Character vector. Linear constraints on parameters to es-
timate. For example c('b1>0', 'b1 + 2*b2>1'). Only >, < and = can be
used. Inequalities cannot be mixed with equality constraints, e.g. c(b1-b2=0,
b2>0) will fail. All parameter names must be on the left side. Fixed param-
eters cannot go into constraints. Alternatively, constraints can be defined as
in maxLik. Constraints can only be used with maximum likelihood estima-
tion and the BFGS routine in particular.

• estimationRoutine: Character. Estimation method. Can take values
"bfgs", "bgw", "bhhh", or "nr". Used only if apollo_control$HB is FALSE.
Default is "bgw".

• hessianRoutine: Character. Name of routine used to calculate the Hessian
of the log-likelihood function after estimation. Valid values are "analytic"
(default), "numDeriv" (to use the numeric routine in package numDeric),
"maxLik" (to use the numeric routine in packahe maxLik), and "none"
to avoid calculating the Hessian and the covariance matrix. Only used if
apollo_control$HB=FALSE.

• maxIterations: Numeric. Maximum number of iterations of the estima-
tion routine before stopping. Used only if apollo_control$HB is FALSE.
Default is 200.

• maxLik_settings: List. Additional settings for maxLik. See argument
control in maxBFGS, maxBHHH and maxNM for more details. Only
used for maximum likelihood estimation.

• numDeriv_method: Character. Method used for numerical differentiation
when calculating the covariance matrix. Can be "Richardson" or "simple",
Only used if analytic gradients are available. See argument method in grad
for more details.

• numDeriv_settings: List. Additional arguments to the method used by
numDeriv to calculate the Hessian. See argument method.args in grad for
more details.

40 apollo_estimateHB

• printLevel: Higher values render more verbous outputs. Can take values
0, 1, 2 or 3. Ignored if apollo_control$HB is TRUE. Default is 3.

• scaleAfterConvergence: Logical. Used to increase numerical precision
of convergence. If TRUE, parameters are scaled to 1 after convergence,
and the estimation is repeated from this new starting values. Results are
reported scaled back, so it is a transparent process for the user. Default is
FALSE.

• scaleHessian: Logical. If TRUE, parameters are scaled to 1 for Hessian
estimation. Default is TRUE.

• scaling: Named vector. Names of elements should match those in apollo_beta.
Optional scaling for parameters. If provided, for each parameter i, (apollo_beta[i]/scaling[i])
is optimised, but scaling[i]*(apollo_beta[i]/scaling[i]) is used dur-
ing estimation. For example, if parameter b3=10, while b1 and b2 are close
to 1, then setting scaling = c(b3=10) can help estimation, specially the
calculation of the Hessian. Reports will still be based on the non-scaled
parameters.

• silent: Logical. If TRUE, no information is printed to the console during
estimation. Default is FALSE.

• validateGrad: Logical. If TRUE, the analytical gradient (if used) is com-
pared to the numerical one. Default is FALSE.

• writeIter: Logical. Writes value of the parameters in each iteration to a
csv file. Works only if estimation_routine=="bfgs"|"bgw". Default is
TRUE.

Details

This is the main function of the Apollo package. The estimation process begins by running a
number of checks on the apollo_probabilities function provided by the user. If all checks are
passed, estimation begins. There is no limit to estimation time other than reaching the maximum
number of iterations. If Bayesian estimation is used, estimation will finish once the predefined
number of iterations are completed. By default, this functions writes the estimated parameter val-
ues in each iteration to a file in the working/output directory. Writing can be turned off by setting
estimate_settings$writeIter to FALSE. By default, final results are not written into a file
nor printed to the console, so users must make sure to call function apollo_modelOutput and/or
apollo_saveOutput afterwards. Users are strongly encouraged to visit http://www.apollochoicemodelling.
com/ to download examples on how to use the Apollo package. The webpage also provides a de-
tailed manual for the package, as well as a user-group to get further help.

Value

model object

apollo_estimateHB Estimates model using Bayesian estimation

http://www.apollochoicemodelling.com/
http://www.apollochoicemodelling.com/

apollo_estimateHB 41

Description

Estimates a model using Bayesian estimation on the likelihood function defined by apollo_probabilities.

Usage

apollo_estimateHB(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings = NA

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.

• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

estimate_settings

List. Options controlling the estimation process, as used for in apollo_estimate.

Details

This is a sub function of apollo_estimate which is called when using Bayesian estimation.

Value

model object

42 apollo_firstRow

apollo_expandLoop Expands loops in a function or expression

Description

Expands loops replacing the index by its value. It also evaluates paste and paste0, and removes
get.

Usage

apollo_expandLoop(f, apollo_inputs, validate = TRUE)

Arguments

f function (usually apollo_probabilities) inside which the name of the com-
ponents are inserted.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
validate Logical. If TRUE, the new function will be validated before being returned

Details

For example, the expression for(j in 1:3) V[[paste0('alt',j)]] = b1*get(paste0('x',j))
+ b2*X[,j]

would be expanded into:

V[[alt1]] = b1*x1 + b2*X[,1] V[[alt2]] = b1*x2 + b2*X[,2] V[[alt3]] = b1*x3 + b2*X[,3]

Value

A function or an expression (same type as input f)

apollo_firstRow Keeps only the first row for each individual

Description

Given a multi-row input, keeps only the first row for each individual.

Usage

apollo_firstRow(P, apollo_inputs)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components
(or other object).

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

apollo_fitsTest 43

Details

This a function to keep only the first row of an object per indidividual. It can handle multiple types
of components, including scalars, vectors and three-dimensional arrays (cubes). The argument
database MUST contain a column called ’apollo_sequence’, which is created by apollo_validateData.

Value

If P is a list, then it returns a list where each element has only the first row of each individual. If P is
a single element, then it returns a single element with only the first row of each individual. The size
of the element is changed only in the first dimension. If input is a scalar, then it returns a vector with
the element repeated as many times as individuals in database. If the element is a vector, its length
will be changed to the number of individuals. If the element is a matrix, then its first dimension
will be changed to the number of individuals, while keeping the size of the second dimension. If
the element is a cube, then only the first dimension’s length is changed, preserving the others.

apollo_fitsTest Compares log-likelihood of model across categories

Description

Given the estimates of a model, it compares the log-likelihood at the observation level across cate-
gories of observations.

Usage

apollo_fitsTest(model, apollo_probabilities, apollo_inputs, fitsTest_settings)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
fitsTest_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• subsamples: Named list of boolean vectors. Each element of the list de-
fines whether a given observation belongs to a given subsample (e.g. by
sociodemographics).

44 apollo_fmnl

Details

Prints a table comparing the average log-likelihood at the observation level for each category.

Value

Matrix with average log-likelihood at observation level per category (invisibly).

apollo_fmnl Calculates Fractional Multinomial Logit probabilities

Description

Calculates the probabilities of a Fractional Multinomial Logit model and can also perform other
operations based on the value of the functionality argument.

Usage

apollo_fmnl(fmnl_settings, functionality)

Arguments

fmnl_settings List of inputs of the FMNL model. It should contain the following.

• alternatives: Character vector. Names of alternatives, elements must
match the names in list ’utilities’.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceShares: Named list of numeric vectors. Share allocated to each
alternative. One element per alternative, as long as the number of observa-
tions or a scalar. Names must match those in alternatives.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• utilities: Named list of deterministic utilities . Utilities of the alterna-
tives. Names of elements must match those in alternatives.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

apollo_fmnl 45

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": List containing the likelihood and gradient of the model component.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

• "preprocess": Returns a list with pre-processed inputs, based on fmnl_settings.

• "raw": Same as "prediction"

• "report": Overview of dependent variable

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

46 apollo_fnl

apollo_fnl Calculates Fractional Nested Logit probabilities

Description

Calculates the probabilities of a Fractional Nested Logit (FNL) model and can also perform other
operations based on the value of the functionality argument.

Usage

apollo_fnl(fnl_settings, functionality)

Arguments

fnl_settings List of inputs of the FNL model. It should contain the following.

• alternatives: Character vector. Names of alternatives, elements must
match the names in list ’utilities’.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceShares: Named list of numeric vectors. Share allocated to each
alternative. One element per alternative, as long as the number of observa-
tions or a scalar. Names must match those in alternatives.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• nlNests: List of numeric scalars or vectors. Lambda parameters for each
nest. Elements must be named with the nest name. The lambda at the root
is automatically fixed to 1 if not provided by the user.

• nlStructure: Named list of character vectors. As many elements as nests,
it must include the "root". Each element contains the names of the nests or
alternatives that belong to it. Element names must match those in nlNests.

• utilities: Named list of deterministic utilities . Utilities of the alterna-
tives. Names of elements must match those in alternatives.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

apollo_fnl 47

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

In this implementation of the Nested Logit model, each nest must have a lambda parameter asso-
ciated to it. For the model to be consistent with utility maximisation, the estimated value of the
Lambda parameter of all nests should be between 0 and 1. Lambda parameters are inversely pro-
portional to the correlation between the error terms of alternatives in a nest. If lambda=1, then there
is no relevant correlation between the unobserved utility of alternatives in that nest. The tree must
contain an upper nest called "root". The lambda parameter of the root is automatically set to 1 if
not specified in nlNests, but can be changed by the user if desired (though not advised).

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": Not implemented.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

48 apollo_insertComponentName

• "preprocess": Returns a list with pre-processed inputs, based on fnl_settings.

• "raw": Same as "prediction"

• "report": List with tree structure and choice overview.

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

apollo_initialise Prepares environment

Description

Prepares environment (the global environment if called by the user) for model definition and esti-
mation.

Usage

apollo_initialise()

Details

This function detaches variables and makes sure that output is directed to console. It does not delete
variables from the working environment.

Value

Nothing.

apollo_insertComponentName

Adds componentName2 to model calls

Description

Adds componentName2 to model calls

Usage

apollo_insertComponentName(e)

Arguments

e An expression or a function. It will usually be apollo_probabilities.

apollo_insertFunc 49

Value

The original argument ’e’ but modified to incorporate a new setting called ’componentName2’ to
every call to apollo_<model> (e.g. apollo_mnl, apollo_nl, etc.).

apollo_insertFunc Modifies function to make it compatible with analytic gradients

Description

Takes a likelihood function and inserts function () before key elements to allow for analytic gra-
dient calculation

Usage

apollo_insertFunc(f, like = TRUE, randCoeff = FALSE, lcPars = FALSE)

Arguments

f Function. Expressions inside it will be turned into functions. Usually apollo_probabilities
or apollo_randCoeff.

like Logical. Must be TRUE if f is apollo_probabilities. FALSE otherwise.

randCoeff Logical. Must be TRUE if f is apollo_randCoeff. FALSE otherwise.

lcPars Logical. Must be TRUE if f is apollo_lcPars. FALSE otherwise.

Details

It modifies the definition of the following models.

• apollo_mnl: Turns all elements inside mnl_settings$V into functions.

• apollo_ol: Turns ol_settings$V and all elements inside ol_settings$tau into functions.

• apollo_op: Turns op_settings$V and all elements inside op_settings$tau into functions.

• apollo_normalDensity: Turns normalDensity_settings$xNormal, normalDensity_settings$mu
and normalDensity_settings$sigma into functions.

It can only track a maximum of 3 levels of depth in definitions. For example: V <- list()
V[["A"]] <- b1*x1A + b2*x2A V[["B"]] <- b1*x1B + b2*x2B mnl_settings1 <- list(alternatives=c("A",
"B"), V = V, choiceVar= Y, avail = 1, componentName="MNL1") P[["MNL1"]] <- apollo_mnl(mnl_settings1,
functionality) But it may not be able to deal with the following: VA <- b1*x1A + b2*x2A V <-
list() V[["A"]] <- VA V[["B"]] <- b1*x1B + b2*x2B mnl_settings1 <- list(alternatives=c("A",
"B"), V = V, choiceVar= Y, avail = 1, componentName="MNL1") P[["MNL1"]] <- apollo_mnl(mnl_settings1,
functionality) But that might be enough given how apollo_dVdB works.

Value

Function f but with relevant expressions turned into function definitions.

50 apollo_insertRows

apollo_insertOLList Replaces tau=c(...) by tau=list(...) in calls to apollo_ol

Description

Takes a function, looks for calls to apollo_ol, identifies the corresponding ol_settings, then goes
inside the definition of ol_settings and replaces tau=c(...) for tau=list(...).

Usage

apollo_insertOLList(f)

Arguments

f Function. Usually apollo_probabilities, apollo_randCoeff, or apollo_lcPars.

Details

This only goes one level deep in definitions. For example, it will work correctly in the following
cases: ol_settings = list(outcomeOrdered = y1, V = b1*x1, tau = c(tau11, tau12)) P[["OL1"]]
= apollo_ol(ol_settings, functionality) P[["OL2"]] = apollo_ol(list(outcomeOrdered=y2,
V=b2*x2, tau=c(tau21, tau22)), functionality) But it will not work on the following cases:
Tau = c(tau1, tau2, tau3) ol_settings = list(outcomeOrdered = y2, V = b2*x2, tau = Tau)
P[["OL1"]] = apollo_ol(ol_settings, functionality) P[["OL2"]] = apollo_ol(list(outcomeOrdered=y1,
V=b1*x1, tau=Tau), functionality)

This function is called by apollo_modifyUserDefFunc to allow for analytical gradients when using
apollo_ol.

Value

Function f with tau=c(...) replaced by tau=list(...).

apollo_insertRows Inserts rows

Description

Given a numeric object (scalar, vector, matrix or 3-dim array) inserts rows in the specified places.

Usage

apollo_insertRows(v, r, val)

apollo_insertRRMQuotes 51

Arguments

v Numeric scalar, vector, matrix or 3-dim array.

r Boolean vector. TRUE for inserting a row from v, FALSE to insert a new row
with value val.

val Numeric scalar. Value that will fill new rows.

Details

In general, r should be longer than the number of rows in utilities, and sum(r)=nrow(v). If not,
then a new object with as many rows as r will be returned. Old rows will be taken from utilities
from the top down.

Value

The same argument v but with rows added where r==FALSE.

apollo_insertRRMQuotes

Introduces quotes into rrm_settings

Description

Takes a function, looks for the definition of relevant parts of rrm_settings, and introduces quotes on
them. This is to facilitate their processing by apollo_rrm under functionality="preprocessing".

Usage

apollo_insertRRMQuotes(f)

Arguments

f Function. Usually apollo_probabilities.

Value

Function f with relevant expressions turned into character.

52 apollo_keepRows

apollo_insertScaling Scales variables inside a function

Description

It changes the syntax of the function by replacing variable names for their scaled form, e.g. x –>
x*apollo_inputs$apollo_scale[["x"]]. In assignments, it only scales the right side of the assignment.

Usage

apollo_insertScaling(e, sca)

Arguments

e Function, expression, call or symbol to alter.

sca Named numeric vector with the scales. The names in these vectors determine
which variables should be scaled.

Value

A function, expression, call or symbol with the corresponding variables scaled.

apollo_keepRows Keeps only some rows

Description

Given a numeric object (scalar, vector, matrix or 3-dim array) keeps only the specified rows.

Usage

apollo_keepRows(v, r)

Arguments

v Numeric scalar, vector, matrix or 3-dim array.

r Boolean vector. As many elements as rows in utilities. TRUE for keeping
the row. FALSE to drop it.

Value

The same argument utilities but with the rows where r==FALSE removed.

apollo_lc 53

apollo_lc Calculates the likelihood of a latent class model

Description

Given within class probabilities, and class allocation probabilities, calculates the probabilities of an
Exploded Logit model and can also perform other operations based on the value of the functionality
argument.

Usage

apollo_lc(lc_settings, apollo_inputs, functionality)

Arguments

lc_settings List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• classProb: List of probabilities. Allocation probability for each class. One
element per class, in the same order as inClassProb.

• componentName: Character. Name given to model component (optional).
• inClassProb: List of probabilities. Conditional likelihood for each class.

One element per class, in the same order as classProb.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

54 apollo_lcConditionals

• "report": Prepares output summarising model and choiceset structure.

• "shares_LL": Produces overall model likelihood with constants only.

• "validate": Validates model specification, produces likelihood of the full
model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Returns nothing.

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": List containing the likelihood and gradient of the model component.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
models components, for each class.

• "preprocess": Returns a list with pre-processed inputs, based on lc_settings.

• "raw": Same as "prediction"

• "report": Class allocation overview.

• "shares_LL": Same as "estimate"

• "validate": Same as "estimate", but also runs a set of tests on the given arguments.

• "zero_LL": Same as "estimate"

apollo_lcConditionals Calculates conditionals for latent class models.

Description

Calculates posterior expected values (conditionals) of class allocation probabilities for each indi-
vidual.

Usage

apollo_lcConditionals(model, apollo_probabilities, apollo_inputs)

apollo_lcEM 55

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This function can only be used with latent class models without continuous heterogeneity.

Value

A matrix with the posterior class allocation probabilities for each individual.

apollo_lcEM Uses EM for latent class model

Description

Uses the EM algorithm for estimating a latent class model.

Usage

apollo_lcEM(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
lcEM_settings = NA,
estimate_settings = NA

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

56 apollo_lcEM

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.

• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

lcEM_settings List. Options controlling the EM process.

• EMmaxIterations: Numeric. Maximum number of iterations of the EM
algorithm before stopping. Default is 100.

• postEM: Numeric scalar. Determines the tasks performed by this function
after the EM algorithm has converged. Can take values 0, 1 or 2 only. If
value is 0, only the EM algorithm will be performed, and the results will be
a model object without a covariance matrix (i.e. estimates only). If value
is 1, after the EM algorithm, the covariance matrix of the model will be
calculated as well, and the result will be a model object with a covariance
matrix. If value is 2, after the EM algorithm, the estimated parameter values
will be used as starting value for a maximum likelihood estimation process,
which will render a model object with a covariance matrix. Performing
maximum likelihood estimation after the EM algorithm is useful, as there
may be room for further improvement. Default is 2.

• silent: Boolean. If TRUE, no information is printed to the console during
estimation. Default is FALSE.

• stoppingCriterion: Numeric. Convergence criterion. The EM process will
stop when improvements in the log-likelihood fall below this value. Default
is 10^-5.

estimate_settings

List. Options controlling the estimation process within each EM iteration. See
apollo_estimate for details.

Details

This function uses the EM algorithm for estimating a Latent Class model. It is only suitable for
models without continuous mixing. All parameters need to vary across classes and need to be
included in the apollo_lcPars function which is used by apollo_lcEM.

Value

model object

apollo_lcUnconditionals 57

apollo_lcUnconditionals

Returns unconditionals for a latent class model model

Description

Returns values for random parameters and class allocation probabilities in a latent class model
model.

Usage

apollo_lcUnconditionals(model, apollo_probabilities, apollo_inputs)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Value

List of object, one per random component and one for the class allocation probabilities.

apollo_llCalc Calculates log-likelihood of all model components

Description

Calculates the log-likelihood of each model component as well as the whole model.

Usage

apollo_llCalc(apollo_beta, apollo_probabilities, apollo_inputs, silent = FALSE)

58 apollo_loadModel

Arguments

apollo_beta Named numeric vector. Names and values for parameters.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
silent Boolean. If TRUE, no information is printed to the console by the function.

Default is FALSE.

Details

This function calls apollo_probabilities with functionality="output". It then reorders the list of
likelihoods so that "model" goes first.

Value

A list of vectors. Each vector corresponds to the log-likelihood of the whole model (first element)
or a model component.

apollo_loadModel Loads model from file

Description

Loads a previously estimated model object from a file.

Usage

apollo_loadModel(modelName)

Arguments

modelName Character. Name of the model to load.

Details

This function looks for a file named modelName_model.rds in the working or output directory,
loads the object contained in it, and returns it.

Value

A model object.

apollo_longToWide 59

apollo_longToWide Converts data from long to wide format.

Description

Converts choice data from long to wide format, with one row per observation as opposed to one row
per alternative/observation.

Usage

apollo_longToWide(longData, longToWide_settings)

Arguments

longData data.frame. Data in long format.
longToWide_settings

List. Contains settings for this function. User input is required for all settings.

• altColumn: Character. Name of column in long data that contains the
names of the alternatives (either numeric or character).

• altSpecAtts: Character vector. Names of columns in long data with at-
tributes that vary across alternatives within an observation.

• choiceColumn: Character. Name of column in long data that contains the
choice.

• idColumn: Character. Name of column in long data that contains the ID of
individuals.

• obsColumn: Character. Name of column in long data that contains the
observation index.

Value

Silently returns a data.frame with the wide format version of the data. An overview of the data is
printed to screen.

apollo_lrTest Likelihood ratio test

Description

Calculates the likelihood ratio test value between two models and reports the corresponding p-value.

Usage

apollo_lrTest(model1, model2)

60 apollo_makeCluster

Arguments

model1 Either a character variable with the name of a previously estimated model, or an
estimated model in memory, as returned by apollo_estimate.

model2 Either a character variable with the name of a previously estimated model, or an
estimated model in memory, as returned by apollo_estimate.

Details

The two models need to have been estimated on the same data, and one model needs to be nested
within the other model.

Value

LR-test p-value (invisibly)

apollo_makeCluster Creates cluster for estimation.

Description

Splits data, creates cluster and loads different pieces of the database on each worker.

Usage

apollo_makeCluster(
apollo_probabilities,
apollo_inputs,
silent = FALSE,
cleanMemory = FALSE

)

Arguments

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
silent Boolean. If TRUE, no messages are printed to the terminal. FALSE by default.

It overrides apollo_inputs$silent.
cleanMemory Boolean. If TRUE, it saves apollo_inputs to disc, and removes database and

draws from the apollo_inputs in .GlobalEnv and the parent environment.

apollo_makeDraws 61

Details

Internal use only. Called by apollo_estimate before estimation. Using multiple cores greatly
increases memory consumption.

Value

Cluster (i.e. an object of class cluster from package parallel)

apollo_makeDraws Creates draws for models with mixing

Description

Creates a list containing all draws necessary to estimate a model with mixing.

Usage

apollo_makeDraws(apollo_inputs, silent = FALSE)

Arguments

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

silent Boolean. If true, then no information is printed to console or default output.
FALSE by default.

Details

Internal use only. Called by apollo_validateInputs. This function creates a list whose elements
are the sets of draws requested by the user for use in a model with mixing. If the model does not
include mixing, then it is not necessary to run this function. The number of draws has a massive
impact on memory usage and estimation time. Memory usage and number of computations scale
geometrically as N*interNDraws*intraNDraws (where N is the number of observations). Special
care should be taken when using both inter and intra-individual draws, as memory usage can easily
reach the GB order of magnitude. Also, keep in mind that using several threads (i.e. multicore)
at least doubles the memory usage. This function returns a list, with each element representing a
random component of the mixing model. The dimensions of the array depend on the type of draws
used.

1. If only inter-individual draws are used, then draws are stored as 2-dimensional arrays (i.e.
matrices).

2. If intra-individual draws are used, then draws are stored as 3-dimensional arrays.

3. The first dimension of the arrays (rows) correspond with the observations in the database.

4. The second dimension of the arrays (columns) correspond to the number of inter-individual
draws.

5. The third dimension of the arrays correspond to the number of intra-individual draws.

62 apollo_makeGrad

Value

List. Each element is an array of draws representing a random component of the mixing model.

apollo_makeGrad Creates gradient function.

Description

Creates gradient function from the likelihood function apollo_probabilities provided by the user.
Returns NULL if the creation of gradient function fails.

Usage

apollo_makeGrad(
apollo_beta,
apollo_fixed,
apollo_logLike,
validateGrad = FALSE

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_logLike Function to calculate the log-likelihood of the model, as created by apollo_makeLogLike
If provided, the value of the analytical gradient will be compared to the value
of the numerical gradient as calculated using apollo_logLike and the numDeriv
package. If the difference between the two is bigger than 1 that the analytical
gradient is wrong and NULL will be returned.

validateGrad Logical. If TRUE, it compares the value of the analytical gradient evaluated at
apollo_beta against the numeric gradient (using numDeriv) at the same value. If
the difference is bigger than 1 return NULL.

Details

Internal use only. Called by apollo_estimate before estimation. The returned function can be
single-threaded or multi-threaded based on the model options.

Value

apollo_gradient function. It receives the following arguments

• b Numeric vector of _variable_ parameters (i.e. must not include fixed parameters).

• countIter Not used. Included only to mirror inputs of apollo_logLike.

• getNIter Not used. Included only to mirror inputs of apollo_logLike.

apollo_makeHessian 63

• sumLL Not used. Included only to mirror inputs of apollo_logLike.

• writeIter Not used. Included only to mirror inputs of apollo_logLike.

If the creation of the gradient function fails, then it returns NULL.

apollo_makeHessian Creates hessian function.

Description

Creates hessian function from the likelihood function apollo_probabilities provided by the user.
Returns NULL if the creation of gradient function fails.

Usage

apollo_makeHessian(apollo_beta, apollo_fixed, apollo_logLike)

Arguments

apollo_beta Named numeric vector. Names and values for (all) parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_logLike Function to calculate the log-likelihood of the model, as created by apollo_makeLogLike
If provided, the value of the analytical gradient will be compared to the value
of the numerical gradient as calculated using apollo_logLike and the numDeriv
package. If the difference between the two is bigger than 1 that the analytical
gradient is wrong and NULL will be returned.

Details

Internal use only. Called by apollo_estimate before estimation. The returned function can be
single-threaded or multi-threaded based on the model options.

Value

apollo_hessian function. It receives a single argument called b, which are the _variable_ parameters
(i.e. must not include fixed parameters).

64 apollo_makeLogLike

apollo_makeLogLike Creates log-likelihood function.

Description

Creates log-likelihood function from the likelihood function apollo_probabilities provided by the
user.

Usage

apollo_makeLogLike(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
apollo_estSet = list(estimationRoutine = "bgw"),
cleanMemory = FALSE

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

apollo_estSet List of estimation options. It must contain at least one element called estima-
tionRoutine defining the estimation algorithm. See apollo_estimate.

cleanMemory Logical. If TRUE, then apollo_inputs$draws and apollo_inputs$database
are erased throughout the calling stack. Used to reduce memory usage in case
of multithreading and a large database or number o draws.

Details

Internal use only. Called by apollo_estimate before estimation. The returned function can be
single-threaded or multi-threaded based on the model options.

apollo_mdcev 65

Value

apollo_logLike function.

apollo_mdcev Calculates MDCEV likelihoods

Description

Calculates the likelihoods of a Multiple Discrete Continuous Extreme Value (MDCEV) model and
can also perform other operations based on the value of the functionality argument.

Usage

apollo_mdcev(mdcev_settings, functionality)

Arguments

mdcev_settings List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• alpha: Named list. Alpha parameters for each alternative, including for
any outside good. As many elements as alternatives.

• alternatives: Character vector. Names of alternatives, elements must
match the names in list ’utilities’.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability.

• budget: Numeric vector. Budget for each observation.
• componentName: Character. Name given to model component. If not pro-

vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• continuousChoice: Named list of numeric vectors. Amount of consump-
tion of each alternative. One element per alternative, as long as the number
of observations or a scalar. Names must match those in alternatives.

• cost: Named list of numeric vectors. Price of each alternative. One ele-
ment per alternative, each one as long as the number of observations or a
scalar. Names must match those in alternatives.

• gamma: Named list. Gamma parameters for each alternative, excluding any
outside good. As many elements as inside good alternatives.

• nRep: Numeric scalar. Number of simulations of the whole dataset used
for forecasting. The forecast is the average of these simulations. Default is
100.

• outside: Character. Optional name of the outside good.

66 apollo_mdcev

• rawPrediction: Logical scalar. TRUE for prediction to be returned at the
draw level (a 3-dim array). FALSE for prediction to be returned averaged
across draws. Default is FALSE.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• sigma: Numeric scalar. Scale parameter of the model extreme value type I
error.

• utilities: Named list. Utilities of the alternatives. Names of elements
must match those in argument ’alternatives’.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

apollo_mdcev2 67

• "estimate": vector/matrix/array. Returns the probabilities for the observed consumption for
each observation.

• "gradient": Not implemented

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": A matrix with one row per observation, and columns indicating means and
s.d. of continuous and discrete predicted consumptions.

• "preprocess": Returns a list with pre-processed inputs, based on mdcev_settings.

• "raw": Same as "estimate"

• "report": Dependent variable overview.

• "shares_LL": Not implemented. Returns a vector of NA with as many elements as observa-
tions.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": Not implemented. Returns a vector of NA with as many elements as observations.

apollo_mdcev2 Calculates MDCEV likelihoods

Description

Calculates the likelihoods of a Multiple Discrete Continuous Extreme Value (MDCEV) model and
can also perform other operations based on the value of the functionality argument.

Usage

apollo_mdcev2(mdcev_settings, functionality)

Arguments

mdcev_settings List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• alpha: Named list. Alpha parameters for each alternative, including for
any outside good. As many elements as alternatives.

• alternatives: Character vector. Names of alternatives, elements must
match the names in list ’utilities’.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• budget: Numeric vector. Budget for each observation.
• componentName: Character. Name given to model component. If not pro-

vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

68 apollo_mdcev2

• continuousChoice: Named list of numeric vectors. Amount of consump-
tion of each alternative. One element per alternative, as long as the number
of observations or a scalar. Names must match those in alternatives.

• cost: Named list of numeric vectors. Price of each alternative. One ele-
ment per alternative, each one as long as the number of observations or a
scalar. Names must match those in alternatives.

• fastPred: Boolean scalar. TRUE to mix parameter draws with repetition
draws. This is formally incorrect, but a good a approximation to the true
prediction, and much faster. FALSE by default.

• gamma: Named list. Gamma parameters for each alternative, excluding any
outside good. As many elements as inside good alternatives.

• nRep: Numeric scalar. Number of simulations of the whole dataset used
for forecasting. The forecast is the average of these simulations. Default is
100.

• outside: Character. Optional name of the outside good.
• rawPrediction: Logical scalar. TRUE for prediction to be returned at the

draw level (a 3-dim array). FALSE for prediction to be returned averaged
across draws. Default is FALSE.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• sigma: Numeric scalar. Scale parameter of the model extreme value type I
error.

• utilities: Named list. Utilities of the alternatives. Names of elements
must match those in argument ’alternatives’.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

apollo_mdcnev 69

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the observed consumption for
each observation.

• "gradient": Not implemented

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": A matrix with one row per observation, and columns indicating means and
s.d. of continuous and discrete predicted consumptions.

• "preprocess": Returns a list with pre-processed inputs, based on mdcev_settings.

• "raw": Same as "estimate"

• "report": Dependent variable overview.

• "shares_LL": Not implemented. Returns a vector of NA with as many elements as observa-
tions.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": Not implemented. Returns a vector of NA with as many elements as observations.

apollo_mdcnev Calculates MDCNEV likelihoods

Description

Calculates the likelihoods of a Multiple Discrete Continuous Nested Extreme Value (MDCNEV)
model with an outside good and can also perform other operations based on the value of the
functionality argument.

Usage

apollo_mdcnev(mdcnev_settings, functionality)

70 apollo_mdcnev

Arguments

mdcnev_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• alpha: Named list. Alpha parameters for each alternative, including for the
outside good. As many elements as alternatives.

• alternatives: Character vector. Names of alternatives, elements must
match the names in list ’utilities’.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• budget: Numeric vector. Budget for each observation.
• componentName: Character. Name given to model component. If not pro-

vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• continuousChoice: Named list of numeric vectors. Amount of consump-
tion of each alternative. One element per alternative, as long as the number
of observations or a scalar. Names must match those in alternatives.

• cost: Named list of numeric vectors. Price of each alternative. One ele-
ment per alternative, each one as long as the number of observations or a
scalar. Names must match those in alternatives.

• gamma: Named list. Gamma parameters for each alternative, including for
the outside good. As many elements as alternatives.

• mdcnevNests: Named list. Lambda parameters for each nest. Elements
must be named with the nest name. The lambda at the root is fixed to 1, and
therefore must be no be defined. The value of the estimated mdcnevNests
parameters should be between 0 and 1 to ensure consistency with random
utility maximization.

• mdcnevStructure: Numeric matrix. One row per nest and one column per
alternative. Each element of the matrix is 1 if an alternative belongs to the
corresponding nest.

• outside: Character. Alternative name for the outside good. Default is
"outside"

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• utilities: Named list. Utilities of the alternatives. Names of elements
must match those in argument ’alternatives’.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

apollo_mdcnev 71

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the observed consumption for
each observation.

• "gradient": Not implemented

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": A matrix with one row per observation, and columns indicating means and
s.d. of continuous and discrete predicted consumptions.

• "preprocess": Returns a list with pre-processed inputs, based on mdcnev_settings.

• "raw": Same as "estimate"

• "report": Dependent variable overview.

• "shares_LL": Not implemented. Returns a vector of NA with as many elements as observa-
tions.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": Not implemented. Returns a vector of NA with as many elements as observations.

72 apollo_mixConditionals

apollo_mixConditionals

Calculates conditionals for continuous mixture models

Description

Calculates posterior expected values (conditionals) of continuously distributed random coefficients,
as well as their standard deviations.

Usage

apollo_mixConditionals(model, apollo_probabilities, apollo_inputs)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.

• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This functions is only meant for use with continuous distributions

Value

List of matrices. Each matrix has dimensions nIndiv x 3. One matrix per random component. Each
row of each matrix contains the indivID of an individual, and the posterior mean and s.d. of this
random component for this individual

apollo_mixEM 73

apollo_mixEM Uses EM for models with continuous random coefficients

Description

Uses the EM algorithm for estimating a model with continuous random coefficients.

Usage

apollo_mixEM(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
mixEM_settings = NA,
estimate_settings = NA

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters. These need to be pro-
vided in the following order. With K random parameters, K means for the under-
lying Normals, followed by the elements of the lower triangle of the Cholesky
matrix, by row.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

mixEM_settings List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• EMmaxIterations: Numeric. Maximum number of iterations of the EM
algorithm before stopping. Default is 100.

• postEM: Numeric scalar. Determines the tasks performed by this function
after the EM algorithm has converged. Can take values 0, 1 or 2 only. If
value is 0, only the EM algorithm will be performed, and the results will be
a model object without a covariance matrix (i.e. estimates only). If value
is 1, after the EM algorithm, the covariance matrix of the model will be

74 apollo_mixUnconditionals

calculated as well, and the result will be a model object with a covariance
matrix. If value is 2, after the EM algorithm, the estimated parameter values
will be used as starting value for a maximum likelihood estimation process,
which will render a model object with a covariance matrix. Performing
maximum likelihood estimation after the EM algorithm is useful, as there
may be room for further improvement. Default is 2.

• silent: Boolean. If TRUE, no information is printed to the console during
estimation. Default is FALSE.

• stoppingCriterion: Numeric. Convergence criterion. The EM process will
stop when improvements in the log-likelihood fall below this value. Default
is 10^-5.

• transforms: List. Optional argument, with one entry per parameter, show-
ing the inverse transform to return from beta to the underlying Normal. E.g.
if the first parameter is specified as negative logormal inside apollo_randCoeff,
then the entry in transforms should be transforms[[1]]=function(x) log(-x)

estimate_settings

List. Options controlling the estimation process within each EM iteration. See
apollo_estimate for details.

Details

This function uses the EM algorithm for estimating a model with continuous random coefficients.
It is only suitable for models where all parameters are random, with a full covariance matrix. All
random parameters need to be based on underlying Normals with a full covariance matrix, but any
transform thereof can be used.

Value

model object

apollo_mixUnconditionals

Returns draws for continuously distributed random parameters in mix-
ture model

Description

Returns draws (unconditionals) for random parameters in model, including interactions with deter-
ministic covariates.

Usage

apollo_mixUnconditionals(model, apollo_probabilities, apollo_inputs)

apollo_mlhs 75

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This functions is only meant for use with continuous distributions

Value

List of object, one per random coefficient. With inter-individual draws only, this will be a ma-
trix, with one row per individual, and one column per draw. With intra-individual draws, this will
be a three-dimensional array, with one row per observation, inter-individual draws in the second
dimension, and intra-individual draws in the third dimension.

apollo_mlhs Generate random draws using MLHS algorithm

Description

Generate random draws using the Modified Latin Hypercube Sampling algorithm.

Usage

apollo_mlhs(N, d, i)

Arguments

N Numeric. The number of draws to generate in each dimension

d Numeric. The number of dimensions to generate draws in

i Numeric. The number of individuals to generate draws for

Details

Internal use only. Algorithm described in Hess, S., Train, K., and Polak, J. (2006) Transportation
Research Part B, 40, 147 - 163.

76 apollo_mnl

Value

A (N*i) x d matrix with random draws

apollo_mnl Calculates Multinomial Logit probabilities

Description

Calculates the probabilities of a Multinomial Logit model and can also perform other operations
based on the value of the functionality argument.

Usage

apollo_mnl(mnl_settings, functionality)

Arguments

mnl_settings List of inputs of the MNL model. It should contain the following.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs). Set to "all" by default if omitted.

• utilities: Named list of deterministic utilities . Utilities of the alterna-
tives. Names of elements must match those in alternatives.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

apollo_mnl 77

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": List containing the likelihood and gradient of the model component.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

• "preprocess": Returns a list with pre-processed inputs, based on mnl_settings.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "raw": Same as "prediction"

• "report": Choice overview

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate"

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

78 apollo_modeChoiceData

apollo_modeChoiceData Simulated dataset of mode choice.

Description

A simulated dataset containing 8,000 mode choices among four alternatives.

Usage

apollo_modeChoiceData

Format

A data.frame with 8,000 rows and 25 variables:

ID Numeric. Identification number of the individual.
RP Numeric. 1 if the row corresponds to a revealed preference (RP) observation. 0 otherwise.
RP_journey Numeric. Consecutive ID of RP observations. 0 if SP observation.
SP Numeric. 1 if the row corresponds to a stated preference (SP) observation. 0 otherwise.
SP_task Numeric. Consecutive ID of SP choice tasks. 0 if RP observation.
access_air Numeric. Access time (in minutes) of mode air.
access_bus Numeric. Access time (in minutes) of mode bus.
access_rail Numeric. Access time (in minutes) of mode rail.
av_air Numeric. 1 if the mode air (plane) is available. 0 otherwise.
av_bus Numeric. 1 if the mode bus is available. 0 otherwise.
av_car Numeric. 1 if the mode car is available. 0 otherwise.
av_rail Numeric. 1 if the mode rail (train) is available. 0 otherwise.
business Numeric. Purpose of the trip. 1 for business, 0 for other.
choice Numeric. Choice indicator, 1=car, 2=bus, 3=air, 4=rail.
cost_air Numeric. Cost (in GBP) of mode air.
cost_bus Numeric. Cost (in GBP) of mode bus.
cost_car Numeric. Cost (in GBP) of mode car.
cost_rail Numeric. Cost (in GBP) of mode rail.
female Numeric. Sex of individual. 1 for female, 0 for male.
income Numeric. Income (in GBP per annum) of the individual.
service_air Numeric. Additional services for the air alternative. 1 for no-frills, 2 for wifi, 3 for

food. This is not used in the RP data, where it is set to 0.
service_rail Numeric. Additional services for the rail alternative. 1 for no-frills, 2 for wifi, 3 for

food. This is not used in the RP data, where it is set to 0.
time_air Numeric. Travel time (in minutes) of mode air.
time_bus Numeric. Travel time (in minutes) of mode bus.
time_car Numeric. Travel time (in minutes) of mode car.
time_rail Numeric. Travel time (in minutes) of mode rail.

apollo_modelOutput 79

Details

This dataset is to be used for discrete choice modelling. Data comes from 500 individuals, each
with two revealed preferences (RP) observation, and 14 stated stated (SC) observations. There are
8,000 choices in total. Data is simulated. Each observation contains attributes for the alternatives,
availability of alternatives, and characteristics of the individuals.

Source

http://www.apollochoicemodelling.com/

apollo_modelOutput Prints estimation results to console

Description

Prints estimation results to console. Amount of information presented can be adjusted through
arguments.

Usage

apollo_modelOutput(model, modelOutput_settings = NA)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
modelOutput_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• printChange: Logical. TRUE for printing difference between starting val-
ues and estimates. FALSE by default.

• printClassical: Logical. TRUE for printing classical standard errors.
TRUE by default.

• printCorr: Boolean. TRUE for printing parameters correlation matrix.
If printClassical=TRUE, both classical and robust matrices are printed.
For Bayesian estimation, this setting is used for the covariane of random
parameters. FALSE by default.

• printCovar: Boolean. TRUE for printing parameters covariance matrix.
If printClassical=TRUE, both classical and robust matrices are printed.
For Bayesian estimation, this setting is used for the correlation of random
parameters. FALSE by default.

• printDataReport: Logical. TRUE for printing summary of choices in
database and other diagnostics. FALSE by default.

• printFixed: Logical. TRUE for printing fixed parameters among esti-
mated parameter. TRUE by default.

http://www.apollochoicemodelling.com/

80 apollo_modifyUserDefFunc

• printFunctions: Logical. TRUE for printing apollo_control, apollo_randCoeff
(when available), apollo_lcPars (when available) and apollo_probabilities.
FALSE by default.

• printHBconvergence: Boolean. TRUE for printing Geweke convergence
tests. FALSE by default.

• printHBiterations: Boolean. TRUE for printing an iterations report for
HB estimation. TRUE by default.

• printModelStructure: Logical. TRUE for printing model structure. TRUE
by default.

• printOutliers: Logical or Scalar. TRUE for printing 20 individuals with
worst average fit across observations. FALSE by default. If Scalar is given,
this replaces the default of 20.

• printPVal: Logical or Scalar. TRUE or 1 for printing p-values for one-
sided test, 2 for printing p-values for two-sided test, FALSE for not printing
p-values. FALSE by default.

• printT1: Logical. If TRUE, t-test for H0: apollo_beta=1 are printed.
FALSE by default.

Details

Prints to screen the output of a model previously estimated by apollo_estimate()

Value

A matrix of coefficients, s.d. and t-tests (invisible)

apollo_modifyUserDefFunc

Checks and modifies Apollo user-defined functions

Description

Checks and enhances user defined functions apollo_probabilities, apollo_randCoeff and apollo_lcPars.

Usage

apollo_modifyUserDefFunc(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
validate = TRUE,
noModification = FALSE

)

apollo_nl 81

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names of parameters inside apollo_beta whose values should
be kept constant throughout estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

validate Logical. If TRUE, the original and modified apollo_probabilities functions
are estimated. If their results do not match, then the original functions are re-
turned, and success is set to FALSE inside the returned list.

noModification Logical. If TRUE, loop expansion etc are skipped.

Details

Internal use only. Called by apollo_estimate before estimation. Checks include: no re-definition
of variables, no (direct) calls to database, calling of apollo_weighting if weights are defined.

Value

List with four elements: apollo_probabilities, apollo_randCoeff, apollo_lcPars and a dummy called
success (TRUE if modification was successful, FALSE if not. FALSE will be only be returnes if
the modifications are validated).

apollo_nl Calculates Nested Logit probabilities

Description

Calculates the probabilities of a Nested Logit model and can also perform other operations based
on the value of the functionality argument.

Usage

apollo_nl(nl_settings, functionality)

82 apollo_nl

Arguments

nl_settings List of inputs of the NL model. It should contain the following.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• nlNests: List of numeric scalars or vectors. Lambda parameters for each
nest. Elements must be named with the nest name. The lambda at the root
is automatically fixed to 1 if not provided by the user.

• nlStructure: Named list of character vectors. As many elements as nests,
it must include the "root". Each element contains the names of the nests or
alternatives that belong to it. Element names must match those in nlNests.

• utilities: Named list of deterministic utilities . Utilities of the alterna-
tives. Names of elements must match those in alternatives.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.

apollo_nl 83

• "raw": For debugging, produces probabilities of all alternatives and in-
dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

In this implementation of the Nested Logit model, each nest must have a lambda parameter asso-
ciated to it. For the model to be consistent with utility maximisation, the estimated value of the
Lambda parameter of all nests should be between 0 and 1. Lambda parameters are inversely pro-
portional to the correlation between the error terms of alternatives in a nest. If lambda=1, then there
is no relevant correlation between the unobserved utility of alternatives in that nest. The tree must
contain an upper nest called "root". The lambda parameter of the root is automatically set to 1 if
not specified in nlNests, but can be changed by the user if desired (though not advised).

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": Not implemented.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

• "preprocess": Returns a list with pre-processed inputs, based on nl_settings.

• "raw": Same as "prediction"

• "report": List with tree structure and choice overview.

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

84 apollo_normalDensity

apollo_normalDensity Calculates density for a Normal distribution

Description

Calculates density for a Normal distribution at a specific value with a specified mean and standard
deviation and can also perform other operations based on the value of the functionality argument.

Usage

apollo_normalDensity(normalDensity_settings, functionality)

Arguments

normalDensity_settings

List of arguments to the functions. It must contain the following.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• mu: Numeric scalar. Intercept of the linear model.
• outcomeNormal: Numeric vector. Dependent variable.
• rows: Boolean vector. Consideration of which rows to include. Length

equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• sigma: Numeric scalar. Variance of error component of linear model to be
estimated.

• xNormal: Numeric vector. Single explanatory variable.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

apollo_normalDensity 85

• "preprocess": Prepares likelihood functions for use in estimation.

• "raw": For debugging, produces probabilities of all alternatives and in-
dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.

• "shares_LL": Produces overall model likelihood with constants only.

• "validate": Validates model specification, produces likelihood of the full
model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

This function calculates the probability of the linear model outcomeNormal = mu + xNormal +
epsilon, where epsilon is a random error distributed Normal(0,sigma). If using this function in
the context of an Integrated Choice and Latent Variable (ICLV) model with continuous indicators,
then outcomeNormal would be the value of the indicator, xNormal would be the value of the la-
tent variable (possibly multiplied by a parameter to measure its correlation with the indicator, e.g.
xNormal=lambda*LV), and mu would be an additional parameter to be estimated (the mean of the
indicator, which should be fixed to zero if the indicator is centered around its mean beforehand).

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the likelihood for each observation.

• "gradient": List containing the likelihood and gradient of the model component.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": Predicted value at the observation level.

• "preprocess": Returns a list with pre-processed inputs, based on normalDensity_settings.

• "raw": Same as "estimate"

• "report": Dependent variable overview.

• "shares_LL": Not implemented. Returns a vector of NA with as many elements as observa-
tions.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": Not implemented. Returns a vector of NA with as many elements as observations.

86 apollo_ol

apollo_ol Calculates Ordered Logit probabilities

Description

Calculates the probabilities of an Ordered Logit model and can also perform other operations based
on the value of the functionality argument.

Usage

apollo_ol(ol_settings, functionality)

Arguments

ol_settings List of settings for the OL model. It should include the following.

• coding: Numeric or character vector. Optional argument. Defines the order
of the levels in outcomeOrdered. The first value is associated with the
lowest level of outcomeOrdered, and the last one with the highest value. If
not provided, is assumed to be 1:(length(tau) + 1).

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• outcomeOrdered: Numeric vector. Dependent variable. The coding of this
variable is assumed to be from 1 to the maximum number of different lev-
els. For example, if the ordered response has three possible values: "never",
"sometimes" and "always", then it is assumed that outcomeOrdered con-
tains "1" for "never", "2" for "sometimes", and 3 for "always". If another
coding is used, then it should be specified using the coding argument.

• rows: Boolean vector. TRUE if a row must be considered in the calcula-
tions, FALSE if it must be excluded. It must have length equal to the length
of argument outcomeOrdered. Default value is "all", meaning all rows
are considered in the calculation.

• tau: List of numeric vectors/matrices/3-dim arrays. Thresholds. As many
as number of different levels in the dependent variable - 1. Extreme thresh-
olds are fixed at -inf and +inf. Mixing is allowed in thresholds. Can also
be a matrix with as many rows as observations and as many columns as
thresholds.

• utilities: Numeric vector/matrix/3-sim array. A single explanatory vari-
able (usually a latent variable). Must have the same number of rows as
outcomeOrdered.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

apollo_ol 87

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

This function estimates an Ordered Logit model of the type: y* = V + epsilon outcomeOrdered =
1 if -Inf < y* < tau[1] 2 if tau[1] < y* < tau[2] ... maxLvl if tau[length(tau)] < y* < +Inf Where
epsilon is distributed standard logistic, and the values 1, 2, ..., maxLvl can be replaces by coding[1],
coding[2], ..., coding[maxLvl]. The behaviour of the function changes depending on the value of
the functionality argument.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": List containing the likelihood and gradient of the model component.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
possible levels, with an extra element for the probability of the chosen alternative.

• "preprocess": Returns a list with pre-processed inputs, based on ol_settings.

• "raw": Same as "prediction"

88 apollo_op

• "report": Dependent variable overview.

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": Not implemented. Returns a vector of NA with as many elements as observations.

apollo_op Calculates Ordered Probit probabilities

Description

Calculates the probabilities of an Ordered Probit model and can also perform other operations based
on the value of the functionality argument.

Usage

apollo_op(op_settings, functionality)

Arguments

op_settings List of settings for the OP model. It should include the following.

• coding: Numeric or character vector. Optional argument. Defines the order
of the levels in outcomeOrdered. The first value is associated with the
lowest level of outcomeOrdered, and the last one with the highest value. If
not provided, is assumed to be 1:(length(tau) + 1).

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• outcomeOrdered: Numeric vector. Dependent variable. The coding of this
variable is assumed to be from 1 to the maximum number of different lev-
els. For example, if the ordered response has three possible values: "never",
"sometimes" and "always", then it is assumed that outcomeOrdered con-
tains "1" for "never", "2" for "sometimes", and 3 for "always". If another
coding is used, then it should be specified using the coding argument.

• rows: Boolean vector. TRUE if a row must be considered in the calcula-
tions, FALSE if it must be excluded. It must have length equal to the length
of argument outcomeOrdered. Default value is "all", meaning all rows
are considered in the calculation.

• tau: List of numeric vectors/matrices/3-dim arrays. Thresholds. As many
as number of different levels in the dependent variable - 1. Extreme thresh-
olds are fixed at -inf and +inf. Mixing is allowed in thresholds. Can also
be a matrix with as many rows as observations and as many columns as
thresholds.

• utilities: Numeric vector/matrix/3-sim array. A single explanatory vari-
able (usually a latent variable). Must have the same number of rows as
outcomeOrdered.

apollo_op 89

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

This function estimates an ordered probit model of the type:

y∗ = V + ϵy = 1if −∞ < y∗ < τ1, 2ifτ1 < y∗ < τ2, ...,max(y)ifτmax(y)−1 < y∗ < ∞

Where ϵ is distributed standard normal, and the values 1, 2, ..., max(y) can be replaced by coding[1],
coding[2], ..., coding[maxLvl]. The behaviour of the function changes depending on the value
of the functionality argument.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": List containing the likelihood and gradient of the model component.

90 apollo_outOfSample

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
possible levels, with an extra element for the probability of the chosen alternative.

• "preprocess": Returns a list with pre-processed inputs, based on op_settings.

• "raw": Same as "prediction"

• "report": Dependent variable overview.

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": Not implemented. Returns a vector of NA with as many elements as observations.

apollo_outOfSample Cross-validation of fit (LL)

Description

Randomly generates estimation and validation samples, estimates the model on the first and calcu-
lates the likelihood for the second, then repeats.

Usage

apollo_outOfSample(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings = list(estimationRoutine = "bgw", maxIterations = 200, writeIter =

FALSE, hessianRoutine = "none", printLevel = 3L, silent = TRUE),
outOfSample_settings = list(nRep = 10, validationSize = 0.1, samples = NA, rmse = NULL)

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_outOfSample 91

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
estimate_settings

List. Options controlling the estimation process. See apollo_estimate.
outOfSample_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

nRep Numeric scalar. Number of times a different pair of estimation and vali-
dation sets are to be extracted from the full database. Default is 30.

rmse Character matrix with two columns. Used to calculate Root Mean Squared
Error (RMSE) of prediction. The first column must contain the names of
observed outcomes in the database. The second column must contain the
names of the predicted outcomes as returned by apollo_prediction. If
omitted or NULL, no RMSE is calculated. This only works for models
with a single component.

samples Numeric matrix or data.frame. Optional argument. Must have as many
rows as observations in the database, and as many columns as number of
repetitions wanted. Each column represents a re-sample, and each element
must be a 0 if the observation should be assigned to the estimation sample,
or 1 if the observation should be assigned to the prediction sample. If this
argument is provided, then nRep and validationSize are ignored. Note
that this allows sampling at the observation rather than the individual level.

validationSize Numeric scalar. Size of the validation sample. Can be a per-
centage of the sample (0-1) or the number of individuals in the validation
sample (>1). Default is 0.1.

Details

A common way to test for overfitting of a model is to measure its fit on a sample not used during
estimation that is, measuring its out-of-sample fit. A simple way to do this is splitting the complete
available dataset in two parts: an estimation sample, and a validation sample. The model of interest
is estimated using only the estimation sample, and then those estimated parameters are used to
measure the fit of the model (e.g. the log-likelihood of the model) on the validation sample. Doing
this with only one validation sample, however, may lead to biased results, as a particular validation
sample need not be representative of the population. One way to minimise this issue is to randomly
draw several pairs of estimation and validation samples from the complete dataset, and apply the
procedure to each pair.

The splitting of the database into estimation and validation samples is done at the individual level,
not at the observation level. If the sampling wants to be done at the individual level (not recom-
mended on panel data), then the optional outOfSample_settings$samples argument should be
provided.

This function writes two different files to the working/output directory:

• modelName_outOfSample_params.csv: Records the estimated parameters, final log-likelihood,
and number of observations on each repetition.

• modelName_outOfSample_samples.csv: Records the sample composition of each repetition.

The first two files are updated throughout the run of this function, while the last one is only written
once the function finishes.

92 apollo_ownModel

When run, this function will look for the two files above in the working/output directory. If they
are found, the function will attempt to pick up re-sampling from where those files left off. This is
useful in cases where the original bootstrapping was interrupted, or when additional re-sampling
wants to be performed.

Value

A matrix with the average log-likelihood per observation for both the estimation and validation sam-
ples, for each repetition. Two additional files with further details are written to the working/output
directory.

apollo_ownModel Calculates own model probabilities

Description

Receives functions or expressions for each functionality so that a user-defined model can interface
with Apollo.

Usage

apollo_ownModel(ownModel_settings, functionality)

Arguments

ownModel_settings

List of arguments. Only likelihood is mandatory.

• gradient: Function or expression used to calculate the gradient of the like-
lihood. If not provided, Apollo will attempt to calculate it automatically.

• likelihood: Function or expression used to calculate the likelihood of the
model. Should evaluate to a vector, matrix, or 3-dimensional array.

• prediction: Function or expression used to calculate the prediction of the
model. Should evaluate to a vector, matrix, or 3-dimensional array.

• report: List of functions or expressions used to produce a text report sum-
marising the input and parameter estimates of the model. Should contain
two elements: "data" (with a summary of the input data), and "param" (with
a summary of the estimated parameters).

• shares_LL: Function or expression used to calculate the likelihood of the
constants-only model.

• zero_LL: Function or expression used to calculate the likelihood of the base
model (e.g. equiprobable model).

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

apollo_ownModel 93

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"
• "conditionals": Same as "estimate"
• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each

observation.
• "gradient": List containing the likelihood and gradient of the model component.
• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.
• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all

alternatives, with an extra element for the probability of the chosen alternative.
• "preprocess": Returns a list with pre-processed inputs, based on mnl_settings.
• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.
• "raw": Same as "prediction"
• "report": Choice overview
• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when

only constants are estimated.
• "validate": Same as "estimate"
• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all

parameters are zero.

94 apollo_panelProd

apollo_panelProd Calculates product across observations from same individual.

Description

Multiplies likelihood of observations from the same individual, or adds the log of them.

Usage

apollo_panelProd(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

apollo_prediction 95

Details

This function should be called inside apollo_probabilities only if the data has a panel structure. It
should be called after apollo_avgIntraDraws if intra-individual draws are used.

Value

Argument P with (for most functionalities) the original contents after multiplying across observa-
tions at the individual level. Shape depends on argument functionality.

• "components": Returns P without changes.
• "conditionals": Returns P without averaging across draws. Drops all components except
"model".

• "estimate": Returns P containing the likelihood of the model after multiplying observations
at the individual level. Drops all components except "model".

• "gradient": Returns P containing the gradient of the likelihood after applying the product
rule across observations for the same individual.

• "output": Returns P containing the likelihood of the model after multiplying observations at
the individual level.

• "prediction": Returns P containing the probabilities/likelihoods of all alternatives for all
model components averaged across inter-individual draws.

• "preprocess": Returns P without changes.
• "raw": Returns P without changes.
• "report": Returns P without changes.
• "shares_LL": Returns P containing the likelihood of the model after multiplying observations

at the individual level.
• "validate": Returns P containing the likelihood of the model averaged across inter-individual

draws. Drops all components except "model".
• "zero_LL": Returns P containing the likelihood of the model after multiplying observations

at the individual level.

apollo_prediction Predicts using an estimated model

Description

Calculates apollo_probabilities with functionality="prediction".

Usage

apollo_prediction(
model,
apollo_probabilities,
apollo_inputs,
prediction_settings = list(),
modelComponent = NA

)

96 apollo_prepareProb

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
prediction_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• modelComponent: Character. Name of component of apollo_probabilities
output to calculate predictions for. Default is to predict for all components.

• nRep: Scalar integer. Only used for models that require simulation for pre-
diction (e.g. MDCEV). Number of draws used to calculate prediction. De-
fault is 100.

• runs: Numeric. Number of runs to use for computing confidence intervals
of predictions.

• silent: Boolean. If TRUE, this function won’t print any output to screen.
• summary: Boolean. If TRUE, a summary of the prediction is printed to

screen. TRUE by default.

modelComponent Deprecated. Same as modelComponent inside prediction_settings.

Details

Structure of predictions are simplified before returning, e.g. list of vectors are turned into a matrix.

Value

A list containing predictions for component modelComponent of the model described in apollo_probabilities.
The particular shape of the prediction will depend on the model component.

apollo_prepareProb Checks likelihood function

Description

Checks that the likelihood function for the mode is in the appropriate format to be returned.

apollo_prepareProb 97

Usage

apollo_prepareProb(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Details

This function should be called inside apollo_probabilities, near the end of it, just before
return(P). This function only performs checks on the shape of P, but does not change its values.

Value

Argument P with (for most functionalities) the original contents. Output depends on argument
functionality.

• "components": Returns P without changes.

98 apollo_preprocess

• "conditionals": Returns only the "model" component of argument P.

• "estimate": Returns only the "model" component of argument P.

• "gradient": Returns only the "model" component of argument P.

• "output": Returns argument P without any changes to its content, but gives names to un-
named elements.

• "prediction": Returns argument P without any changes.

• "preprocess": Returns argument P without any changes to its content, but gives names to
elements corresponding to componentNames.

• "raw": Returns argument P without any changes.

• "report": Returns P without changes.

• "shares_LL": Returns argument P without any changes to its content, but gives names to
unnamed elements.

• "validate": Returns argument P without any changes.

• "zero_LL": Returns argument P without any changes to its content, but gives names to un-
named elements.

apollo_preprocess Pre-process input for multiple models return

Description

Pre-process input for multiple models return

Usage

apollo_preprocess(inputs, modelType, functionality, apollo_inputs)

Arguments

inputs List of settings

modelType Character. Type of model, e.g. "mnl", "nl", "cnl", etc.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

apollo_print 99

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Value

The returned object is a pre-processed version of the model settings. This is independent of
functionality, but the function is only called during preprocessing.

apollo_print Prints message to terminal

Description

Prints message to terminal if apollo_inputs$silent is FALSE

Usage

apollo_print(txt, nSignifD = 4, widthLim = 11, pause = 0, type = "t")

Arguments

txt Character, what to print.

nSignifD Optional numeric integer. Minimum number of significant digits when printing
numeric matrices. Default is 4.

widthLim Optional numeric integer. Minimum width (in characters) of each column when
printing numeric matrices. Default is 11

pause Scalar integer. Number of seconds the execution will pause after printing the
message. Default is 0.

type Character. "t" for regular text (default), "w" for warning, "i" for information.

100 apollo_readBeta

Value

Nothing

apollo_readBeta Reads parameters from file

Description

Reads in parameters from a previously estimated model and copies the values to the given apollo_beta
vector, only for those parameters whose name matches.

Usage

apollo_readBeta(
apollo_beta,
apollo_fixed,
inputModelName,
overwriteFixed = FALSE

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

inputModelName Character. modelName for model from which results are used as starting values.

overwriteFixed Boolean. TRUE if starting values for fixed parameters should also be updated
from input file.

Details

This function will update the values of the parameters in its argument apollo_beta with the match-
ing values in the file (inputModelName)_estimates.csv. If there is no match for a given param-
eter in apollo_beta, its value will not be updated.

Value

Named numeric vector. Names and updated starting values for parameters.

apollo_rrm 101

apollo_rrm Calculates Random Regret Minimisation model probabilities

Description

Calculates the probabilities of a Random Regret Minimisation model and can also perform other
operations based on the value of the functionality argument.

Usage

apollo_rrm(rrm_settings, functionality)

Arguments

rrm_settings List of inputs of the RRM model. It should contain the following.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

• avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be 0 or 1. These can be scalars or vectors (of
length equal to rows in the database). A user can also specify avail=1 to
indicate universal availability, or omit the setting completely.

• choiceset_scaling: Vector. One entry per row in the database, often set
to 2 divided by the number of available alternatives.

• choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• regret_inputs: Named list of regret functions. This should contain one
list per attribute, where these lists themselves contain two vectors, namely a
vector of attributes (at the alternative level) and parameters (either generic
or attribute specific). Zeros can be used for omitted attributes for some
alternatives. The order for each attribute needs to be the same as the order
in alternatives..

• regret_scale: Named list of regret scales. This should have the same
length as ’rrm_settings$regret_inputs’ or be a single entry in the case of a
generic scale parameter across regret attributes.

• rows: Boolean vector. Consideration of which rows to include. Length
equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• rum_inputs: Named list of (optional) deterministic utilities. Utilities of
the alternatives to be included in combined RUM-RRM models. Names of
elements must match those in alternatives.

102 apollo_rrm

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

• "gradient": List containing the likelihood and gradient of the model component.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

• "preprocess": Returns a list with pre-processed inputs, based on rrm_settings.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "raw": Same as "prediction"

• "report": Choice overview

apollo_saveOutput 103

• "shares_LL": vector/matrix/array. Returns the probability of the chosen alternative when
only constants are estimated.

• "validate": Same as "estimate"

• "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

apollo_saveOutput Saves estimation results to files.

Description

Writes files in the working/output directory with the estimation results.

Usage

apollo_saveOutput(model, saveOutput_settings = NA)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
saveOutput_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• printChange: Boolean. TRUE for printing difference between starting
values and estimates. TRUE by default.

• printClassical: Boolean. TRUE for printing classical standard errors.
TRUE by default.

• printCorr: Boolean. TRUE for printing parameters correlation matrix.
If printClassical=TRUE, both classical and robust matrices are printed.
For Bayesian estimation, this setting is used for the covariane of random
parameters. TRUE by default.

• printCovar: Boolean. TRUE for printing parameters covariance matrix.
If printClassical=TRUE, both classical and robust matrices are printed.
For Bayesian estimation, this setting is used for the correlation of random
parameters. TRUE by default.

• printDataReport: Boolean. TRUE for printing summary of choices in
database and other diagnostics. FALSE by default.

• printFixed: Logical. TRUE for printing fixed parameters among esti-
mated parameter. TRUE by default.

• printFunctions: Boolean. TRUE for printing apollo_control, apollo_randCoeff
(when available), apollo_lcPars (when available) and apollo_probabilities.
TRUE by default.

• printHBconvergence: Boolean. TRUE for printing Geweke convergence
tests. TRUE by default.

104 apollo_saveOutput

• printHBiterations: Boolean. TRUE for printing an iterations report for
HB estimation. TRUE by default.

• printModelStructure: Boolean. TRUE for printing model structure. TRUE
by default.

• printOutliers: Boolean or Scalar. TRUE for printing 20 individuals with
worst average fit across observations. FALSE by default. If Scalar is given,
this replaces the default of 20.

• printPVal: Boolean or Scalar. TRUE or 1 for printing p-values for one-
sided test, 2 for printing p-values for two-sided test, FALSE for not printing
p-values. FALSE by default.

• printT1: Boolean. If TRUE, t-test for H0: apollo_beta=1 are printed.
FALSE by default.

• saveEst: Boolean. TRUE for saving estimated parameters and standard
errors to a CSV file. TRUE by default.

• saveCorr: Boolean. TRUE for saving estimated correlation matrix to a
CSV file. FALSE by default.

• saveCov: Boolean. TRUE for saving estimated covariance matrix to a CSV
file. FALSE by default.

• saveHBiterations: Boolean. TRUE for including HB iterations in the
saved model object. FALSE by default.

• saveModelObject: Boolean. TRUE to save the R model object to a file
(use apollo_loadModel to load it to memory). TRUE by default.

• saveOld: Boolean. If TRUE, existing files are kept with an added OLD
suffix. If not, they are overwritten. TRUE by default.

• writeF12: Boolean. TRUE for writing results into an F12 file (ALOGIT
format). FALSE by default.

Details

Estimation results are saved different files in the working/output directory:

• (modelName)_corr.csv CSV file with the estimated classical correlation matrix. Only when
bayesian estimation was not used.

• (modelName)_covar.csv CSV file with the estimated classical covariance matrix. Only when
bayesian estimation was not used.

• (modelName)_estimates.csv CSV file with the estimated parameter values, their standars
errors, and t-ratios.

• (modelName).F12 F12 file with model results. Compatible with ALOGIT.
• (modelName)_output.txt Text file with the output produced by function apollo_modelOutput.
• (modelName)_robcorr.csv CSV file with the estimated robust correlation matrix. Only

when bayesian estimation was not used.
• (modelName)_robcovar.csv CSV file with the estimated robust covariance matrix. Only

when bayesian estimation was not used.

Value

nothing

apollo_searchStart 105

apollo_searchStart Searches for better starting values.

Description

Given a set of starting values and a range for them, searches for points with a better likelihood and
steeper gradients.

Usage

apollo_searchStart(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
searchStart_settings = NA

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
searchStart_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• apolloBetaMax: Vector. Maximum possible value of parameters when
generating candidates. Ignored if smartStart is TRUE. Default is apollo_beta
+ 0.1.

• apolloBetaMin: Vector. Minimum possible value of parameters when gen-
erating candidates. Ignored if smartStart is TRUE. Default is apollo_beta
- 0.1.

• bfgsIter: Numeric scalar. Number od BFGS iterations to perform at each
stage to each remaining candidate. Default is 20.

106 apollo_searchStart

• dTest: Numeric scalar. Tolerance for test 1. A candidate is discarded if its
distance in parameter space to a better one is smaller than dTest. Default
is 1.

• gTest: Numeric scalar. Tolerance for test 2. A candidate is discarded if
the norm of its gradient is smaller than gTest AND its LL is further than
llTest from a better candidate. Default is 10^(-3).

• llTest: Numeric scalar. Tolerance for test 2. A candidate is discarded if
the norm of its gradient is smaller than gTest AND its LL is further than
llTest from a better candidate. Default is 3.

• maxStages: Numeric scalar. Maximum number of search stages. The al-
gorithm will stop when there is only one candidate left, or if it reaches this
number of stages. Default is 5.

• nCandidates: Numeric scalar. Number of candidate sets of parameters to
be used at the start. Should be an integer bigger than 1. Default is 100.

• smartStart: Boolean. If TRUE, candidates are randomly generated with
more chances in the directions the Hessian indicates improvement of the
LL function. Default is FALSE.

Details

This function implements a simplified version of the algorithm proposed by Bierlaire, M., Themans,
M. & Zufferey, N. (2010), A Heuristic for Nonlinear Global Optimization, INFORMS Journal on
Computing, 22(1), pp.59-70. The main difference lies in it implementing only two out of three tests
on the candidates described by the authors. The implemented algorithm has the following steps.

1. Randomly draw nCandidates candidates from an interval given by the user.

2. Label all candidates with a valid log-likelihood (LL) as active.

3. Apply bfgsIter iterations of the BFGS algorithm to each active candidate.

4. Apply the following tests to each active candidate:

(a) Has the BGFS search converged?
(b) Are the candidate parameters after BFGS closer than dTest from any other candidate

with higher LL?
(c) Is the LL of the candidate after BFGS further than distLL from a candidate with better

LL, and its gradient smaller than gTest?

5. Mark any candidates for which at least one test results in yes as inactive.

6. Go back to step 3, unless only one candidate is active, or the maximum number of iterations
(maxStages) has been reached.

This function will write a CSV file to the working/output directory summarising progress. This file
is called modelName_searchStart.csv .

Value

named vector of model parameters. These are the best values found.

apollo_setRows 107

apollo_setRows Sets specified rows to a given value

Description

Given a numeric object (scalar, vector, matrix or 3-dim array) sets a subset of rows to a given value.

Usage

apollo_setRows(v, r, val)

Arguments

v Numeric scalar, vector, matrix or 3-dim array. Rows of this object will be re-
placed by val and

r Boolean vector. As many elements as rows in utilities. TRUE for replacing
that row, FALSE for not changing it.

val Numeric scalar. Value to which the specified rows must be set to.

Value

The same argument utilities but with the rows where r==TRUE set to val.

apollo_setWorkDir Automatically sets working directory to active file directory

Description

This function only works in Rstudio. If called outside RStudio will just print a message to screen
saying it could not set the working directory.

Usage

apollo_setWorkDir()

Value

(invisibly) TRUE if it manages to set the working directory, FALSE if not.

108 apollo_sharesTest

apollo_sharesTest Compares predicted and observed shares

Description

Comparing the shares predicted by the model with the shares observed in the data, and conducts
statistical tests.

Usage

apollo_sharesTest(
model,
apollo_probabilities,
apollo_inputs,
sharesTest_settings

)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
sharesTest_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

• choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

• modelComponent: Name of model component. Set to model by default.
• newAlts: Optional list describing the new alternatives to be used by apollo_sharesTest.

This should have as many elements as new alternatives, with each entry be-
ing a matrix of 0-1 entries, with one row per observation, and one column
per alternative used in the model.

• newAltsOnly: Boolean. If TRUE, results will only be printed for the ’new’
alternatives defined in newAlts, not the original alternatives used in the
model. Set to FALSE by default.

apollo_sink 109

• subsamples: Named list of boolean vectors. Each element of the list de-
fines whether a given observation belongs to a given subsample (e.g. by
sociodemographics).

Details

This is an auxiliary function to help guide the definition of utility functions in a choice model. By
comparing the predicted and observed shares of alternatives for different categories of the data, it is
possible to identify what additional explanatory variables could improve the fit of the model.

Value

Nothing

apollo_sink Starts or stops writing output to a text file.

Description

Starts or stops writing the output shown in the console to a file named "modelName_additional_output.txt".

Usage

apollo_sink(apollo_inputs = NULL)

Arguments

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
If not provided, it will be looked for in the global environment.

Details

After the first time this function is called, all output shown in the console will also be written to
a text file called "modelName_additional_output.txt", where "modelName" is the modelName set
inside apollo_control. The second time this function is called, it stops writing the console output to
the file. The user should always call this function an even number of times to close the output file
and prevents data loss.

Value

Nothing.

110 apollo_speedTest

apollo_speedTest Measures evaluation time of a model

Description

Measures the evaluation time of a model for different number of cores and draws.

Usage

apollo_speedTest(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
speedTest_settings = NA

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

speedTest_settings

List. Contains settings for this function. User input is required for all settings
except those with a default or marked as optional.

• nCoresTry: Numeric vector. Number of threads to try. Default is from 1 to
the detected number of cores.

• nDrawsTry: Numeric vector. Number of inter and intra-person draws to try.
Default value is c(50, 100, 200).

• nRep: Numeric scalar. Number of times the likelihood is evaluated for each
combination of threads and draws. Default is 10.

apollo_swissRouteChoiceData 111

Details

This function evaluates the function apollo_probabilities several times using different number
of threads (a.k.a. processor cores), and draws (if the model uses mixing). It then plots the estimation
time for each combination. Estimation time grows at least linearly with number of draws, while time
savings decrease with the number of threads. This function can help decide what number of draws
and cores to use for estimation, though a high number of draws is always recommended. If the
computer will be used for additional activities during estimation, no more than (machine number
of cores - 1) should be used. Using more threads than cores available in the machine will lead to
reduce dperformance. The use of additional cores come at the expense of additional memory usage.
If R uses more memory than the physical RAM available, then significant slow-downs in processing
time can be expected. This function can help avoiding such pitfalls.

Value

A matrix with the average time per evaluation for each number of threads and draws combination.
A graph is also plotted.

apollo_swissRouteChoiceData

Dataset of route choice.

Description

A Stated Preference dataset containing 3,492 route choices among two alternatives.

Usage

apollo_swissRouteChoiceData

Format

A data frame with 3,492 rows and 16 variables:

ID Numeric. Identification number of the individual.

choice Numeric. Choice indicator, 1 for alternative 1, and 2 for alternative 2.

tt1 Numeric. Travel time (in minutes) for alternative 1.

tc1 Numeric. Travel cost (in CHF) for alternative 1.

hw1 Numeric. Headway time (in minutes) for alternative 1.

ch1 Numeric. Number of interchanges for alternative 1.

tt2 Numeric. Travel time (in minutes) for alternative 2.

tc2 Numeric. Travel cost (in CHF) for alternative 2.

hw2 Numeric. Headway time (in minutes) for alternative 2.

ch2 Numeric. Number of interchanges for alternative 2.

hh_inc_abs Numeric. Household income (in CHF per annum).

112 apollo_timeUseData

car_availability Numeric. 1 if respondent has a car available, 0 otherwise.

commute Numeric. 1 if the purpose of the trip is commuting. 0 otherwise.

shopping Numeric. 1 if the purpose of the trip is shopping. 0 otherwise.

business Numeric. 1 if the purpose of the trip is business. 0 otherwise.

leisure Numeric. 1 if the purpose of the trip is leisure. 0 otherwise.

Details

This dataset is to be used for discrete choice modelling. Data comes from 388 individuals who
participated in a Stated Choice (SC) survey, providing a total of 3,492 observations. Each choice
scenario includes two alternatives described in terms of travel time, cost, headway and interchanges.
Additional information on respondents is available. This dataset comes from the following publi-
cation. Vrtic, M. & Axhausen, K.W. (2003), The impact of tilting trains in Switzerland: A route
choice model of regional and long distance public transport trips. 82nd annual meeting of the trans-
portation research board, Washington, DC.

Source

http://www.apollochoicemodelling.com/

apollo_timeUseData Dataset of time use.

Description

A Revealed Preference dataset containing 2,826 full-day observations.

Usage

apollo_timeUseData

Format

An object of class data.frame with 2826 rows and 20 columns.

Details

This dataset is to be used for Multiple Discrete Continuous (MDC) modelling. Data comes from
447 individuals who provided activitry diaries for a total of 2,826 days. Each observation sum-
marizes the amount of time spent in each of twelve different activities. The dataset also incluides
characteristics of the participants. This dataset comes from the following publication. Calastri,
C., Crastes dit Sourd, R. and Hess, S. (2020) We want it all: experiences from a survey seeking
to capture social network structures, lifetime events and short-term travel and activity planning.
Transportation, 47(1), pp. 175-201.

indivID Numeric. Identification number of the individual.

day Numeric. Index of the day for each observation (day 1 was excluded).

http://www.apollochoicemodelling.com/

apollo_tobit 113

date Numeric. Date in format yyyymmdd.

budget Numeric. Total amount of time registered during the day (in minutes).

t_a01 Numeric. Time spent dropping-of or picking up other people (in minutes).

t_a02 Numeric. Time spent working (in minutes).

t_a03 Numeric. Time spent on educational activities (in minutes).

t_a04 Numeric. Time spent shopping (in minutes).

t_a05 Numeric. Time spent on private business (in minutes).

t_a06 Numeric. Time spent getting petrol (in minutes).

t_a07 Numeric. Time spent on social or leasure activities (in minutes).

t_a08 Numeric. Time spent on vacation or long (inter-city) travel (in minutes).

t_a09 Numeric. Time spent doing exercise (in minutes).

t_a10 Numeric. Time spent at home (in minutes).

t_a11 Numeric. Time spent travelling (everyday travelling) (in minutes).

t_a12 Numeric. Non-allocated time (in minutes).

female Numeric. 1 if respondent is female. 0 otherwise.

age Numeric. Age of respondent (in years, approximate).

occ_full_time Numeric. 1 if the respondent works full time.

weekend Numeric. 1 if the current date is a weekend.

Source

http://www.apollochoicemodelling.com/

apollo_tobit Calculates density for a Tobit model (censored Normal)

Description

Calculates density for a censored Normal distribution at a specific value with a specified mean and
standard deviation and user provided bounds, and can also perform other operations based on the
value of the functionality argument.

Usage

apollo_tobit(tobit_settings, functionality)

http://www.apollochoicemodelling.com/

114 apollo_tobit

Arguments

tobit_settings List of arguments to the functions. It must contain the following.

• componentName: Character. Name given to model component. If not pro-
vided by the user, Apollo will set the name automatically according to the
element in P to which the function output is directed.

• lowerLimit: Numeric scalar. Lower bound beyond which the density is 0.
If not provided by the user, this will be set to -Inf.

• mu: Numeric scalar. Intercept of the linear model.
• outcomeTobit: Numeric vector. Dependent variable.
• rows: Boolean vector. Consideration of which rows to include. Length

equal to the number of observations (nObs), with entries equal to TRUE
for rows to include, and FALSE for rows to exclude. Default is "all",
equivalent to rep(TRUE, nObs).

• sigma: Numeric scalar. Variance of error component of linear model to be
estimated.

• upperLimit: Numeric scalar. Upper bound beyond which the density is 0.
If not provided by the user, this will be set to +Inf.

• xTobit: Numeric vector. Single explanatory variable.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

apollo_unconditionals 115

Details

This function calculates the probability of the linear model outcomeTobit = mu + xTobit + epsilon,
where epsilon is a random error distributed Normal(0,sigma), but with optional lower and upper
bounds imposed by the user (outside of which the density would be 0).

Value

The returned object depends on the value of argument functionality as follows.

• "components": Same as "estimate"

• "conditionals": Same as "estimate"

• "estimate": vector/matrix/array. Returns the likelihood for each observation.

• "gradient": List containing the likelihood and gradient of the model component.

• "output": Same as "estimate" but also writes summary of input data to internal Apollo log.

• "prediction": Predicted value at the observation level.

• "preprocess": Returns a list with pre-processed inputs, based on tobit_settings.

• "raw": Same as "estimate"

• "report": Dependent variable overview.

• "shares_LL": Not implemented. Returns a vector of NA with as many elements as observa-
tions.

• "validate": Same as "estimate", but it also runs a set of tests to validate the function inputs.

• "zero_LL": Not implemented. Returns a vector of NA with as many elements as observations.

apollo_unconditionals Returns unconditionals for models with random heterogeneity

Description

Returns unconditionals for random parameters in model, both for continuous mixtures and latent
class.

Usage

apollo_unconditionals(model, apollo_probabilities, apollo_inputs)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities

Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

116 apollo_validate

• apollo_inputs: List containing options of the model. See apollo_validateInputs.
• functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This functions is only meant for use with models using continuous distributions or latent classes, or
both at the same time.

Value

Depends on whether the model uses continuous mixtures or latent class.

• If the model contains a continuous mixture, it returns a list with one object per random coef-
ficient. When using inter-individual draws only, each element will be a matrix with one row
per individual, and one column per draw. When using intra- individual draws, each element
will be a three-dimensional array, with one row per observation, inter-individual draws in the
second dimension, and intra- individual draws in the third dimension.

• If the model contains latent classes, it returns a list with as many elements as random coeffi-
cients in the model, plus one additional element containing the class allocation probabilities.

• If the model contains both continuous mixing and latent classes, a list with the two elements
described above will be returned.

apollo_validate Pre-process input for common models return

Description

Pre-process input for common models return

Usage

apollo_validate(inputs, modelType, functionality, apollo_inputs)

Arguments

inputs List of settings

modelType Character. Type of model, e.g. "mnl", "nl", "cnl", etc.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

apollo_validateControl 117

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

apollo_inputs List of main inputs to the model estimation process. See apollo_validateInputs.

Value

The returned object depends on the value of argument operation

apollo_validateControl

Validates apollo_control

Description

Validates the options controlling the running of the code apollo_control and sets default values
for the omitted ones.

Usage

apollo_validateControl(database, apollo_control, silent = FALSE)

Arguments

database data.frame. Data used by model.

apollo_control List. Options controlling the running of the code. User input is required for all
settings except those with a default or marked as optional.

118 apollo_validateData

• calculateLLC: Boolean. TRUE if user wants to calculate LL at constants
(if applicable). - TRUE by default.

• HB: Boolean. TRUE if using RSGHB for Bayesian estimation of model.
• indivID: Character. Name of column in the database with each decision

maker’s ID.
• memorySaver: Boolean. TRUE to reduce memory usage when calculating

analytical gradients and hessian - FALSE by default.
• mixing: Boolean. TRUE for models that include random parameters.
• modelDescr: Character. Description of the model. Used in output files.
• modelName: Character. Name of the model. Used when saving the output

to files.
• nCores: Numeric>0. Number of cores to use in calculations of the model

likelihood.
• noDiagnostics: Boolean. TRUE if user does not wish model diagnostics

to be printed - FALSE by default.
• noValidation: Boolean. TRUE if user does not wish model input to be

validated before estimation - FALSE by default.
• outputDirectory: Character. Optional directory for outputs if different

from working director - empty by default
• panelData: Boolean. TRUE if there are multiple observations (i.e. rows)

for each decision maker - Automatically set based on indivID by default.
• seed: Numeric. Seed for random number generation.
• weights: Character. Name of column in database containing weights for

estimation.
• workInLogs: Boolean. TRUE for increased numeric precision in models

with panel data - FALSE by default.

silent Boolean. If TRUE, no messages are printed to screen.

Details

This function should be run before running apollo_validateData.

Value

Validated version of apollo_control, with additional element called panelData set to TRUE for
repeated choice data.

apollo_validateData Validates data

Description

Checks consistency of the database with apollo_control, sorts it by indivID, and adds an internal
ID variable (apollo_sequence)

apollo_validateHBControl 119

Usage

apollo_validateData(database, apollo_control, silent)

Arguments

database data.frame. Data used by model.

apollo_control List. Options controlling the running of the code. See apollo_validateInputs.

silent Boolean. TRUE to prevent the function from printing to the console. Default is
FALSE.

Details

This function should be called after calling apollo_validateControl. Observations are sorted only if
apollo_control$panelData=TRUE.

Value

Data.frame. Validated version of database.

apollo_validateHBControl

Validates the apollo_HB list of parameters

Description

Validates the apollo_HB list of parameters and sets default values for the omitted ones.

Usage

apollo_validateHBControl(
apollo_HB,
apollo_beta,
apollo_fixed,
apollo_control,
silent = FALSE

)

Arguments

apollo_HB List. Contains options for Bayesian estimation. See ?RSGHB::doHB for details.
Parameters modelname, gVarNamesFixed, gVarNamesNormal, gDIST, svN and
FC are automatically set based on the other arguments of this function. Other
settings to include are the following.

• constraintsNorm: Character vector. Constraints for random coefficients
in bayesian estimation. Constraints can be written as "b1>b2", "b1<b2",
"b1>0", or "b1<0".

120 apollo_validateHBControl

• fixedA: Named numeric vector. Contains the names and fixed mean values
of random parameters. For example, c(b1=0) fixes the mean of b1 to zero.

• fixedD: Named numeric vector. Contains the names and fixed variance of
random parameters. For example, c(b1=1) fixes the variance of b1 to zero.

• gFULLCV: Boolean. Whether the full variance-covariance structure should
be used for random parameters (TRUE by default).

• gNCREP: Numeric. Number of burn-in iterations to use prior to convergence
(default=10^5).

• gNEREP: Numeric. Number of iterations to keep for averaging after conver-
gence has been reached (default=10^5).

• gINFOSKIP: Numeric. Number of iterations between printing/plotting in-
formation about the iteration process (default=250).

• hbDist: Mandatory setting. A named character vector determining the dis-
tribution of each parameter to be estimated. Possible values are as follows.

– "CN+": Positive censored normal.

– "CN-": Negative censored normal.

– "JSB": Johnson SB.

– "LN+": Positive log-normal.

– "LN-": Negative log-normal.

– "N": Normal.

– "NR": Fixed (as in non-random) parameter.

• nodiagnostics: Boolean. Turn off pre-estimation diagnostics for RS-
GHB. Set to TRUE by default.

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation. value is constant throughout estima-
tion).

apollo_control List. Options controlling the running of the code. See apollo_validateInputs.

silent Boolean. TRUE to keep the function from printing to the console. Default is
FALSE.

Details

This function is only necessary when using bayesian estimation.

Value

Validated apollo_HB

apollo_validateInputs 121

apollo_validateInputs Prepares input for apollo_estimate

Description

Searches the user work space (.GlobalEnv) for all necessary input to run apollo_estimate, and
packs it in a single list.

Usage

apollo_validateInputs(
apollo_beta = NA,
apollo_fixed = NA,
database = NA,
apollo_control = NA,
apollo_HB = NA,
apollo_draws = NA,
apollo_randCoeff = NA,
apollo_lcPars = NA,
recycle = FALSE,
silent = FALSE

)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

database data.frame. Data used by model.

apollo_control List. Options controlling the running of the code. User input is required for all
settings except those with a default or marked as optional.

• analyticGrad: Boolean. TRUE to use analytical gradients during param-
eter estimation, if they are available. FALSE to use numerical gradients. -
TRUE by default.

• calculateLLC: Boolean. TRUE if user wants to calculate LL at constants
(if applicable). - TRUE by default.

• HB: Boolean. TRUE if using RSGHB for Bayesian estimation of model.
• indivID: Character. Name of column in the database with each decision

maker’s ID.
• mixing: Boolean. TRUE for models that include random parameters.
• modelDescr: Character. Description of the model. Used in output files.
• modelName: Character. Name of the model. Used when saving the output

to files.
• nCores: Numeric>0. Number of cores to use in calculations of the model

likelihood.

122 apollo_validateInputs

• noDiagnostics: Boolean. TRUE if user does not wish model diagnostics
to be printed - FALSE by default.

• noValidation: Boolean. TRUE if user does not wish model input to be
validated before estimation - FALSE by default.

• outputDirectory: Character. Optional directory for outputs if different
from working director - empty by default

• panelData: Boolean. TRUE if there are multiple observations (i.e. rows)
for each decision maker - Automatically set based on indivID by default.

• seed: Numeric. Seed for random number generation.
• weights: Character. Name of column in database containing weights for

estimation.
• workInLogs: Boolean. TRUE for increased numeric precision in models

with panel data - FALSE by default.
apollo_HB List. Contains options for Bayesian estimation. See ?RSGHB::doHB for details.

Parameters modelname, gVarNamesFixed, gVarNamesNormal, gDIST, svN and
FC are automatically set based on the other arguments of this function. Other
settings to include are the following.

• constraintNorm: Character vector. Constraints for random coefficients
in bayesian estimation. Constraints can be written as "b1>b2", "b1<b2",
"b1>0", or "b1<0".

• fixedA: Named numeric vector. Contains the names and fixed mean values
of random parameters. For example, c(b1=0) fixes the mean of b1 to zero.

• fixedD: Named numeric vector. Contains the names and fixed variance of
random parameters. For example, c(b1=1) fixes the variance of b1 to zero.

• gNCREP: Numeric. Number of burn-in iterations to use prior to convergence
(default=10^5).

• gNEREP: Numeric. Number of iterations to keep for averaging after conver-
gence has been reached (default=10^5).

• gINFOSKIP: Numeric. Number of iterations between printing/plotting in-
formation about the iteration process (default=250).

• hbDist: Mandatory setting. A named character vector determining the dis-
tribution of each parameter to be estimated. Possible values are as follows.

– "CN+": Positive censored normal.
– "CN-": Negative censored normal.
– "DNE": Parameter kept at its starting value (not estimated).
– "JSB": Johnson SB.
– "LN+": Positive log-normal.
– "LN-": Negative log-normal.
– "N": Normal.
– "NR": Fixed (as in non-random) parameter.

apollo_draws List of arguments describing the inter and intra individual draws. Required only
if apollo_control$mixing = TRUE. Unused elements can be ommited.

• interDrawsType: Character. Type of inter-individual draws (’halton’,’mlhs’,’pmc’,’sobol’,’sobolOwen’,
’sobolFaureTezuka’, ’sobolOwenFaureTezuka’ or the name of an object
loaded in memory, see manual in www.ApolloChoiceModelling.com for
details).

apollo_validateInputs 123

• interNDraws: Numeric scalar (>=0). Number of inter-individual draws per
individual. Should be set to 0 if not using them.

• interNormDraws: Character vector. Names of normaly distributed inter-
individual draws.

• interUnifDraws: Character vector. Names of uniform-distributed inter-
individual draws.

• intraDrawsType: Character. Type of intra-individual draws (’halton’,’mlhs’,’pmc’,’sobol’,’sobolOwen’,’sobolFaureTezuka’,
’sobolOwenFaureTezuka’ or the name of an object loaded in memory).

• intraNDraws: Numeric scalar (>=0). Number of intra-individual draws per
individual. Should be set to 0 if not using them.

• intraUnifDraws: Character vector. Names of uniform-distributed intra-
individual draws.

• intraNormDraws: Character vector. Names of normaly distributed intra-
individual draws.

apollo_randCoeff

Function. Used with mixing models. Constructs the random parameters of a
mixing model. Receives two arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: The output of this function (apollo_validateInputs).

apollo_lcPars Function. Used with latent class models. Constructs a list of parameters for each
latent class. Receives two arguments:

• apollo_beta: Named numeric vector. Names and values of model param-
eters.

• apollo_inputs: The output of this function (apollo_validateInputs).

recycle Logical. If TRUE, an older version of apollo_inputs is looked for in the
calling environment (parent frame), and any element in that old version cre-
ated by the user is copied into the new apollo_inputs returned by this func-
tion. For recycle=TRUE to work, the old version of apollo_inputs must be
named "apollo_inputs". If FALSE, nothing is copied from any older version of
apollo_inputs. FALSE is the default.

silent Logical. TRUE to keep the function from printing to the console. Default is
FALSE.

Details

All arguments to this function are optional. If the function is called without arguments, then it it
will look in the user workspace (i.e. the global environment) for variables with the same name as its
omitted arguments. We strongly recommend users to visit http://www.apollochoicemodelling.
com/ for examples on how to use Apollo. In the website, users will also find a detailed manual and
a user-group for help and further reference.

Value

List grouping several required input for model estimation.

http://www.apollochoicemodelling.com/
http://www.apollochoicemodelling.com/

124 apollo_varcov

apollo_varcov Calculates variance-covariance matrix of an Apollo model

Description

Calculates the Hessian, variance-covariance matrix and standard errors of an Apollo model as de-
fined by its likelihood function and apollo_inputs list of settings. Performs automatic scaling for
increased numeric stability.

Usage

apollo_varcov(apollo_beta, apollo_fixed, varcov_settings)

Arguments

apollo_beta Named numeric vector. Names and values of parameters at which to calculate
the covariance matrix. Values must not be scaled, and they must include any
fixed parameter.

apollo_fixed Character vector. Names of fixed parameters.
varcov_settings

List of settings defining the behaviour of this function. It must contain at least
one of the following: apollo_logLike, apollo_grad or apollo_inputs to-
gether with apollo_probabilities.

• apollo_grad: Function to calculate the gradient of the model, as returned
by apollo_makeGrad.

• apollo_hessian: Function to calculate the hessian of the model, as re-
turned by apollo_makeHessian.

• apollo_inputs: List grouping most common inputs. Created by function
apollo_validateInputs.

• apollo_logLike: Function to calculate the log-likelihood of the model, as
returned by apollo_makeLogLike.

• apollo_probabilities: apollo_probabilities Function. Returns probabil-
ities of the model to be estimated. Must receive three arguments:

– apollo_beta: Named numeric vector. Names and values of model
parameters.

– apollo_inputs: List containing options of the model. See apollo_validateInputs.
– functionality: Character. Can be either "components", "conditionals",
"estimate" (default), "gradient", "output", "prediction", "preprocess",
"raw", "report", "shares_LL", "validate" or "zero_LL".

• BHHH_matrix: Matrix. Optional input, providing the BHHH matrix so it
does not get recalculated.

• hessianRoutine: Character. Name of routine used to calculate the Hes-
sian. Valid values are "analytic", "numDeriv", "maxLik" or "none" to
avoid estimating the Hessian and covariance matrix.

apollo_varList 125

• numDeriv_method: Character. Method used for numerical differentiation.
Can be "Richardson" or "simple", Only used if analytic gradients are
available. See argument method in grad for more details.

• numDeriv_settings: List. Additional arguments to the Richardson method
used by numDeriv to calculate the Hessian. See argument method.args in
grad for more details.

• scaleBeta: Logical. If TRUE (default), parameters are scaled by their
own value before calculating the Hessian to increase numerical stability.
However, the output is de-scaled, so they are in the same scale as the
apollo_beta argument.

Details

It calculates the Hessian, variance-covariance, and standard errors at apollo_beta values of an esti-
mated model. At least one of the following settings must be provided (ordered by speed of computa-
tion): apollo_grad, apollo_logLike, or (apollo_probabilities and apollo_inputs). If more
than one is provided, then the priority is: apollo_grad, apollo_logLike, (apollo_probabilities
and apollo_inputs).

Value

List with the following elements

• apollo_beta: Named numerical vector. Parameter estimates (model$estimate, not scaled).

• corrmat: Numerical matrix. Correlation between parameter estimates.

• hessian: Numerical matrix. Hessian of the model at parameter estimates (model$estimate).

• hessianScaling: Named numeric vector. Scales used on the paramaters to calculate the
Hessian (non-fixed only).

• methodsAttempted: Character vector. Name of methods attempted to calculate the Hessian.

• methodUsed: Character. Name of method used to calculate the Hessian.

• robcorrmat: Numerical matrix. Robust correlation between parameter estimates.

• robse: Named numerical vector. Robust standard errors of parameter estimates.

• robvarcov: Numerical matrix. Robust variance-covariance matrix.

• se: Named numerical vector. Standard errors of parameter estimates.

• varcov: Numerical matrix. Variance-covariance matrix.

apollo_varList Lists variable names and definitions used inside a function

Description

Returns a list containing the names and definitions of variables in f, apollo_randCoeff and apollo_lcPars

126 apollo_weighting

Usage

apollo_varList(f, apollo_inputs)

Arguments

f A function, usually apollo_probabilities

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

It looks for variable definitions inside f, apollo_randCoeff, and apollo_lcPars. It returns them
in a list.

Value

A list of expressions containing all definitions in f, apollo_randCoeff and apollo_probabilities

apollo_weighting Applies weights

Description

Applies weights to individual observations in likelihood function.

Usage

apollo_weighting(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Setting instructing Apollo what processing to apply to the likelihood
function. This is in general controlled by the functions that call apollo_probabilities,
though the user can also call apollo_probabilities manually with a given
functionality for testing/debugging. Possible values are:

• "components": For further processing/debugging, produces likelihood for
each model component (if multiple components are present), at the level of
individual draws and observations.

• "conditionals": For conditionals, produces likelihood of the full model,
at the level of individual inter-individual draws.

• "estimate": For model estimation, produces likelihood of the full model,
at the level of individual decision-makers, after averaging across draws.

• "gradient": For model estimation, produces analytical gradients of the
likelihood, where possible.

apollo_writeF12 127

• "output": Prepares output for post-estimation reporting.
• "prediction": For model prediction, produces probabilities for individual

alternatives and individual model components (if multiple components are
present) at the level of an observation, after averaging across draws.

• "preprocess": Prepares likelihood functions for use in estimation.
• "raw": For debugging, produces probabilities of all alternatives and in-

dividual model components at the level of an observation, at the level of
individual draws.

• "report": Prepares output summarising model and choiceset structure.
• "shares_LL": Produces overall model likelihood with constants only.
• "validate": Validates model specification, produces likelihood of the full

model, at the level of individual decision-makers, after averaging across
draws.

• "zero_LL": Produces overall model likelihood with all parameters at zero.

Value

The likelihood (i.e. probability in the case of choice models) of the model in the appropriate form
for the given functionality, multiplied by individual-specific weights.

apollo_writeF12 Writes an F12 file

Description

Writes an F12 file (ALogit format) with the results of a model estimation.

Usage

apollo_writeF12(model, truncateCoeffNames = TRUE)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.

truncateCoeffNames

Boolean. TRUE to truncate parameter names to 10 characters. TRUE by default.

Value

Nothing.

128 aux_validateRows

apollo_writeTheta Writes the vector [beta,ll] to a file called
modelname_iterations.csv

Description

Writes the vector [beta,ll] to a file called modelname_iterations.csv

Usage

apollo_writeTheta(
beta,
ll,
modelName,
scaling = NULL,
outDir = NULL,
apollo_beta = NULL

)

Arguments

beta vector of parameters to be written (including fixed ones).

ll scalar representing the log-likelihood of the whole model.

modelName Character. Name of the model.

scaling Numeric vector of scales applied to beta

outDir Scalar character. Name of output directory

apollo_beta Named numeric vector of starting values.

Value

Nothing.

aux_validateRows Validates and expands rows if necessary.

Description

Validates and expands rows if necessary.

Usage

aux_validateRows(rows, componentName = NULL, apollo_inputs = NULL)

print.apollo 129

Arguments

rows Boolean vector. Consideration of which rows to include. Length equal to the
number of observations (nObs), with entries equal to TRUE for rows to include,
and FALSE for rows to exclude. Default is "all", equivalent to rep(TRUE,
nObs). Set to "all" by default if omitted.

componentName Character. Name given to model component. If not provided by the user, Apollo
will set the name automatically according to the element in P to which the func-
tion output is directed.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

print.apollo Prints brief summary of Apollo model

Description

Receives an estimated model object and prints a brief summary using the generic print function.

Usage

S3 method for class 'apollo'
print(x, ...)

Arguments

x Model object. Estimated model object as returned by function apollo_estimate.

... further arguments passed to or from other methods.

Value

nothing.

summary.apollo Prints summary of Apollo model

Description

Receives an estimated model object and prints a summary using the generic summary function.

Usage

S3 method for class 'apollo'
summary(object, ..., pTwoSided = FALSE)

130 summary.apollo

Arguments

object Model object. Estimated model object as returned by function apollo_estimate.

... further arguments passed to or from other methods.

pTwoSided Logical. Should two-sided p-values be printed instead of one-sided p-values.
FALSE by default. #’ @return nothing.

Index

∗ datasets
apollo_drugChoiceData, 29
apollo_modeChoiceData, 78
apollo_swissRouteChoiceData, 111
apollo_timeUseData, 112

.onAttach, 4

apollo_addCovariance, 5
apollo_attach, 5, 25, 26
apollo_avgInterDraws, 6, 20
apollo_avgIntraDraws, 7, 20
apollo_basTest, 9
apollo_bootstrap, 9
apollo_checkArguments, 12
apollo_choiceAnalysis, 13
apollo_classAlloc, 14
apollo_cnl, 15
apollo_cnl2, 17
apollo_combineModels, 19
apollo_combineResults, 21
apollo_compareInputs, 22
apollo_conditionals, 23
apollo_deltaMethod, 24
apollo_detach, 5, 25
apollo_dft, 26
apollo_diagnostics, 28
apollo_drugChoiceData, 29
apollo_dVdB, 31
apollo_dVdBOld, 31
apollo_el, 32
apollo_emdc, 34
apollo_emdc1, 35
apollo_emdc2, 37
apollo_estimate, 5, 9, 10, 23, 24, 38, 41, 43,

55–57, 60, 64, 72, 74, 75, 79, 91, 96,
103, 108, 115, 127, 129, 130

apollo_estimateHB, 40
apollo_expandLoop, 42
apollo_firstRow, 42
apollo_fitsTest, 43

apollo_fmnl, 44
apollo_fnl, 46
apollo_initialise, 48
apollo_insertComponentName, 48
apollo_insertFunc, 49
apollo_insertOLList, 50
apollo_insertRows, 50
apollo_insertRRMQuotes, 51
apollo_insertScaling, 52
apollo_keepRows, 52
apollo_lc, 53
apollo_lcConditionals, 54
apollo_lcEM, 55
apollo_lcUnconditionals, 57
apollo_llCalc, 57
apollo_loadModel, 58, 104
apollo_longToWide, 59
apollo_lrTest, 59
apollo_makeCluster, 60
apollo_makeDraws, 61
apollo_makeGrad, 62, 124
apollo_makeHessian, 63, 124
apollo_makeLogLike, 62, 63, 64, 124
apollo_mdcev, 65
apollo_mdcev2, 67
apollo_mdcnev, 69
apollo_mixConditionals, 72
apollo_mixEM, 73
apollo_mixUnconditionals, 74
apollo_mlhs, 75
apollo_mnl, 76
apollo_modeChoiceData, 78
apollo_modelOutput, 40, 79
apollo_modifyUserDefFunc, 80
apollo_nl, 81
apollo_normalDensity, 84
apollo_ol, 86
apollo_op, 88
apollo_outOfSample, 90

131

132 INDEX

apollo_ownModel, 92
apollo_panelProd, 20, 94
apollo_prediction, 95
apollo_prepareProb, 20, 96
apollo_preprocess, 98
apollo_print, 99
apollo_readBeta, 100
apollo_rrm, 101
apollo_saveOutput, 40, 103
apollo_searchStart, 105
apollo_setRows, 107
apollo_setWorkDir, 107
apollo_sharesTest, 108
apollo_sink, 109
apollo_speedTest, 110
apollo_swissRouteChoiceData, 111
apollo_timeUseData, 112
apollo_tobit, 113
apollo_unconditionals, 115
apollo_validate, 116
apollo_validateControl, 117, 119
apollo_validateData, 43, 118
apollo_validateHBControl, 119
apollo_validateInputs, 5–7, 10, 13, 14, 20,

22, 23, 25, 29, 31, 39, 41–43, 53,
55–58, 60, 61, 64, 72, 73, 75, 81, 90,
91, 94, 96, 97, 99, 105, 108–110,
116, 117, 119, 120, 121, 124, 126,
129

apollo_varcov, 124
apollo_varList, 125
apollo_weighting, 126
apollo_writeF12, 127
apollo_writeTheta, 128
aux_validateRows, 128

bgw_mle, 39

grad, 39, 125

maxBFGS, 39
maxBHHH, 39
maxLik, 39
maxNM, 39

on.exit, 5

print.apollo, 129

summary.apollo, 129

	.onAttach
	apollo_addCovariance
	apollo_attach
	apollo_avgInterDraws
	apollo_avgIntraDraws
	apollo_basTest
	apollo_bootstrap
	apollo_checkArguments
	apollo_choiceAnalysis
	apollo_classAlloc
	apollo_cnl
	apollo_cnl2
	apollo_combineModels
	apollo_combineResults
	apollo_compareInputs
	apollo_conditionals
	apollo_deltaMethod
	apollo_detach
	apollo_dft
	apollo_diagnostics
	apollo_drugChoiceData
	apollo_dVdB
	apollo_dVdBOld
	apollo_el
	apollo_emdc
	apollo_emdc1
	apollo_emdc2
	apollo_estimate
	apollo_estimateHB
	apollo_expandLoop
	apollo_firstRow
	apollo_fitsTest
	apollo_fmnl
	apollo_fnl
	apollo_initialise
	apollo_insertComponentName
	apollo_insertFunc
	apollo_insertOLList
	apollo_insertRows
	apollo_insertRRMQuotes
	apollo_insertScaling
	apollo_keepRows
	apollo_lc
	apollo_lcConditionals
	apollo_lcEM
	apollo_lcUnconditionals
	apollo_llCalc
	apollo_loadModel
	apollo_longToWide
	apollo_lrTest
	apollo_makeCluster
	apollo_makeDraws
	apollo_makeGrad
	apollo_makeHessian
	apollo_makeLogLike
	apollo_mdcev
	apollo_mdcev2
	apollo_mdcnev
	apollo_mixConditionals
	apollo_mixEM
	apollo_mixUnconditionals
	apollo_mlhs
	apollo_mnl
	apollo_modeChoiceData
	apollo_modelOutput
	apollo_modifyUserDefFunc
	apollo_nl
	apollo_normalDensity
	apollo_ol
	apollo_op
	apollo_outOfSample
	apollo_ownModel
	apollo_panelProd
	apollo_prediction
	apollo_prepareProb
	apollo_preprocess
	apollo_print
	apollo_readBeta
	apollo_rrm
	apollo_saveOutput
	apollo_searchStart
	apollo_setRows
	apollo_setWorkDir
	apollo_sharesTest
	apollo_sink
	apollo_speedTest
	apollo_swissRouteChoiceData
	apollo_timeUseData
	apollo_tobit
	apollo_unconditionals
	apollo_validate
	apollo_validateControl
	apollo_validateData
	apollo_validateHBControl
	apollo_validateInputs
	apollo_varcov
	apollo_varList
	apollo_weighting
	apollo_writeF12
	apollo_writeTheta
	aux_validateRows
	print.apollo
	summary.apollo
	Index

