Package 'bistablehistory'

September 13, 2023

Title Cumulative History Analysis for Bistable Perception Time Series

Version 1.1.2

Description Estimates cumulative history for time-series for continuously viewed bistable perceptual rivalry displays. Computes cumulative history via a homogeneous first order differential process. I.e., it assumes exponential growth/decay of the history as a function time and perceptually dominant state, Pastukhov & Braun (2011) <doi:10.1167/11.10.12>. Supports Gamma, log normal, and normal distribution families. Provides a method to compute history directly and example of using the computation on a custom Stan code.

License GPL (>= 3)

URL https://github.com/alexander-pastukhov/bistablehistory/,

https://alexander-pastukhov.github.io/bistablehistory/

BugReports https://github.com/alexander-pastukhov/bistablehistory/issues/

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

Biarch true

Depends R (>= 4.3.0), loo, rlang, rstantools (>= 2.1.1)

Imports methods, Rcpp (>= 0.12.0), rstan (>= 2.26.0), dplyr, tibble, glue, boot, future, purrr, tidyr

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>= 2.26.0)

SystemRequirements GNU make

Suggests testthat, knitr, rmarkdown, ggplot2

NeedsCompilation yes

Author Alexander Pastukhov [aut, cre] (<https://orcid.org/0000-0002-8738-8591>) Maintainer Alexander Pastukhov <pastukhov.alexander@gmail.com>

Repository CRAN

Date/Publication 2023-09-13 13:20:09 UTC

R topics documented:

bistablehistory-package
bayes_R2 3
br
br_contrast
br_singleblock
br_single_subject
coef.cumhist
compute_history
cumhist-class
extract_history
extract_history_parameter 10
extract_replicate_term_to_matrix
extract_term_to_matrix
fast_history_compute
fit_cumhist
fixef
historyef
history_mixed_state
history_parameter
history_tau
kde
kde_two_observers
loo.cumhist
nc
predict.cumhist
predict_history
predict_samples
preprocess_data
print.cumhist
summary.cumhist
waic.cumhist

Index

bistablehistory-package

Cumulative History Analysis for Bistable Perception Time Series

Description

Estimates cumulative history for time-series for continuously viewed bistable perceptual rivalry displays. Computes cumulative history via a homogeneous first order differential process. I.e., it assumes exponential growth/decay of the history as a function time and perceptually dominant state, Pastukhov & Braun (2011) doi:10.1167/11.10.12. Supports Gamma, log normal, and normal distribution families. Provides a method to compute history directly and example of using the computation on a custom Stan code.

Author(s)

Maintainer: Alexander Pastukhov <pastukhov.alexander@gmail.com> (ORCID)

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. https://mc-stan.org

See Also

vignette("cumulative-history", package = "bistablehistory") vignette("usage-examples", package = "bistablehistory") vignette("writing-stan-code", package = "bistablehistory")

bayes_R2

Computes R-squared using Bayesian R-squared approach.

Description

For detail refer to: Andrew Gelman, Ben Goodrich, Jonah Gabry, and Aki Vehtari (2018). R-squared for Bayesian regression models. The American Statistician doi:10.1080/00031305.2018.1549100 and https://avehtari.github.io/bayes_R2/bayes_R2.html

```
## S3 method for class 'cumhist'
bayes_R2(object, summary = TRUE, probs = c(0.055, 0.945), ...)
```

Arguments

object	An object of class cumhist
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE
probs	The percentiles used to compute summary, defaults to 89% credible interval.
	Unused.

Value

vector of values or a data.frame with summary

Examples

```
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
bayes_R2(br_fit)</pre>
```

br

Binocular rivalry data

Description

Dataset on binocular rivalry for eight participants.

Usage

br

Format

A data frame with 3769 rows and 6 variables:

Observer Participant ID.

Display Display, all rows contain "BR"

Block Run / block index.

Time Time relative to the run onset in seconds

State Factor with levels "Left", "Right" (clear states), and "Mixed".

Duration Duration of a dominance phase in *seconds*. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi:10.1167/11.10.12

br_contrast

Description

Dataset on binocular rivalry with variable but equal contrast for six participants.

Usage

br_contrast

Format

A data frame with 4616 rows and 6 variables:

Observer Participant ID.

Block Run / block index.

Contrast Contrast on scale from 0 to 1.

Time Time relative to the run onset in seconds

State Factor with levels "Left", "Right" (clear states), and "Mixed".

Duration Duration of a dominance phase in *seconds*. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

br_singleblock Single run for binocular rivalry stimulus

Description

A single subject / single run dataset for binocular rivalry.

Usage

br_singleblock

Format

A data frame with 76 rows and 6 variables:

Observer Participant ID, all rows contain "ap"

Group Display, all rows contain "BR"

Block Run / block index, all rows contain 1

Time Time relative to the run onset in seconds

State Index of a perceptually dominant state, 1, 2 - clear perceptual state, 3 mixed / transition phase

Duration Duration of a dominance phase in *seconds*. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi:10.1167/11.10.12

br_single_subject Single experimental session for binocular rivalry stimulus

Description

A single subject / multiple runs dataset for binocular rivalry.

Usage

br_single_subject

Format

A data frame with 76 rows and 6 variables:

Observer Participant ID, all rows contain "ap"

Display Display, all rows contain "BR"

Block Run / block index

Time Time relative to the run onset in seconds

State Index of a perceptually dominant state, 1, 2 - clear perceptual state, 3 mixed / transition phase

Duration Duration of a dominance phase in *seconds*. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi:10.1167/11.10.12

coef.cumhist Extract Model Coefficients

Description

Extracts models population-level coefficients history-specific terms and fixed-effect terms for every modeled distribution parameter.

```
## S3 method for class 'cumhist'
coef(object, summary = TRUE, probs = c(0.055, 0.945), ...)
```

compute_history

Arguments

object	An object of class cumhist
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE
probs	The percentiles used to compute summary, defaults to 89% credible interval.
	Unused.

Value

data.frame with values or summary

Examples

compute_history C	Computes cumulative	history for the time-series
-------------------	---------------------	-----------------------------

Description

Computes cumulative history for each state in the time-series.

```
compute_history(
  data,
  state,
  duration = NULL,
  onset = NULL,
  random_effect = NULL,
  session = NULL,
  run = NULL,
  tau = 1,
  mixed_state = 0.5,
  history_init = 0
)
```

Arguments

data	A table with time-series.
state	String, the name of the column that specifies perceptual state. The column type should be a factor with two or three levels (the third level is assumed to correspond to a transition/mixed phase) or should be convertible to a two level factor (as it would be impossible to infer the identity of transition/mixed phase).
duration	String, name of the column with duration of individual perceptual dominance phases. Optional, you can specify onset instead.
onset	String, name of the column with onsets of the perceptual dominance states. Optional, used to compute duration of the dominance phases, if these are not provided explicitly via duration parameter.
random_effect	String, name of the column that identifies random effect, e.g. individual par- ticipants, stimuli for a single participant, etc. If omitted, no random effect is assumed. If specified and there is more than one level (participant, stimulus, etc.), it is used in a hierarchical model.
session	String, name of the column that identifies unique experimental session for which a mean dominance phase duration will be computed (see norm_tau parameter). Code assumes that session IDs are different within a participant but can be the same between them. If omitted, a single mean dominance duration based on the entire time series is used.
run	String, name of the column that identifies unique runs/blocks. If omitted, the data is assumed to belong to a single time series. Code assumes that run IDs are different within an experimental session but can be the same between the session. E.g. session A, runs 1, 2, 3 and session B, runs 1, 2, 3 but not session A, runs 1, 2, 1.
tau	Time constant of exponential growth/decay normalized to the mean duration of clear percepts within each session. Can be 1) a single positive number (>0) that is used for all participants and runs, 2) NULL (default) - a <i>single</i> value will be fitted for all participants and runs, 3) "random" - an independent tau is fitted for each random cluster, 4) "1 random"- a tau for a random cluster is sampled from a population distribution, i.e., pooled parameter values via a multilevel model.
mixed_state	Specifies an activation level during transition/mixed phases (state #3, see state). Either a single number (range 01) that will be used as a fixed level or a vector of two numbers c(mu, kappa) that specifies, correspondingly, mean (range 01) and precision (>0) of beta proportion distribution, it should be sampled from. Defaults to a fixed value of 0.5 .
history_init	Initial value for cumulative history computation. Either a numeric scalar in 01 range or a vector of two numbers in 01 range. In the latter case, two histories will start at different levels.

Value

A matrix nrow(data) × 2 with computed history values

cumhist-class

Examples

cumhist-class Class cumhist.

Description

Cumulative history model fitted to time-series data.

Details

See methods(class = "cumhist") for an overview of available methods.

Slots

family A string with distribution family.
data A list with preprocessed data.
stanfit a stanfit object.

See Also

fit_cumhist

extract_history Computes history for a fitted model

Description

Computes history for a fitted model, uses only mean values for each history parameter. Uses values for each random cluster, if "random" or "1|random" parametrisation was used.

Usage

extract_history(object)

Arguments

object An object of class cumhist

Value

A matrix of cumulative history values for each state

Examples

```
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
extract_history(br_fit)</pre>
```

extract_history_parameter

Extracts a history parameter as a matrix

Description

Extracts a history parameter as a matrix with samplesN rows and randomN (found in object\$data\$randomN) columns.

Usage

```
extract_history_parameter(
   object,
   param_name,
   samplesN = NULL,
   link_function = NULL
)
```

Arguments

object	A cumhist object
param_name	String, a name of the parameter
samplesN	Number of samples, if NULL is computed from rstan (but it is cheaper to do this once).
link_function	A link function to use (exp or inv.logit) or NULL for identity.

Value

Matrix with samplesN rows and randomN (found in object\$data\$randomN) columns

Examples

```
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
extract_history_parameter(br_fit, "tau", link_function = exp)</pre>
```

extract_replicate_term_to_matrix

Extract a term and replicates it randomN times for each linear model

Description

Extract a term and replicates it randomN times for each linear model. Used for population mean or variance terms.

Usage

extract_replicate_term_to_matrix(object, term)

Arguments

object	An object of class cumhist
term	String, term name

Value

Matrix

Examples

```
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
bH_mu <- extract_replicate_term_to_matrix(br_fit, "bH_mu")</pre>
```

extract_term_to_matrix

Extracts a term with one column per fixed or random-level into a matrix

Description

Extracts a 3D array for a term with sample, linear-model, random/fixed-effect order and returns a matrix with samples as rows and columns in order 1) all random/fixed effects for lm1, 2) all random/fixed effects for lm2, etc.

```
extract_term_to_matrix(object, term)
```

Arguments

object	An object of class cumhist
term	String, term name

Value

Matrix

Examples

```
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
a <- extract_term_to_matrix(br_fit, "a")</pre>
```

fast_history_compute Computes cumulative history

Description

Computes cumulative history based on common history values and normalized_tau and mixed_state that are defined for each random cluster / individual.

Usage

```
fast_history_compute(df, normalized_tau, mixed_state, history_init)
```

Arguments

df	DataFrame with "state" (integer, 1 and 2 clear state, 3 - mixed state), "duration" (double), "irandom" (integer, 1-based index of a random cluster), "run_start" (integer, 1 for the first entry of the run, 0 otherwise), "session_tmean" (double)
normalized_tau	DoubleVector A normalized tau value for each random cluster / individual. Thus, its length must be equal to the number of unique indexes in df["irandom"].
mixed_state	DoubleVector A values used for the mixed state for each random cluster / in- dividual. Thus, its length must be equal to the number of unique indexes in df["irandom"].
history_init	DoubleVector, size 2. Initial values of history for a run.

Value

NumericMatrix, size df.nrows() \times 2. Computed history values for each state.

Examples

```
df <- preprocess_data(br_singleblock, state="State", duration="Duration")
fast_history_compute(df, 1, 0.5, c(0, 0))</pre>
```

12

fit_cumhist

Description

Fits a generalized linear model using cumulative history and specified fixed effects.

Usage

```
fit_cumhist(
  data,
  state,
  duration = NULL,
  onset = NULL,
  random_effect = NULL,
  session = NULL,
  run = NULL,
  fixed_effects = NULL,
  tau = NULL,
 mixed_state = 0.5,
 history_init = 0,
  family = "gamma",
 history_priors = NULL,
  intercept_priors = NULL,
 history_effect_prior = NULL,
  fixed_effects_priors = NULL,
  chains = 1,
  cores = NULL,
  . . .
)
```

Arguments

data	A table with time-series.
state	String, the name of the column that specifies perceptual state. The column type should be a factor with two or three levels (the third level is assumed to correspond to a transition/mixed phase) or should be convertible to a two level factor (as it would be impossible to infer the identity of transition/mixed phase).
duration	String, name of the column with duration of individual perceptual dominance phases. Optional, you can specify onset instead.
onset	String, name of the column with onsets of the perceptual dominance states. Optional, used to compute duration of the dominance phases, if these are not provided explicitly via duration parameter.
random_effect	String, name of the column that identifies random effect, e.g. individual par- ticipants, stimuli for a single participant, etc. If omitted, no random effect is assumed. If specified and there is more than one level (participant, stimulus, etc.), it is used in a hierarchical model.

	session	String, name of the column that identifies unique experimental session for which a mean dominance phase duration will be computed (see norm_tau parameter). Code assumes that session IDs are different within a participant but can be the same between them. If omitted, a single mean dominance duration based on the entire time series is used.
	run	String, name of the column that identifies unique runs/blocks. If omitted, the data is assumed to belong to a single time series. Code assumes that run IDs are different within an experimental session but can be the same between the session. E.g. session A, runs 1, 2, 3 and session B, runs 1, 2, 3 but not session A, runs 1, 2, 1.
	fixed_effects	String or vector of strings. Name of column(s) with values to be used for fitting an additional fixed effect(s). E.g., contrast in binocular rivalry, rotation speed for kinetic-depth effect, etc.
	tau	Time constant of exponential growth/decay normalized to the mean duration of clear percepts within each session. Can be 1) a single positive number (>0) that is used for all participants and runs, 2) NULL (default) - a <i>single</i> value will be fitted for all participants and runs, 3) "random" - an independent tau is fitted for each random cluster, 4) "1 random" - a tau for a random cluster is sampled from a population distribution, i.e., pooled parameter values via a multilevel model.
	mixed_state	Specifies an activation level during transition/mixed phases (state #3, see state). Either a single number (range 01) that will be used as a fixed level or a vec- tor of two numbers c(mu, kappa) that specifies, correspondingly, mean (range 01) and precision (>0) of beta proportion distribution, it should be sampled from. Defaults to a fixed value of 0.5.
	history_init	Initial value for cumulative history computation. Either a numeric scalar in 01 range or a vector of two numbers in 01 range. In the latter case, two histories will start at different levels.
	family	String, distribution used to fit duration of perceptual dominance phases. Options include "gamma" (default), "lognormal", and "normal".
	history_priors	Named list of optional priors for population-level cumulative history parameters. Must follow the format $list("tau"=c(1, 0.15))$ with values coding mean and standard deviation of the normal distribution.
intercept_priors		
		A vector of optional priors for population-level intercept parameter. Should be c(<shape-mean>, <shape-sd>, <scale-mean>, <scale-sd>) format for Gamma family, c(<mean>, <sd>) for normal and lognormal families. The val- ues code mean and standard deviation of the normal distribution.</sd></mean></scale-sd></scale-mean></shape-sd></shape-mean>
	history_effect_	prior
		A vector of options priors for population-level slope of history effect. The values code mean and standard deviation of the normal distribution. Defaults to mu=0, sigma=1.
	fixed_effects_p	riors
		A named list of optional priors for fixed effects. Must follow the format list(" <name-of-variable>"=c <sigma>)), where <mu> and <sigma> are mean and standard deviation of a nor- mal distribution. Defaults to mu=0, sigma=1.</sigma></mu></sigma></name-of-variable>

fixef

chains	Number of chains for sampling.
cores	Number of CPU cores to use for sampling. If omitted, All cores are used.
	Additional arguments passed to <pre>rstan::sampling()</pre> function.

Value

An object of class cumhist

Examples

```
data(br_singleblock)
gamma_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")</pre>
```

fixef

Extract the fixed-effects estimates

Description

Extracts models fixed-effect terms for every modeled distribution parameter.

Usage

```
fixef(object, summary = TRUE, probs = c(0.055, 0.945))
```

Arguments

object	An object of class cumhist
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE
probs	The percentiles used to compute summary, defaults to 89% credible interval.

Value

tibble with values or summary, NULL if not fixed effects were used.

Examples

historyef

Description

Extracts models population-level coefficients history-specific terms for every modeled distribution parameter.

Usage

historyef(object, summary = TRUE, probs = c(0.055, 0.945))

Arguments

object	An object of class cumhist
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE
probs	The percentiles used to compute summary, defaults to 89% credible interval.

Value

data.frame with values or summary

Examples

br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
historyef(br_fit)</pre>

history_mixed_state Extract values of used or fitted history parameter mixed_state

Description

A short-cut for history_parameter(object, "mixed_state", ...).

```
history_mixed_state(
   object,
   summary = TRUE,
   probs = c(0.055, 0.945),
   includePopulationLevel = TRUE
)
```

history_parameter

Arguments

object	An object of class cumhist
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE
probs The percentiles used to compute summary, defaults to 89% credible intervincludePopulationLevel	
	Logical, for pooled random effect only. Whether to include population mean as a separate "_population" level, default to TRUE.

Value

A single value, if fixed value was used. A vector or a tibble, depending on the option used (single intercept, independent or random intercepts), and whether summary was requested.

Examples

br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
history_tau(br_fit)</pre>

history_parameter Extract values of used or fitted history parameter

Description

Extract values of used or fitted history parameter

Usage

```
history_parameter(
   object,
   param,
   summary = TRUE,
   probs = c(0.055, 0.945),
   includePopulationLevel = TRUE
)
```

Arguments

object	An object of class cumhist
param	Parameter name: "tau" or "mixed_state"
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to \ensuremath{TRUE}
probs includePopulati	The percentiles used to compute summary, defaults to 89% credible interval. onLevel
	Logical, for pooled random effect only. Whether to include population mean as a separate "_population" level, default to TRUE.

Value

A vector, if summary was not requested. Or a tibble with a summary or if a fixed value was used.

Examples

```
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
history_parameter(br_fit, "tau")</pre>
```

history_tau

Extract values of used or fitted history parameter tau

Description

A short-cut for history_parameter(object, "tau", ...).

Usage

```
history_tau(
   object,
   summary = TRUE,
   probs = c(0.055, 0.945),
   includePopulationLevel = TRUE
)
```

Arguments

object	An object of class cumhist
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE
probs	The percentiles used to compute summary, defaults to 89% credible interval.
includePopulati	onLevel
	Logical, for pooled random effect only. Whether to include population mean as a separate "_population" level, default to TRUE.

Value

A single value, if fixed value was used. A vector or a tibble, depending on the option used (single intercept, independent or random intercepts), and whether summary was requested.

Examples

```
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
history_tau(br_fit)</pre>
```

18

kde

kde

Description

Dataset on kinetic-depth effect for eleven participants.

Usage

kde

Format

A data frame with 38698 rows and 6 variables:

Observer Participant ID.

Display Display, all rows contain "KD"

Block Run / block index.

Time Time relative to the run onset in seconds

State Factor with levels "Left", "Right" (clear states), and "Mixed".

Duration Duration of a dominance phase in *seconds*. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi:10.1167/11.10.12

kde_two_observers Multirun data for two participants, kinetic-depth effect display

Description

Multirun data for two participants, kinetic-depth effect display

Usage

kde_two_observers

loo.cumhist

Format

A data frame with 1186 rows and 5 variables:

Observer Participant ID

Block Run / block index

State Factor variable for state with levels -1 and 1 coding two clear perceptual states and -2 the mixed / transition phase

Time Time relative to the run onset in seconds

Duration Duration of a dominance phase in *seconds*. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi:10.1167/11.10.12

loo.cumhist	Computes an efficient approximate leave-one-out cross-validation
	via loo library. It can be used for a model comparison via
	loo::loo_compare() function.

Description

Computes an efficient approximate leave-one-out cross-validation via loo library. It can be used for a model comparison via loo::loo_compare() function.

Usage

S3 method for class 'cumhist'
loo(x, ...)

Arguments

х	A cumhist object
	unused

Value

A named list, see loo::loo() for details.

Examples

```
data(br_singleblock)
```

```
gamma_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
loo_gamma <- loo(gamma_fit)</pre>
```

20

Necker cube data

Description

nc

Dataset on Necker cube for five participants.

Usage

nc

Format

A data frame with 3464 rows and 6 variables:

Observer Participant ID.

Display Display, all rows contain "NC"

Block Run / block index.

Time Time relative to the run onset in seconds

State Factor with levels "Left", "Right" (clear states), and "Mixed".

Duration Duration of a dominance phase in *seconds*. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi:10.1167/11.10.12

predict.cumhist Computes predicted dominance phase durations using posterior predictive distribution.

Description

Computes predicted dominance phase durations using fitted model.

```
## S3 method for class 'cumhist'
predict(
   object,
   summary = TRUE,
   probs = NULL,
   full_length = TRUE,
   predict_history = NULL,
   ...
)
```

Arguments

object	An object of class cumhist	
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE	
probs	The percentiles used to compute summary, defaults to NULL (no CI).	
full_length	Only for summary = TRUE, whether the summary table should include rows with no predictions. I.e., rows with mixed phases, first/last dominance phase in the run, etc. See preprocess_data(). Defaults to TRUE.	
predict_history		
	Option to predict a cumulative history state (or their difference). It is disabled by default by setting it to NULL. You can specify "1" or "2" for cumulative his- tory for the first or second perceptual states (with indexes 1 and 2, respectively), "dominant" or "suppressed" for cumulative history for states that either dom- inant or suppressed during the following phase, "difference" for difference between suppressed and dominant. See cumulative history vignette for details.	
	Unused	

Value

If summary=FALSE, a numeric matrix iterationsN x clearN. If summary=TRUE but probs=NULL a vector of mean predicted durations or requested cumulative history values. If summary=TRUE and probs is not NULL, a data.frame with a column "*Predicted*" (mean) and a column for each specified quantile.

See Also

fit_cumhist

Examples

```
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
predict(br_fit)</pre>
```

```
# full posterior prediction samples
predictions_samples <- predict(br_fit, summary=FALSE)</pre>
```

predict_history	Computes predicted cumulative history using posterior predictive dis-
	tribution.

Description

Computes predicted cumulative history using fitted model. This is just a wrapper for predict(object, summary, probs, full_length, predict_history=history_type).

predict_history

Usage

```
predict_history(
   object,
   history_type,
   summary = TRUE,
   probs = NULL,
   full_length = TRUE,
   ...
)
```

Arguments

object	An object of class cumhist
history_type	"1" or "2" for cumulative history for the first or second perceptual states (with indexes 1 and 2, respectively), "dominant" or "suppressed" for cumulative history for states that either dominant or suppressed during the following phase, "difference" for difference between suppressed and dominant. See cumulative history vignette for details.
summary	Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE
probs	The percentiles used to compute summary, defaults to NULL (no CI).
full_length	Only for summary = TRUE, whether the summary table should include rows with no predictions. I.e., rows with mixed phases, first/last dominance phase in the run, etc. See preprocess_data(). Defaults to TRUE.
	Unused

Value

If summary=FALSE, a numeric matrix iterationsN x clearN. If summary=TRUE but probs=NULL a vector of requested cumulative history values. If summary=TRUE and probs is not NULL, a data.frame with a column "*Predicted*" (mean) and a column for each specified quantile.

See Also

fit_cumhist, predict.cumhist

Examples

```
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
history_difference_summary <- predict_history(br_fit, "difference")</pre>
```

predict_samples

Description

Computing prediction for each sample, recomputing cumulative history and uses fitted parameter values.

Usage

```
predict_samples(
  family,
  fixedN,
  randomN,
  lmN,
  istate,
  duration,
  is_used,
  run_start,
  session_tmean,
  irandom,
  fixed,
  tau_ind,
 mixed_state_ind,
 history_init,
  a,
 bΗ,
 bF,
  sigma
)
```

Arguments

family	int, distribution family: gamma (1), lognormal(2), or normal (3).
fixedN	int, number of fixed parameters (≥ 0).
randomN	int, number of random factors (>= 1).
lmN	int, number of linear models (>= 1).
istate	IntegerVector, zero-based perceptual state 0 or 1, 2 is mixed state.
duration	DoubleVector, duration of a dominance phase.
is_used	IntegerVector, whether dominance phase is used for prediction (1) or not (0).
run_start	IntegerVector, 1 whenever a new run starts.
session_tmean	DoubleVector, average dominance phase duration.
irandom	IntegerVector, zero-based index of a random effect.
fixed	NumericMatrix, matrix with fixed effect values.

preprocess_data

tau_ind	NumericMatrix, matrix with samples of tau for each random level.
<pre>mixed_state_ind</pre>	1
	NumericMatrix, matrix with samples of mixed_state for each random level.
history_init	DoubleVector, Initial values of history for a run
а	NumericMatrix, matrix with samples of a (intercept) for each random level.
bH	NumericMatrix, matrix with sample of bH for each linear model and random level.
bF	NumericMatrix, matrix with sample of bF for each linear model and fixed factor.
sigma	DoubleVector, samples of sigma.

Value

NumericMatrix with predicted durations for each sample.

preprocess_data Preprocesses time-series data for fitting

Description

Performs sanity checks (e.g., whether data can be used as a data.frame), computes duration of dominance phases (if necessary), assumes a single entry for any missing session, run, random_effect.

Usage

```
preprocess_data(
    data,
    state,
    duration = NULL,
    onset = NULL,
    random_effect = NULL,
    session = NULL,
    run = NULL
)
```

Arguments

data	A table with one or many time-series.
state	String, the name of the column that specifies perceptual state. The column type should be a factor with two or three levels (the third level is assumed to correspond to a transition/mixed phase) or should be convertible to a two level factor (as it would be impossible to infer the identity of transition/ mixed phase).
duration	String, name of the column with duration of individual perceptual dominance phases. Optional, you can specify onset instead.

onset	String, name of the column with onsets of the perceptual dominance states. Op- tional, used to compute duration of the dominance phases, if these are not pro- vided explicitly via duration parameter.
random_effect	String, name of the column that identifies random effect, e.g. individual par- ticipants, stimuli for a single participant, etc. If omitted, no random effect is assumed. If specified and there is more than one level (participant, stimulus, etc.), it is used in a hierarchical model.
session	String, name of the column that identifies unique experimental session for which a mean dominance phase duration will be computed (see norm_tau parameter). Code assumes that session IDs are different within a participant but can be the same between them. If omitted, a single mean dominance duration based on the entire time series is used.
run	String, name of the column that identifies unique runs/blocks. If omitted, the data is assumed to belong to a single time series. Code assumes that run IDs are different within an experimental session but can be the same between the session. E.g. session A, runs 1, 2, 3 and session B, runs 1, 2, 3 but not session A, runs 1, 2, 1.

Value

A tibble with columns

- state
- duration
- random
- irandom integer, index of random values,
- session
- run
- session_tmean numeric, mean duration of clear percepts for every combination of random and session.
- is_used integer, whether computed history value needs to be used for linear model fitting.
- run_start integer, 1 for the first row of the run time-series.

Examples

```
df <- preprocess_data(br_singleblock, state="State", duration="Duration")</pre>
```

print.cumhist

Prints out cumhist object

Description

Prints out cumhist object

summary.cumhist

Usage

S3 method for class 'cumhist'
print(x, ...)

Arguments

х	A cumhist object
	Unused

Value

Nothing, console output only.

Examples

```
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration", fixed_effects="Time")
br_fit</pre>
```

summary.cumhist Summary for a cumhist object

Description

Summary for a cumhist object

Usage

```
## S3 method for class 'cumhist'
summary(object, ...)
```

Arguments

object	A cumhist object
	Unused

Value

Nothing, console output only.

Examples

```
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
summary(br_fit)</pre>
```

waic.cumhist

Description

Computes widely applicable information criterion via loo library. It can be used for a model comparison via loo::loo_compare() function.

Usage

S3 method for class 'cumhist'
waic(x, ...)

Arguments

х	A cumhist object.
	Additional arguments (unused)

Value

A named list, see loo::waic() for details.

Examples

```
data(br_singleblock)
gamma_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
waic_gamma <- waic(gamma_fit)
normal_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration", family="normal")
waic_normal <- waic(normal_fit)
loo::loo_compare(waic_gamma, waic_normal)</pre>
```

Index

* datasets br, 4 br_contrast, 5 br_single_subject, 6 br_singleblock, 5 kde, 19 kde_two_observers, 19 nc, 21 _PACKAGE (bistablehistory-package), 3 bayes_R2, 3 bistablehistory (bistablehistory-package), 3 bistablehistory-package, 3 br.4 br_contrast, 5 br_single_subject, 6 br_singleblock, 5 coef.cumhist,6 compute_history, 7 cumhist, 4, 7, 9–12, 15–18, 20, 22, 23, 27, 28 cumhist (cumhist-class), 9 cumhist-class, 9 extract_history, 9 extract_history_parameter, 10 extract_replicate_term_to_matrix, 11 extract_term_to_matrix, 11 fast_history_compute, 12 fit_cumhist, 9, 13, 22, 23 fixef, 15 history_mixed_state, 16 history_parameter, 17 history_tau, 18 historyef, 16

kde, 19
kde_two_observers, 19

loo, 28
loo.cumhist, 20
loo::loo(), 20
loo::loo_compare(), 28
loo::waic(), 28
nc, 21
predict.cumhist, 21, 23
predict_history, 22
predict_organee 24

predict_samples, 24
preprocess_data, 25
preprocess_data(), 22, 23
print.cumhist, 26

rstan::sampling(), 15

stanfit,9
summary.cumhist,27

waic.cumhist, 28