Package ‘coro’

November 5, 2024

Title 'Coroutines' for R
Version 1.1.0

Description Provides 'coroutines' for R, a family of functions that can
be suspended and resumed later on. This includes 'async' functions
(which await) and generators (which yield). 'Async' functions are
based on the concurrency framework of the ‘promises' package.
Generators are based on a dependency free iteration protocol defined
in 'coro' and are compatible with iterators from the 'reticulate’
package.

License MIT + file LICENSE
URL https://github.com/r-1ib/coro, https://coro.r-1ib.org/

BugReports https://github.com/r-1lib/coro/issues
Depends R (>=3.5.0)
Imports rlang (>=0.4.12)

Suggests knitr, later (>= 1.1.0), magrittr (>= 2.0.0), promises,
reticulate, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Lionel Henry [aut, cre],
Posit Software, PBC [cph, fnd]

Maintainer Lionel Henry <lionel@posit.co>
Repository CRAN
Date/Publication 2024-11-05 10:30:09 UTC

https://github.com/r-lib/coro
https://coro.r-lib.org/
https://github.com/r-lib/coro/issues

2 async

Contents
ASYNC . v v v e e e e e e e e e e e e e e e e 2
async_collect e 3
ASYNC_ZENETALOT + . .« v v v v v v e e e e e e e e e e e e e e e e e e 4
async_sleep e e 5
AS_ILETAtOr o o e e e e e e e 6
collect e e 7
coro_debug 8
Fo0S) 1 1S) 10 8
HETAtOr o v o e e e e e e e e e e e e 10
yvield . . . e e e 12

Index 13

async Make an async function
Description

async() functions are building blocks for cooperative concurrency.

» They are concurrent because they are jointly managed by a scheduler in charge of running
them.

» They are cooperative because they decide on their own when they can no longer make quick
progress and need to await some result. This is done with the await() keyword which sus-
pends the async function and gives control back to the scheduler. The scheduler waits until
the next async operation is ready to make progress.

The async framework used by async() functions is implemented in the later and promises pack-
ages:

* You can chain async functions created with coro to promises.

* You can await promises. You can also await futures created with the future package because
they are coercible to promises.

Usage
async(fn)
await(x)

Arguments

fn An anonymous function within which await () calls are allowed.

X An awaitable value, i.e. a promise.

https://github.com/r-lib/later/
https://rstudio.github.io/promises/
https://github.com/HenrikBengtsson/future

async_collect 3

Value

A function that returns a promises: :promise() invisibly.

See Also

async_generator() and await_each(); coro_debug() for step-debugging.

Examples

This async function counts down from “n”, sleeping for 2 seconds
at each iteration:
async_count_down <- async(function(n) {
while (n > @) {
cat("Down", n, "\n")
await(async_sleep(2))
n<-n-1
}
»

This async function counts up until “stop”, sleeping for 0.5
seconds at each iteration:
async_count_up <- async(function(stop) {
n <-1
while (n <= stop) {
cat("Up", n, "\n")
await(async_sleep(0.5))
n<-n+1
}
»

You can run these functions concurrently using “promise_all()"”
if (interactive()) {
promises: :promise_all(async_count_down(5), async_count_up(5))

}

async_collect Collect elements of an asynchronous iterator

Description

async_collect() takes an asynchronous iterator, i.e. an iterable function that is also awaitable.
async_collect() returns an awaitable that eventually resolves to a list containing the values re-
turned by the iterator. The values are collected until exhaustion unless n is supplied. The collection
is grown geometrically for performance.

Usage

async_collect(x, n = NULL)

4 async_generator

Arguments
X An iterator function.
n The number of elements to collect. If x is an infinite sequence, n must be sup-
plied to prevent an infinite loop.
Examples

Emulate an async stream by yielding promises that resolve to the
elements of the input vector
generate_stream <- async_generator(function(x) for (elt in x) yield(elt))

You can await “async_collect()” in an async function. Once the
list of values is resolved, the async function resumes.
async(function() {

stream <- generate_stream(1:3)

values <- await(async_collect(stream))

values

b

async_generator Construct an async generator

Description

An async generator constructs iterable functions that are also awaitables. They support both the
yield() and await() syntax. An async iterator can be looped within async functions and iterators
using await_each() on the input of a for loop.

The iteration protocol is derived from the one described in iterator. An async iterator always
returns a promise. When the iterator is exhausted, it returns a resolved promise to the exhaustion
sentinel.

Usage

async_generator(fn)

await_each(x)

Arguments
fn An anonymous function describing an async generator within which await()
calls are allowed.
X An awaitable value, i.e. a promise.
Value

A generator factory. Generators constructed with this factory always return promises: :promise().

async_sleep 5

See Also

async() for creating awaitable functions; async_collect() for collecting the values of an async
iterator; coro_debug() for step-debugging.

Examples

Creates awaitable functions that transform their inputs into a stream
generate_stream <- async_generator(function(x) for (elt in x) yield(elt))

Maps a function to a stream
async_map <- async_generator(function(.i, .fn, ...) {
for (elt in await_each(.i)) {
yield(.fn(elt, ...))
}
»

Example usage:
if (interactive()) {

library(magrittr)
generate_stream(1:3) %>% async_map(~*~, 2) %>% async_collect()
3
async_sleep Sleep asynchronously
Description

Sleep asynchronously

Usage

async_sleep(seconds)

Arguments

seconds The number of second to sleep.

Value

A chainable promise.

6 as_iterator

as_iterator Transform an object to an iterator

Description

as_iterator() is a generic function that transforms its input to an iterator function. The default
implementation is as follows:

¢ Functions are returned as is.

* Other objects are assumed to be vectors with length() and [[methods.

Methods must return functions that implement coro’s iterator protocol.

as_iterator() is called by coro on the RHS of in in for loops. This applies within generators,
async functions, and loop().

Usage
as_iterator(x)

Default S3 method:
as_iterator(x)

Arguments

X An object.

Value

An iterable function.

Examples
as_iterator(1:3)

i <- as_iterator(1:3)
loop(for (x in i) print(x))

collect 7

collect Iterate over iterator functions

Description
loop() and collect() are helpers for iterating over iterator functions such as generators.

* loop() takes a for loop expression in which the collection can be an iterator function.

* collect() loops over the iterator and collects the values in a list.

Usage
collect(x, n = NULL)

loop(loop)
Arguments
X An iterator function.
n The number of elements to collect. If x is an infinite sequence, n must be sup-
plied to prevent an infinite loop.
loop A for loop expression.
Value

collect() returns a list of values; loop() returns the exhausted() sentinel, invisibly.

See Also

async_collect() for async generators.

Examples

generate_abc <- generator(function() for (x in letters[1:3]) yield(x))
abc <- generate_abc()

Collect 1 element:
collect(abc, n = 1)

Collect all remaining elements:
collect(abc)

With exhausted iterators collect() returns an empty list:
collect(abc)

With loop() you can use ~for~ loops with iterators:
abc <- generate_abc()
loop(for (x in abc) print(x))

8 generator

coro_debug Debug a generator or async function

Description

e Call coro_debug() on a generator(), async(), or async_generator() function to enable
step-debugging.

 Alternatively, set options(coro_debug = TRUE) for step-debugging through all functions cre-
ated with coro.

Usage

coro_debug(fn, value = TRUE)

Arguments
fn A generator factory or an async function.
value Whether to debug the function.
generator Create a generator function
Description

generator() creates an generator factory. A generator is an iterator function that can pause its
execution with yield() and resume from where it left off. Because they manage state for you,
generators are the easiest way to create iterators. See vignette("generator”).

The following rules apply:

* Yielded values do not terminate the generator. If you call the generator again, the execution
resumes right after the yielding point. All local variables are preserved.

» Returned values terminate the generator. If called again after a return(), the generator keeps
returning the exhausted() sentinel.

Generators are compatible with all features based on the iterator protocol such as loop() and
collect().

Usage

generator(fn)

gen(expr)

generator 9

Arguments
fn A function template for generators. The function can yield() values. Within a
generator, for loops have iterator support.
expr A yielding expression.
See Also

yield(), coro_debug() for step-debugging.

Examples

A generator statement creates a generator factory. The
following generator yields three times and then returns ~"d"™.
Only the yielded values are visible to the callers.
generate_abc <- generator(function() {

yield("a")

yield("b")

yield("c")

"y
1)

Equivalently:
generate_abc <- generator(function() {
for (x in c("a", "b", "c")) {
yield(x)
}
»

The factory creates generator instances. They are iterators
that you can call successively to obtain new values:

abc <- generate_abc()

abc()

abc()

Once a generator has returned it keeps returning ~exhausted()".
This signals to its caller that new values can no longer be

produced. The generator is exhausted:

abc()

abc()

You can only exhaust a generator once but you can always create
new ones from a factory:

abc <- generate_abc()

abc()

As generators implement the coro iteration protocol, you can use
coro tools like “loop()”. It makes it possible to loop over

iterators with ~for™ expressions:

loop(for (x in abc) print(x))

10 iterator

To gather values of an iterator in a list, use “collect()”. Pass
the “n° argument to collect that number of elements from a

generator:

abc <- generate_abc()

collect(abc, 1)

Or drain all remaining elements:
collect(abc)

coro provides a short syntax “gen()~ for creating one-off

generator _instances_. It is handy to adapt existing iterators:
numbers <- 1:10

odds <- gen(for (x in numbers) if (x %% 2 != @) yield(x))

squares <- gen(for (x in odds) yield(x"2))

greetings <- gen(for (x in squares) yield(paste("Hey", x)))

collect(greetings)

Arguments passed to generator instances are returned from the
“yield()" statement on reentry:
new_tally <- generator(function() {
count <- @
while (TRUE) {
i <- yield(count)
count <- count + i
}
»
tally <- new_tally()
tally(1)
tally(2)
tally(10)

iterator Iterator protocol

Description

An iterator is a function that implements the following protocol:

¢ Calling the function advances the iterator. The new value is returned.

* When the iterator is exhausted and there are no more elements to return, the symbol quote (exhausted)
is returned. This signals exhaustion to the caller.

* Once an iterator has signalled exhaustion, all subsequent invokations must consistently return
coro: :exhausted() or as.symbol (".__exhausted__.").

* The iterator function may have a close argument taking boolean values. When passed a
TRUE value, it indicates early termination and the iterator is given the opportunity to clean up
resources.

iterator 11

Cleanup must only be performed once, even if the iterator is called multiple times with close
= TRUE.

An iterator is allowed to not have any close argument. Iterator drivers must check for the
presence of the argument. If not present, the iterator can be dropped without cleanup.

An iterator passed close = TRUE must return coro: : exhausted() and once closed, an iterator
must return coro: : exhausted() when called again.

iterator <- as_iterator(1:3)

Calling the iterator advances it
iterator()

#> [1] 1

iterator()

#> [1] 2

This is the last value
iterator()
#> [1] 3

Subsequent invokations return the exhaustion sentinel
iterator()
#> .__exhausted__.

Because iteration is defined by a protocol, creating iterators is free of dependency. However, it is
often simpler to create iterators with generators, see vignette("”generator”). To loop over an
iterator, it is simpler to use the loop() and collect() helpers provided in this package.

Usage

exhausted()

is_exhausted(x)

Arguments

X An object.

Properties

Iterators are stateful. Advancing the iterator creates a persistent effect in the R session. Also
iterators are one-way. Once you have advanced an iterator, there is no going back and once it is
exhausted, it stays exhausted.

Iterators are not necessarily finite. They can also represent infinite sequences, in which case trying
to exhaust them is a programming error that causes an infinite loop.

The exhausted sentinel

Termination of iteration is signalled via a sentinel value, as.symbol("”.__exhausted__."). Alter-
native designs include:

12 yield

* A condition as in python.

* A rich value containing a termination flag as in Javascript.

The sentinel design is a simple and efficient solution but it has a downside. If you are iterating over a
collection of elements that inadvertently contains the sentinel value, the iteration will be terminated
early. To avoid such mix-ups, the sentinel should only be used as a temporary value. It should
be created from scratch by a function like coro: :exhausted() and never stored in a container or
namespace.

yield Yield a value from a generator

Description

The yield() statement suspends generator () functions. It works like return() except that the
function continues execution at the yielding point when it is called again.

yield() can be called within loops and if-else branches but for technical reasons it can’t be used
anywhere in R code:

* yield() cannot be called as part of a function argument. Code such as list(yield()) is
illegal.

* yield() does not cross function boundaries. You can’t use it a lambda function passed to
lapply () for instance.

Usage
yield(x)

Arguments

X A value to yield.

See Also

generator () for examples.

Index

as_iterator, 6

async, 2

async functions, 6
async(), 5,8
async_collect, 3
async_collect(), 5,7
async_generator, 4
async_generator(), 3, 8
async_sleep, 5

await (async), 2
await_each (async_generator), 4
await_each(), 3

collect, 7
collect(), 8, 11
coro_debug, 8
coro_debug(), 3, 5,9

exhausted (iterator), 10
exhausted(), 7, 8

gen (generator), 8
generator, 8
generator(), 8, 12
generators, 6, 7, 11

is_exhausted (iterator), 10
iterator, 4, 9, 10

iterator function, 6,8
iterator functions, 7
iterator protocol, 6

loop (collect), 7
loop(), 6,8, 11

promise, 2, 4
promises: :promise(), 3, 4

yield, 12
yield(), 8, 9

13

	async
	async_collect
	async_generator
	async_sleep
	as_iterator
	collect
	coro_debug
	generator
	iterator
	yield
	Index

