
Introduction to Doblin:a step-by-step through the pipeline

David Gagné-Leroux

2025-05-17

1



Table of Contents

1.0 Doblin Package

1.1 Overview

1.2 Barcode extraction from the FASTQ/FASTA file

1.3 Installation

1.4 Command line

2. The pipeline

2.1 Data processing

2.2 Visualizing the dynamics of the dataset

2.3 Diversity

2.4 Extracting the clonal dynamics

2



1.0 Doblin Package

The Doblin package serves as a comprehensive toolkit designed for preliminary analysis of abundance time
series. Its primary purpose is to extract dominant behaviours from abundance time series of a biological sys-
tem. These “dominant behaviours”, called clones, provide a better understanding of clonal dynamics within
evolving cell populations. They can be used to approximate the main levels of fitness in a population, the
time at which a cell line acquired its first beneficial mutation, and develop some intuition about interactions
that happen between clones. Doblin is specifically designed to manage dominant and persistent barcode
lineages generated through Next Generation Sequencing (NGS).

The present document is a step-by-step guide intended to facilitate the utilization of Doblin. The following
sections are chronologically organized and follow the same order as the tool. The code snippets provided in
the subsequent pages originate from the main.R script.

1.1 Overview

Note: We assume that users have already extracted the barcodes from their sequencing data.

The initial step of Doblin involves offering visualizations of the provided input data. Users have the option
to select between a logarithmic-scale model and/or a linear-scale model for visualizing their dataset as a
time series. It’s noteworthy that plotting linear-scale models can be computationally intensive, potentially
requiring several minutes to generate. Additionnally, users have the option to visualize the evolution of their
dataset’s diversity.

As Doblin is tailored to focus on dominant and persistent barcodes, data filtering is employed to retain
only the barcodes associated with lineages surpassing a specified minimum frequency and persisting for a
predefined duration. Subsequently, barcode lineages demonstrating similar population dynamics are assumed
to share a common ecological and evolutionary background. They are thus grouped within the same cluster
to form a clone. To quantify the similarity between pairs of barcode lineages, a distance metric based on
either Pearson correlation or Dynamic Time Warping (DTW) is used. The resulting pairwise-distance matrix
facilitates hierarchical clustering of barcode lineages. An optimal clustering strategy aims to avoid merging
barcode lineages with disparate dynamics while ensuring distinctiveness among groupings. The culmination
of the analysis entails computing LOESS curves for each resulting cluster, thereby encapsulating the primary
clonal lineages.

1.2 Barcode extraction from the FASTQ/FASTA file

This subsection is specifically for users with sequencing data who haven’t yet perform barcode extraction.
Prior to analysis, the user must identify and extract the barcode sequences from his raw sequencing data.
Bartender is a useful tool to process barcode data (https://github.com/LaoZZZZZ/bartender-1.1).

Once the barcodes have been extracted, it is primordial to format the data as follows:

• Input file format: A csv file containing the barcode extraction results over 3 columns: ID, Time,
Reads.

ID: Consensus sequence that identifies a group of barcodes.

Time: Integer representing the time at which the data was measured.

Reads: Number of barcodes counted at a given time for a given consensus sequence.

3



1.3 Installation

1. Open Terminal

2. Change the current working directory to the location where you want to clone the Doblin repository.

3. Type git clone, and then paste Doblin’s URL.

git clone https://github.com/DavidGagneLeroux/doblin

4. Press Enter to create your local clone.

5. In Terminal, set your working directory to the doblin/ folder.

4



1.4 Command line

Commad line:

Rscript ./demo/main.R -t [MIN_FREQUENCY] -o [OUTPUT_DIR] -n [INPUT_FILE_NAME] -i [INPUT_FILE]

-c [TIME_CUTOFF]

Here’s an example of how to use the command line:

Rscript ./demo/main.R -t 0.0005 -o ~/Documents/doblin/ -n test

-i ~/Documents/input.csv -c 12

Where

-t: Minimum frequency above which barcodes are assigned colors [default: 0.0005]. The barcodes that do not
reach the minimum frequency are colored in grey. This argument is used when plotting the dynamics.

-o: Output directory [default: current working directory].

-n: Input file name.

-i: Input file.

-c: Minimum duration, in terms of time points, for which lineages must persist to be eligible for clustering.
If a lineage exists for fewer time points than the specified threshold "-c", it won’t be included in the
clustering analysis.

5



2.0 The pipeline

2.1 Data processing

From the outset, the user must choose whether or not to generate a visualization of his dataset:

Processing the command line...

Step 0: Processing CSV file...

Do you want to plot the dynamics of your dataset?(y/n): y

As previously outlined, the provided input file consists of three columns: ID, Time, and Reads. Upon
processing the input data, we transform it into a long-format dataframe to recover the initial, final, mean,
and maximum frequencies of each barcode lineage. This restructuring enables the identification of dominant
barcodes. Accordingly, we extract the top N barcodes, with N preset to 1000, based on their maximum
frequencies. Among the top N barcodes, those that have reached a minimum frequency “-t” are assigned
colors. The remaining barcodes are simply assigned the color grey.

The user can choose between plotting the dynamics on a logarithmic scale, a linear scale or both. Users

should be aware that plotting their dynamics on a linear scale can be a heavy task requiring

several minutes of processing time.

Step 1: Plotting the dynamics...

1.1 Reshaping input file into long-format dataframe...

1.2 Retrieving the first 1000 barcodes with the highest maximum frequencies...

1.3 Assigning colors to lineages having reached the minimum frequency threshold

among the 1000 most dominant barcoded lines...

Do you want to plot a log-scale model, a linear-scale model or both?

(logarithmic/linear/both): both

Plotting in progress...

Rendering linear-scale area plot. This may take a few minutes...

6



2.2 Visualizing the dynamics of the dataset

Plotting the dynamics on logarithmic and linear scales provides a comprehensive view of the dataset. As
previously indicated, we allocated a distinct color to lineages surpassing a specified minimum frequency,
determined by the -t argument in the command line (default: 0.0005). For example, the color “magenta
[#c20078]” remains assigned to a specific barcode lineage irrespective of whether it appears on the logarithmic
or linear scale. No other barcode shares the same color. Maintaining consistency in the color palette across
both plots facilitates comparison.

In Figure 1 -a) and -b), barcode lineages from a simulated time series are depicted on both logarithmic
and linear scales. The lineages in both plots are arranged based on their maximum frequency. Figure 1-
a) illustrates the dynamics on a logarithmic scale, where the dominant lineages are those reaching higher
frequencies. In this context, the dominant lineage is visually identified by the color magenta.

Figure 1-b) presents a visualization of the dynamics on a linear scale. Here, dominant lineages are displayed
from the bottom of the panel, while lineages with lower frequencies are successively stacked towards the top.
It is evident that the magenta lineage occupies the largest area, underscoring its dominance in the dataset.

1e-07

1e-05

1e-03

1e-01

300 600 900

Time

B
a
rc

o
d
e
 f

re
q
u
e
n
c
y

(a) Visualization of the dynamics on a logarithmic scale (b) Visualization of the dynamics on a linear scale

Figure 1: Visualizing the dynamics of the dataset

7



2.3 Diversity

Do you want to plot the diversity of your dataset?(y/n): y

2.1 Calculating the diversity...

2.2 Plotting the diversity...

The simplest way to quantify the diversity of barcoded lineages in a population is to count the number of
unique barcodes observed at a particular time point. However, if lineages differ widely in frequency, then this
measure may not be very informative and will suffer from substantial sampling bias (since very low-frequency
barcodes will be under-sampled). A more general approach is to quantify the diversity of barcodes using the
effective diversity index.

When q = 0, the index simply counts the absolute diversity in the sample, i.e. the total number of unique
barcode lineage. This measure is equivalent to the species richness used in ecological studies. When q = 1,
the index weights each barcode lineage by its frequency. This measure is equivalent to the exponential of
the Shannon entropy H. When q → ∞, the index is equal to the reciprocal of the proportional abundance of
the most common barcode lineages. Thus, only the higher-frequency lineages contribute to the value of this
index. By comparing the diversity index across these three orders, we can describe the complex dynamics of
the barcode composition over time. Figure 2 illustrates the temporal evolution of our dataset’s diversity. As
observed in Figures 1-a) and -b), our dataset undergoes a biological “sweep” characterized by the dominance
of a single lineage over others. Figure 2 corroborates this observation by depicting a reduction in dataset
diversity over time.

q_0 q_1 q_inf

0 300 600 900 0 300 600 900 0 300 600 900

0

2

4

6

Time

Figure 2: Diversity of the dataset accross 3 different orders (q = 0, 1, ∞)

8



2.4 Extracting the clonal dynamics

To infer clonal clusters, we employ a clustering approach based on the trajectory of frequency patterns
exhibited by barcoded lineages. This entails grouping together lineages that demonstrate similar frequency
patterns. To enhance the precision of our clustering approach, we omit barcodes failing to attain a minimum

mean frequency as well as those lacking an adequate number of time points (controlled by the
-c argument in the command line). This stringent criterion ensures that all barcode lineages included
in the clustering analysis possess a sufficient number of data points for meaningful pairwise comparisons.
Consequently, the lineage clustering process prioritizes dominant and persistent barcodes while excluding
those that rapidly become extinct.

Step 3: Clustering...

Specify a minimum mean frequency below which lineages are not taken into account during

clustering (ex: 0.00005): 0.00005

3.1 Filtering the input data...

To conduct hierarchical clustering of dominant and persistent barcodes, users need to specify a link-
age/agglomeration method from those available in the stats::hclust() function in R. The hierarchical
clustering relies on a pairwise distance matrix that encapsulates the similarity between pairs of barcoded
lineages. This distance matrix is computed based on a user-defined similarity metric, which can be either
Pearson correlation or Dynamic Time Warping (DTW). If the user opts for Pearson correlation, they must
also specify a method for computing covariances in the presence of missing values, as per the options
provided in the stats::cor() documentation. Figure 3 presents a pairwise heatmap, where blue indicates
similar lineages and red highlights significant differences among the lineages.

Figure 3: Pairwise heatmap

9



Therefore, the procedure for hierarchical clustering involves the following steps:

1. Select a linkage/agglomeration method from those available in stats::hclust().
2. Choose a similarity metric (Pearson correlation or DTW) for computing the pairwise distance matrix.
3. If Pearson correlation is selected, specify a method for computing covariances in the presence of missing

values, as outlined in the stats::cor() R documentation.

3.2 Clustering the filtered data...

Enter an agglomeration method (refer to stats::hclust() R documentation): average

Enter the metric to be used to measure similarity between two time-series (pearson/dtw) :

pearson

Enter a method for computing covariances in the presence of missing values.

Please refer to stats::cor() R documentation (ex: pairwise.complete.obs) :

pairwise

4. If DTW is selected, specify a method for computing the local distance, as outlined in the
dtwclust::dtw_basic() R documentation (i.e. L1 or L2).

3.2 Clustering the filtered data...

Enter an agglomeration method (refer to stats::hclust() R documentation): average

Enter the metric to be used to measure similarity between two time-series (pearson/dtw):

dtw

Enter the norm for the local distance calculation

('L1' for Manhattan or 'L2' for (squared) Euclidean): L2

To determine the optimal clustering threshold in our hierarchical clustering process, we consider three over-
arching trends:

Sensitivity to Sequencing Error: Clusters with very few lineages may be overly sensitive to sequencing
errors. Hence, their corresponding LOESS trajectories may not accurately represent underlying dynamics.

Similarity Among Clusters: When the threshold is set too low, numerous clusters emerge, but many of
them exhibit similar dynamics. This abundance of similar clusters may not provide meaningful insights.

Distinctiveness of Clusters: Conversely, setting the threshold too high results in only a few clusters,
potentially grouping together barcodes with diverse dynamics. This can obscure important variations within
the dataset.

Our approach involves identifying the cross-over point between the smallest distance between cluster cen-
troids (represented by their respective LOESS average) and the number of clusters (Figure 4). To accomplish
this, we compute relative clusters for thresholds ranging from 0.1 to the maximum height of the hierarchical
clustering tree. This step empowers users to visualize potential clusters across varying thresholds, enabling
informed decision-making regarding the selection of an appropriate threshold. By balancing between sen-
sitivity, cluster distinctiveness, and similarity, users can effectively identify the optimal threshold for their
analysis. Figure 4 illustrates the relationship between the number of clusters (blue curve), and the smallest
distance between cluster centroids (black curve). As the distance between clusters diminishes, the number
of generated clusters tends to increase. Optimal clustering typically occurs around the crossover point (in
this case: 0.3).

As previously mentioned, clusters with a small number of lineages may be disproportionately affected by
sequencing errors. To mitigate this issue, users are prompted to specify a minimum number of members per
cluster (e.g., X=8). However, disregarding clusters with fewer than X members could lead to the omission of
dominant clusters. In such instances, users are required to provide a minimum average frequency that must
be attained by at least one of the lines within potentially disregarded clusters for them to be considered.

10



25

50

75

100

125

2

4

6

8

10

0.51.0

Threshold

D
is

ta
n
c
e
 b

e
tw

e
e
n
 c

lu
s
te

rs
N

u
m

b
e
r o

f c
lu

s
te

rs

Figure 4: Threshold Selection

3.2.1 Computing the relative clusters for ALL thresholds between 0.1 and maximum

height of hierarchical clustering...

3.2.2 Filtering the hierarchical clustering results...

Enter the minimum number of members per cluster for test : 8

Enter the minimum number of members per cluster for test : 8

Enter the minimum average frequency to rescue small clusters: 0.001

Warning message:

By ignoring clusters with fewer than 8 members, you are potentially ignoring

dominant clusters.

3.2.3 Quantifying the hierarchical clustering...

3.2.4 Enter the chosen threshold for the clustering of test : 0.3

Once a specific threshold has been provided, Doblin plots every resulting cluster as well as the final clonal
dynamics. It’s important to note that the clonal dynamics consist of the LOESS curves of each resulting
cluster. Figures 5-a) through 5-f) illustrate the six resulting clusters and their respective lineages. Each
cluster’s black curve corresponds to its LOESS curve. Figure 5-g) illustrates the clonal dynamics of the
dataset.

3.2.5 Plotting the resulting clusters...

DONE

11



1e−04

1e−03

1e−02

1e−01

1e+00

300 600 900

Time

B
a

rc
o

d
e

 f
re

q
u

e
n

c
y

Cluster 1

(a) Composition of cluster 1

1e−07

1e−05

1e−03

1e−01

300 600 900

Time

B
a

rc
o

d
e

 f
re

q
u

e
n

c
y

Cluster 2

(b) Composition of cluster 2

1e−07

1e−05

1e−03

1e−01

300 600 900

Time

B
a

rc
o

d
e

 f
re

q
u

e
n

c
y

Cluster 3

(c) Composition of cluster 3

1e−07

1e−05

1e−03

1e−01

300 600 900

Time

B
a

rc
o

d
e

 f
re

q
u

e
n

c
y

Cluster 4

(d) Composition of cluster 4

1e−07

1e−05

1e−03

1e−01

300 600 900

Time

B
a

rc
o

d
e

 f
re

q
u

e
n

c
y

Cluster 5

(e) Composition of cluster 5

1e−07

1e−05

1e−03

1e−01

300 600 900

Time

B
a

rc
o

d
e

 f
re

q
u

e
n

c
y

Cluster 6

(f) Composition of cluster 6

1e−05

1e−03

1e−01

300 600 900

Time

C
lo

n
e
 f
re

q
u
e
n
c
y

cluster

C1
C2
C3
C4
C5
C6

(g) Clonal dynamics

Figure 5: Hierarchical clustering results

12


	Table of Contents
	1.0 Doblin Package
	2. The pipeline

	1.0 Doblin Package
	1.1 Overview
	1.2 Barcode extraction from the FASTQ/FASTA file
	1.3 Installation
	1.4 Command line
	2.0 The pipeline
	2.1 Data processing
	2.2 Visualizing the dynamics of the dataset
	2.3 Diversity
	2.4 Extracting the clonal dynamics

