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Abstract

Package flexmix provides functionality for fitting finite mixtures of regression models.
The available model class includes generalized linear models with varying and fixed effects
for the component specific models and multinomial logit models for the concomitant
variable models. This model class includes random intercept models where the random
part is modelled by a finite mixture instead of a-priori selecting a suitable distribution.

The application of the package is illustrated on various datasets which have been
previously used in the literature to fit finite mixtures of Gaussian, binomial or Poisson
regression models. The R commands are given to fit the proposed models and additional
insights are gained by visualizing the data and the fitted models as well as by fitting
slightly modified models.
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1. Introduction

Package flexmix provides infrastructure for flexible fitting of finite mixtures models. The
design principles of the package allow easy extensibility and rapid prototyping. In addition,
the main focus of the available functionality is on fitting finite mixtures of regression models,
as other packages in R exist which have specialized functionality for model-based clustering,
such as e.g. mclust (Fraley and Raftery 2002) for finite mixtures of Gaussian distributions.

Leisch (2004) gives a general introduction into the package outlining the main implemen-
tational principles and illustrating the use of the package. The paper is also contained as
a vignette in the package. An example for fitting mixtures of Gaussian regression models
is given in Griin and Leisch (2006). This paper focuses on examples of finite mixtures of
binomial logit and Poisson regression models. Several datasets which have been previously
used in the literature to demonstrate the use of finite mixtures of regression models have been
selected to illustrate the application of the package.

The model class covered are finite mixtures of generalized linear model with focus on binomial
logit and Poisson regressions. The regression coefficients as well as the dispersion parameters
of the component specific models are assumed to vary for all components, vary between
groups of components, i.e. to have a nesting, or to be fixed over all components. In addition
it is possible to specify concomitant variable models in order to be able to characterize the
components. Random intercept models are a special case of finite mixtures with varying and
fixed effects as fixed effects are assumed for the coefficients of all covariates and varying effects
for the intercept. These models are often used to capture overdispersion in the data which can
occur for example if important covariates are omitted in the regression. It is then assumed
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that the influence of these covariates can be captured by allowing a random distribution for
the intercept.

This illustration does not only show how the package flexmix can be used for fitting finite
mixtures of regression models but also indicates the advantages of using an extension package
of an environment for statistical computing and graphics instead of a stand-alone package as
available visualization techniques can be used for inspecting the data and the fitted models.
In addition users already familiar with R and its formula interface should find the model
specification and a lot of commands for exploring the fitted model intuitive.

2. Model specification

Finite mixtures of Gaussian regressions with concomitant variable models are given by:

S
H(y | T, w, 6) = Z 7'('5(’117, a)N(y ‘ Ms(w),gz),

s=1

where N(- | us(x), 02) is the Gaussian distribution with mean pg(x) = '3 and variance o2.

© denotes the vector of all parameters of the mixture distribution and the dependent variables
are y, the independent « and the concomitant w.

Finite mixtures of binomial regressions with concomitant variable models are given by:

S
Hy|T,z,w,0) = Z ms(w, a)Bi(y [ T, 05(x)),

s=1

where Bi(- | T, 05(x)) is the binomial distribution with number of trials equal to T" and success
probability 6,(x) € (0,1) given by logit(ds(x)) = «'B°.

Finite mixtures of Poisson regressions are given by:

S
H(y|z,w,©) = Z s(w, a)Poi(y | As(z)),

s=1

where Poi(- | As(x)) denotes the Poisson distribution and log(As(x)) = «’3%.

For all these mixture distributions the coefficients are split into three different groups depend-
ing on if fixed, nested or varying effects are specified:

B* = (81,85, 83)

where the first group represents the fixed, the second the nested and the third the varying
effects. For the nested effects a partition C = {cs|s = 1,...S5} of the S components is
determined where ¢; = {s* = 1,...,5]|c(s*) = ¢(s)}. A similar splitting is possible for the
variance of mixtures of Gaussian regression models.

The function for maximum likelihood (ML) estimation with the Expectation-Maximization
(EM) algorithm is flexmix() which is described in detail in Leisch (2004). It takes as
arguments a specification of the component specific model and of the concomitant variable
model. The component specific model with varying, nested and fixed effects can be specified
with the M-step driver FLXMRglmfix () which has arguments formula for the varying, nested
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for the nested and fixed for the fixed effects. formula and fixed take an argument of class
"formula", whereas nested expects an object of class "FLXnested" or a named list specifying
the nested structure with a component k which is a vector of the number of components in
each group of the partition and a component formula which is a vector of formulas for each
group of the partition. In addition there is an argument family which has to be one of
gaussian, binomial, poisson or Gamma and determines the component specific distribution
function as well as an offset argument. The argument varFix can be used to determine the
structure of the dispersion parameters.

If only varying effects are specified the M-step driver FLXMRglm() can be used which only has
an argument formula for the varying effects and also a family and an offset argument. This
driver has the advantage that in the M-step the weighted ML estimation is made separately
for each component which signifies that smaller model matrices are used. If a mixture model
with a lot of components S is fitted to a large data set with IV observations and the model
matrix used in the M-step of FLXMRglm () has N rows and K columns, the model matrix used
in the M-step of FLXMRglmfix () has SN rows and up to SK columns.

In general the concomitant variable model is assumed to be a multinomial logit model, i.e. :

w’ o
s(w, a) = Vs,

Z —p e

with & = (a)s=1,... s and a1 = 0. This model can be fitted in flexmix with FLXPmultinom()
which takes as argument formula the formula specification of the multinomial logit part. For
fitting the function nnet() is used from package MASS (Venables and Ripley 2002) with
the independent variables specified by the formula argument and the dependent variables are
given by the a-posteriori probability estimates.

3. Using package flexmix

In the following datasets from different areas such as medicine, biology and economics are
used. There are three subsections: for finite mixtures of Gaussian regressions, for finite
mixtures of binomial regression models and for finite mixtures of Poisson regression models.

3.1. Finite mixtures of Gaussian regressions

This artificial dataset with 200 observations is given in Griin and Leisch (2006). The data is
generated from a mixture of Gaussian regression models with three components. There is an
intercept with varying effects, an independent variable x1, which is a numeric variable, with
fixed effects and another independent variable x2, which is a categorical variable with two
levels, with nested effects. The prior probabilities depend on a concomitant variable w, which
is also a categorical variable with two levels. Fixed effects are also assumed for the variance.
The data is illustrated in Figure 1 and the true underlying model is given by:

S
H(y|(x1,22),w,0®) = Zws(w, a)N(y | s, 02),
s=1

with 8° = (B} iercepts B}C{(ls , Bx2). The nesting signifies that ¢(1) = ¢(2) and 50(3)
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The mixture model is fitted by first loading the package and the dataset and then speci-
fying the component specific model. In a first step a component specific model with only
varying effects is specified. Then the fitting function flexmix () is called repeatedly using
stepFlexmix (). Finally, we order the components such that they are in ascending order with
respect to the coefficients of the variable x1.

R> set.seed(2807)

R> library("flexmix")

R> data("NregFix", package = "flexmix")

R> Model <- FLXMRglm(~ x2 + x1)

R> fittedModel <- stepFlexmix(y ~ 1, model = Model, nrep = 3, k = 3,
+ data = NregFix, concomitant = FLXPmultinom(~ w))

R> fittedModel <- relabel(fittedModel, "model", "x1")
R> summary(refit(fittedModel))

$Comp.1
Estimate Std. Error z value Pr(>lzl)
(Intercept) 2.87046 0.13515 21.2394 <2e-16 *xx*xx

x21 5.10209 0.20849 24.4716  <2e-16 **x*

x1 0.13348 0.10633 1.2553 0.2094

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 " ' 1
$Comp. 2

Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.99358 0.18130 5.4803 4.245e-08 **x*

x21 5.28836 0.25232 20.9590 < 2.2e-16 **x*

x1 9.89243 0.11778 83.9892 < 2.2e-16 **x*

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
$Comp. 3

Estimate Std. Error z value Pr(>|zl)
(Intercept) -7.64055 0.25163 -30.365 < 2.2e-16 *xx

x21 4.65090 0.38102 12.207 < 2.2e-16 **x*
x1 9.93667 0.16444 60.429 < 2.2e-16 **x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The estimated coefficients indicate that the components differ for the intercept, but that they
are not significantly different for the coefficients of 2. For z1 the coefficient of the first
component is not significantly different from zero and the confidence intervals for the other
two components overlap. Therefore we fit a modified model, which is equivalent to the true
underlying model. The previously fitted model is used for initializing the EM algorithm:



Bettina Griin, Friedrich Leisch

2 0 1 2
| | | | | | | | | |
w=1 w=1
x2=0 x2=1
_ . 2
7 o % ® 4 @m0 ®o oo ~ 10
| o o ® %sg%%@m 00&0«90 o g © ®® s ® Lo
n o] ¢ o ¢ B _10
| o - —-20
| o o Class 1
> w=0 w=0 Class 3
x2=0 x2=1
20 -
10 — o° o & ° I~
0 @(b © od® 0© ° -
-10 — wo ° oo ° =
-20 - @ -
—30 T T T T T T T T T T B
2 0 1 2
x1
Figure 1: Sample with 200 observations from the artificial example.
R> Model2 <- FLXMRglmfix(fixed = ~ x2, nested = list(k = c(1, 2),

+ formula = c¢(~ 0, ~ x1)), varFix = TRUE)

R> fittedModel2 <- flexmix(y ~ 1, model = Model2,

+ cluster = posterior(fittedModel), data = NregFix,
+ concomitant = FLXPmultinom(~ w))

R> BIC(fittedModel)

[1] 883.5921
R> BIC(fittedModel2)
[1] 856.9122
The BIC suggests that the restricted model should be preferred.
R> summary (refit (fittedModel2))
$Comp. 1
Estimate Std. Error z value Pr(>|zl|)

x21 5.11133 0.14801 34.533 < 2.2e-16 **x*
(Intercept) 2.85755 0.12650 22.590 < 2.2e-16 *x*x

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

~ =30 Class 2
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$Comp. 2

Estimate Std. Error =z value Pr(>|zl)
x21 5.111327 0.148011 34.5334 < 2.2e-16 *x**
x1 9.902341 0.091179 108.6027 < 2.2e-16 *x**

(Intercept) 1.072193 0.141877 7.5572 4.119e-14 **x*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 " ' 1
$Comp. 3
Estimate Std. Error z value Pr(>|zl)
x21 5.111327 0.148011 34.533 < 2.2e-16 *x*x*
x1 9.902341 0.091179 108.603 < 2.2e-16 *x*x*

(Intercept) -7.848359 0.197759 -39.687 < 2.2e-16 *x**

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The coefficients are ordered such that the fixed coefficients are first, the nested varying coef-
ficients second and the varying coefficients last.

3.2. Finite mixtures of binomial logit regressions

Beta blockers

The dataset is analyzed in Aitkin (1999a,b) using a finite mixture of binomial regression
models. Furthermore, it is described in McLachlan and Peel (2000) on page 165. The dataset
is from a 22-center clinical trial of beta-blockers for reducing mortality after myocardial
infarction. A two-level model is assumed to represent the data, where centers are at the
upper level and patients at the lower level. The data is illustrated in Figure 2 and the model
is given by:

S
H (Deaths | Total, Treatment, Center, ®) = ZﬂsBi(Deaths | Total, 0;).
s=1

First, the center classification is ignored and a binomial logit regression model with treatment
as covariate is fitted using glm, i.e. S = 1:

R> data("betablocker", package = "flexmix")

R> betaGlm <- glm(cbind(Deaths, Total - Deaths) ~ Treatment,
+ family = "binomial", data = betablocker)

R> betaGlm

Call: glm(formula = cbind(Deaths, Total - Deaths) ~ Treatment, family = "binomial",
data = betablocker)

Coefficients:
(Intercept) TreatmentTreated
-2.1971 -0.2574
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Degrees of Freedom: 43 Total (i.e. Null); 42 Residual
Null Deviance: 333
Residual Deviance: 305.8 AIC: 527.2

In the next step the center classification is included by allowing a random effect for the
intercept given the centers, i.e. the coefficients 3° are given by (5] ;orce pt|Center? Breatment )-
This signifies that the component membership is fixed for each center. In order to determine
the suitable number of components, the mixture is fitted with different numbers of components
and the BIC information criterion is used to select an appropriate model. In this case a model
with three components is selected. The fitted values for the model with three components
are given in Figure 2.

R> betaMixFix <- stepFlexmix(cbind(Deaths, Total - Deaths) ~ 1 | Center,
+ model = FLXMRglmfix(family = "binomial", fixed = ~ Treatment),
+ k = 2:4, nrep = 3, data = betablocker)

2 1 % *x %
3 ok x %
4 : o x % %k

R> betaMixFix

Call:

stepFlexmix(cbind(Deaths, Total - Deaths) ~ 1 | Center,
model = FLXMRglmfix(family = "binomial", fixed = ~Treatment),
data = betablocker, k = 2:4, nrep = 3)

iter converged k kO logLik AIC BIC ICL
2 12 TRUE 2 2 -181.3308 370.6617 377.7984 380.2114
3 9 TRUE 3 3 -159.3605 330.7210 341.4262 343.3249
4 15 TRUE 4 4 -155.7540 327.5080 341.7815 345.7338

In addition the treatment effect can also be included in the random part of the model. As
then all coefficients for the covariates and the intercept follow a mixture distribution the
component specific model can be specified using FLXMRglm(). The coefficients are 8° =
(ﬁfmemept|center,B%eatment‘center), i.e. it is assumed that the heterogeneity is only between
centers and therefore the aggregated data for each center can be used.

R> betaMix <- stepFlexmix(cbind(Deaths, Total - Deaths) ~ Treatment | Center,

+ model = FLXMRglm(family = "binomial"), k = 3, nrep = 3,
+ data = betablocker)

R> summary (betaMix)
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Figure 2: Relative number of deaths for the treatment and the control group for each center
in the beta blocker dataset. The centers are sorted by the relative number of deaths in the
control group. The lines indicate the fitted values for each component of the 3-component
mixture model with random intercept and fixed effect for treatment.

Call:

stepFlexmix (cbind(Deaths, Total - Deaths) ~ Treatment |
Center, model = FLXMRglm(family = "binomial"), data = betablocker,
k = 3, nrep = 3)

prior size post>0 ratio

Comp.1 0.240 10 20 0.500
Comp.2 0.249 10 22 0.455
Comp.3 0.511 24 32 0.750

'log Lik.' -158.3095 (df=8)
AIC: 332.619 BIC: 346.8925

The full model with a random effect for treatment has a higher BIC and therefore the smaller
would be preferred.

The default plot of the returned flexmix object is a rootogramm of the a-posteriori proba-
bilities where observations with a-posteriori probabilities smaller than eps are omitted. With
argument mark the component is specified to have those observations marked which are as-
signed to this component based on the maximum a-posteriori probabilities. This indicates
which components overlap.

R> print(plot(betaMixFix_3, mark = 1, col = "grey", markcol = 1))
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The default plot of the fitted model indicates that the components are well separated. In
addition component 1 has a slight overlap with component 2 but none with component 3.

The fitted parameters of the component specific models can be accessed with:

R> parameters (betaMix)

Comp.1 Comp.2 Comp.3
coef. (Intercept) -2.91633602 -1.5800104 -2.2476996
coef.TreatmentTreated -0.08047852 -0.3248495 -0.2630025

The cluster assignments using the maximum a-posteriori probabilities are obtained with:

R> table(clusters(betaMix))

1 2 3
10 10 24

The estimated probabilities for each component for the treated patients and those in the
control group can be obtained with:

R> predict (betaMix,
+ newdata = data.frame(Treatment = c("Control", "Treated")))

$Comp. 1

[,1]
1 0.05135190
2 0.04756999

$Comp. 2
[,1]
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1 0.1707940
2 0.1295594

$Comp. 3

[,1]
1 0.09554808
2 0.07511132

or
R> fitted(betaMix) [c(1, 23), ]

Comp.1 Comp.2 Comp. 3
[1,] 0.05135190 0.1707940 0.09554808
[2,] 0.04756999 0.1295594 0.07511132

A further analysis of the model is possible with function refit () which returns the estimated
coefficients together with the standard deviations, z-values and corresponding p-values:

R> summary (refit(getModel (betaMixFix, "3")))

$Comp. 1

Estimate Std. Error =z value Pr(>|z]|)
TreatmentTreated -0.258163 0.049901 -5.1735 2.297e-07
(Intercept) -2.250160 0.040529 -55.5204 < 2.2e-16
Signif. codes: O 'x¥x' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1
$Comp. 2

Estimate Std. Error =z value Pr(>|z]|)
TreatmentTreated -0.258163 0.049901 -5.1735 2.297e-07
(Intercept) -2.833679 0.075079 -37.7428 < 2.2e-16
Signif. codes: O 'xxx' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1
$Comp. 3

Estimate Std. Error =z value Pr(>|z|)
TreatmentTreated -0.258163 0.049901 -5.1735 2.297e-07
(Intercept) -1.609726 0.055735 -28.8819 < 2.2e-16
Signif. codes: O 'xxx' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1

Kok ok
KKk

*kk
* %k

*kok
KoKk

1

The printed coefficients are ordered to have the fixed effects before the varying effects.

Mehta et al. trial

This dataset is similar to the beta blocker dataset and is also analyzed in Aitkin (1999b).
The dataset is visualized in Figure 3. The observation for the control group in center 15 is

slightly conspicuous and might classify as an outlier.
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The model is given by:

S
H (Response | Total, ®) = Z 7sBi(Response | Total, 6;),
s=1

with 8% = (BfntercepﬂSite’ Bbrug)- This model is fitted with:

R> data("Mehta", package = "flexmix")

R> mehtaMix <- stepFlexmix(cbind(Response, Total - Response)~ 1 | Site,
+ model = FLXMRglmfix(family = "binomial", fixed = ~ Drug),

+ control = list(minprior = 0.04), nrep = 3, k = 3, data = Mehta)

R> summary (mehtaMix)

Call:

stepFlexmix (cbind (Response, Total - Response) ~ 1 | Site,
model = FLXMRglmfix(family = "binomial", fixed = ~Drug),
control = list(minprior = 0.04), data = Mehta, k = 3,
nrep = 3)

prior size post>0 ratio

Comp.1 0.0456 2 4 0.500
Comp.2 0.5012 22 44 0.500
Comp.3 0.4532 20 42 0.476

'log Lik.' -66.8056 (df=6)
AIC: 145.6112 BIC: 156.3163

One component only contains the observations for center 15 and in order to be able to
fit a mixture with such a small component it is necessary to modify the default argument
for minprior which is 0.05. The fitted values for this model are given separately for each
component in Figure 3.

If also a random effect for the coefficient of Drug is fitted, i.e. B° = wfntercept\sne’ Bgrug|Site),
this is estimated by:

R> mehtaMix <- stepFlexmix(cbind(Response, Total - Response) ~ Drug | Site,
+ model = FLXMRglm(family "pinomial"), k = 3, data = Mehta, nrep = 3,
+ control = list(minprior = 0.04))

R> summary (mehtaMix)
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Figure 3: Relative number of responses for the treatment and the control group for each site
in the Mehta et al. trial dataset together with the fitted values. The sites are sorted by the
relative number of responses in the control group.

Call:

stepFlexmix(cbind (Response, Total - Response) ~ Drug |
Site, model = FLXMRglm(family = "binomial"), data = Mehta,
control = list(minprior = 0.04), k = 3, nrep = 3)

prior size post>0 ratio

Comp.1 0.5084 22 42 0.524
Comp.2 0.0455 2 2 1.000
Comp.3 0.4462 20 42 0.476

'log Lik.' -62.02723 (df=8)
AIC: 140.0545 BIC: 154.328

The BIC is smaller for the larger model and this indicates that the assumption of an equal
drug effect for all centers is not confirmed by the data.

Given Figure 3 a two-component model with fixed treatment is also fitted to the data where
site 15 is omitted:

R> Mehta.sub <- subset(Mehta, Site != 15)

R> mehtaMix <- stepFlexmix(cbind (Response, Total - Response) ~ 1 | Site,
+ model = FLXMRglmfix(family = "binomial", fixed = ~ Drug),

+ data = Mehta.sub, k = 2, nrep = 3)

2 ¢ ok *x %

R> summary (mehtaMix)
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Call:

stepFlexmix (cbind (Response, Total - Response) ~ 1 | Site,
model = FLXMRglmfix(family = "binomial", fixed = ~Drug),
data = Mehta.sub, k = 2, nrep = 3)

prior size post>0 ratio
Comp.1 0.472 20 42 0.476
Comp.2 0.528 22 42 0.524

'log Lik.' -56.5844 (df=4)
AIC: 121.1688 BIC: 128.1195

Tribolium

A finite mixture of binomial regressions is fitted to the Tribolium dataset given in Wang and
Puterman (1998). The data was collected to investigate whether the adult Tribolium species
Castaneum has developed an evolutionary advantage to recognize and avoid eggs of its own
species while foraging, as beetles of the genus Tribolium are cannibalistic in the sense that
adults eat the eggs of their own species as well as those of closely related species.

The experiment isolated a number of adult beetles of the same species and presented them
with a vial of 150 eggs (50 of each type), the eggs being thoroughly mixed to ensure uniformity
throughout the vial. The data gives the consumption data for adult Castaneum species. It
reports the number of Castaneum, Confusum and Madens eggs, respectively, that remain
uneaten after two day exposure to the adult beetles. Replicates 1, 2, and 3 correspond to
different occasions on which the experiment was conducted. The data is visualized in Figure 4
and the model is given by:

S
H(Remaining | Total, ®) = Z 7s(Replicate, &) Bi(Remaining | Total, 6;),
s=1

with #% = (ﬁfmercept, Bspecies). This model is fitted with:

R> data("tribolium", package = "flexmix")
R> TribMix <- stepFlexmix(cbind(Remaining, Total - Remaining) ~ 1,

+ k = 2:3, model = FLXMRglmfix(fixed = ~ Species, family = "binomial"),
+ concomitant = FLXPmultinom(~ Replicate), data = tribolium)

2 1 ok ok x

31 ok % x

The model which is selected as the best in Wang and Puterman (1998) can be estimated with:

R> modelWang <- FLXMRglmfix(fixed = ~ I(Species == "Confusum"),

+ family = "binomial")

R> concomitantWang <- FLXPmultinom(~ I(Replicate == 3))

R> TribMixWang <- stepFlexmix(cbind(Remaining, Total - Remaining) ~ 1,
+ data = tribolium, model = modellWang, concomitant = concomitantWang,
+ k=2)

13
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Figure 4: Relative number of remaining beetles for the number of replicate. The different
panels are according to the cluster assignemnts based on the a-posteriori probabilities of the
model suggested in Wang and Puterman (1998).

R> summary(refit (TribMixWang))

$Comp. 1

Estimate Std. Error z value Pr(>|zl)
I(Species == "Confusum")TRUE -0.56046 0.22985 -2.4384 0.01475
(Intercept) -0.64544 0.13260 -4.8674 1.131e-06
I(Species == "Confusum")TRUE *
(Intercept) *okok
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
$Comp. 2

Estimate Std. Error z value Pr(>|zl)
I(Species == "Confusum")TRUE -0.56046 0.22985 -2.4384 0.01475 x*
(Intercept) 0.19447 0.10117 1.9222 0.05459 .
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Wang and Puterman (1998) also considered a model where they omit one conspicuous obser-
vation. This model can be estimated with:

R> TribMixWangSub <- stepFlexmix(cbind(Remaining, Total - Remaining) ~ 1,
+ k = 2, data = tribolium[-7,], model = modelWang,
+ concomitant = concomitantWang)
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Trypanosome

The data is used in Follmann and Lambert (1989). It is from a dosage-response analysis
where the proportion of organisms belonging to different populations shall be assessed. It is
assumed that organisms belonging to different populations are indistinguishable other than
in terms of their reaction to the stimulus. The experimental technique involved inspection
under the microscope of a representative aliquot of a suspension, all organisms appearing
within two fields of view being classified either alive or dead. Hence the total numbers of
organisms present at each dose and the number showing the quantal response were both
random variables. The data is illustrated in Figure 5.

The model which is proposed in Follmann and Lambert (1989) is given by:

S
H(Dead |©) = Y m,Bi(Dead |0;),

s=1

where Dead € {0,1} and with 8° = (B} ercept Blog(Dose))- This model is fitted with:

R> data("trypanosome", package = "flexmix")

R> TrypMix <- stepFlexmix(cbind(Dead, 1-Dead) ~ 1, k = 2, nrep = 3,
+ data = trypanosome, model = FLXMRglmfix(family = "binomial",
+ fixed = ~ log(Dose)))

2 1 ok x %

R> summary(refit(TrypMix))

$Comp. 1

Estimate Std. Error z value Pr(>|zl)
log(Dose) 124 .89 25.26 4.9443 7.643e-07 *xx
(Intercept) -196.32 39.59 -4.9589 7.089e-07 ***
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
$Comp . 2

Estimate Std. Error z value Pr(>|zl)
log(Dose) 124.895 25.260 4.9443 7.643e-07 *xx
(Intercept) -205.864 41.801 -4.9248 8.443e-07 **x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The fitted values are given in Figure 5 together with the fitted values of a generalized linear
model in order to facilitate comparison of the two models.

3.3. Finite mixtures of Poisson regressions

Fabric faults

The dataset is analyzed using a finite mixture of Poisson regression models in Aitkin (1996).
Furthermore, it is described in McLachlan and Peel (2000) on page 155. It contains 32
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Figure 5: Relative number of deaths for each dose level together with the fitted values for the
generalized linear model (“GLM”) and the random intercept model (“Mixture model”).

observations on the number of faults in rolls of a textile fabric. A random intercept model is
used where a fixed effect is assumed for the logarithm of length:

R> data("fabricfault", package = "flexmix")
R> fabricMix <- stepFlexmix(Faults ~ 1, model = FLXMRglmfix(family="poisson",
+ fixed = ~ log(Length)), data = fabricfault, k = 2, nrep = 3)

R> summary(fabricMix)

Call:

stepFlexmix(Faults ~ 1, model = FLXMRglmfix(family = "poisson",
fixed = ~log(Length)), data = fabricfault, k = 2,
nrep = 3)

prior size post>0 ratio
Comp.1 0.796 27 32 0.844
Comp.2 0.204 5 32 0.156

'log Lik.' -86.33119 (df=4)
AIC: 180.6624 BIC: 186.5253

R> summary (refit(fabricMix))

$Comp. 1
Estimate Std. Error z value Pr(>|zl)
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log(Length) 0.79913 0.23491 3.4019 0.0006692 *x*x
(Intercept) -3.12797 1.51934 -2.0588 0.0395167 =*

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

$Comp. 2

Estimate Std. Error z value Pr(>lzl)
log(Length) 0.79913 0.23491 3.4019 0.0006692 *x*x
(Intercept) -2.36202 1.59146 -1.4842 0.1377594

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

R> Lnew <- seq(0, 1000, by = 50)
R> fabricMix.pred <- predict(fabricMix, newdata = data.frame(Length = Lnew))

The intercept of the first component is not significantly different from zero for a signficance
level of 0.05. We therefore also fit a modified model where the intercept is a-priori set to zero
for the first component. This nested structure is given as part of the model specification with
argument nested.

R> fabricMix2 <- flexmix(Faults ~ 0, data = fabricfault,

+ cluster = posterior(fabricMix),

+ model = FLXMRglmfix(family = "poisson", fixed = ~ log(Length),
+ nested = 1list(k=c(1,1), formula=list(~0,~1))))

R> summary (refit(fabricMix2))

$Comp.1
Estimate Std. Error z value Pr(>lzl)
log(Length) 0.308000 0.013437 22.922 < 2.2e-16 ***

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 " ' 1

$Comp. 2

Estimate Std. Error z value Pr(>|zl|)
log(Length) 0.308000 0.013437 22.9215 < 2.2e-16 **x*
(Intercept) 0.921282  0.132720 6.9415 3.878e-12 **x*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

R> fabricMix2.pred <- predict(fabricMix2,
+ newdata = data.frame(Length = Lnew))

The data and the fitted values for each of the components for both models are given in
Figure 6.

Patent

The patent data given in Wang, Cockburn, and Puterman (1998) consist of 70 observations
on patent applications, R&D spending and sales in millions of dollar from pharmaceutical

17
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Figure 6: Observed values of the fabric faults dataset together with the fitted values for the
components of each of the two fitted models.

and biomedical companies in 1976 taken from the National Bureau of Economic Research
R&D Masterfile. The observations are displayed in Figure 7. The model which is chosen as
the best in Wang et al. (1998) is given by:

S
H (Patents |1lgRD, RDS, ©) = > m,(RDS, o) Poi(Patents | A,),

s=1

and IBS = (ﬁfntercepw BlngD)'
The model is fitted with:

R> data("patent", package = "flexmix")

R> ModelPat <- FLXMRglm(family = "poisson")

R> FittedPat <- stepFlexmix(Patents ~ 1gRD, k = 3, nrep = 3,

+ model = ModelPat, data = patent, concomitant = FLXPmultinom(~ RDS))

R> summary (FittedPat)

Call:
stepFlexmix(Patents ~ 1gRD, model = ModelPat, data = patent,
concomitant = FLXPmultinom(~RDS), k = 3, nrep = 3)

prior size post>0 ratio
Comp.1 0.615 45 63 0.714
Comp.2 0.184 13 47 0.277
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Comp.3 0.201 12 48 0.250

'log Lik.' -197.6753 (df=10)
AIC: 415.3505 BIC: 437.8355

The fitted values for the component specific models and the concomitant variable model
are given in Figure 7. The plotting symbol of the observations corresponds to the induced
clustering given by clusters(FittedPat).

This model is modified to have fixed effects for the logarithmized R&D spendings, i.e. (3)° =
(Biutercept: igip)- The already fitted model is used for initialization, i.e. the EM algorithm is
started with an M-step given the a-posteriori probabilities.

R> ModelFixed <- FLXMRglmfix(family = "poisson", fixed = ~ 1gRD)

R> FittedPatFixed <- flexmix(Patents ~ 1, model = ModelFixed,

+ cluster = posterior(FittedPat), concomitant = FLXPmultinom(~ RDS),
+ data = patent)

R> summary (FittedPatFixed)

Call:
flexmix(formula = Patents ~ 1, data = patent, cluster = posterior(FittedPat),
FLXPmultinom(~RDS))

model = ModelFixed, concomitant

prior size post>0 ratio

Comp.1 0.361 25 63 0.397
Comp.2 0.203 14 52 0.269
Comp.3 0.436 31 54 0.574

'log Lik.' -216.824 (df=8)
AIC: 449.6479 BIC: 467.6359

The fitted values for the component specific models and the concomitant variable model of
this model are also given in Figure 7.

With respect to the BIC the full model is better than the model with the fixed effects.
However, fixed effects have the advantage that the different components differ only in their
baseline and the relation between the components in return of investment for each additional
unit of R&D spending is constant. Due to a-priori domain knowledge this model might seem
more plausible. The fitted values for the constrained model are also given in Figure 7.

Seizure

The data is used in Wang, Puterman, Cockburn, and Le (1996) and is from a clinical trial
where the effect of intravenous gamma-globulin on suppression of epileptic seizures is studied.
There are daily observations for a period of 140 days on one patient, where the first 27 days
are a baseline period without treatment, the remaining 113 days are the treatment period.
The model proposed in Wang et al. (1996) is given by:

S
H (Seizures | (Treatment, log(Day), log(Hours)), ®) = Z msPoi(Seizures | As),

s=1
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Figure 7: Patent data with the fitted values of the component specific models (left) and the
concomitant variable model (right) for the model in Wang et al. and with fixed effects for
log(R&D). The plotting symbol for each observation is determined by the component with
the maximum a-posteriori probability.
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where (5)8 = (6Isntercept7 B'sTreatmenw 5lsog(Day)’ B%reatment:log(Day)) and log(HourS) is used as off-
set. This model is fitted with:

R> data("seizure", package = "flexmix")

R> seizMix <- stepFlexmix(Seizures ~ Treatment * log(Day), data = seizure,
+ k = 2, nrep = 3, model = FLXMRglm(family = "poisson",

+ offset = log(seizure$Hours)))

R> summary(seizMix)

Call:

stepFlexmix(Seizures ~ Treatment * log(Day), data = seizure,
model = FLXMRglm(family = "poisson", offset = log(seizure$Hours)),
k = 2, nrep = 3)

prior size post>0 ratio
Comp.1 0.724 103 115 0.896
Comp.2 0.276 37 101 0.366

'log Lik.' -376.1762 (df=9)
AIC: 770.3525  BIC: 796.8272

R> summary(refit (seizMix))

$Comp. 1
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 2.070226 0.092252 22.441 < 2.2e-16 *xxx
TreatmentYes 7.432200 0.548865 13.541 < 2.2e-16 **x
log(Day) -0.270550 0.042320 -6.393 1.626e-10 *xx
TreatmentYes:log(Day) -2.276359  0.147857 -15.396 < 2.2e-16 **x*
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
$Comp. 2

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.84422 0.25898 10.9825 < 2.2e-16 ***
TreatmentYes 1.30319 0.54448 2.3935 0.016690 =*
log(Day) -0.40593 0.10014 -4.0537 5.04e-05 *x*x

TreatmentYes:log(Day) -0.43139 0.15265 -2.8261 0.004712 **

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 " ' 1

A different model with different contrasts to directly estimate the coefficients for the jump
when changing between base and treatment period is given by:
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R> seizMix2 <- flexmix(Seizures ~ Treatment * log(Day/27),

+ data = seizure, cluster = posterior(seizMix),

+ model = FLXMRglm(family = "poisson", offset = log(seizure$Hours)))
R> summary (seizMix2)

Call:
flexmix(formula = Seizures ~ Treatment * log(Day/27),
data = seizure, cluster = posterior(seizMix), model = FLXMRglm(family = "poisson",
offset = log(seizure$Hours)))

prior size post>0 ratio
Comp.1 0.724 103 115 0.896
Comp.2 0.276 37 101 0.366

'log Lik.' -376.1762 (df=9)
AIC: 770.3524  BIC: 796.8272

R> summary (refit(seizMix2))

$Comp. 1

Estimate Std. Error =z value Pr(>|z|)
(Intercept) 1.178452  0.072453 16.2650 < 2.2e-16 ***
TreatmentYes -0.070116 0.116887 -0.5999 0.5486
log(Day/27) -0.270600 0.042324 -6.3935 1.621e-10 *x*x

TreatmentYes:log(Day/27) -2.276249  0.147854 -15.3953 < 2.2e-16 ***

Signif. codes: O '*x*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
$Comp. 2

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.506044 0.091612 16.4394 < 2.2e-16 ***
TreatmentYes -0.118471 0.140926 -0.8407 0.40054
log(Day/27) -0.406176 0.100100 -4.0577 4.956e-05 *x*x

TreatmentYes:log(Day/27) -0.431134 0.152620 -2.8249  0.00473 x*x

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 " ' 1

A different model which allows no jump at the change between base and treatment period is
fitted with:

R> seizMix3 <- flexmix(Seizures ~ log(Day/27)/Treatment, data = seizure,
+ cluster = posterior(seizMix), model = FLXMRglm(family = "poisson",
+ offset = log(seizure$Hours)))

R> summary (seizMix3)

Call:
flexmix(formula = Seizures ~ log(Day/27)/Treatment, data = seizure,
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cluster = posterior(seizMix), model = FLXMRglm(family = "poisson",
offset = log(seizure$Hours)))

prior size post>0 ratio
Comp.1 0.722 102 115 0.887
Comp.2 0.278 38 101 0.376

'log Lik.' -376.6495 (df=7)
AIC: 767.2991  BIC: 787.8906

R> summary(refit (seizMix3))

$Comp. 1

Estimate Std. Error =z value Pr(>|zl)
(Intercept) 1.150003  0.058217 19.7537 < 2.2e-16 **x*
log(Day/27) -0.283878 0.036969 -7.6788 1.606e-14 *x*x*

log(Day/27) :TreatmentYes -2.311510  0.134828 -17.1441 < 2.2e-16 *x**

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 " ' 1
$Comp . 2

Estimate Std. Error z value Pr(>|z])
(Intercept) 1.458918 0.067241 21.6968 < 2.2e-16 *x*x
log(Day/27) -0.447634 0.081633 -5.4835 4.17e-08 *x*x*

log(Day/27) :TreatmentYes -0.458721  0.145578 -3.1510 0.001627 *x

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

With respect to the BIC criterion the smaller model with no jump is preferred. This is also the
more intuitive model from a practitioner’s point of view, as it does not seem to be plausible
that starting the treatment already gives a significant improvement, but improvement develops
over time. The data points together with the fitted values for each component of the two
models are given in Figure 8. It can clearly be seen that the fitted values are nearly equal
which also supports the smaller model.

Ames salmonella assay data

The ames salomnella assay dataset was used in Wang et al. (1996). They propose a model
given by:

S
H(Y ’ X, @) = Z ﬂ'sPOi(y ’ )‘8)7

s=1
where 8% = (Bipercept Bxs Blog(x+10))- The model is fitted with:
R> data("salmonellaTA98", package = "flexmix")

R> salmonMix <- stepFlexmix(y ~ 1, data = salmonellaTA98, k = 2, nrep = 3,
+ model = FLXMRglmfix(family = "poisson", fixed = ~ x + log(x + 10)))

23
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Figure 8: Observed values for the seizure dataset together with the fitted values for the
components of the two different models.

4. Conclusions and future work

Package flexmix can be used to fit finite mixtures of regressions to datasets used in the
literature to illustrate these models. The results can be reproduced and additional insights
can be gained using visualization methods available in R. The fitted model is an object in R
which can be explored using show(), summary () or plot(), as suitable methods have been
implemented for objects of class "flexmix" which are returned by flexmix ().

In the future it would be desirable to have more diagnostic tools available to analyze the model
fit and compare different models. The use of resampling methods would be convenient as they
can be applied to all kinds of mixtures models and would therefore suit well the purpose of
the package which is flexible modelling of various finite mixture models. Furthermore, an
additional visualization method for the fitted coefficients of the mixture would facilitate the
comparison of the components.

Computational details

All computations and graphics in this paper have been done using R version 4.4.2 with the
packages mvtnorm 1.3-3, ellipse 0.5.0, diptest 0.77-1, flexmix 2.3-20, lattice 0.22-6, compiler
4.4.2, modeltools 0.2-23, tools 4.4.2, nnet 7.3-20, stats4 4.4.2.
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Figure 9: Means and classification for assay data according to the estimated posterior prob-
abilities based on the fitted model.
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