Package 'fluxible'

May 22, 2025

Title Ecosystem Gas Fluxes Calculations for Closed Loop Chamber Setup

Version 1.1.2

Date 2025-05-22

Description Processes the raw data from closed loop flux chamber (or tent) setups into ecosystem gas fluxes usable for analysis. It goes from a data frame of gas concentration over time (which can contain several measurements) and a meta data file indicating which measurement was done when, to a data frame of ecosystem gas fluxes including quality diagnostics. Functions provided include different models (exponential as described in Zhao et al (2018) <doi:10.1016/j.agrformet.2018.08.022>, quadratic and linear) to estimate the fluxes from the raw data, quality assessment, plotting for visual check and calculation of fluxes based on the setup specific parameters (chamber size, plot area, ...).

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0), vdiffr, forcats, tidyverse, fs

Config/testthat/edition 3

Imports broom, dplyr, ggforce, ggplot2, haven, lubridate, rlang, purrr, stats, stringr, tidyr, zoo, progress, purrrlyr, tidyselect

Depends R (>= 4.1)

LazyData true

URL https://plant-functional-trait-course.github.io/fluxible/,

https://github.com/Plant-Functional-Trait-Course/fluxible

VignetteBuilder knitr

BugReports https://github.com/Plant-Functional-Trait-Course/fluxible/issues NeedsCompilation no Author Joseph Gaudard [aut, cre] (ORCID: <https://orcid.org/0000-0002-6989-7624>), Richard James Telford [aut] (ORCID: <https://orcid.org/0000-0001-9826-3076>) Maintainer Joseph Gaudard <joseph.gaudard@pm.me>

Repository CRAN

Date/Publication 2025-05-22 17:20:02 UTC

Contents

co2_conc	3
0	4
	5
co2_df_missing	6
	6
	7
—	8
flux_calc	8
flux_check_item	0
flux_cut	1
flux_fitting	1
flux_fitting_exptz	3
flux_fitting_hm	4
flux_fitting_lm	5
flux_fitting_quadratic	6
flux_fitting_zhao18	6
flux_fit_type	
flux_flag_count	8
flux_fun_check	9
flux_gep	0
flux_gpp	1
flux_match	
flux_match_col	
flux_match_fixed	4
flux_param_exp	4
flux_param_kappamax	
flux_param_lm	5
flux_param_qua	×.
flux_plot	
flux_plot_exp	
flux_plot_flag	8
flux_plot_lin	9
flux_plot_quadratic	9
flux_quality	0
flux_quality_exp	÷.,
flux_quality_kappamax	
flux_quality_lm	5

co2_conc

flux_quality_qua	36
raw_twogases	37
record_liahovden	38
record_short	39
slopes0_temp	39
stupeflux	40
twogases_record	44

Index

co2_conc

CO2 concentration

Description

CO2 concentration with measurements meta data

Usage

co2_conc

Format

A tibble with 1251 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_n_conc Number of data point per flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f_flag_match Data quality flags.

Examples

co2_conc

46

Description

CO2 concentration with measurements meta data and missing data in the middle of the measurements

Usage

co2_conc_mid_missing

Format

A tibble with 1251 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_n_conc Number of data point per flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f_flag_match Data quality flags.

Examples

co2_conc_mid_missing

Description

CO2 concentration with measurements meta data, with missing data.

Usage

co2_conc_missing

Format

A tibble with 668 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_n_conc Number of data point per flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f_flag_match Data quality flags.

Examples

co2_conc_missing

co2_df_missing

Description

Continuous CO2 concentration as measured on the field, with missing data.

Usage

co2_df_missing

Format

A tibble with 1148 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

Examples

co2_df_missing

co2_df_short CO2 concentration

Description

Continuous CO2 concentration as measured on the field

Usage

co2_df_short

Format

A tibble with 1801 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

co2_fluxes

Examples

co2_df_short

co2_fluxes

Description

Calculated CO2 fluxes

Usage

co2_fluxes

Format

A tibble with 6 rows and 11 variables

f_fluxid Unique ID for each flux.

 f_slope_tz Slope of C(t) at t zero.

f_temp_air_ave Air temperature inside the flux chamber in Celsius averaged over the flux measurement.

f_flux CO2 flux in mmol/sqm/hour.

- **PAR** Photosynthetically active radiation inside the chamber in micromol/s/sqm averaged over the flux measurement.
- temp_soil Ground temperature inside the flux chamber in Celsius averaged over the flux measurement.
- turfID Unique ID of the turf in which the measurement took place.

CO2 fluxes

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement started.

- **temp_fahr** Air temperature inside the flux chamber in Fahrenheit averaged over the flux measurement.
- **temp_kelvin** Air temperature inside the flux chamber in Kelvin averaged over the flux measurement.

Examples

co2_fluxes

co2_liahovden

Description

CO2 concentration at Liahovden site, used in example in readme file

Usage

co2_liahovden

Format

A tibble with 89692 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

Examples

co2_liahovden

flux_calc

Calculates ecosystem gas fluxes

Description

Calculates a flux based on the rate of change of gas concentration over time

Usage

```
flux_calc(
    slopes_df,
    slope_col,
    f_datetime = f_datetime,
    temp_air_col,
    chamber_volume,
    atm_pressure,
    plot_area,
    f_fluxid = f_fluxid,
    conc_unit,
    flux_unit,
```

flux_calc

```
cols_keep = c(),
cols_ave = c(),
cols_sum = c(),
cols_med = c(),
tube_volume,
temp_air_unit = "celsius",
f_cut = f_cut,
keep_arg = "keep",
cut = TRUE,
fit_type = c()
```

slopes_df	dataframe of flux slopes
<pre>slope_col</pre>	column containing the slope to calculate the flux
f_datetime	column containing the datetime of each gas concentration measurements in slopes_df. The first one after cutting will be kept as datetime of each flux in the output.
temp_air_col	column containing the air temperature used to calculate fluxes. Will be averaged with NA removed.
chamber_volume	volume of the flux chamber in L, can also be a column in case it is a variable
atm_pressure	atmospheric pressure, can be a constant (numerical) or a variable (column name)
plot_area	area of the plot in m ² , can also be a column in case it is a variable
f_fluxid	column containing the flux IDs
conc_unit	unit in which the concentration of gas was measured ppm or ppb
flux_unit	unit in which the calculated flux will be: mmol outputs fluxes in $mmol * m^{-2} * h^{-1}$; micromol outputs fluxes in $micromol * m^{-2} * h^{-1}$
cols_keep	columns to keep from the input to the output. Those columns need to have unique values for each flux, as distinct is applied.
cols_ave	columns with values that should be averaged for each flux in the output. Note that NA are removed in mean calculation.
cols_sum	columns with values for which is sum is provided for each flux in the output. Note that NA are removed in sum calculation.
cols_med	columns with values for which is median is provided for each flux in the output. Note that NA are removed in median calculation.
tube_volume	volume of the tubing in L, can also be a column in case it is a variable
temp_air_unit	units in which air temperature was measured. Has to be either celsius (default), fahrenheit or kelvin.
f_cut	column containing cutting information
keep_arg	name in f_cut of data to keep
cut	if 'TRUE' (default), the measurements will be cut according to 'f_cut' before calculating fluxes. This has no influence on the flux itself since the slope is provided from flux_fitting, but it will influence the values of the columns in cols_ave.

fit_type (optional) model used in flux_fitting. Will be automatically filled if slopes_df was produced using flux_fitting.

Value

a dataframe containing flux IDs, datetime of measurements' starts, fluxes in $mmol * m^{-2} * h^{-1}$ or $micromol * m^{-2} * h^{-1}$ (f_flux) according to flux_unit, temperature average for each flux in Kelvin (f_temp_ave), the total volume of the setup for each measurement (f_volume_setup), the model used in flux_fitting, any column specified in cols_keep, any column specified in cols_ave with their value averaged over the measurement after cuts and discarding NA.

Examples

```
data(co2_conc)
slopes <- flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
flux_calc(slopes,
f_slope,
datetime,
temp_air,
conc_unit = "ppm",
flux_unit = "mmol",
chamber_volume = 24.5,
tube_volume = 0.075,
atm_pressure = 1,
plot_area = 0.0625)</pre>
```

flux_check_item check the items inside flux_fun_check

Description

check the items inside flux_fun_check

Usage

flux_check_item(arg, fn, msg, narg, df_name = NA)

Arguments

arg	argument to be checked by fn
fn	function to check arg
msg	message to display in case arg is the wrong class
narg	name of arg
df_name	name of arg in case it is a data frame

Author(s)

Adam Klimes

flux_cut

Description

filter cut data before calculating fluxes

Usage

flux_cut(slopes_df, cut_col, keep_arg)

Arguments

slopes_df	dataset containing slopes and cut column
cut_col	column containing cutting information
keep_arg	name in cut_col of data to keep

f1			

Fitting a model to concentration data and estimating the slope

Description

Fits gas concentration over time data with a model (exponential, quadratic or linear) and provides the slope later used to calculate gas fluxes with flux_calc

Usage

```
flux_fitting(
  conc_df,
  f_conc = f_conc,
  f_datetime = f_datetime,
  f_start = f_start,
  f_end = f_end,
  f_fluxid = f_fluxid,
  start_cut = 0,
  end_cut = 0,
  cz_window = 15,
  b_window = 10,
  a_window = 10,
  roll_width = 15,
  t_zero = 0,
  fit_type
)
```

Arguments

conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration data
f_datetime	column with datetime of each concentration measurement Note that if there are duplicated datetime in the same f_fluxid only the first row will be kept
f_start	column with datetime when the measurement started (ymd_hms)
f_end	column with datetime when the measurement ended (ymd_hms)
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window (exponential fit)
b_window	window to estimate b. It is an interval after tz where it is assumed that the model fits the data perfectly (exponential fit)
a_window	window at the end of the flux to estimate a (exponential fit)
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window (exponential fit)
t_zero	time at which the slope should be calculated (for quadratic and exp_tz fits)
fit_type	exp_zhao18, exp_tz, exp_hm, quadratic or linear. exp_zhao18 is using the exponential model $C(t) = C_m + a(t - t_z) + (C_z - C_m) \exp(-b(t - t_z))$ from Zhao et al (2018). expt_tz is a modified version which allows the user to fix t_zero: $C(t) = C_m + a * t + (C_z - C_m) \exp(-b * t) \exp_h$ is using the HM model (Pedersen et al., 2010; Hutchinson and Mosier, 1981) $C(t) = C_m + (C_z - C_m) \exp(-b * t)$ exponential is equal to exp_zhao18, for backwards compatibility

Value

a dataframe with the slope at t zero (f_slope) , a datetime column of t zero (f_start_z) , a factor column indicating the cuts (f_cut) , the time in seconds since the start of the measurement (f_time) , the modeled fit (f_fit) , the modeled slope (f_fit_slope) , the parameters of the fit depending on the model used, and any columns present in the input. The type of fit is added as an attribute for use by the other functions.

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61, 888–902. https://doi.org/10.1111/j.1365-2389.2010.01291.x

Hutchinson, G.L., Mosier, A.R., 1981. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Science Society of America Journal 45, 311–316. https://doi.org/10.2136/sssaj1981.0361599500450

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

flux_fitting_exptz

Examples

```
data(co2_conc)
flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
flux_fitting(co2_conc, conc, datetime, fit_type = "quadratic",
t_zero = 10, end_cut = 30)
```

<pre>flux_fitting_exptz</pre>	Fitting a model to the gas concentration curve and estimating the slope
	over time, using a modified version of the model from Zhao et al (2018)
	that allows the user to fix t_zero.

Description

Fits the exponential expression to the concentration evolution $C(t) = C_m + a * t + (C_z - C_m) \exp(-b * t)$

Usage

```
flux_fitting_exptz(
    conc_df_cut,
    conc_df,
    f_conc,
    f_start,
    f_fluxid,
    start_cut,
    cz_window,
    b_window,
    a_window,
    roll_width,
    t_zero
)
```

conc_df_cut	dataframe of gas concentration over time, cut
conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration
f_start	column with datetime when the measurement started
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window
b_window	window to estimate b. It is an interval after tz where it is assumed that C fits the data perfectly
a_window	window at the end of the flux to estimate a
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window
t_zero	time at which the slope should be calculated (for quadratic fit)

Value

a dataframe with the slope at t zero, modeled concentration over time and exponential expression parameters

References

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

flux_fitting_hm	Fitting a model to the gas concentration curve and estimating the slope
	over time, using the HM model (Pedersen et al., 2010; Hutchinson and
	Mosier, 1981).

Description

Fits the exponential expression to the concentration evolution $C(t) = C_m + (C_z - C_m) \exp(-b \star t)$

Usage

```
flux_fitting_hm(
    conc_df_cut,
    conc_df,
    f_conc,
    f_start,
    f_fluxid,
    start_cut,
    cz_window,
    b_window,
    roll_width,
    t_zero
)
```

Arguments

conc_df_cut	dataframe of gas concentration over time, cut
conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration
f_start	column with datetime when the measurement started
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window
b_window	window to estimate b. It is an interval after tz where it is assumed that C fits the
	data perfectly
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window
t_zero	time at which the slope should be calculated (for quadratic fit)

14

Value

a dataframe with the slope at t zero, modeled concentration over time and exponential expression parameters

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61, 888–902. https://doi.org/10.1111/j.1365-2389.2010.01291.x

Hutchinson, G.L., Mosier, A.R., 1981. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Science Society of America Journal 45, 311–316. https://doi.org/10.2136/sssaj1981.0361599500450

flux_fitting_lm *linear fit to gas concentration over time*

Description

fits a linear model to the gas concentration over time

Usage

flux_fitting_lm(conc_df_cut, conc_df, f_conc, f_fluxid, start_cut)

Arguments

conc_df_cut	dataframe of gas concentration over time, cut
conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)

Value

a df with the modeled gas concentration, slope, intercept, std error, r square and p value of the linear model

```
flux_fitting_quadratic
```

quadratic fit to gas concentration over time

Description

fits a quadratic model to the gas concentration over time

Usage

```
flux_fitting_quadratic(
    conc_df_cut,
    conc_df,
    f_conc,
    f_start,
    f_fluxid,
    start_cut,
    t_zero
)
```

Arguments

conc_df_cut	dataframe of gas concentration over time, cut	
conc_df	dataframe of gas concentration over time	
f_conc	column with gas concentration	
f_start	column with datetime when the measurement started	
f_fluxid	column with ID of each flux	
start_cut	time to discard at the start of the measurements (in seconds)	
t_zero	time at which the slope should be calculated	

Value

a df with the modeled gas concentration, slope, intercept, std error, r square and p value of the quadratic model

flux_fitting_zhao18 Fitting a model to the gas concentration curve and estimating the slope over time, using the exponential model from Zhao et al (2018)

Description

Fits an exponential expression to the concentration evolution

flux_fitting_zhao18

Usage

```
flux_fitting_zhao18(
    conc_df_cut,
    conc_df,
    f_conc,
    f_start,
    f_fluxid,
    start_cut,
    cz_window,
    b_window,
    a_window,
    roll_width
```

)

Arguments

conc_df_cut	dataframe of gas concentration over time, cut
conc_df	dataframe of gas concentration over time
f_conc	column with gas concentration
f_start	column with datetime when the measurement started
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window
b_window	window to estimate b. It is an interval after tz where it is assumed that C fits the data perfectly
a_window	window at the end of the flux to estimate a
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window

Value

a dataframe with the slope at t zero, modeled concentration over time and exponential expression parameters

References

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

flux_fit_type

Description

extracts the type of fit that was applied in flux_fitting or checks that the fit_type provided by the user is compatible with Fluxible

Usage

```
flux_fit_type(
    df,
    fit_type = c(),
    fit_type_list = c("exp_hm", "exp_tz", "exp_zhao18", "exponential", "linear",
        "quadratic")
)
```

Arguments

df	any dataframe
fit_type	type of fit that was applied in flux_fitting. Needs to be filled only if the df was produced outside of the Fluxible workflow.
<pre>fit_type_list</pre>	list of fit types in use with Fluxible.

flux_flag_count Counts quality flags

Description

Provides a table of how many fluxes were attributed which quality flag. This function is incorporated in flux_quality as a message, but can be used alone to extract a dataframe with the flag count.

Usage

```
flux_flag_count(
   slopes_df,
   f_fluxid = f_fluxid,
   f_quality_flag = f_quality_flag,
   f_flags = c("ok", "discard", "zero", "force_discard", "start_error", "no_data",
        "force_ok", "force_zero", "force_lm")
)
```

flux_fun_check

Arguments

slopes_df	dataframe of flux slopes
f_fluxid	column containing fluxes unique ID
f_quality_flag	column containing the quality flags
f_flags	list of flags used in the dataset (if different from default from flux_quality). If not provided, it will list only the flags that are present in the dataset (no showing 0).

Value

a dataframe with the number of fluxes for each quality flags and their proportion to the total

Author(s)

Vincent Belde

Examples

```
data(co2_conc)
slopes <- flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
slopes_flag <- flux_quality(slopes, conc)
flux_flag_count(slopes_flag)</pre>
```

flux_fun_check checking that arguments and columns are in the correct class

Description

checking that arguments and columns are in the correct class

Usage

flux_fun_check(args, fn, msg, name_df = NA)

Arguments

args	list of arguments or dataframe to check	
fn	list of functions used to check (is.numeric, is.character,)	
msg	list of messages to return in case of failed check	
name_df	in case args is a df with selected columns to check origdf is the original df to take the name from for a more obvious error message	

Author(s)

Adam Klimes

flux_gep

Description

to calculate gross ecosystem production (GEP) from net ecosystem (NEE) exchange and ecosystem respiration (ER) as GEP = NEE - ER. Datetime and other variables to keep will be taken from the NEE measurement. Fluxes presents in the dataset that are neither NEE nor ER (soilR, LRC or other) are not lost.

Usage

```
flux_gep(
  fluxes_df,
  type_col,
  f_datetime,
  f_flux = f_flux,
  id_cols,
  nee_arg = "NEE",
  er_arg = "ER",
  cols_keep = "none"
)
```

Arguments

fluxes_df	a dataframe containing NEE and ER
type_col	column containing type of flux (NEE or ER)
f_datetime	column containing start of measurement as datetime
f_flux	column containing flux values
id_cols	columns used to identify each pair of ER and NEE
nee_arg	argument designating NEE fluxes in type column
er_arg	argument designating ER fluxes in type column
cols_keep	columns to keep from fluxes_df. Values from NEE row will be filled in GEP
	row. none (default) keeps only the columns in id_cols, flux, type and datetime
	columns; all keeps all the columns; can also be a vector of column names.

Value

a dataframe with \$GEP = NEE - ER\$ in long format with GEP, NEE, and ER as flux type, datetime, and any column specified in cols_keep. Values of datetime and columns in cols_keep for GEP row are taken from NEE measurements.

Examples

```
data(co2_fluxes)
flux_gep(co2_fluxes, type, f_start, id_cols = "turfID",
cols_keep = c("temp_soil"))
```

flux_gpp

Description

to calculate gross primary production (GPP) from net ecosystem (NEE) exchange and ecosystem respiration (ER) as GPP = NEE - ER. Datetime and other variables to keep will be taken from the NEE measurement. Fluxes presents in the dataset that are neither NEE nor ER (soilR, LRC or other) are not lost.

Usage

```
flux_gpp(
  fluxes_df,
  type_col,
  f_datetime,
  f_flux = f_flux,
  id_cols,
  nee_arg = "NEE",
  er_arg = "ER",
  cols_keep = "none"
)
```

Arguments

fluxes_df	a dataframe containing NEE and ER
type_col	column containing type of flux (NEE or ER)
f_datetime	column containing start of measurement as datetime
f_flux	column containing flux values
id_cols	columns used to identify each pair of ER and NEE
nee_arg	argument designating NEE fluxes in type column
er_arg	argument designating ER fluxes in type column
cols_keep	columns to keep from fluxes_df. Values from NEE row will be filled in GPP
	row. none (default) keeps only the columns in id_cols, flux, type and datetime
	columns; all keeps all the columns; can also be a vector of column names.

Value

a dataframe with \$GPP = NEE - ER\$ in long format with GPP, NEE, and ER as flux type, datetime, and any column specified in cols_keep. Values of datetime and columns in cols_keep for GPP row are taken from NEE measurements.

Examples

```
data(co2_fluxes)
flux_gpp(co2_fluxes, type, f_start, id_cols = "turfID",
cols_keep = c("temp_soil"))
```

flux_match

Description

Matching a dataframe of continuously measured gas concentration data with measurement metadata from another dataframe. Measurements are paired with their metadata based on datetime. Extra variables in both dataframes are kept in the output.

Usage

```
flux_match(
  raw_conc,
  field_record,
  f_datetime,
  start_col,
  f_conc,
  end_col,
  startcrop,
  measurement_length,
  fixed_length = TRUE,
  ratio_threshold = 0.5,
  time_diff = 0
)
```

raw_conc	dataframe of CO2 concentration measured continuously. Has to contain at least a datetime column in ymd_hms format and a gas concentration column as dou- ble.	
field_record	dataframe recording which measurement happened when. Has to contain at least a column containing the start of each measurement, and any other column identifying the measurements.	
f_datetime	datetime column in raw_conc (ymd_hms format)	
start_col	start column in field_record (ymd_hms format)	
f_conc	concentration column in raw_conc	
end_col	end columne in field_record (ymd_hms format)	
startcrop	how many seconds should be discarded at the beginning of the measurement	
<pre>measurement_length</pre>		
	length of the measurement (in seconds) from the start specified in the ${\tt field_record}$	
fixed_length	if TRUE (default), the measurement_length is used to create the end column. If FALSE, end_col has to be provided.	

ratio_threshold	l l
	ratio (number of concentration measurement compared to length of measurement in seconds) below which the data should be flagged as too little
time_diff	time difference (in seconds) between the two datasets. Will be added to the datetime column of the raw_conc dataset. For situations where the time was not synchronized correctly.

Value

a dataframe with concentration measurements, corresponding datetime, flux ID (f_fluxid), measurements start (f_start) and end (f_end), flags in case of no data or low number of data (f_flag_match), the number of datapoints per measurement (f_n_conc), the ratio of number of datapoints over the length of each measurement in seconds (f_ratio), and any variables present in one of the inputs.

Examples

```
data(co2_df_short, record_short)
flux_match(co2_df_short, record_short, datetime, start, conc, startcrop = 10,
measurement_length = 180)
```

flux_match_col Using an already existing end column to slice measurements

Description

Provides the f_end column for flux_match

Usage

```
flux_match_col(field_record, start_col, end_col, name_field_record)
```

field_record	dataframe recording which measurement happened when. Has to contain at least a column containing the start of each measurement, and any other column identifying the measurements.	
start_col	start column in field_record (ymd_hms format)	
end_col	end columne in field_record (ymd_hms format)	
name_field_record		
	name of the df (for error message)	

flux_match_fixed

Description

Provides the f_end column for flux_match

Usage

```
flux_match_fixed(field_record, start_col, measurement_length)
```

Arguments

field_record	dataframe recording which measurement happened when. Has to contain at	
	least a column containing the start of each measurement, and any other column	
	identifying the measurements.	
start_col	start column in field_record (ymd_hms format)	
measurement_length		
	length of the measurement (in seconds) from the start specified in the field_record	

flux_param_exp prepares text to print for flux_pl	ot function
---	-------------

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_exp(slopes_df, f_conc)
```

slopes_df	the slopes_df that is being provided to flux_plot
f_conc	column with gas concentration

flux_param_kappamax prepares text to print for flux_plot function

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_kappamax(slopes_df, f_conc)
```

Arguments

slopes_df	the slopes_df that is being provided to flux_plot
f_conc	column with gas concentration

flux_param_lm prepares text to print in flux_plot

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_lm(slopes_df, f_conc)
```

slopes_df	the slopes_df that is being provided to flux_plot
f_conc	column with gas concentration

flux_param_qua

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

flux_param_qua(slopes_df, f_conc)

Arguments

slopes_df	the slopes_df that is being provided to flux_plot
f_conc	column with gas concentration

flux_plot

Plotting fluxes for visual evaluation

Description

Plots the fluxes, fit and slope in facets with color code indicating quality flags This function takes time to run and is optional in the workflow, but it is still highly recommended to use it to visually check the measurements. Note that 'flux_plot' is specific to the fluxible package and will work best with datasets produced following a fluxible workflow.

Usage

```
flux_plot(
    slopes_df,
    f_conc = f_conc,
    f_datetime = f_datetime,
    color_discard = "#D55E00",
    color_cut = "#D55E00",
    color_ok = "#009E73",
    color_zero = "#CC79A7",
    scale_x_datetime_args = list(date_breaks = "1 min", minor_breaks = "10 sec",
        date_labels = "%e/%m \n %H:%M"),
    f_ylim_upper = 800,
    f_ylim_lower = 400,
    f_plotname = "",
    facet_wrap_args = list(ncol = 4, nrow = 3, scales = "free"),
    y_text_position = 500,
```

```
print_plot = "FALSE",
output = "print_only",
ggsave_args = list()
)
```

Arguments

slopes_df	dataset containing slopes, with flags produced by flux_quality	
f_conc	column with gas concentration	
f_datetime	column with datetime of each data point	
color_discard	color for fits with a discard quality flag	
color_cut	color for the part of the flux that is cut	
color_ok	color for fits with an ok quality flag	
color_zero	color for fits with a zero quality flag	
<pre>scale_x_datetin</pre>	ne_args	
	list of arguments for scale_x_datetime	
f_ylim_upper	y axis upper limit	
f_ylim_lower	y axis lower limit	
f_plotname	filename for the extracted pdf file; if empty, the name of slopes_df will be used	
facet_wrap_args	5	
	list of arguments for facet_wrap_paginate	
y_text_position		
	position of the text box	
print_plot	logical, if TRUE it prints the plot as a ggplot object but will take time depending on the size of the dataset	
output	pdfpages, the plots are saved as A4 landscape pdf pages; ggsave, the plots can be saved with the ggsave function; print_only (default) prints the plot without creating a file (independently from print_plot being TRUE or FALSE)	
ggsave_args	list of arguments for ggsave (in case output = "ggsave")	

Value

plots of fluxes, with raw concentration data points, fit, slope, and color code indicating quality flags and cuts. The plots are organized in facets according to flux ID, and a text box display the quality flag and diagnostics of each measurement. The plots are returned as a ggplot object if print_plot = TRUE; if print_plot = FALSE it will not return anything but will produce a file according to the output argument.

Examples

```
data(co2_conc)
slopes <- flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
slopes_flag <- flux_quality(slopes, conc)
flux_plot(slopes_flag, conc, datetime)</pre>
```

flux_plot_exp

Description

plots the fluxes that were fitted with an exponential model

Usage

```
flux_plot_exp(slopes_df, f_conc, f_datetime, y_text_position)
```

Arguments

slopes_df	dataset containing slopes
f_conc	column with gas concentration
f_datetime	column with datetime of each data point
y_text_position	
	position of the text box

flux_plot_flag	creates the flag column to be used by flux_pl	ot

Description

creates a column with quality flags (from flux_quality) for the part of the rows to be kept, and cut flag for rows to be discarded

Usage

```
flux_plot_flag(slopes_df, param_df)
```

slopes_df	as provided in flux_plot
param_df	as provided by flux_param

flux_plot_lin

Description

plots the fluxes that were fitted with a linear model

Usage

flux_plot_lin(slopes_df, f_conc, f_datetime, y_text_position)

Arguments

slopes_df	dataset containing slopes
f_conc	column with gas concentration
f_datetime	column with datetime of each data point
y_text_position	
	position of the text box

flux_plot_quadratic plotting fluxes with a quadratic fit

Description

specific part of flux_plot for quadratic fit

Usage

```
flux_plot_quadratic(slopes_df, f_conc, f_datetime, y_text_position)
```

slopes_df	dataset containing slopes
f_conc	column with gas concentration
f_datetime	column with datetime of each data point
y_text_position	
	position of the text box

flux_quality

Description

Indicates if the slopes provided by flux_fitting should be discarded or replaced by 0 according to quality thresholds set by user

Usage

```
flux_quality(
  slopes_df,
  f\_conc = f\_conc,
  f_fluxid = f_fluxid,
  f_slope = f_slope,
  f_time = f_time,
  f_start = f_start,
  f_end = f_end,
  f_fit = f_fit,
  f_cut = f_cut,
  f_pvalue = f_pvalue,
  f_rsquared = f_rsquared,
  f_slope_lm = f_slope_lm,
  f_fit_lm = f_fit_lm,
  f_b = f_b,
  force_discard = c(),
  force_ok = c(),
  force_zero = c(),
  force_lm = c(),
  force_exp = c(),
  ratio_threshold = 0,
  gfactor_threshold = 10,
  fit_type = c(),
  ambient_conc = 421,
  error = 100,
  pvalue_threshold = 0.3,
  rsquared_threshold = 0.7,
  rmse_threshold = 25,
  cor_threshold = 0.5,
  b_threshold = 1,
  cut_arg = "cut",
  instr_error = 5,
  kappamax = FALSE
```

)

Arguments

slopes_df dataset containing slopes

f_conc	column containing the measured gas concentration (exponential fits)
f_fluxid	column containing unique IDs for each flux
f_slope	column containing the slope of each flux (as calculated by the flux_fitting func- tion)
f_time	column containing the time of each measurement in seconds (exponential fits)
f_start	column with datetime of the start of the measurement (after cuts)
f_end	column with datetime of the end of the measurement (after cuts)
f_fit	column containing the modeled data (exponential fits)
f_cut	column containing the cutting information
f_pvalue	column containing the p-value of each flux (linear and quadratic fits)
f_rsquared	column containing the r squared of each flux (linear and quadratic fits)
f_slope_lm	column containing the linear slope of each flux (as calculated by the flux_fitting function)
f_fit_lm	column with the fit of the linear model. (as calculated by the flux_fitting function)
f_b	column containing the b parameter of the exponential expression (exponential fits)
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag
force_zero	vector of fluxIDs that should be replaced by zero by the user's decision
force_lm	vector of fluxIDs for which the linear slope should be used by the user's decision
force_exp	vector of fluxIDs for which the exponential slope should be used by the user's decision (kappamax method)
ratio_threshold	
	ratio of gas concentration data points over length of measurement (in seconds) below which the measurement will be considered as not having enough data points to be considered for calculations
gfactor_thresh	
	threshold for the g-factor. Defines a window with its opposite outside which the flux will be flagged discard (exponential quadratic fits).
fit_type	model fitted to the data, linear, quadratic or exponential. Will be automatically filled if slopes_df was produced using flux_fitting
ambient_conc	ambient gas concentration in ppm at the site of measurement (used to detect measurement that started with a polluted setup)
error	error of the setup, defines a window outside of which the starting values indicate a polluted setup
pvalue_thresho	
	threshold of p-value below which the change of gas concentration over time is considered not significant (linear and quadratic fits)

rsquared_thresh	old
	threshold of r squared value below which the linear model is considered an unsatisfactory fit (linear and quadratic fits)
rmse_threshold	threshold for the RMSE of each flux above which the fit is considered unsatis- factory (exponential fits)
cor_threshold	threshold for the correlation coefficient of gas concentration with time below which the correlation is considered not significant (exponential fits)
b_threshold	threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough (exponential fits)
cut_arg	argument defining that the data point should be cut out
instr_error	error of the instrument, in the same unit as the gas concentration
kappamax	logical. If TRUE the kappamax method will be applied.

Details

the kappamax method (Hüppi et al., 2018) selects the linear slope if |b| > kappamax, with $kappamax = |f_slope_lm/instr_error|$. The original kappamax method was applied to the HMR model (Pedersen et al., 2010; Hutchinson and Mosier, 1981), but here it can be applied to any exponential fit.

Value

a dataframe with added columns of quality flags (f_quality_flag), the slope corrected according to the quality flags (f_slope_corr), and any columns present in the input. It will also print a summary of the quality flags. This summary can also be exported as a dataframe using flux_flag_count

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61, 888–902. https://doi.org/10.1111/j.1365-2389.2010.01291.x

Hüppi, R., Felber, R., Krauss, M., Six, J., Leifeld, J., Fuß, R., 2018. Restricting the nonlinearity parameter in soil greenhouse gas flux calculation for more reliable flux estimates. PLOS ONE 13, e0200876. https://doi.org/10.1371/journal.pone.0200876

Hutchinson, G.L., Mosier, A.R., 1981. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Science Society of America Journal 45, 311–316.

Examples

```
data(co2_conc)
slopes <- flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18")
flux_quality(slopes, conc)</pre>
```

flux_quality_exp quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

Usage

```
flux_quality_exp(
  slopes_df,
  f_conc,
  f_fluxid,
  f_slope,
  f_time,
  f_fit,
  f_slope_lm,
  f_b,
  force_discard,
  force_ok,
  force_zero,
  force_lm,
  gfactor_threshold,
  rmse_threshold,
  cor_threshold,
  b_threshold,
  name_df
)
```

slopes_df	dataset containing slopes, fluxID, and parameters of the exponential expression
f_conc	column with gas concentration
f_fluxid	column of ID for each measurement
f_slope	column containing the slope of each flux (as calculated by the flux_fitting func- tion)
f_time	column containing the time of each measurement in seconds
f_fit	column containing the modeled data
f_slope_lm	column containing the linear slope of each flux (as calculated by the flux_fitting function)
f_b	column containing the b parameter of the exponential expression
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag

force_zero	vector of fluxIDs that should be replaced by zero by the user's decision
force_lm	vector of fluxIDs for which the linear slope should be used by the user's decision
gfactor_threshold	
	threshold for the g-factor. Defines a window with its opposite outside which the flux will be flagged discard.
rmse_threshold	threshold for the RMSE of each flux above which the fit is considered unsatisfactory
cor_threshold	threshold for the correlation coefficient of gas concentration with time below which the correlation is considered non significant
b_threshold	threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough.
name_df	name of slopes_df

Value

same dataframe with added flag and corrected slopes columns

flux_quality_kappamax selecting linear slope with kappamax method

Description

selecting linear slope with kappamax method

Usage

```
flux_quality_kappamax(
    slopes_df,
    f_slope,
    f_fit,
    f_fluxid,
    f_slope_lm,
    f_fit_lm,
    f_b,
    force_exp,
    fit_type,
    instr_error,
    name_df
)
```

slopes_df	dataset containing slopes
f_slope	column containing the slope of each flux (as calculated by the flux_fitting function)

f_fit	column containing the modeled data (exponential fits)
f_fluxid	column of ID for each measurement
f_slope_lm	column containing the linear slope of each flux
f_fit_lm	column with the fit of the linear model.
f_b	column containing the b parameter of the exponential expression
force_exp	vector of fluxIDs for which the exponential slope should be used by the user's decision (kappamax method)
fit_type	model fitted to the data, linear, quadratic or exponential. Will be automatically filled if slopes_df was produced using flux_fitting
instr_error	error of the instrument, in the same unit as the gas concentration
name_df	name of slopes_df

flux_quality_lm quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

Usage

```
flux_quality_lm(
    slopes_df,
    f_fluxid,
    f_slope,
    f_pvalue,
    f_rsquared,
    force_discard,
    force_zero,
    pvalue_threshold,
    rsquared_threshold,
    name_df
)
```

.

slopes_df	dataset containing slopes, fluxID, p.value and r.squared
f_fluxid	column of ID for each measurement
f_slope	column containing the slope of each flux (as calculated by the flux_fitting function)
f_pvalue	column containing the p-value of each flux

f_rsquared	column containing the r squared to be used for the quality assessment
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag
force_zero	vector of fluxIDs that should be replaced by zero by the user's decision
pvalue_threshold	
	threshold of p-value below which the change of gas concentration over time is considered not significant (user decided)
rsquared_threshold	
	threshold of r squared value below which the linear model is considered an un- satisfactory fit
name_df	name of slopes_df (used for error message)

Value

same dataframe with added flag and corrected slopes columns

flux_quality_qua quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

Usage

```
flux_quality_qua(
  slopes_df,
 f_fluxid,
 f_slope,
  f_pvalue,
  f_rsquared,
  f_slope_lm,
  force_discard,
  force_ok,
  force_zero,
  force_lm,
  gfactor_threshold,
 pvalue_threshold,
 rsquared_threshold,
  name_df
)
```

raw_twogases

Arguments

slopes_df	dataset containing slopes, fluxID, p.value and r.squared
f_fluxid	column of ID for each measurement
f_slope	column containing the slope of each flux (as calculated by the flux_fitting func- tion)
f_pvalue	column containing the p-value of each flux
f_rsquared	column containing the r squared to be used for the quality assessment
f_slope_lm	column containing the linear slope of each flux (as calculated by the flux_fitting function)
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag
force_zero	vector of fluxIDs that should be replaced by zero by the user's decision
force_lm	vector of fluxIDs for which the linear slope should be used by the user's decision
gfactor_thresh	bld
	threshold for the g-factor. Defines a window with its opposite outside which the flux will be flagged discard.
pvalue_threshold	
	threshold of p-value below which the change of gas concentration over time is considered not significant (user decided)
rsquared_threshold	
	threshold of r squared value below which the linear model is considered an un- satisfactory fit
name_df	name of slopes_df (used for error message)

Value

same dataframe with added flag and corrected slopes columns

raw_twogases CO2 and CH4 concentration

Description

CO2 and CH4 measured simultaneously

Usage

raw_twogases

Format

A tibble with 21681 rows and 4 variables

co2_conc CO2 concentration in ppm

ch4_conc CH4 concentration in ppb

datetime Datetime on the datapoint

temp_air Air temperature inside the chamber in Celsius

Examples

raw_twogases

record_liahovden Measurements meta data at Liahovden

Description

Measurements meta data as recorded on the field at site Liahovden

Usage

record_liahovden

Format

A tibble with 138 rows and 3 variables

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

round Round of measurement.

start Datetime at which the measurement was started.

Examples

record_liahovden

38

record_short

Description

Measurements meta data as recorded on the field

Usage

record_short

Format

A tibble with 6 rows and 3 variables

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

Examples

record_short

slopes0_temp Slopes for each flux

Description

Slopes of C(t) for each flux with air temperature in various units.

Usage

slopes0_temp

Format

A tibble with 1251 rows and 29 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

40

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_ratio Ratio of number of datapoints over length of measurement in seconds.

f_flag_match Flags from flux_match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 f_Cz Cz parameter of the C(t) function.

f_Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

f_a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f_tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

f_cor_coef Correlation coeffecient of concentration over time.

f_RMSE RMSE of the fit.

f_quality_flag Quality flags according to flux_quality.

f_slope_corr Slope as advised by quality flags.

- **temp_fahr** Air temperature inside the flux chamber in Fahrenheit averaged over the flux measurement.
- **temp_kelvin** Air temperature inside the flux chamber in Kelvin averaged over the flux measurement.

Examples

slopes0_temp

stupeflux

From raw gas concentration over time to clean fluxes

Description

Wrapper function for the Fluxible workflow. We recommand using the step-by-step workflow for more control over the process.

stupeflux

Usage

)

stupeflux(raw_conc, field_record, f_datetime, start_col, end_col, f_conc, startcrop, measurement_length, fit_type, temp_air_col, chamber_volume, atm_pressure, plot_area, conc_unit, flux_unit, fixed_length = TRUE, $cols_keep = c(),$ $cols_ave = c(),$ $cols_sum = c(),$ $cols_med = c(),$ tube_volume, ratio_threshold = 0.5, time_diff = 0, start_cut = 0, end_cut = 0, $cz_window = 15$, $b_window = 10$, $a_window = 10$, $roll_width = 15$, $t_zero = 0$, force_discard = c(), force_ok = c(), force_zero = c(), ambient_conc = 421, error = 100, pvalue_threshold = 0.3, rsquared_threshold = 0.7, rmse_threshold = 25, $cor_threshold = 0.5,$ $b_{threshold} = 1$, temp_air_unit = "celsius", cut = TRUE, slope_correction = TRUE

Arguments

raw_conc	dataframe of CO2 concentration measured continuously. Has to contain at least a datetime column in ymd_hms format and a gas concentration column as dou- ble.
field_record	dataframe recording which measurement happened when. Has to contain at least a column containing the start of each measurement, and any other column identifying the measurements.
f_datetime	datetime column in raw_conc (dmy_hms format)
start_col	start column in field_record (dmy_hms format)
end_col	end columne in field_record (ymd_hms format)
f_conc	concentration column in raw_conc
startcrop	how many seconds should be discarded at the beginning of the measurement
<pre>measurement_ler</pre>	
	length of the measurement (in seconds) from the start specified in the field_record
fit_type	exp_zhao18, exp_tz, exp_hm, quadratic or linear. exp_zhao18 is using the exponential model $C(t) = C_m + a(t - t_z) + (C_z - C_m) \exp(-b(t - t_z))$ from Zhao et al (2018). expt_tz is a modified version which allows the user to fix t_zero: $C(t) = C_m + a * t + (C_z - C_m) \exp(-b * t) \exp_h$ is using the HM model (Pedersen et al., 2010; Hutchinson and Mosier, 1981) $C(t) = C_m + (C_z - C_m) \exp(-b * t)$
temp_air_col	column containing the air temperature used to calculate fluxes. Will be averaged with NA removed.
chamber_volume	volume of the flux chamber in L, can also be a column in case it is a variable
atm_pressure	atmospheric pressure, can be a constant (numerical) or a variable (column name)
plot_area	area of the plot in m ² , can also be a column in case it is a variable
conc_unit	unit in which the concentration of gas was measured ppm or ppb
flux_unit	unit in which the calculated flux will be mmol outputs fluxes in $mmol * m^{-2} * h^{-1}$; micromol outputs fluxes in $micromol * m^{-2} * h^{-1}$
fixed_length	if TRUE (default), the measurement_length is used to create the end column. If FALSE, end_col has to be provided.
cols_keep	columns to keep from the input to the output. Those columns need to have unique values for each flux, as distinct() is applied.
cols_ave	columns with values that should be averaged for each flux in the output. Note that NA are removed in mean calculation.
cols_sum	columns with values for which is sum is provided for each flux in the output. Note that NA are removed in sum calculation.
cols_med	columns with values for which is median is provided for each flux in the output. Note that NA are removed in median calculation.
tube_volume	volume of the tubing in L, can also be a column in case it is a variable
ratio_threshold	
	ratio of gas concentration data points over length of measurement (in seconds) below which the measurement will be considered as not having enough data points to be considered for calculations

42

stupeflux

time_diff	time difference (in seconds) between the two datasets. Will be added to the datetime column of the raw_conc dataset. For situations where the time was not synchronized correctly.
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)
cz_window	window used to calculate Cz, at the beginning of cut window (exponential fit)
b_window	window to estimate b. It is an interval after tz where it is assumed that the model fits the data perfectly (exponential fit)
a_window	window at the end of the flux to estimate a (exponential fit)
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window (exponential fit)
t_zero	time at which the slope should be calculated (for quadratic and exp_tz fits)
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag
force_zero	vector of fluxIDs that should be replaced by zero by the user's decision
ambient_conc	ambient gas concentration in ppm at the site of measurement (used to detect measurement that started with a polluted setup)
error	error of the setup, defines a window outside of which the starting values indicate a polluted setup
pvalue_thresho	
	threshold of p-value below which the change of gas concentration over time is considered not significant (linear and quadratic fit)
rsquared_thres	hold threshold of r squared value below which the linear model is considered an un-
	satisfactory fit (linear and quadratic fit)
rmse_threshold	threshold for the RMSE of each flux above which the fit is considered unsatis- factory (exponential fit)
cor_threshold	threshold for the correlation coefficient of gas concentration with time below which the correlation is considered not significant (exponential fit)
b_threshold	threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough (exponential fit)
temp_air_unit	units in which air temperature was measured. Has to be either celsius (default), fahrenheit or kelvin.
cut	if 'TRUE' (default), the measurements will be cut according to 'f_cut' before calculating fluxes. This has no influence on the flux itself since the slope is provided from flux_fitting, but it will influence the values of the columns in cols_ave.
slope_correction	
	logical. If TRUE, the flux will be calculated with the slope corrected according to the recommandations of the quality flags.

a dataframe containing flux IDs, datetime of measurements' starts, fluxes in $mmol * m^{-2} * h^{-1}$ or $micromol * m^{-2} * h^{-1}$ (f_flux) according to flux_unit, temperature average for each flux in Kelvin (f_temp_ave), the total volume of the setup for each measurement (f_volume_setup), the model used in flux_fitting, any column specified in cols_keep, any column specified in cols_ave with their value averaged over the measurement after cuts and discarding NA.

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61, 888–902. https://doi.org/10.1111/j.1365-2389.2010.01291.x

Hutchinson, G.L., Mosier, A.R., 1981. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Science Society of America Journal 45, 311–316. https://doi.org/10.2136/sssaj1981.0361599500450

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

Examples

```
data(co2_df_short)
data(record_short)
stupeflux(
raw_conc = co2_df_short,
field_record = record_short,
f_datetime = datetime,
start_col = start,
f_conc = conc,
startcrop = 10
measurement_length = 180,
fit_type = "exp_zhao18",
temp_air_col = temp_air,
conc_unit = "ppm",
flux_unit = "mmol",
chamber_volume = 24.5,
tube_volume = 0.075,
atm_pressure = 1,
plot_area = 0.0625
)
```

twogases_record Two gases field record

Description

Two gases field record

44

Value

twogases_record

Usage

twogases_record

Format

A tibble with 12 rows and 1 variable

start Start datetime of each flux measurement

Examples

twogases_record

Index

* datasets co2_conc, 3 co2_conc_mid_missing, 4 co2_conc_missing, 5 co2_df_missing, 6 co2_df_short, 6 co2_fluxes, 7 co2_liahovden, 8 raw_twogases, 37 record_liahovden, 38 record_short, 39 slopes0_temp, 39 twogases_record, 44 co2_conc, 3 co2_conc_mid_missing, 4 co2_conc_missing, 5 co2_df_missing, 6 co2_df_short, 6 co2_fluxes, 7 co2_liahovden, 8 distinct, 9 facet_wrap_paginate, 27 flux_calc, 8, 11 flux_check_item, 10 flux_cut, 11 flux_fit_type, 18 flux_fitting, 9, 10, 11, 30, 31, 33-35, 37, 43, 44 flux_fitting_exptz, 13 flux_fitting_hm, 14 flux_fitting_lm, 15 flux_fitting_quadratic, 16 flux_fitting_zhao18, 16 flux_flag_count, 18, 32 flux_fun_check, 19 flux_gep, 20 flux_gpp, 21

flux_match, 22 flux_match_col, 23 flux_match_fixed, 24 flux_param_exp, 24 flux_param_kappamax, 25 flux_param_lm, 25 flux_param_qua, 26 flux_plot, 26 flux_plot_exp, 28 flux_plot_flag, 28 flux_plot_lin, 29 flux_plot_quadratic, 29 flux_quality, 18, 27, 30 flux_quality_exp, 33 flux_quality_kappamax, 34 flux_quality_lm, 35 flux_quality_qua, 36 fluxible, 26

ggsave, 27

raw_twogases, 37
record_liahovden, 38
record_short, 39

scale_x_datetime, 27
slopes0_temp, 39
stupeflux, 40

twogases_record, 44