
Pre-processing and plotting data

Mike Blazanin

Contents

Where are we so far? 1

Pre-processing 2

Pre-processing: excluding data . 2

Pre-processing: converting dates & times into numeric . 2

Pre-processing: subtracting blanks . 3

Plotting your data 5

What’s next? 7

Where are we so far?

1. Introduction: vignette("gc01_gcplyr")
2. Importing and reshaping data: vignette("gc02_import_reshape")
3. Incorporating experimental designs: vignette("gc03_incorporate_designs")
4. Pre-processing and plotting your data: vignette("gc04_preprocess_plot")
5. Processing your data: vignette("gc05_process")
6. Analyzing your data: vignette("gc06_analyze")
7. Dealing with noise: vignette("gc07_noise")
8. Best practices and other tips: vignette("gc08_conclusion")
9. Working with multiple plates: vignette("gc09_multiple_plates")

10. Using make_design to generate experimental designs: vignette("gc10_using_make_design")

So far, we’ve imported and transformed our measures, then combined them with our design information.
Now we’re going to do some final pre-processing steps and show how to easily plot our data with ggplot.

If you haven’t already, load the necessary packages.

library(gcplyr)

library(dplyr)
library(ggplot2)
library(lubridate)
#>
#> Attaching package: 'lubridate'
#> The following objects are masked from 'package:base':

1

#>
#> date, intersect, setdiff, union

This code was previously explained
Here we're re-running it so it's available for us to work with
example_tidydata <- trans_wide_to_tidy(example_widedata_noiseless,

id_cols = "Time")
ex_dat_mrg <- merge_dfs(example_tidydata, example_design_tidy)
#> Joining with `by = join_by(Well)`

Pre-processing

Now that we have our data and designs merged, we’re almost ready to start processing and analyzing
them. However, first we need to carry out any necessary pre-processing steps, like excluding wells that were
contaminated or empty, converting time formats to numeric, and subtracting blanks.

Pre-processing: excluding data

In some cases, we want to remove some of the wells from our growth curves data before we carry on with
downstream analyses. For instance, they may have been left empty, contained negative controls, or were
contaminated. We can use dplyr’s filter function to remove those wells that meet criteria we want to
exclude.

For instance, let’s imagine that we realized that we put the wrong media into Well B1, and that strain 13
was contaminated. To exclude them from our analyses, we can simply:

example_data_and_designs_filtered <-
dplyr::filter(ex_dat_mrg,

Well != "B1", Bacteria_strain != "Strain 13")
head(example_data_and_designs_filtered)
#> Time Well Measurements Bacteria_strain Phage
#> 1 0 A1 0.002 Strain 1 No Phage
#> 2 0 D1 0.002 Strain 19 No Phage
#> 3 0 E1 0.002 Strain 25 No Phage
#> 4 0 F1 0.002 Strain 31 No Phage
#> 5 0 G1 0.002 Strain 37 No Phage
#> 6 0 H1 0.002 Strain 43 No Phage

Pre-processing: converting dates & times into numeric

Growth curve data produced by a plate reader often encodes the timestamp information as a string
(e.g. “2:45:11” for 2 hours, 45 minutes, and 11 seconds), while downstream analyses need timestamp
information as a numeric (e.g. number of seconds elapsed). Luckily, others have written great packages that
make it easy to convert from common date-time text formats into plain numeric formats. Here, we’ll see
how to use lubridate to do so:

First we have to create a data frame with time saved as it might be by a plate reader.

2

ex_dat_mrg <- make_example(vignette = 4, example = 1)

head(ex_dat_mrg)
#> Time Well Measurements Bacteria_strain Phage
#> 1 0:00:00 A1 0.002 Strain 1 No Phage
#> 2 0:00:00 B1 0.002 Strain 7 No Phage
#> 3 0:00:00 C1 0.002 Strain 13 No Phage
#> 4 0:00:00 D1 0.002 Strain 19 No Phage
#> 5 0:00:00 E1 0.002 Strain 25 No Phage
#> 6 0:00:00 F1 0.002 Strain 31 No Phage

We can see that our Time aren’t written in an easy numeric. Instead, they’re in a format that’s easy for a
human to understand (but unfortunately not very usable for analysis).

Let’s use lubridate to convert this text into a usable format. lubridate has a whole family of functions
that can parse text with hour, minute, and/or second components. You can use hms if your text contains
hour, minute, and second information, hm if it only contains hour and minute information, and ms if it only
contains minute and second information.

Once hms has parsed the text, we’ll use time_length to convert the output of hms into a pure numeric
value. By default, time_length returns in units of seconds, but you can change that by changing the unit
argument to time_length.

We have previously loaded lubridate, but if you haven't already then
make sure to add the line:
library(lubridate)

ex_dat_mrg$Time <- time_length(hms(ex_dat_mrg$Time), unit = "hour")

head(ex_dat_mrg)
#> Time Well Measurements Bacteria_strain Phage
#> 1 0 A1 0.002 Strain 1 No Phage
#> 2 0 B1 0.002 Strain 7 No Phage
#> 3 0 C1 0.002 Strain 13 No Phage
#> 4 0 D1 0.002 Strain 19 No Phage
#> 5 0 E1 0.002 Strain 25 No Phage
#> 6 0 F1 0.002 Strain 31 No Phage

And now we can see that we’ve gotten nice numeric Time values!

Pre-processing: subtracting blanks

Many growth curves are collected by measuring the absorbance or optical density of a culture. However,
with such data an absorbance value of 0 is not equal to a cell density of 0, since components of the media
often absorb some light. It’s best practice to have at least one ‘blank’ well in your plate containing only
media and no cells, so that you can subtract out this difference from your data so that the values you are
working with are scaled correctly.

Here we have some data including a blank well. The first thing you should always do is plot your blank wells
data to ensure they look correct:

ex_dat_mrg <- make_example(vignette = 4, example = 2)
ggplot(data = ex_dat_mrg,

3

aes(x = Time, y = Measurements, color = Well_type)) +
geom_point() +
ylim(0, NA)

0.0

0.5

1.0

0 25000 50000 75000
Time

M
ea

su
re

m
en

ts

Well_type

Blank

Non−blank

Once you’ve confirmed your blank wells weren’t contaminated, one simple way to subtract blanks is to calcu-
late the average value of your blank well(s) across all timepoints and subtract that from your Measurements:

mean_blank <- mean(dplyr::filter(ex_dat_mrg, Well_type == "Blank")$Measurements)
mean_blank
#> [1] 0.2000928
ex_dat_mrg$Meas_norm <- ex_dat_mrg$Measurements - mean_blank

Note that if you have different blanks for different wells (e.g. you have multiple medias), you’ll have to cal-
culate different blank values for each [vignette("gc06_analyze") has a primer on the summarize function
used here, if you’d like to learn more]:

ex_dat_mrg <- make_example(vignette = 4, example = 3)
ggplot(data = ex_dat_mrg,

aes(x = Time, y = Measurements, color = Well_type)) +
geom_point() +
facet_grid(~Media) +
ylim(0, NA)

4

Media_1 Media_2 Media_3 Media_4

0 250005000075000 0 250005000075000 0 250005000075000 0 250005000075000

0.0

0.5

1.0

1.5

Time

M
ea

su
re

m
en

ts

Well_type

Blank

Non−blank

blank_data <- dplyr::filter(ex_dat_mrg, Well_type == "Blank")
blank_data <- group_by(blank_data, Media)
ex_dat_sum <- summarize(blank_data,

mean_blank = mean(Measurements))
head(ex_dat_sum)
#> # A tibble: 4 x 2
#> Media mean_blank
#> <chr> <dbl>
#> 1 Media_1 0.200
#> 2 Media_2 0.250
#> 3 Media_3 0.0997
#> 4 Media_4 0.150
ex_dat_mrg <- merge_dfs(ex_dat_mrg, ex_dat_sum)
#> Joining with `by = join_by(Media)`
ex_dat_mrg$Meas_norm <- ex_dat_mrg$Measurements - ex_dat_mrg$mean_blank

Plotting your data

Once your data has been merged and times have been converted to numeric, we can easily plot our data using
the ggplot2 package. That’s because ggplot2 was specifically built on the assumption that data would be
tidy-shaped, which ours is! We won’t go into depth on how to use ggplot here, but there are three main
commands to the plot below:

• ggplot - the ggplot function is where you specify the data.frame you would like to use and the

5

aesthetics of the plot (the x and y axes you would like)
• geom_line - tells ggplot how we would like to plot the data, in this case with a line (another common

geom for time-series data is geom_point)
• facet_wrap - tells ggplot to plot each Well in a separate facet

We’ll be using this format to plot our data throughout the remainder of this vignette

We have previously loaded ggplot2, but if you haven't already then
make sure to add the line:
library(ggplot2)

First, we'll reorder the Well levels so they plot in the correct order
ex_dat_mrg$Well <-

factor(ex_dat_mrg$Well,
levels = paste0(rep(LETTERS[1:8], each = 12), 1:12))

ggplot(data = ex_dat_mrg, aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well, nrow = 8, ncol = 12)

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

025000500007500002500050000750000250005000075000025000500007500002500050000750000250005000075000025000500007500002500050000750000250005000075000025000500007500002500050000750000250005000075000

0.51.01.5

0.51.01.5

0.51.01.5

0.51.01.5

0.51.01.5

0.51.01.5

0.51.01.5

0.51.01.5

Time

M
ea

su
re

m
en

ts

Generally speaking, from here on you should plot your data frequently, and in every way you can
think of! After every processing and analysis step, visualize both the input data and output
data to understand what the processing and analysis steps are doing and whether they are the right choices
for your particular data (this vignette will be doing that too!)

6

What’s next?

Now that you’ve pre-processed and visualized your data, it’s time to process (in most cases) and analyze
(pretty much always) it!

1. Introduction: vignette("gc01_gcplyr")
2. Importing and reshaping data: vignette("gc02_import_reshape")
3. Incorporating experimental designs: vignette("gc03_incorporate_designs")
4. Pre-processing and plotting your data: vignette("gc04_preprocess_plot")
5. Processing your data: vignette("gc05_process")
6. Analyzing your data: vignette("gc06_analyze")
7. Dealing with noise: vignette("gc07_noise")
8. Best practices and other tips: vignette("gc08_conclusion")
9. Working with multiple plates: vignette("gc09_multiple_plates")

10. Using make_design to generate experimental designs: vignette("gc10_using_make_design")

7

	Where are we so far?
	Pre-processing
	Pre-processing: excluding data
	Pre-processing: converting dates & times into numeric
	Pre-processing: subtracting blanks

	Plotting your data
	What's next?

