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1 Introduction

mrbsizeR is an R package based on the MRBSiZer method by Holmstrém et al. [2011]. The name is an
abbreviation for MultiResolution Bayesian SIgnificant ZEro crossings of derivatives in R and the method
extends the portfolio of Bayesian SiZer methods for images and spatial fields, originally introduced by Erésto
and Holmstrom [2005].

In the analysis of spatial fields or images (i.e. an object), scale space methods are often useful. When observed
on different scales, distinct features of the object can be detected. Imagine the concept of a branch of a tree
(Lindeberg [1994]): This concept makes sense on a scale from a few centimeters to a few meters. On a much
smaller scale, one could describe the molecules that form the branch and on a much larger scale, it would be
possible to describe the forest the tree grows in. The goal in scale space analysis is therefore to represent an
object on different scales, and this is done by dividing it into a family of smooths. The smooths are made on
different smoothing levels and each smooth provides information relevant at a particular scale, which makes

it possible to extract scale-dependent features from the object.

Significant Zero Crossings of Derivatives (SiZer) is a method based on scale space ideas and has originally
been developed for smooths of curves and time series. The goal is to find out whether a certain feature of the

curve is “really there” or if it is just a sampling artifact. For curves and time series this is usually done by



investigating the significance of the increases and decreases of the derivatives. Within the last years, this

concept has been extended to various directions.

In contrast to usual scale space procedures, where a wide range of smooths is used, mrbsizeR employs
differences of smooths at neighboring scales. This attempts to separate the features into distinct scale
categories more aggressively. In a next step, the resulting differences are investigated with a Bayesian version

of SiZer to see which of the features found are “really there” and which are only artifacts of sampling.
For data on a regular grid, one can summarize the analysis procedure in three steps:

1. Bayesian signal reconstruction

2. Forming of scale-dependent details using differences of smooths at neighboring scales

3. Posterior credibility analysis of the differences of smooths

For spherical data, no Bayesian signal reconstruction is implemented. The analysis procedure for this type of
data therefore consists of the forming of scale-dependent details and the subsequent credibility analysis. The
single steps and their application in mrbsizeR are explained by the following three examples. For further
theory and algorithm details, see Holmstrom et al. [2011] and Schuster [2017]. An extensive review of different

statistical scale space methods including their applications is available in Holmstrom and Pasanen [2016].

2 Example: Data On A Regular Grid

For the first example, data from the North American Regional Climate Change Assessment Program
(NARCCAP) is analyzed. NARCCAP is an international program producing climate change simulations
for Canada, the United States and northern Mexico. The data used for this example is based on the
MMS5I regional model [Mearns et al., 2007, updated 2014] and is a simulation of the surface air temperature
during summer 1995 [Mearns et al., 2007, updated 2014], see also http://www2.mmm.ucar.edu/mmb/ and
http://www.narccap.ucar.edu/index.html. The simulation was carried out on a 120-by-98 regular grid,

therefore 11’760 data points are available in total. The data set is not part of the mrbsizeR package.

# Structure of the dataset

str(tas.su.1995.MM5I)

#> List of 3

#> 8 lon: nmum [1:120, 1:98] 241 241 242 242 242 ...

#> $ lat: num [1:120, 1:98] 23 23.1 23.2 23.3 23.5 ...
# $ su : num [1:120, 1:98] 21.8 21.7 21.7 21.7 21.7 ...

The variables lon and lat describe the longitude and latitude of each simulated surface air temperature in
summer 1995 in degrees Celsius (su). The data covers the United States, the southern part of Canada and

the northern part of Mexico.

As the output of the mrbsizeR analysis are plots on a rectangular grid, it makes sense to display Figure
1 also like this (compare Figure 2). By combining Figures 1 and 2, it is still possible to recognize all the

important features such as coastlines, the Baja California or the Great Lakes.


http://www2.mmm.ucar.edu/mm5/
http://www.narccap.ucar.edu/index.html

Surface Air Temperature 1995 (MM5I)

Figure 1: Simulated surface air temperature in summer 1995 for the United States, the southern part of
Canada and the northern part of Mexico. The unit of the temperature is degrees Celsius.

Surface Air Temperature 1995 (MM5I)

Figure 2: Simulated surface air temperature in summer 1995 for the United States, the southern part of
Canada and the northern part of Mexico on a rectangular grid. Red describes warmer areas, colder areas are
colored blue.



2.1 Bayesian Signal Reconstruction

The first step of the mrbsizeR analysis is the Bayesian signal reconstruction. The data set is assumed to be a
random signal which might be noisy. In order to account for this uncertainty in the data, a Bayesian model

is used to reconstruct the original signal. The model used is
Yy=x+e,

where y is the observed random signal (compare Figures 1 and 2), « is the unobserved underlying original
signal and € is the noise. A A-Inv-y? prior distribution is assumed. In mrbsizeR, not the full posterior
p(x,0?|y) is of interest, but the marginal posterior p(z|y). This marginal posterior follows a multivariate

t-distribution ¢, and sampling from it results in samples from the reconstructed original signal x.

Depending on how much is known about the noise in y, the prior distribution parameters can be adjusted.
For the example of the surface air temperature, the parameters A\g = 0.2, vy = 15 and 0'(2] = 362 were used.
This prior has little influence on the posterior as no information about possible noise on vy is available. Using
the function rmvtDCT (), samples from a t¢,-distribution can be generated. The sampling algorithm uses a
discrete cosine transform (DCT) to speed up computations. For further information on the distributions and

the sampling algorithm, see Holmstrém et al. [2011] and Schuster [2017].

# Sampling from a multivariate t-distribution
tas.post.samp <- rmvtDCT(object = tas.su.1995.MM5I$su,
lambda = 0.2, sigma = 36, nu0 = 15, ns = 1000)

1000 samples of the posterior distribution of the surface air temperature in Canada, Mexico and the United

States were generated. These samples now form the reconstructed signal  and are used for further analysis.

2.2 Forming of scale-dependent detail components

Now that the original signal has been reconstructed, one can start forming scale-depending detail components.
For being able to create differences of smooths at neighboring scales z1, ..., 2z, a set of appropriate smoothing
levels Aq,...,Ar needs to be known. In contrast to other scale space methods, where a wide range of
smoothing levels is used, mrbsizeR only requires a few of them. The goal is to separate the features of the
object (here: the surface air temperature data) into scale-distinct categories. If too many smoothing levels
are chosen, this will result in categories that do not feature relevant detail components. If, on the other
hand, too few smoothing levels are chosen, detail components on different scales might mix up and are not
recognizable anymore. It is therefore not only crucial to determine which smoothing levels are useful, but

also the number of smoothing levels that should be used.

All methods proposed for the selection of smoothing levels have one thing in common: They offer a good
starting point for finding useful smoothing levels - but to make sure that all detail components are captured
optimally, user interaction is usually inevitable. Typically, a few iterations are necessary until satisfying

smoothing levels are found.

The first method for the smoothing level selection depends on the smoother implemented in mrbsizeR and



the dimension of the object analyzed only. By plotting so-called tapering functions of the eigenvalues of @, a
precision matrix used in the smoother of mrbsizeR, and the smoothing levels )\;, it is possible to determine

which A’s could be useful. The eigenvalues and the smoothing parameters are related as follows:

e Small \’s involve large eigenvalues of Q.

e Large \’s involve small eigenvalues of Q.

The idea is to plot the tapering functions for different ranges of A so that the functions are approximately
disjoint. When using these A-ranges for calculating the differences of smooths, this will result in orthogonal
detail components. For detailed information about the smoother used and the properties of the tapering
functions, see Holmstrém et al. [2011] and Schuster [2017].

The surface air temperature data was simulated on a 120-by-98 grid, and this information has to be passed
to the plotting function TaperingPlot (). The vector lambdaSmoother contains the smoothing levels that

should be used for drawing the tapering functions.

# Plot of stignal-independent tapering functions
TaperingPlot (lambdaSmoother = c(1, 100, 10000), mm = 120, nn = 98)
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Figure 3: Signal-independent tapering functions for a 120-by-98 object with the smoothing level () ranges
0-1, 1-100, 100-10000, 10000—cc and oco. The tapering functions are approximately disjoint.

The corresponding tapering functions are shown in Figure 3. The smoothing levels 0 and oo are added to
the set of smoothing levels, as both of them have a special meaning. Whereas a smoother with A = 0 is
the so-called identity smoother (Spx = ), smoothing with A, = oo results in the global mean. The five

tapering functions in Figure 3 are approximately disjoint and a good starting point when trying to find useful



smoothing levels.

An even better starting point can be attained if the underlying signal x is also taken into account.
TaperingPlot () allows to draw signal-dependent tapering functions using the (optional) argument Xmu. As

the original signal @ is unknown, it is replaced by its posterior mean.

# Plot of stignal-dependent tapering functions
TaperingPlot (lambdaSmoother = c(1, 100, 10000),

mm = 120, nn = 98, Xmu = tas.post.samp$mu)
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Figure 4: Moving average of the absolute values of signal-dependent tapering functions for the surface air
temperature data with the smoothing level (\) ranges 0-1, 1-100, 100-10000, 10000—0c and oco.

As signal-dependent tapering functions have values that vary wildly, visual inspection of these functions is
difficult. TaperingPlot () therefore uses moving averages on the absolute values of these tapering functions
to facilitate visual inspection. Figure 4 shows that the disjointedness of the smoothed tapering functions is

not as pronounced as in Figure 3, but can still be observed.

A more formal approach is the numerical optimization of a suitable objective function with respect to the
smoothing parameters. With MinLambda () it is possible to conduct this optimization for 2 or 3 A’s. The
resulting smoothing levels are, in terms of disjointedness of the signal-dependent tapering functions, optimal.
Still, it is often necessary to adjust the smoothing levels manually. For being able to extract also the
smallest-scale details it can for instance be useful to include an additional, small A. Furthermore, the number
of “optimal” smoothing levels found with MinLambda () is limited. When optimizing over 3 \’s, one ends
up with a sequence of 5 smoothing levels in total (3 optimized X’s, Ag = 0, A\, = 00). In cases where more

smoothing levels are necessary, i.e. where the object contains details relevant on more distinct scales, it is



necessary to add smoothing levels manually. However, five smoothing levels turned out to be sufficient in

many cases.

# Minimization of objective function with respect to the smoothing parameters

tas.min.lambda.out <- MinLambda(Xmu = tas.post.samp$mu, mm = 120, nn = 98,
nLambda = 3, sphere = FALSE,
lambda=10"seq(-12, 10, len = 45))

Most of the arguments of MinLambda() are already known from TaperingPlot(). In addition to this, it
is necessary to specify nGrid (size of the grid the optimization should be carried out on, nGrid-by-nGrid),
nLambda (either 2 or 3, number of A’s to be optimized) and sphere (logical; is the analysis on spherical

data?). The optimal A\ values evaluated for the surface air temperature data are 3.16e-11, 1le+02 and le+04.

# Minimal smoothing parameter values
tas.min.lambda.out$lambda[tas.min.lambda.out$minind]
#> [1] 3.16e-11 1.00e+02 1.00e+04

The minimization result can also be shown visually. For each optimized pair of A’s, a plot is drawn. Figure 5
shows the optimization for the surface air temperature example. The optimized \’s have the indices Aa, A3

and A4, because \; = 0 and A5 = oc.

# Plot of the minimization result

plot(x = tas.min.lambda.out)

1e+08
1e+08
1e+08

1e+04

)

1e-12 1e-08 1fe-06 1e-03 1e+00

?_I\\IIIII\IIIIII

)

le-06 1e-03 1e+00

I T T O B B | I I B |
1e+04

L1
1e+04

1e-12 1e-08 1e06 1e-03 1e+00

1e-12  1e-09

TTTTTT I T T T T T T T T T T TTT 11T
1e-12 1e07 1ed2 1e+03 1e+l8

TTTTTT I T T T T I T T ITTT 71711 TTTTT T T T T I T I T T I T ITT 1T
12 1ed7 1e02 1e+Dd2 1e+08 1e-12  1e07 1e02 1e+03 1e+08

Figure 5: Minimization of the objective function for three smoothing levels A. The minimum is indicated by
a white point.



The smoothing levels found with the different methods can now be used as a starting point for finding scale-
dependent details in the analyzed object. Usually, a few iterations with some smoothing level adjustments
are necessary until the results found are satisfying. For the surface air temperature example, the smoothing
level sequence [A1, A2, Az, Ag, As] = [0,0.1,90,16°000, oo] turned out to be useful. Using mrbsizeRgrid(),
differences of smooths at neighboring scales are created. For the surface air temperature example, the samples
generated with rmvtDCT () are used as input. If other samples are already available and no Bayesian signal
reconstruction is needed, it is important to store them as a matrix where each column vector represents one

sample.

# Creation of differences of smooths at neighboring scales

tas.mrb.out <- mrbsizeRgrid(posteriorFile = tas.post.samp$sample, mm
lambdaSmoother = c(0.1, 90, 15000), prob

120, nn = 98,
0.95)

The resulting object tas.mrb.out is a list containing three sublists. smMean contains the mean of each
difference of smooths z; over all ns = 1000 samples from the posterior p(x|y). The lists hpout and ciout

are relevant for the posterior credibility analysis, which is discussed in detail in the next subsection.

The smMean-plots for the surface air temperature example are displayed in Figure 6. With increasing
smoothing level A, the features are getting larger. The first component z; shows the smallest scale details of
. The contours of areas where a rapid change from warmer to colder temperature can be observed are clearly
visible. In 29, larger-scale details are identifiable. The Great Lakes seem to be colder than the surrounding
regions and the areas surrounding the Gulf of California are clearly warmer than the Gulf itself. z3 shows
that the Gulf of California is the hottest region in Northern America. Furthermore, the Rocky Mountains are
identifiable as a cool, longish band across the map. The next difference of smooths z; shows a north-south

temperature gradient, and z5 is the mean across the whole map.

# Posterior mean of the different detail components
plot(x = tas.mrb.out$smMean, color.pallet = fields::tim.colors(), turnOut = FALSE,
aspRatio = 98/120)
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Figure 6: Decomposition of Figure 2 into differences of smooths at neighboring scales. The details z1, ..., z5
are summarized by their posterior means. Warmer areas are colored red, colder areas are colored blue.

2.3 Posterior Credibility Analysis

As the detail components z; are random samples from the posterior distribution p(x|y), a credibility analysis
has to be done. The goal is to infer which details are truly there and which are only artifacts of random

variation. Three different methods for posterior credibility analysis are implemented in mrbsizeR:

o Pointwise Maps (PW): Each location / pixel is tested separately for credibility.

o Highest Pointwise Probability Maps (HPW): The inference is done jointly over all locations.
In comparison to PW maps, this results in more non-credible areas. The advantage of HPW maps
is that the credible areas are better connected than in PW maps. Small credibility islands with low

expressiveness do appear less frequently and simplify the interpretation of the results.



o Simultaneous Credible Intervals (CI): Inference is also done jointly over all locations. Here,
simultaneous credible intervals centered on the posterior means are calculated. CI maps flag locations

as credible more conservatively than PW or HPW maps.

For more detailed information about the three methods, see Holmstrom et al. [2011] and Schuster [2017].
By default, credible regions of all three methods are calculated when executing mrbsizeRgrid(). The

corresponding lists in the output of mrbsizeRgrid() are hpout and ciout.

# Plot of pointwise (PW) maps
plot(x = tas.mrb.out$hpout, plot_which = "PW", aspRatio = 98/120,
color = c("dodgerblue3d", "gainsboro", "firebrickl"), turnOut = FALSE)

PW-Map for z, with i.-range = [0 - 0.1] PW-Map for z; with i.-range = [0.1 - 80]
1
1 "

PW-Map for z; with i-range =[S0 - 15000] PW-Map for z, with L-range = [16000 - =]

PW-Map for z; with i-range = [=]

Figure 7: Pointwise (PW) maps for the surface air temperature example. Credibly warmer areas are colored
red, credibly colder areas blue. Areas without credibility are gray.
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The pointwise credibility maps in Figure 7 do show little credibility for the difference of smooths z;. In 25,
the Gulf of California is credibly colder than Baja California and the Mexican mainland on the eastern side
of the Gulf. In 23, nearly everything is credible. This confirms that the Rocky Mountains are really colder
and that the whole area of the Gulf of California is credibly warmer than surrounding regions. With z4, it
gets clear that the northern part of the map is credibly colder than the southern part. zs simply shows that
the whole global mean is credible.

# Plot of highest pointwise probability (HPW) maps
plot(x = tas.mrb.out$hpout, plotWhich = "HPW", aspRatio = 98/120,
color = c("dodgerblue3d", "gainsboro", "firebrickl"), turnOut = FALSE)
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Figure 8: Highest pointwise probability (HPW) maps for the surface air temperature example. Credibly
warmer areas are colored red, credibly colder areas blue. Areas without credibility are gray.

The HPW maps in Figure 8 exhibit less credibility than the PW maps, especially for small-scale details.
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However, the interpretation of the results stays the same. Due to the joint inference over all locations, small

islands of credibility are less frequent.

# Plot of simultaneous credible interval (CI) maps
plot(x = tas.mrb.out$ciout, color = c("dodgerblue3", "gainsboro", "firebrickl"),
turnOut = FALSE, aspRatio = 98/120)
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Figure 9: Simultaneous credible interval maps for the surface air temperature example. Credibly warmer
areas are colored red, credibly colder areas blue. Areas without credibility are gray.

Detail component z; of the simultaneous credible interval maps in Figure 9 does not exhibit any credibility.
CI maps are generally the most conservative credibility analysis method. It therefore is not surprising that in
details zo and z3 more gray areas can be observed than in the PW or HPW maps (compare Figures 7 and 8).

Still, especially for the larger-scale details, the interpretation of the results does not change.
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3 Example: Comparison to Matlab software

The mrbsizeR methodology was first implemented in the Matlab program MRBSiZer [Holmstrém and Pasanen,
2011], which is available at http://cc.oulu.fi/~lpasanen/MRBSiZer/. In order to ensure that the results
obtained with R and Matlab are concordant, the sketch pad example from the original paper [Holmstréom
et al., 2011] is reconstructed (compare Figure 10. The digital image is of the size 284-by-400 and the prior
parameters )\, 02 and vg had the values 0.2,8.9% and 10, respectively. The set of smoothing levels used in

the multiresolution analysis was [0, 1, 30,6 x 105, o0]. 3000 samples of the posterior p(z|y) were generated.

Figure 10: Original sketch pad image.

The detail components z; are shown in Figure 11. As the output of mrbsizeRgrid() is based on random
samples, small differences between two executions are inevitable. When compared to the Matlab figures in
Holmstrém et al. [2011], no big differences can be detected. More differences can be found in the HPW maps,
especially in detail component z5 (compare Figure 12). It seems that in the R implementation, a slightly
larger part of the component was flagged as credible. Nevertheless, the detail components look very similar to
their Matlab pendants and the interpretation of the results stays the same. The differences can be explained
by random sampling and one can be confident that concordance across the systems holds.

13
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E(z4ly) for k-range = [0 - 1] E{zdy} for i-range = [1 - 30]

E(z:ly) for i-range = [30 - Be+05] E({z v} for i-range = [Be+05 - =]

E(zdy) for k-range = [=]

Figure 11: Posterior mean of detail components z; from the sketch pad example.
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HPW-Map for z, with i-range = [0 - 1] HPW-Map for z; with A-range = [1 - 30]

HPW-Map for z; with i-range = [30 - Be+05] HPW-Map for z, with i-range = [Se+05 - =]

HPW-Map for z; with -range = [=]

Figure 12: Highest pointwise probabilities maps of detail components z; from the sketch pad example.
Credibly darker areas are red, credibly brighter areas are blue.
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4 Example: Data On A Sphere

The third example in this vignette demonstrates how mrbsizeR can be used to analyze spherical data. In
contrast to the analysis of data on a grid, no Bayesian signal reconstruction is implemented. To form
scale-dependent details, data samples need to be available beforehand. The analysis procedure for spherical

data can therefore be summarized in two steps:
1. Forming of scale-dependent details using differences of smooths at neighboring scales
2. Posterior credibility analysis of the differences of smooths

Data from the Community Climate System Model 4.0 (CCSM4, see http://www.cesm.ucar.edu/models/ccs
m4.0/ccsm/) is used to illustrate mrbsizeR on spherical data. CCSM4 is a climate model simulating the
earth’s climate system, see Gent et al. [2011]. For this analysis, the simulated surface air temperature in June
of the years 1870-2100 was considered. Instead of using the surface air temperature itself, its deviation to
the yearly mean has been used. This detrends the data and makes the simulations of 231 consecutive years
comparable. The resulting data set consisting of 231 observations is then used as samples for the mrbsizeR

analysis. The data is not part of the mrbsizeR package.

Figure 13 summarizes the samples by their mean. It is clearly visible that the temperature is higher in areas
around the equator and gets lower closer to the Polar Regions. The unit of the surface air temperature

deviation is degrees Kelvin.

Deviation of Mean from Surface Air Temperature (CCSM4)

Figure 13: Deviation from mean of simulated air temperature measurements (CCSM4) for the years
1870-2100 in degrees Kelvin. The deviations are summarized by their mean.
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For conducting scale space multiresolution analysis with mrbsizeR, useful smoothing parameters need to
be evaluated first. As explained in the NARCCAP data example, MinLambda () offers the possibility to find
useful smoothing parameters numerically. The function call for spherical data is nearly identical to the call

for non-spherical data, the only difference is the argument sphere which has to be TRUE.

# Minimization of objective function with respect to the smoothing parameters

# for spherical data

spherical.min.lambda.out <- MinLambda(Xmu = dat.ccsm4.mu, mm = 144, nn = 72,
nGrid = 35, nLambda = 2, sphere = TRUE)

Once useful smoothing levels have been selected, differences of smooths at neighboring scales can be created

using the function mrbsizeRsphere().

# Creation of differences of smooths at neighboring scales for spherical data
spherical.mrb.out <- mrbsizeRsphere(posteriorFile = dat.ccsm4, mm = 144, nn = 72,
prob = 0.95, lambdaSmoother = c(0.0026))

For creating the differences of smooths at neighboring scales in Figure 14, the smoothing level sequence
[A1,...,A3] =[0,0.0026, o] was used. Only one smoothing level was added to the default sequence [0, co].
This is enough to capture features at all different scales. Whereas z; shows small-scale details like colder
regions in Tibet or Chile, zo reveals a large red-colored area around the equator and large blue-colored areas

at the Polar Regions. z3 shows the global mean.

# Posterior mean of the different detail components for spherical data
plot(x = spherical.mrb.out$smMean, lon = dat.ccsmé$lon, lat = dat.ccsmé$lat,
color.pallet = fields::tim.colors())
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E(z:ly) for i-range = [0 - 0.0026] E(zzly) for i-range = [0.0026 - =]
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Figure 14: Decomposition of Figure 13 into differences of smooths at neighboring scales. The details
z1,...,23 are summarized by their posterior means. Areas with larger data values are colored red, areas
with smaller values are colored blue.

The posterior credibility analysis of detail component z; using highest pointwise probability (HPW) maps
(compare Figure 15) reveals that regions like Chile or the eastern part of South Africa are credibly colder than
surrounding areas. The large-scale components in zo are mostly credible and hence “really there”. The global
mean in z3 is not credible in this example. The reason is the data used: Instead of considering the yearly
surface air temperature, its deviations to the yearly mean are considered. zs is therefore not the average

surface air temperature, but the average mean deviation, which always equals 0.

# Plot of highest pointwise probability (HPW) maps for spherical data
plot(x = spherical.mrb.out$hpout, lon = dat.ccsmé4$lon, lat = dat.ccsmé$lat,
plotWhich = "HPW", color = c("dodgerblue3", "gainsboro", "firebrickl"))
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HPW-Map for z, with i-range = [0 - 0.0026] HPW-Map for z; with i-range = [0.0026 - =]

Figure 15: Highest pointwise probability maps. Areas with credibly larger data values are colored red, areas
with credibly smaller values are blue. Areas without credibility are gray.
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5 What If Not Enough Computing Power Is Available?

Especially for analyses with a large analysis object and/or many samples, an mrbsizeR analysis is resource-
intensive. For cases where due to computational reasons not enough samples can be generated, the additional
argument smoothOut has been added to mrbsizeRgrid() and mrbsizeRsphere(). If smoothOut = TRUE,
the output list will also contain a sublist smoothSamples, which includes the differences of smooths for all
samples. This makes it possible to manually increase the number of samples and get HPW maps and CI

maps with a higher confidence. An example is provided in the following code chunk.

# Generate samples from posterior distribution
tas.post.samp <- rmvtDCT(object = tas.su.1995.MM5I$su,
lambda = 0.2, sigma = 36, nu0 = 15, ns = 1000)

# Do mrbsizeR analysis and output the differences of smooths for all samples

tas.mrb.out.1 <- mrbsizeRgrid(posteriorFile = tas.post.samp$sample, mm = 120,
nn = 98, lambdaSmoother = c(0.1, 90, 15000),
prob = 0.95, smoothOut = TRUE)

# Do the same procedure again
tas.post.samp <- rmvtDCT(object = tas.su.1995.MM5I$su,
lambda = 0.2, sigma = 36, nu0 = 15, ns = 1000)

tas.mrb.out.2 <- mrbsizeRgrid(posteriorFile = tas.post.samp$sample, mm = 120,
nn = 98, lambdaSmoother = c(0.1, 90, 15000),
prob = 0.95, smoothOut = TRUE)

# Combine all differences—of-smooths—samples and call CImap manually

smoothSamples <- list(); ciout <- list()

for(i in 1:length(tas.mrb.out.l$smoothSamples)) {
smoothSamples <- cbind(tas.mrb.out.1$smoothSamples[[i]],
tas.mrb.out.2$smoothSamples[[i]])
ciout[[i]] <- CImap(smoothVec = smoothSamples, mm = 120, nn = 98, prob = 0.95)

# Set the class correctly for visualizing the output.

# Titles need to be defined in this case!

# Class name CI maps: "CImapGrid" or "CImapSphere"

# Class name PW / HPW maps: "HPWmapGrid" or "HPWmapSphere"

class(ciout) <- "CImapGrid"

plot(ciout, title = c("Diff_1i", "Diff_2", "Diff_3", "Diff_4", "Diff_5"))
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