Package ‘nlsr’

September 5, 2023
Type Package
Title Functions for Nonlinear Least Squares Solutions - Updated 2022
Version 2023.8.31
Date 2023-08-31
Maintainer John C Nash <nashjc@uottawa.ca>

Description Provides tools for working with nonlinear least squares problems.
For the estimation of models reliable and robust tools than nls(), where the
the Gauss-Newton method frequently stops with 'singular gradient' messages.
This is accomplished by using, where possible, analytic derivatives to compute
the matrix of derivatives and a stabilization of the solution of the estimation
equations. Tools for approximate or externally supplied derivative matrices
are included. Bounds and masks on parameters are handled properly.

License GPL-2
Encoding UTF-8
Depends R (>=3.5)
Imports digest

Suggests minpack.lm, optimx, numDeriv, knitr, rmarkdown, markdown,
Ryacas, Deriv, microbenchmark, MASS, ggplot2, nlraa

VignetteBuilder knitr
RoxygenNote 7.2.1
NeedsCompilation no

Author John C Nash [aut, cre],
Duncan Murdoch [aut],
Fernando Miguez [ctb],
Arkajyoti Bhattacharjee [ctb]

Repository CRAN
Date/Publication 2023-09-05 08:10:09 UTC

2

R topics documented:

Index

coefmlsr
fitted.nlsr
jaback ...
jacentral L.
jafwd .. oL
jand ...
model2rjfun oL
nlfb . ..
nlsDeriv
01)
nlsr.control
nlsrpackageo L
nlstSS ..o
nlxb . .. e

predictnlsr
printnlsro
Prt . .o e
pshort
TAWIES © o v v vt e e e e e e e e e e e e e e e
TESEL © o e e e e e e e e e e e e
residnlsr. Lo
residuals.nlsro oL
TESSS « v e e e e e e e e e e e e e e
SSlogisJN
summary.nlsr Lo
wrapnlsr

coef.nlsr

coef.nlsr coef.nlsr

Description

prepare and display result of nlsr computations

Usage

S3 method for class 'nlsr'
coef(object, ...)

fitted.nlsr

Arguments
object an object of class nlsr
additional data needed to evaluate the modeling functions Default FALSE
Details

The set of possible controls to set is as follows

Author(s)

J C Nash 2014-7-16 nashjc _at_ uottawa.ca

fitted.nlsr fitted.nlsr

Description

prepare and display fits of nlsr computations

Usage

S3 method for class 'nlsr'

fitted(object = NULL, data = parent.frame(), ...)
Arguments

object an object of class nlsr

data a data frame with the data for which fits are wanted.

additional data needed to evaluate the modeling functions Default FALSE

Author(s)

J C Nash 2014-7-16 revised 2022-11-22 nashjc _at_ uottawa.ca

4 Jjacentral

jaback jaback

Description

approximate Jacobian via forward differences

Usage
jaback(pars, resfn = NULL, bdmsk = NULL, resbest = NULL, ndstep = 1e-07, ...)
Arguments
pars a named numeric vector of parameters to the model
resfn a function to compute a vector of residuals
bdmsk Vector defining bounds and masks. Default is NULL
resbest If supplied, a vector of the residuals at the parameters pars to save re-evaluation.
ndstep A tolerance used to alter parameters to compute numerical approximations to
derivatives. Default Te-7.
Extra information needed to compute the residuals
Author(s)

J C Nash 2014-7-16 nashjc _at_ uottawa.ca

jacentral Jjacentral

Description

Approximate Jacobian via central differences. Note this needs two evaluations per parameter, but
generally gives much better approximation of the derivatives.

Usage
jacentral(
pars,
resfn = NULL,
bdmsk = NULL,

resbest = NULL,
ndstep = 1e-07,

jafwd 5

Arguments
pars a named numeric vector of parameters to the model
resfn a function to compute a vector of residuals
bdmsk Vector defining bounds and masks. Default is NULL
resbest If supplied, a vector of the residuals at the parameters pars to save re-evaluation.
ndstep A tolerance used to alter parameters to compute numerical approximations to
derivatives. Default 1e-7.
Extra information needed to compute the residuals
Author(s)

J C Nash 2014-7-16 revised 2022-11-22 nashjc _at_ uottawa.ca

jafwd jafwd

Description

approximate Jacobian via forward differences

Usage
jafwd(pars, resfn = NULL, bdmsk = NULL, resbest = NULL, ndstep = 1e-07, ...)
Arguments
pars a named numeric vector of parameters to the model
resfn a function to compute a vector of residuals
bdmsk Vector defining bounds and masks. Default is NULL
resbest If supplied, a vector of the residuals at the parameters pars to save re-evaluation.
ndstep A tolerance used to alter parameters to compute numerical approximations to
derivatives. Default 1e-7.
Extra information needed to compute the residuals
Author(s)

J C Nash 2014-7-16 nashjc _at_ uottawa.ca

6 model2rjfun

jand jand

Description

approximate Jacobian via numDeriv::jacobian

Usage
jand(pars, resfn = NULL, bdmsk = NULL, resbest = NULL, ndstep = 1e-07, ...)
Arguments
pars a named numeric vector of parameters to the model
resfn a function to compute a vector of residuals
bdmsk Vector defining bounds and masks. Default is NULL
resbest If supplied, a vector of the residuals at the parameters pars to save re-evaluation.
ndstep A tolerance used to alter parameters to compute numerical approximations to
derivatives. Default Te-7.
Extra information needed to compute the residuals
Author(s)

J C Nash 2014-7-16 nashjc _at_ uottawa.ca

model2rjfun model2rjfun

Description

These functions create functions to evaluate residuals or sums of squares at particular parameter
locations.

Usage

model2rjfun(modelformula, pvec, data = NULL, jacobian = TRUE, testresult = TRUE, ...)
SSmod2rjfun(modelformula, pvec, data = NULL, jacobian = TRUE, testresult = TRUE, ...)
model2ssgrfun(modelformula, pvec, data = NULL, gradient = TRUE,

testresult = TRUE, ...)
modelexpr (fun)

model2rjfun 7

Arguments

modelformula A formula describing a nonlinear regression model.

pvec A vector of parameters.

data A dataframe, list or environment holding data used in the calculation.
jacobian Whether to compute the Jacobian matrix.

testresult Whether to test the function by evaluating it at pvec.

gradient Whether to compute the gradient vector.

fun A function produced by one of model2rjfun or model2ssgrfun.

Dot arguments, that is, arguments that may be supplied by name = value to sup-
ply information needed to compute specific quantities in the model.

Details

If pvec does not have names, the parameters will have names generated in the form ‘p_<n>’, e.g.
p_1, p_2. Names that appear in pvec will be taken to be parameters of the model.

The data argument may be a dataframe, list or environment, or NULL. If it is not an environment, one
will be constructed using the components of data with parent environment set to be the environment
of modelformula.

SSmod2rjfun returns a function with header function(prm), which evaluates the residuals (and if
jacobian is TRUE the Jacobian matrix) of the selfStart model (the rhs is used) at prm. The residuals
are defined to be the right hand side of modelformula minus the left hand side. Note that the
selfStart model used in the model formula must be available (i.e., loaded). If this function is called
from nlxb() then the control element japprox must be set to value SSJac.

Value

model2rjfun returns a function with header function(prm), which evaluates the residuals (and if
jacobian is TRUE the Jacobian matrix) of the model at prm. The residuals are defined to be the right
hand side of modelformula minus the left hand side.

model2ssgrfun returns a function with header function(prm), which evaluates the sum of squared
residuals (and if gradient is TRUE the gradient vector) of the model at prm.

modelexpr returns the expression used to calculate the vector of residuals (and possibly the Jaco-
bian) used in the previous functions.

Author(s)

John Nash and Duncan Murdoch

See Also

nls

8 nlfb

Examples

We do not appear to have an example for modelexpr. See nlsr-devdoc.Rmd for one.

y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558,
50.156, 62.948, 75.995, 91.972)

tt <- seq_along(y) # for testing

mydata <- data.frame(y =y, tt = tt)

f <-y~bl/(1 + b2 * exp(-1 * b3 * tt))

p <-c(bl =1, b2 =1, b3 =1)

rjfn <- model2rjfun(f, p, data = mydata)

rifn(p)

rjfnnoj <- model2rjfun(f, p, data = mydata, jacobian=FALSE)
rifnnoj(p)

myexp <- modelexpr(rjfn)
cat("myexp:"); print(myexp)

ssgrfn <- model2ssgrfun(f, p, data = mydata)
ssgrfn(p)

ssgrfnnoj <- model2ssgrfun(f, p, data = mydata, gradient=FALSE)
ssgrfnnoj(p)

nlfb nlfb: nonlinear least squares modeling by functions

Description

A simplified and hopefully robust alternative to finding the nonlinear least squares minimizer that
causes 'formula’ to give a minimal residual sum of squares.

Usage
nlfb(

start,

resfn,

jacfn = NULL,
trace = FALSE,
lower = -Inf,
upper = Inf,
weights = NULL,
data = NULL,

ctrlcopy = FALSE,
control = list(),

nlfb

Arguments

start

resfn

jacfn

trace

lower

upper

weights
data

ctrlcopy

control

Details

a numeric vector with all elements present e.g., start=c(b1=200, b2=50, b3=0.3)
The start vector for this n1fb, unlike nlxb, does not need to be named.

A function that evaluates the residual vector for computing the elements of the
sum of squares function at the set of parameters start. Where this function is
created by actions on a formula or expression in nlxb, this residual vector will
be created by evaluation of the *'model - data’, rather than the conventional ’data
- model’ approach. The sum of squares is the same.

A function that evaluates the Jacobian of the sum of squares function, that is, the
matrix of partial derivatives of the residuals with respect to each of the parame-
ters. If NULL (default), uses an approximation.

The Jacobian MUST be returned as the attribute "gradient" of this function,
allowing jacfn to have the same name and be the same code block as resfn,
which may permit some efficiencies of computation.

TRUE for console output during execution

a vector of lower bounds on the parameters. If a single number, this will be
applied to all. Default -Inf.

a vector of upper bounds on the parameters. If a single number, this will be
applied to all parameters. Default Inf.

A vector of fixed weights or a function producing one. See the Details below.

a data frame of variables used by resfn and jacfn to compute the required resid-
uals and Jacobian.

If TRUE use control supplied as is. This avoids reprocessing controls.
a list of control parameters. See nlsr.control().

additional data needed to evaluate the modeling functions

nlfb is particularly intended to allow for the resolution of very ill-conditioned or else near zero-
residual problems for which the regular nls() function is ill-suited.

This variant uses a qr solution without forming the sum of squares and cross products t(J)

Neither this function nor nlxb have provision for parameter scaling (as in the parscale control of
optim and package optimx). This would be more tedious than difficult to introduce, but does not
seem to be a priority feature to add.

The weights argument can be a vector of fixed weights, in which case the objective function that
will be minimized is the sum of squares where each residual is multiplied by the square root of the
corresponding weight. Default NULL implies unit weights. weights may alternatively be a function
with header function(parms, resids) to compute such a vector.

Value

A list of the following items:

coefficients A named vector giving the parameter values at the supposed solution.

10 nlfb

ssquares The sum of squared residuals at this set of parameters.
resid The weighted residual vector at the returned parameters.

jacobian The jacobian matrix (partial derivatives of residuals w.r.t. the parameters) at the returned
parameters.

feval The number of residual evaluations (sum of squares computations) used.
jeval The number of Jacobian evaluations used.
weights) The weights argument as specified.

weights The weights vector at the final fit.

Author(s)
J C Nash 2014-7-16 nashjc _at_ uottawa.ca

Examples
library(nlsr)
Scaled Hobbs problem
shobbs.res <- function(x){ # scaled Hobbs weeds problem -- residual

This variant uses looping

if(length(x) != 3) stop(”shobbs.res -- parameter vector n!=3")

y <- c¢(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
38.558, 50.156, 62.948, 75.995, 91.972)

tt <= 1:12
res <- 100.0*x[1]1/(1+x[2]1*10.*exp(-0.1*x[3]xtt)) - vy
3
shobbs.jac <- function(x) { # scaled Hobbs weeds problem -- Jacobian
jj <= matrix(e.e, 12, 3)
tt <= 1:12

yy <= exp(-0.1xx[3]*tt)

zz <- 100.0/(1+10.*x[2]*yy)

jjltt,1] <= zz

jjltt, 2] <= -0.1*%x[1]*zz*zz*xyy

jjltt,3] <= 0.01*%x[1]*zz*xzzxyy*xx[2]xtt

attr(jj, "gradient”) <- jj

ij
3
st <- c(b1=2, b2=1, b3=1) # a default starting vector (named!)
Default controls, standard Nash-Marquardt algorithm
anlf@ <- nlfb(start=st, resfn=shobbs.res, jacfn=shobbs. jac,

trace=TRUE, control=list(prtlvl=1))

anlfo

Hartley with step reduction factor of .2

anlfoh <- nlfb(start=st, resfn=shobbs.res, jacfn=shobbs. jac,
trace=TRUE, control=list(prtlvl=1, lamda=0, laminc=1.0,
lamdec=1.0, phi=0, stepredn=0.2))

anlfoh

anlfibm <- nlfb(start=st, resfn=shobbs.res, jacfn=shobbs.jac, lower=c(2,90,0),
upper=c(2,6,3), trace=TRUE, control=list(prtlvl=1))

nlsDeriv 11

anlf1bm

cat("backtrack using stepredn=0.2\n")

anlflbmbt <- nlfb(start=st, resfn=shobbs.res, jacfn=shobbs.jac, lower=c(2,90,0),
upper=c(2,6,3), trace=TRUE, control=list(stepredn=0.2, prtlvl=1))

anlf1bmbt

Short output

pshort(anlfibm)

anlf2bm <- nlfb(start=st, resfn=shobbs.res, jacfn=shobbs.jac, lower=c(2,0,0),
upper=c(2,6,9), trace=TRUE, control=list(prtlvl=1))

anlf2bm

cat("backtrack using stepredn=0.2\n")

anlf2bmbt <- nlfb(start=st, resfn=shobbs.res, jacfn=shobbs.jac, lower=c(2,0,0),
upper=c(2,6,9), trace=TRUE, control=list(stepredn=0.2, prtlvl=1))

anlf2bmbt

Short output

pshort(anlf2bm)

nlsDeriv nisDeriv Functions to take symbolic derivatives.

Description

Compute derivatives of simple expressions symbolically, allowing user-specified derivatives.

Usage

nlsDeriv(expr, name, derivEnv = sysDerivs, do_substitute = FALSE, verbose = FALSE, ...

codeDeriv(expr, namevec, hessian = FALSE, derivEnv = sysDerivs,
do_substitute = FALSE, verbose = FALSE, ...)

fnDeriv(expr, namevec, args = all.vars(expr), env = environment(expr),

do_substitute = FALSE, verbose = FALSE, ...)
Arguments
expr An expression represented in a variety of ways. See Details.
name The name of the variable with respect to which the derivative will be computed.
derivEnv The environment in which derivatives are stored.

do_substitute If TRUE, use substitute to get the expression passed as expr, otherwise evalu-
ate it.

verbose If TRUE, then diagnostic output will be printed as derivatives and simplifications
are recognized.

Additional parameters which will be passed to codeDeriv from fnDeriv, and
to nlsSimplify from nlsDeriv and codeDeriv.

12 nlsDeriv

namevec Character vector giving the variable names with respect to which the derivatives
will be taken.

hessian Logical indicator of whether the 2nd derivatives should also be computed.

args Desired arguments for the function. See Details below.

env The environment to be attached to the created function. If NULL, the caller’s

frame is used.

Details

Functions nlsDeriv and codeDeriv are designed as replacements for the stats package functions
D and deriv respectively, though the argument lists do not match exactly.

The nlsDeriv function computes a symbolic derivative of an expression or language object. Known
derivatives are stored in derivEnv; the default sysDerivs contains expressions for all of the deriva-
tives recognized by deriv, but in addition allows differentiation with respect to any parameter where
it makes sense. It also allows the derivative of abs and sign, using an arbitrary choice of O at the
discontinuities.

The codeDeriv function computes an expression for efficient calculation of the expression value
together with its gradient and optionally the Hessian matrix.

The fnDeriv function wraps the codeDeriv result in a function. If the args are given as a character
vector (the default), the arguments will have those names, with no default values. Alternatively, a
custom argument list with default values can be created using alist; see the example below.

The expr argument will be converted to a language object using dex (but note the different de-
fault for do_substitute). Normally it should be a formula with no left hand side, e.g. ~ x*2, or
an expression vector e.g. expression(x, x*2, x*3) , or a language object e.g. quote(x*2). In
codeDeriv and fnDeriv the expression vector must be of length 1.

The newDeriv function is used to define a new derivative. The expr argument should match the
header of the function as a call to it (e.g. as in the help pages), and the deriv argument should be an
expression giving the derivative, including calls to D(arg), which will not be evaluated, but will be
substituted with partial derivatives of that argument with respect to name. See the examples below.

If expr or deriv is missing in a call to newDeriv(), it will return the currently saved derivative
record from derivEnv. If name is missing in a call to nlsDeriv with a function call, it will print a
message describing the derivative formula and return NULL.

To handle functions which act differently if a parameter is missing, code the default value of that
parameter to .MissingVal, and give a derivative that is conditional on missing() applied to that
parameter. See the derivatives of "-" and "+" in the file derivs.R for an example.

Value
If expr is an expression vector, nlsDeriv and n1sSimplify return expression vectors containing
the response. For formulas or language objects, a language object is returned.
codeDeriv always returns a language object.
fnDeriv returns a closure (i.e. a function).
nlsDeriv returns the symbolic derivative of the expression.

newDeriv with expr and deriv specified is called for the side effect of recording the derivative in
derivEnv. If expr is missing, it will return the list of names of functions for which derivatives are
recorded. If deriv is missing, it will return its record for the specified function.

nlsDeriv 13

Note

newDeriv(expr, deriv, ...) will issue a warning if a different definition for the derivative exists
in the derivative table.

Author(s)

Duncan Murdoch

See Also

deriv

Examples
nlsDeriv(~ sin(x+y), "x")

f <- function(x) x*2
newDeriv(f(x), 2xxxD(x))
nlsDeriv(~ f(abs(x)), "x")

nlsDeriv(~ pnorm(x, sd=2, log = TRUE), "x")

fnDeriv(~ pnorm(x, sd = sd, log = TRUE), "x")

f <- fnDeriv(~ pnorm(x, sd = sd, log = TRUE), "x", args = alist(x =, sd = 2))
f‘

(1)

100%(f(1.01) - f(1)) # Should be close to the gradient

The attached gradient attribute (from f(1.01)) is
meaningless after the subtraction.

Multiple point example

xvals <- c(1, 3, 4.123)

print(f(xvals))

Getting a hessian matrix

f2 <= ~ (x=2)"3%y - y*2

mydf2 <- fnDeriv(f2, c("x","y"), hessian=TRUE)

display the resulting function

print(mydf2)

x <= c(1, 2)

y <- c(0.5, 0.1)

evalmydf2 <- mydf2(x, y)

print(evalmydf2)

the first index of the hessian attribute is the point at which we want the hessian
hmat1 <- as.matrix(attr(evalmydf2,”hessian”")[1,,]1)
print(hmat1)

hmat2 <- as.matrix(attr(evalmydf2,"hessian")[2,,1)
print(hmat2)

14

nlsr

nlsr

nlsr function

Description

Provides class nls solution to a nonlinear least squares solution using the Nash Marquardt tools.

Usage

nlsr(formula

= NULL, data = NULL, start = NULL, control = NULL,

trace = FALSE, subset = NULL, lower = -Inf, upper = Inf, weights = NULL,

Arguments

formula

data

start

control

trace

subset

lower

upper

weights

Value

The modeling formula. Looks like "y~b1/(1+b2*exp(-b3*T))’

a data frame containing data for variables used in the formula that are NOT the
parameters. This data may also be defined in the parent frame i.e., *global’ to
this function

MUST be a named vector with all elements present e.g., start=c(b1=200, b2=50,
b3=0.3)

a list of control parameters. See nlsr.control().
TRUE for console output during execution (default FALSE)

an optional vector specifying a subset of observations to be used in the fitting
process. NOT used currently by nlxb() or nlfb() and will throw an error if present
and not NULL.

a vector of lower bounds on the parameters. If a single number, this will be
applied to all parameters Default -Inf.

a vector of upper bounds on the parameters. If a single number, this will be
applied to all parameters. Default Inf.

A vector of fixed weights. The objective function that will be minimized is
the sum of squares where each residual is multiplied by the square root of the
corresponding weight. Default NULL implies unit weights.

additional data needed to evaluate the modeling functions

A solution object of type nls

nlsr.control

15

nlsr.control

nlsr.control

Description

Set and provide defaults of controls for package nlsr

Usage

nlsr.control(control)

Arguments

control

Value

femax

japprox

jemax

lamda
lamdec

laminc

nbtlim

ndstep
offset

phi
prtlvl
psi

rofftest

A list of controls. If missing, the defaults are provided. See below. If a named
control is provided, e.g., via a call ctrllist<- nlsr.control(japprox="jand"), then
that value is substituted for the default of the control in the FULL list of controls
that is returned.

NOTE: at 2022-6-17 there is NO CHECK FOR VALIDITY
The set of possible controls to set is as follows, and is returned.

INTEGER limit on the number of evaluations of residual function Default 10000.

CHARACTER name of the Jacobian approximation to use Default NULL, since
we try to use analytic gradient

INTEGER limit on the number of evaluations of the Jacobian Default 5000

REAL initial value of the Marquardt parameter Default 0.0001 Note: mis-spelling
as in JNMWS, kept as historical serendipity.

REAL multiplier used to REDUCE lambda (0 < lamdec < laminc) Default 4,
so lamda <- lamda * (lamdec/laminc)

REAL multiplier to INCREASE lambda (1 < laminc Default 10

if stepredn > 0, then maximum number of backtrack loops (in addition to default
evaluation); Default 6

REAL stepsize for numerical Jacobian approximation Default le-7

REAL A value used to test for numerical equality, i.e. a and b are taken equal if
(a + offset) == (b + of fset) Default 100.

REAL Factor used to add unit Marquardt stabilization matrix in Nash modifica-
tion of LM method. Default 1

INTEGER The higher the value, the more intermediate output is provided. De-
fault 0

REAL Factor used to add scaled Marquardt stabilization matrix in Nash modifi-
cation of LM method. Default O

LOGICAL If TRUE, perform (safeguarded) relative offset convergence test De-
fault TRUE

16 nlsr.package

scaleOffset a positive constant to be added to the denominator sum-of-squares in the relative
offset convergence criteria. Default 0

smallsstest LOGICAL. If TRUE tests sum of squares and terminates if very small. Default

TRUE

stepredn REAL Factor used to reduce the stepsize in a Gauss-Newton algorithm (Hart-
ley’s method). 0 means NO backtrack. Default 0

watch LOGICAL to provide a pause at the end of each iteration for user to monitor

progress. Default FALSE

Author(s)
J C Nash 2014-7-16 revised 2022-11-22 nashjc _at_ uottawa.ca

nlsr.package nisr-package Tools for solving nonlinear least squares problems The
package provides some tools related to using the Nash variant of Mar-
quardt’s algorithm for nonlinear least squares. Jacobians can usually
be developed by automatic or symbolic derivatives.

Description

nlsr-package
Tools for solving nonlinear least squares problems

The package provides some tools related to using the Nash variant of Marquardt’s algorithm for
nonlinear least squares. Jacobians can usually be developed by automatic or symbolic derivatives.

Usage
nlsr.package()

Details

This package includes methods for solving nonlinear least squares problems specified by a modeling
expression and given a starting vector of named paramters. Note: You must provide an expression
of the form lhs ~ rhsexpression so that the residual expression rhsexpression - lhs can be computed.
The expression can be enclosed in quotes, and this seems to give fewer difficulties with R. Data
variables must already be defined, either within the parent environment or else in the dot-arguments.
Other symbolic elements in the modeling expression must be standard functions or else parameters
that are named in the start vector.

The main functions in nlsr are:

nlfb Nash variant of the Marquardt procedure for nonlinear least squares, with bounds constraints,
using a residual and optionally Jacobian described as R functions.

nlxb Nash variant of the Marquardt procedure for nonlinear least squares, with bounds constraints,
using an expression to describe the residual via an R modeling expression. The Jacobian is computed
via symbolic differentiation.

nlsrSS 17

wrapnlsr Uses n1xb to solve nonlinear least squares then calls n1s() to create an object of type nls.
nlsr is an alias for wrapnlsr

model2rjfun returns a function with header function(prm), which evaluates the residuals (and if
jacobian is TRUE the Jacobian matrix) of the model at prm. The residuals are defined to be the right
hand side of modelformula minus the left hand side.

model2ssgrfun returns a function with header function(prm), which evaluates the sum of squared
residuals (and if gradient is TRUE the gradient vector) of the model at prm.

modelexpr returns the expression used to calculate the vector of residuals (and possibly the Jaco-
bian) used in the previous functions.

Author(s)
John C Nash and Duncan Murdoch

References

Nash, J. C. (1979, 1990) _Compact Numerical Methods for Computers. Linear Algebra and Func-
tion Minimisation._ Adam Hilger./Institute of Physics Publications

Nash, J. C. (2014) _Nonlinear Parameter Optimization Using R Tools._ Wiley

nlsrSsS nlsrSS - solve selfStart nonlinear least squares with nlsr package

Description

This function uses the getInitial () function to estimate starting parameters for a Gauss-Newton
iteration, then calls nlsr::nlxb() appropriately to find a solution to the required nonlinear least
squares problem.

Usage

nlsrSS(formula, data)

Arguments
formula a model formula incorporating a selfStart function in the right hand side
data a data frame with named columns that allow evaluation of the formula
Value

A solution object of class nlsr.

List of solution elements

resid weighted residuals at the proposed solution

jacobian Jacobian matrix at the proposed solution

18

feval

jeval

nlxb

residual function evaluations used to reach solution from starting parameters

Jacobian function (or approximation) evaluations used

coefficients anamed vector of proposed solution parameters

ssquares

lower
upper
maskidx
weights
formula

resfn

Author(s)

weighted sum of squared residuals (often the deviance)
lower bounds on parameters

upper bounds on parameters

vector if indices of fixed (masked) parameters
specified weights on observations

the modeling formula

the residual function (unweighted) based on the formula

J C Nash 2022-9-14 nashjc _at_ uottawa.ca

nlxb

nixb: nonlinear least squares modeling by formula

Description

A simplified and hopefully robust alternative to finding the nonlinear least squares minimizer that
causes ‘formula’ to give a minimal residual sum of squares.

Usage
nlxb(

formula,
data =

start,
trace
lower
upper

weights
control

Arguments

formula

data

parent.frame(),

FALSE,
NULL,
NULL,

= NULL,
listQ),

The modeling formula. Looks like *y~b1/(1+b2*exp(-b3*T))’

a data frame containing data for variables used in the formula that are NOT the
parameters. This data may also be defined in the parent frame i.e., global’ to
this function

nlxb 19

start MUST be a named vector with all elements present e.g., start=c(b1=200, b2=50,
b3=0.3)

trace TRUE for console output during execution

lower a vector of lower bounds on the parameters. If a single number, this will be

applied to all parameters Default NULL.

upper a vector of upper bounds on the parameters. If a single number, this will be
applied to all parameters. Default NULL.

weights A vector of fixed weights or a function or formula producing one. See the Details
below.
control a list of control parameters. See nlsr.control().

additional data needed to evaluate the modeling functions

Details

nlxb is particularly intended to allow for the resolution of very ill-conditioned or else near zero-
residual problems for which the regular nls() function is ill-suited.

This variant uses a gr solution without forming the sum of squares and cross products t(J)

Neither this function nor n1fb have provision for parameter scaling (as in the parscale control of
optim and package optimx). This would be more tedious than difficult to introduce, but does not
seem to be a priority feature to add.

There are many controls, and some of them are important for nlxb. In particular, if the derivatives
needed for developing the Jacobian are NOT in the derivatives table, then we must supply code
elsewhere as specified by the control japprox. This was originally just for numerical approxima-
tions, with the character strings "jafwd", "jaback", "jacentral" and "jand" leading to the use of a
forward, backward, central or package numDeriv approximation. However, it is also possible to use
code embedded in the residual function created using the formula. This is particularly useful for
selfStart models, and we use the character string "SSJac" to point to such Jacobian code. Note
how the starting parameter vector is found using the getInitial function from the stats package
as in an example below.

The weights argument can be a vector of fixed weights, in which case the objective function that
will be minimized is the sum of squares where each residual is multiplied by the square root of the
corresponding weight. Default NULL implies unit weights.

weights may alternatively be a function with header function(parms, resids) to compute such
a vector, or a formula whose right hand side gives an expression for the weights. Variables in the
expression may include the following:

A variable named resid The current residuals.

A variable named fitted The right hand side of the model formula.

Parameters The parameters of the model.

Data Values from data.

Vars Variables in the environment of the formula.

20 nlxb

Value

list of solution elements

resid weighted residuals at the proposed solution

jacobian Jacobian matrix at the proposed solution

feval residual function evaluations used to reach solution from starting parameters
jeval Jacobian function (or approximation) evaluations used

coefficients anamed vector of proposed solution parameters

ssquares weighted sum of squared residuals (often the deviance)

lower lower bounds on parameters

upper upper bounds on parameters

maskidx vector if indices of fixed (masked) parameters

weightso weights specified in function call

weights weights at the final solution

formula the modeling formula

resfn the residual function (unweighted) based on the formula
Author(s)

J C Nash 2014-7-16 nashjc _at_ uottawa.ca

Examples

library(nlsr)
weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
weeddf <- data.frame(tt, weed)
frm <-
wmodu <- weed ~ b1/(1+b2*xexp(-b3*tt)) # Unscaled
nls from unit start FAILS
starti<-c(b1=1, b2=1, b3=1)
hunlsl <- try(nls(wmodu, data=weeddf, start=startl, trace=FALSE))
if (! inherits(hunls1, "try-error"”)) print(hunlsl1) ## else cat("Failure -- try-error\n")
nlxb from unit start
hunlx1 <- try(nlxb(wmodu, data=weeddf, start=c(b1=1, b2=1, b3=1), trace=FALSE))
if (! inherits(hunlx1, "try-error”)) print(hunlx1)

st2h<-c(b1=185, b2=10, b3=.3)

#' hunls2 <- try(nls(wmodu, data=weeddf, start=st2h, trace=FALSE))

if (! inherits(hunls1, "try-error”)) print(hunls1) ## else cat(”"Failure -- try-error\n”)
nlxb from unit start

hunlx1 <- try(nlxb(wmodu, data=weeddf, start=st2h, trace=FALSE))

if (! inherits(hunlx1, "try-error”)) print(hunlx1)

Functional models need to use a Jacobian approximation or external calculation.
For example, the SSlogis() selfStart model from \code{stats} package.

nlxb

nls() needs NO starting value

hSSnls<-try(nls(weed~SSlogis(tt, Asym, xmid, scal), data=weeddf))
summary (hSSnls)

We need to get the start for nlxb explicitly

stSS <- getInitial(weed ~ SSlogis(tt, Asym, xmid, scal), data=weeddf)

hSSnlx<-try(nlxb(weed~SSlogis(tt, Asym, xmid, scal), data=weeddf, start=stSS))

hSSnlx

nls() can only bound parameters with algorithm="port"
and minpack.lm is unreliable in imposing bounds, but nlsr copes fine.
lo<-c(0, 0, 0)
up<-c(190, 10, 2) # Note: start must be admissible.
bnls@<-try(nls(wmodu, data=weeddf, start=st2h,
lower=1o, upper=up)) # should complain and fail

bnls<-try(nls(wmodu, data=weeddf, start=st2h,
lower=1lo, upper=up, algorith="port"))
summary (bnls)
bnlx<-try(nlxb(wmodu, data=weeddf, start=st2h, lower=lo, upper=up))
bnlx

nlxb() can also MASK (fix) parameters. The mechanism of maskidx from nls
is NO LONGER USED. Instead we set upper and lower parameters equal for
the masked parameters. The start value MUST be equal to this fixed value.
lo<-c(190, @, @) # mask first parameter
up<-c(190, 10, 2)
strt <- c(b1=190, b2=1, b3=1)
mnlx<-try(nlxb(wmodu, start=strt, data=weeddf,
lower=1o, upper=up))
mnlx
mnls<-try(nls(wmodu, data=weeddf, start=strt,
lower=lo, upper=up, algorith="port"))
summary (mnls)

Try first parameter masked and see if we get SEs

lo<-c(200, @, @) # mask first parameter

up<-c(100, 10, 5)

strt <- c(b1=200, b2=1, b3=1)

mnlx<-try(nlxb(wmodu, start=strt, data=weeddf,
lower=1o, upper=up))

mnlx

mnls<-try(nls(wmodu, data=weeddf, start=strt,
lower=1lo, upper=up, algorith="port"))

summary(mnls)

Try with weights on the observations

mnlx<-try(nlxb(wmodu, start=strt, data=weeddf,
weights = ~ 1/weed))

mnlx

21

22 numericDerivR

numericDerivR numericDerivR: numerically evaluates the gradient of an expression.
Allin R

Description

This version is all in R to replace the C version in package stats

Usage
numericDerivR(
expr,
theta,
rho = parent.frame(),
dir = 1,
eps = .Machine$double.eps*(1/if (central) 3 else 2),
central = FALSE
)
Arguments
expr expression or call to be differentiated. Should evaluate to a numeric vector.
theta character vector of names of numeric variables used in expr.
rho environment containing all the variables needed to evaluate expr.
dir numeric vector of directions, typically with values in -1, 1 to use for the finite
differences; will be recycled to the length of theta.
eps a positive number, to be used as unit step size hh for the approximate numerical
derivative (f(x+h)-f(x))/h (f(x+h)-f(x))/h or the central version, see central.
central logical indicating if central divided differences should be computed, i.e., (f(x+h)
- f(x-h)) / 2h (f(x+h)-f(x-h))/2h. These are typically more accurate but need more
evaluations of fO)f().
Value

The value of eval(expr, envir = rho) plus a matrix attribute "gradient”. The columns of this matrix
are the derivatives of the value with respect to the variables listed in theta.

Examples

ex <- expression(a/(1+b*exp(-tt*xc)) - weed)

weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
38.558, 50.156, 62.948, 75.995, 91.972)

tt <- 1:12

a <- 200; b <- 50; c <- 0.3

dhobb <- numericDerivR(ex, theta=c("a", "b", "c"))

print(dhobb)

exf <- ~ a/(1+bxexp(-tt*c)) - weed

nvec

Note that a formula doesn't work
dhl <- try(numericDerivR(exf, theta=c("a", "b", "c")))

23

nvec nvec

Description

Compact display of a specified named vector

Usage

nvec(vec)

Arguments

vec a named vector of parameters

Value

none (Note that we may want to change this.)

Author(s)
J C Nash 2014-7-16 nashjc _at_ uottawa.ca

pctrl pctrl

Description

Compact display of specified control vector for package nlsr.

Usage

pctrl(control)

Arguments

control a control list

Value

none

Author(s)
J C Nash 2014-7-16 nashjc _at_ uottawa.ca

24 pnlsim

pnls pnls

Description

Compact display of specified nls object x

Usage
pnls(x)

Arguments

X an nls() result object from nls() or nlsLM()

Value

none

Author(s)
J C Nash 2014-7-16, 2023-5-8 nashjc _at_ uottawa.ca

pnlslm pnlsim

Description
Compact display of specified nls.1m object x. This code returns the iteration count in a different
variable from that of nls objects.

Usage
pnlslm(x)

Arguments

X an nls() result object from minpack.lm::nls.Im()

Value

none

Author(s)
J C Nash 2014-7-16, 2023-5-8 nashjc _at_ uottawa.ca

predict.nlsr 25

predict.nlsr predict.nlsr

Description

prepare and display predictions from an nlsr model

Usage
S3 method for class 'nlsr'
predict(object = NULL, newdata = list(), ...)
Arguments
object an object of class nlsr
newdata a dataframe containing columns that match the original dataframe used to esti-

mate the nonlinear model in the nlsr object
additional data needed to evaluate the modeling functions Default FALSE

Author(s)
J C Nash 2014-7-16 nashjc _at_ uottawa.ca

print.nlsr print.nlsr

Description

prepare and display result of nlsr computations

Usage
S3 method for class 'nlsr'
print(x, ...)
Arguments
X an object of class nlsr
additional data needed to evaluate the modeling functions Default FALSE
Details

The set of possible controls to set is as follows

Author(s)
J C Nash 2014-7-16 nashjc _at_ uottawa.ca

26

pshort

prt prt

Description

To display the calling name of x and print the object with the print.nlsr() function.

Usage

pre(x)

Arguments

X an object of class nlsr

Author(s)

J C Nash 2022-11-22 nashjc _at_ uottawa.ca

pshort pshort

Description

To provide a 1-line summary of an object of class nlsr.

Usage

pshort(x)

Arguments

X an object of class nlsr

Author(s)

J C Nash 2022-11-22 nashjc _at_ uottawa.ca

rawres 27

rawres rawres

Description

Prepare and display raw residuals of nlsr computations NOTE: we use model - data form i.e., rhs

- lhs
Usage

rawres(object = NULL, data = parent.frame(), ...)
Arguments

object an object of class nlsr

data a data frame with the data for which fits are wanted

additional data needed to evaluate the modeling functions

Value

A vector of the raw residuals

Author(s)
J C Nash 2014-7-16 revised 2022-11-22 nashjc _at_ uottawa.ca

resgr resgr

Description

Computes the gradient of the sum of squares function for nonlinear least squares where resfn and
jacfn supply the residuals and Jacobian

Usage
resgr(prm, resfn, jacfn, ...)
Arguments
prm a numeric vector of parameters to the model
resfn a function to compute a vector of residuals
jacfn a function to compute the Jacobian of the sum of squares. If the value is quoted,

then the function is assumed to be a numerical approximation. Currently one of
"jafwd", "jaback", "jacentral”, or "jand".

Extra information needed to compute the residuals

28 resid.nlsr

Details

Does NOT (yet) handle calling of code built into selfStart models. That is, codes that in nlxb
employ control japprox="SSJac".

Value

The main object returned is the numeric vector of residuals computed at prm by means of the
function resfn. There are Jacobian and gradient attributes giving the Jacobian (matrix of 1st
partial derivatives whose row i contains the partial derivative of the i’th residual w.r.t. each of
the parameters) and the gradient of the sum of squared residuals w.r.t. each of the parameters.
Moreover, the Jacobian is repeated within the gradient attribute of the Jacobian. This somewhat
bizarre structure is present for compatibility with nl1s() and some other legacy functions, as well
as to simplify the call to n1fb().

Author(s)

J C Nash 2014-7-16 revised 2022-11-22 nashjc _at_ uottawa.ca

resid.nlsr resid.nlsr

Description

prepare and display result of nlsr computations

Usage
S3 method for class 'nlsr'
resid(object, ...)

Arguments
object an object of class nlsr

additional data needed to evaluate the modeling functions

Author(s)

J C Nash nashjc _at_ uottawa.ca

remove _at_export to try to overcome NAMESPACE issue

residuals.nlsr

29

residuals.nlsr residuals.nlsr

Description

prepare and display result of nlsr computations

Usage
S3 method for class 'nlsr'
residuals(object, ...)

Arguments
object an object of class nlsr

additional data needed to evaluate the modeling functions

Author(s)

J C Nash nashjc _at_ uottawa.ca

resss resss

Description

compute the sum of squares from resfn at parameters prm

Usage
resss(prm, resfn, ...)
Arguments
prm a named numeric vector of parameters to the model
resfn a function to compute a vector of residuals
Extra information needed to compute the residuals
Author(s)

J C Nash 2014-7-16 nashjc _at_ uottawa.ca

30 SSlogisIN

SSlogisJN Alternative self start for three-parameter logistic function SSlogis

Description

Self starter for a 3-parameter logistic function.

The equation for this function is:

f(input) = Asym/(1 + exp((xmid — input)/scal))

The approach of the function SSlogis() in base R uses a different algorithm and returns the actual
solution rather than starting parameters, so runs a complete set of iterations, only to try to repeat
from the solution with the standard algorithm.

Usage

SSlogisIN(input, Asym, xmid, scal)

Arguments
input input vector (input)
Asym asymptotic value for large values of x
xmid a numeric parameter representing the x value at the inflection point of the curve.
The value of SSlogisJN will be Asym/2 at xmid.
scal numeric scale parameter on the input axis
References

Ratkowsky, David A. (1983) Nonlinear Regression Modeling, A Unified Practical Approach, Dekker:
New York, section 8.3.2

Examples

{

require(ggplot2)

require(nlsr)

set.seed(1234)

x <- seq(0, 20, .2)

y <- SSlogisIN(x, 5, 10, .5) + rnorm(length(x), 0, 0.15)
frm<-y ~ SSlogisJIN(x, Asym, xmid, scal)

dat <- data.frame(x = x, y = y)

strt<-getInitial(frm, dat)

cat("Proposed start:\n"); print(strt)

fit <- nlxb(frm, strt, data = dat, control=list(japprox="SSJac"))
print(fit)

plot

ggplot(data = dat, aes(x = x, y = y)) +

summary.nlsr

geom_point() +
geom_line(aes(y = fitted(fit)))
}

31

summary.nlsr summary.nlsr

Description

prepare display result of n1sr computations - NOT compact output

Usage
S3 method for class 'nlsr'
summary(object, ...)

Arguments
object an object of class nlsr

additional data needed to evaluate the modeling functions

Details

The set of possible controls to set is as follows

Author(s)
J C Nash 2014-7-16 nashjc _at_ uottawa.ca

wrapnlsr wrapnlsr

Description

Provides class nls solution to a nonlinear least squares solution using the Nash Marquardt tools.

Usage

wrapnlsr(formula = NULL, data = NULL, start = NULL, control = NULL,

trace = FALSE, subset = NULL, lower = -Inf, upper = Inf,
)

32

Arguments

formula

data

start

control
trace
subset
lower

upper

weights

Value

wrapnlsr

The modeling formula. Looks like *y~b1/(1+b2*exp(-b3*T))’

a data frame containing data for variables used in the formula that are NOT the
parameters. This data may also be defined in the parent frame i.e., global’ to
this function

MUST be a named vector with all elements present e.g., start=c(b1=200, b2=50,
b3=0.3)

a list of control parameters. See nlsr.control().
TRUE for console output during execution (default FALSE)

an optional vector specifying a subset of observations to be used in the fitting
process. NOT used currently by nlxb() or nlfb() and will throw an error if present
and not NULL.

a vector of lower bounds on the parameters. If a single number, this will be
applied to all parameters Default -Inf.

a vector of upper bounds on the parameters. If a single number, this will be
applied to all parameters. Default Inf.

A vector of (usually fixed) weights. The objective function that will be mini-
mized is the sum of squares where each residual is multiplied by the square root
of the corresponding weight. Default NULL implies unit weights.

additional data needed to evaluate the modeling functions

A solution object of type nls

Examples

library(nlsr)

cat("kvanderpoel.R test of wrapnlsr\n")

x<-c(1,3,5,7)

y<-c(37.98,11.68,3.65,3.93)
pks28<-data.frame(x=x,y=y)
fito<-try(nls(y~(atb*exp(1)*(-c*x)), data=pks28, start=c(a=0,b=1,c=1),

print(fite)

trace=TRUE))

fit1<-nlxb(y~(atb*exp(-c*x)), data=pks28, start=c(a=0,b=1,c=1), trace = TRUE)

print(fit1)

cat("\n\n or better\n")
fit2<-wrapnlsr(y~(atbxexp(-c*x)), data=pks28, start=c(a=0,b=1,c=1),

fit2

lower=-Inf, upper=Inf, trace = TRUE)

weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
38.558, 50.156, 62.948, 75.995, 91.972)

tt <- 1:12

weeddf <- data.frame(tt, weed)
hobbsu <- weed ~ b1/(1+b2*exp(-b3*tt))

wrapnlsr

st2 <- c(b1=200, b2=50, b3=0.3)

wts <- 0.5"tt # a straight scaling comes via wts <- rep(0.01, 12)

lo <- c(200, 0, 0)

up <- c(1000, 1000, 1000)

whuw2 <- try(wrapnlsr(start=st2, formula=hobbsu, data=weeddf, subset=2:11,
weights=wts, trace=TRUE, lower=lo, upper=up))

summary (whuw2)

deviance (whuw?2)

whuw2a <- try(nlsr(start=st2, formula=hobbsu, data=weeddf, subset=2:11,
weights=wts, trace=TRUE, lower=lo, upper=up))

summary (whuw2a)

deviance (whuw2a)

33

Index

* jacobian
nlsDeriv, 11

* nls
nlsr.package, 16

* nonlinear &least&squares
nlsr.package, 16

+ nonlinear
model2rjfun, 6

*
model2rjfun, 6
nlsDeriv, 11
alist, 12

codeDeriv (nlsDeriv), 11
coef.nlsr, 2

D, 12
deriv, 12, 13
dex, 12

fitted.nlsr,3
fnDeriv (nlsDeriv), 11

jaback, 4
jacentral, 4
jafwd, 5
jand, 6

model2rjfun, 6

model2ssgrfun (model2rjfun), 6

modelexpr (model2rjfun), 6

nlfb, 8

nls, 7
nlsDeriv, 11
nlsr, 14
nlsr.control, 15
nlsr.package, 16
nlsrSS, 17
nlxb, 18

34

numericDerivR, 22
nvec, 23

pctrl, 23

pnls, 24
pnlslm, 24
predict.nlsr, 25
print.nlsr, 25
prt, 26
pshort, 26

rawres, 27
resgr, 27
resid.nlsr, 28
residuals.nlsr, 29
resss, 29

SSlogisJN, 30

SSmod2rjfun (model2rjfun), 6

substitute, 7/
summary.nlsr, 31

wrapnlsr, 31

	coef.nlsr
	fitted.nlsr
	jaback
	jacentral
	jafwd
	jand
	model2rjfun
	nlfb
	nlsDeriv
	nlsr
	nlsr.control
	nlsr.package
	nlsrSS
	nlxb
	numericDerivR
	nvec
	pctrl
	pnls
	pnlslm
	predict.nlsr
	print.nlsr
	prt
	pshort
	rawres
	resgr
	resid.nlsr
	residuals.nlsr
	resss
	SSlogisJN
	summary.nlsr
	wrapnlsr
	Index

