
Package ‘obfuscatoR’
September 7, 2023

Type Package

Title Obfuscation Game Designs

Version 0.2.2

Maintainer Erlend Dancke Sandorf <erlend.dancke.sandorf@nmbu.no>

Description When people make decisions, they may do so using a wide variety of deci-
sion rules. The package allows users to easily create obfuscation games to test the obfusca-
tion hypothesis. It provides an easy to use interface and multiple options designed to vary the dif-
ficulty of the game and tailor it to the user's needs. For more detail: Chorus et al., 2021, Obfusca-
tion maximization-based decision-making: Theory, methodology and first empirical evi-
dence, Mathematical Social Sciences, 109, 28-44, <doi:10.1016/j.mathsocsci.2020.10.002>.

License GPL-3

Encoding UTF-8

URL https://obfuscator.edsandorf.me,

https://github.com/edsandorf/obfuscatoR

Depends R (>= 3.1.0)

Imports Rfast, stats, matrixStats, stringr, readr, tibble, crayon

Suggests testthat, knitr, rmarkdown

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Erlend Dancke Sandorf [aut, cre],
Caspar Chorus [aut],
Sander van Cranenburgh [aut]

Repository CRAN

Date/Publication 2023-09-07 13:10:02 UTC

R topics documented:
.onAttach . 2
calculate_entropy . 3

1

https://doi.org/10.1016/j.mathsocsci.2020.10.002
https://obfuscator.edsandorf.me
https://github.com/edsandorf/obfuscatoR

2 .onAttach

calculate_payouts . 4
calc_entropy . 4
calc_payout_dm . 5
calc_payout_obs . 6
calc_pr_aj_rk . 6
calc_pr_guess . 7
calc_pr_rk_aj . 7
check_design_opt . 8
construct_design . 9
extract_attr . 9
generate_designs . 10
last . 11
print_design . 11
print_entropy . 12
print_payout . 13
save_design . 13

Index 14

.onAttach Print package startup message

Description

The function is called when the package is loaded through library or require.

Usage

.onAttach(libname, pkgname)

Arguments

libname Library name

pkgname Package name

Value

Nothing

calculate_entropy 3

calculate_entropy Calculate the entropy of each action in the design

Description

The function is a wrapper for calc_entropy and is meant for external use by the user. The goal for
the decision maker is to choose an action such that the observer is left as clueless as possible as to
which rule governs his actions, i.e. maximize entropy.

Usage

calculate_entropy(design, priors = NULL)

Arguments

design A matrix with rows equal to the number of rules and columns equal to the num-
ber of actions or a list of such matrices.

priors A vector of prior values. If the design is a list of matrices, priors can be a matrix
with rows equal to the length of the design and columns equal to the number of
rules.

Value

A list of of vectors of entropies for each possible action with the following attributes:

1. design

2. priors

3. pr_aj_rk

4. pr_rk_aj

Examples

design <- matrix(c(-1, -1, -1, -1, 1,
-1, 0, 0, -1, 0,
-1, 0, -1, 0, 0,
0, 0, -1, 0, -1), nrow = 4L, byrow = TRUE)

calculate_entropy(design)

4 calc_entropy

calculate_payouts Calculate payouts

Description

The function is a wrapper function for calc_payout_obs and calc_payout_dm, and exported to be
used by the user. It calculates the expected payout to both observers and decision makers for each
possible action undertaken by the decision maker, and the observers choice of whether or not to try
and guess the rule.

Usage

calculate_payouts(
entropy,
pay_obs,
pay_dm,
pay_no_guess,
deterministic = FALSE

)

Arguments

entropy A list containing the entropy

pay_obs A numeric with pay to the observer for guessing correctly

pay_dm A numeric with pay to the decision maker if the observer does not guess

pay_no_guess A numeric with pay to the observer for not guessing

deterministic If TRUE a deterministic procedure is used to determine whether the observer
tries to guess. Default is FALSE and the probability is calculated using a logit
expression

Value

A list or list of lists where each list contains the payout to the observer and decision maker.

calc_entropy Calculate Shannon’s Entropy

Description

The function calculates Shannon’s Entropy. The function is meant for internal use only. To calculate
the entropy for each action in the design, please use the wrapper function calculate_entropy

Usage

calc_entropy(design, priors = NULL)

calc_payout_dm 5

Arguments

design A matrix with rows equal to the number of rules and columns equal to the num-
ber of actions or a list of such matrices.

priors A vector of prior values. If the design is a list of matrices, priors can be a matrix
with rows equal to the length of the design and columns equal to the number of
rules.

Value

Returns a vector of entropies for each possible action with the following attributes:

1. design

2. priors

3. pr_aj_rk

4. pr_rk_aj

calc_payout_dm Calculate expected payout to the decision maker

Description

The function calculates the expected payout to the decision maker. The payout to the decision
maker depends on whether or not the observer tries to guess the rule, and the monetary payout for
choosing an action that leaves the observer clueless enough about the rule to refrain from guessing.
The function is meant for internal use only. To calculate the payout to the decision maker, use the
wrapper function calculate_payouts.

Usage

calc_payout_dm(pr_guess, pay_dm)

Arguments

pr_guess A vector of probabilities that the observer will guess.

pay_dm The pay to the decision maker if the observer does not guess.

Value

A vector of expected payouts for each possible guess made by the observer

6 calc_pr_aj_rk

calc_payout_obs Calculate expected payout to the observer

Description

The function calculates the expected payout to the observer. The payout to the observer depends on
the posterior probabilities, i.e. the probability of a rule conditional on observing an action, and the
monetary payout for guessing correctly. The function is meant for internal use only. To calculate
the payout to the observer, use the wrapper function calculate_payouts.

Usage

calc_payout_obs(pr_rk_aj, pay_obs)

Arguments

pr_rk_aj A matrix of posterior probabilities

pay_obs The pay to the observer for guessing correctly.

Value

A vector of expected pays for each possible guess

calc_pr_aj_rk Calculate Pr(a_j|r_k)

Description

The function calculates the probability of an action conditional on a given rule and is part of calcu-
lating the entropy of an action. The function is meant for internal use only.

Usage

calc_pr_aj_rk(design)

Arguments

design A matrix with rows equal to the number of rules and columns equal to the num-
ber of actions or a list of such matrices.

Value

An r x a matrix of probabilities

calc_pr_guess 7

calc_pr_guess Calculate the probability that the observer will try to guess the rule

Description

The function calculates the probability that an observer will try to guess which rule governs the
decision maker’s actions. The function is meant for internal use only. It can be printed alongside
the payouts calculated using print_payout if print_all = TRUE.

Usage

calc_pr_guess(expected_payout_obs, payout_obs_no_guess, deterministic)

Arguments

expected_payout_obs

Vector of expected payout to the observer from guessing
payout_obs_no_guess

The payout to the observer from not guessing

deterministic A boolean equal to TRUE if we treat the decision to guess as deterministic.
Defaults to TRUE.

Value

A vector with the probabilities that an observer will guess

calc_pr_rk_aj Calculate Pr(r_k|a_j)

Description

The function calculates the probability of a rule conditional on observing a given action and is
part of calculating the entropy of an action. This probability is also referred to as the posterior
probability. The function is meant for internal use only.

Usage

calc_pr_rk_aj(pr_aj_rk, priors)

Arguments

pr_aj_rk A matrix with the probabilities of actions conditional on a given rule.

priors A vector of prior values. If the design is a list of matrices, priors can be a matrix
with rows equal to the length of the design and columns equal to the number of
rules.

8 check_design_opt

Value

An r x a matrix of probabilities

check_design_opt Check design options

Description

The function checks the list of design options specified by the user and sets sensible defaults
where no option is specified. The function is meant for internal use only and is not exported to
be used by the users. All options can be overridden by the the user by appropriately specifying
design_opt_input.

Below is a list defining each of the options available to be specified in design_opt_input.

Usage

check_design_opt(design_opt_input)

Arguments

design_opt_input

A list of user supplied design options.

Details

rules Number of rules (i.e. rows)

actions Number of actions (i.e. columns)

min Minimum number of actions available for the considered rule

max Maximum number of actions available for the considered rule

min_fit Minimum number of rules fitting each permitted action conditional on the rule

obligatory Number of rules with obligatory actions

sd_entropy Specifies the standard deviation of the entropy values

designs Number of designs to generate

max_iter Maximum number of iterations before stopping search for designs

seed A seed for the random number generator. Useful for replicability

Value

Returns a list of design options with the missing from input replaced by default values

construct_design 9

construct_design Function to create a rule-action matrix

Description

The function creates a rule-action matrix (i.e. an obfuscation design) subject to a list of pre-
programmed restrictions. These restrictions are in place to ensure that no invalid designs are
created. Some of these restrictions can be changed by the user by appropriately specifying the
design_opt_input. Each matrix is a design for one period of the the obfuscation game. This func-
tion is for internal use only. To create an obfuscation design, the user should use generate_designs.

Usage

construct_design(design_opt)

Arguments

design_opt List of design options

Value

A rules-action matrix

extract_attr Extract attributes

Description

Extracts the attributes of objects nested in a list

Usage

extract_attr(x, str_attr)

Arguments

x A list of objects with attributes or an object with an attribute

str_attr A non-empty character string specifying which attribute is to be extracted

Value

Returns a list the length of x containing the specified attribute. If the attribute does not exist, returns
NULL

10 generate_designs

Examples

design_opt_input <- list(rules = 4, actions = 5)
design <- generate_designs(design_opt_input)
extract_attr(design, "design_conditions")

design_opt_input <- list(rules = 4, actions = 5, designs = 2)
design <- generate_designs(design_opt_input)
extract_attr(design, "design_conditions")

generate_designs Generate obfuscation designs

Description

The function takes the list of design options design_opt_input and generates one or more obfus-
cation designs subject to the specified restrictions. A full specification of all the options available
can be found in the manual along with detailed examples of different designs. At a minimum the
user must supply the number of rules and actions, i.e. the dimensions of the design problem.

Usage

generate_designs(design_opt_input = list())

Arguments

design_opt_input

A list of user supplied design options.

Value

A list of matrices with rules and actions

Examples

design_opt_input <- list(rules = 4,
actions = 5)

generate_designs(design_opt_input)

last 11

last Get the last element of a vector

Description

last extracts the last element of a vector

Usage

last(x)

Arguments

x A vector

Examples

x <- 1:4
last(x)

x <- c("hello", "my", "name", "is", "buttons")
last(x)

print_design Prints the design

Description

Takes a design or list of designs and prints them to the console. To store a design, please see
save_design. Depending on the print options, additional text is provided with information on the
considered rule and/or the design generation process.

Usage

print_design(design, print_all = FALSE)

Arguments

design A matrix with rows equal to the number of rules and columns equal to the num-
ber of actions

print_all If TRUE prints information on the number of iterations and and whether all
design conditions were met. Default is FALSE

12 print_entropy

Examples

design_opt_input <- list(rules = 4,
actions = 5)

design <- generate_designs(design_opt_input)

print_design(design)
print_design(design, TRUE)

print_entropy Prints the entropy of the different actions

Description

The function prints the vector of entropies for each possible action. Depending on printing options,
additional information about the probability calculations can be provided.

Usage

print_entropy(entropy, digits = 3, print_all = FALSE)

Arguments

entropy The entropy measure from calculate_entropy

digits The number of digits to round to. Default 3.

print_all If TRUE will print all information on intermediary calculations

Examples

design <- matrix(c(-1, -1, -1, -1, 1,
-1, 0, 0, -1, 0,
-1, 0, -1, 0, 0,
0, 0, -1, 0, -1), nrow = 4, byrow = TRUE)

entropy <- calculate_entropy(design)

print_entropy(entropy)
print_entropy(entropy, digits = 4)
print_entropy(entropy, print_all = TRUE)

print_payout 13

print_payout Print the payouts

Description

The function formats and prints the payout to the observer and decision maker.

Usage

print_payout(payout, digits = 3, print_all = FALSE)

Arguments

payout A list of calculated payouts

digits The number of digits to round to. Default 3.

print_all If TRUE will print the probabilities of guessing

save_design Save obfuscation designs

Description

The function takes a design or a list of designs and stores them in .csv files in the specified folder.

Usage

save_design(x, x_name, path = getwd())

Arguments

x A design or list of designs

x_name A character string with the name of the file

path A string giving the path to where the designs are stored. The default is the
current working directory

Value

Nothing is returned

Index

.onAttach, 2

calc_entropy, 3, 4
calc_payout_dm, 4, 5
calc_payout_obs, 4, 6
calc_pr_aj_rk, 6
calc_pr_guess, 7
calc_pr_rk_aj, 7
calculate_entropy, 3, 4
calculate_payouts, 4, 5, 6
check_design_opt, 8
construct_design, 9

extract_attr, 9

generate_designs, 9, 10

last, 11

print_design, 11
print_entropy, 12
print_payout, 7, 13

save_design, 11, 13

14

	.onAttach
	calculate_entropy
	calculate_payouts
	calc_entropy
	calc_payout_dm
	calc_payout_obs
	calc_pr_aj_rk
	calc_pr_guess
	calc_pr_rk_aj
	check_design_opt
	construct_design
	extract_attr
	generate_designs
	last
	print_design
	print_entropy
	print_payout
	save_design
	Index

