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“Nothing in Nature is random. . .

a thing appears random only through
the incompleteness of our knowledge.”

Spinoza, Ethics I1.

1 Introduction

Random simulation has long been a very popular and well studied field of mathematics. There exists
a wide range of applications in biology, finance, insurance, physics and many others. So simulations
of random numbers are crucial. In this note, we describe the most random number algorithms

Let us recall the only things, that are truly random, are the measurement of physical phenomena
such as thermal noises of semiconductor chips or radioactive sources2.

The only way to simulate some randomness on computers are carried out by deterministic al-
gorithms. Excluding true randomness3, there are two kinds random generation: pseudo and quasi
random number generators.

The package randtoolbox provides R functions for pseudo and quasi random number generations,
as well as statistical tests to quantify the quality of generated random numbers.

2 Overview of random generation algorithms

In this section, we present first the pseudo random number generation and second the quasi random
number generation. By “random numbers”, we mean random variates of the uniform U(0, 1) distri-
bution. More complex distributions can be generated with uniform variates and rejection or inversion
methods. Pseudo random number generation aims to seem random whereas quasi random number
generation aims to be deterministic but well equidistributed.

Those familiars with algorithms such as linear congruential generation, Mersenne-Twister type
algorithms, and low discrepancy sequences should go directly to the next section.

2.1 Pseudo random generation

At the beginning of the nineties, there was no state-of-the-art algorithms to generate pseudo random
numbers. And the article of Park & Miller (1988) entitled Random generators: good ones are hard to
find is a clear proof.

Despite this fact, most users thought the rand function they used was good, because of a short
period and a term to term dependence. But in 1998, Japenese mathematicians Matsumoto and
Nishimura invents the first algorithm whose period (219937 − 1) exceeds the number of electron spin
changes since the creation of the Universe (106000 against 10120). It was a big breakthrough.

1quote taken from Niederreiter (1978).
2for more details go to http://www.random.org/randomness/.
3For true random number generation on R, use the random package of Eddelbuettel (2007).
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As described in L’Ecuyer (1990), a (pseudo) random number generator (RNG) is defined by a
structure (S, µ, f, U, g) where

• S a finite set of states,
• µ a probability distribution on S, called the initial distribution,
• a transition function f : S 7→ S,
• a finite set of output symbols U ,
• an output function g : S 7→ U .

Then the generation of random numbers is as follows:

1. generate the initial state (called the seed) s0 according to µ and compute u0 = g(s0),
2. iterate for i = 1, . . . , si = f(si−1) and ui = g(si).

Generally, the seed s0 is determined using the clock machine, and so the random variates u0, . . . , un, . . .
seems “real” i.i.d. uniform random variates. The period of a RNG, a key characteristic, is the smallest
integer p ∈ N, such that ∀n ∈ N, sp+n = sn.

2.1.1 Linear congruential generators

There are many families of RNGs : linear congruential, multiple recursive,. . . and “computer opera-
tion” algorithms. Linear congruential generators have a transfer function of the following type

f(x) = (ax+ c) mod m4,

where a is the multiplier, c the increment and m the modulus and x, a, c,m ∈ N (i.e. S is the set of
(positive) integers). f is such that

xn = (axn−1 + c) mod m.

Typically, c and m are chosen to be relatively prime and a such that ∀x ∈ N, ax mod m ̸= 0. The
cycle length of linear congruential generators will never exceed modulus m, but can maximised with
the three following conditions

• increment c is relatively prime to m,
• a− 1 is a multiple of every prime dividing m,
• a− 1 is a multiple of 4 when m is a multiple of 4,

see Knuth (2002) for a proof.
When c = 0, we have the special case of Park-Miller algorithm or Lehmer algorithm (see Park &

Miller (1988)). Let us note that the n+ jth term can be easily derived from the nth term with a puts
to aj mod m (still when c = 0).

Finally, we generally use one of the three types of output function:

• g : N 7→ [0, 1[, and g(x) = x
m ,

• g : N 7→]0, 1], and g(x) = x
m−1 ,

• g : N 7→]0, 1[, and g(x) = x+1/2
m .

Linear congruential generators are implemented in the R function congruRand.

4this representation could be easily generalized for matrix, see L’Ecuyer (1990).
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2.1.2 Multiple recursive generators

A generalisation of linear congruential generators are multiple recursive generators. They are based
on the following recurrences

xn = (a1xn−1 + · · ·+ akxn−kc) mod m,

where k is a fixed integer. Hence the nth term of the sequence depends on the k previous one. A
particular case of this type of generators is when

xn = (xn−37 + xn−100) mod 230,

which is a Fibonacci-lagged generator5. The period is around 2129. This generator has been invented
by Knuth (2002) and is generally called “Knuth-TAOCP-2002” or simply “Knuth-TAOCP”6.

An integer version of this generator is implemented in the R function runif (see RNG). We include in
the package the latest double version, which corrects undesirable deficiency. As described on Knuth’s
webpage7 , the previous version of Knuth-TAOCP fails randomness test if we generate few sequences
with several seeds. The cures to this problem is to discard the first 2000 numbers.

2.1.3 Mersenne-Twister

These two types of generators are in the big family of matrix linear congruential generators (cf.
L’Ecuyer (1990)). But until here, no algorithms exploit the binary structure of computers (i.e. use
binary operations). In 1994, Matsumoto and Kurita invented the TT800 generator using binary
operations. But Matsumoto & Nishimura (1998) greatly improved the use of binary operations and
proposed a new random number generator called Mersenne-Twister.

Matsumoto & Nishimura (1998) work on the finite set N2 = {0, 1}, so a variable x is represented
by a vectors of ω bits (e.g. 32 bits). They use the following linear recurrence for the n+ ith term:

xi+n = xi+m ⊕ (xuppi |xlowi+1)A,

where n > m are constant integers, xuppi (respectively xlowi ) means the upper (lower) ω − r (r) bits of
xi and A a ω × ω matrix of N2. | is the operator of concatenation, so xuppi |xlowi+1 appends the upper
ω− r bits of xi with the lower r bits of xi+1. After a right multiplication with the matrix A8, ⊕ adds
the result with xi+m bit to bit modulo two (i.e. ⊕ denotes the exclusive-or called xor).

Once provided an initial seed x0, . . . , xn−1, Mersenne Twister produces random integers in 0, . . . , 2ω−
1. All operations used in the recurrence are bitwise operations, thus it is a very fast computation com-
pared to modulus operations used in previous algorithms.

To increase the equidistribution, Matsumoto & Nishimura (1998) added a tempering step:

yi ← xi+n ⊕ (xi+n >> u),

yi ← yi ⊕ ((yi << s)⊕ b),
yi ← yi ⊕ ((yi << t)⊕ c),
yi ← yi ⊕ (yi >> l),

where >> u (resp. << s) denotes a rightshift (leftshift) of u (s) bits. At last, we transform random
integers to reals with one of output functions g proposed above.

Details of the order of the successive operations used in the Mersenne-Twister (MT) algorithm can
be found at the page 7 of Matsumoto & Nishimura (1998). However, the least, we need to learn and

5see L’Ecuyer (1990).
6TAOCP stands for The Art Of Computer Programming, Knuth’s famous book.
7go to http://www-cs-faculty.stanford.edu/~knuth/news02.html#rng.

8Matrix A equals to

(

0 Iω−1

a

)

whose right multiplication can be done with a bitwise rightshift operation and an

addition with integer a. See the section 2 of Matsumoto & Nishimura (1998) for explanations.

http://www-cs-faculty.stanford.edu/~knuth/news02.html#rng
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to retain, is all these (bitwise) operations can be easily done in many computer languages (e.g in C)
ensuring a very fast algorithm.

The set of parameters used are

• (ω, n,m, r) = (32, 624, 397, 31),

• a = 0× 9908B0DF, b = 0× 9D2C5680, c = 0× EFC60000,

• u = 11, l = 18, s = 7 and t = 15.

These parameters ensure a good equidistribution and a period of 2nω−r − 1 = 219937 − 1.
The great advantages of the MT algorithm are a far longer period than any previous generators

(greater than the period of Park & Miller (1988) sequence of 232 − 1 or the period of Knuth (2002)
around 2129), a far better equidistribution (since it passed the DieHard test) as well as an very good
computation time (since it used binary operations and not the costly real operation modullus).

MT algorithm is already implemented in R (function runif). However the package randtoolbox

provide functions to compute a new version of Mersenne-Twister (the SIMD-oriented Fast Mersenne
Twister algorithm) as well as the WELL (Well Equidistributed Long-period Linear) generator.

2.1.4 Well Equidistributed Long-period Linear generators

The MT recurrence can be rewritten as
xi = Axi−1,

where xk are vectors of N2 and A a transition matrix. The charateristic polynom of A is

χA(z)
△
= det(A− zI) = zk − α1z

k−1 − · · · − αk−1z − αk,

with coefficients αk’s in N2. Those coefficients are linked with output integers by

xi,j = (α1xi−1,j + · · ·+ αkxi−k,j) mod 2

for all component j.
From Panneton et al. (2006), we have the period length of the recurrence reaches the upper bound

2k − 1 if and only if the polynom χA is a primitive polynomial over N2.
The more complex is the matrixA the slower will be the associated generator. Thus, we compromise

between speed and quality (of equidistribution). If we denote by ψd the set of all d-dimensional vectors
produced by the generator from all initial states9.

If we divide each dimension into 2l10 cells (i.e. the unit hypercube [0, 1[d is divided into 2ld cells),
the set ψd is said to be (d, l)-equidistributed if and only if each cell contains exactly 2k−dl of its points.
The largest dimension for which the set ψd is (d, l)-equidistributed is denoted by dl.

The great advantage of using this definition is we are not forced to compute random points to know
the uniformity of a generator. Indeed, thanks to the linear structure of the recurrence we can express
the property of bits of the current state. From this we define a dimension gap for l bits resolution as
δl = ⌊k/l⌋ − dl.

An usual measure of uniformity is the sum of dimension gaps

∆1 =

ω∑

l=1

δl.

Panneton et al. (2006) tries to find generators with a dimension gap sum ∆1 around zero and a number
Z1 of non-zero coefficients in χA around k/2. Generators with these two characteristics are called

9The cardinality of ψd is 2k.
10with l an integer such that l ≤ ⌊k/d⌋.
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Well Equidistributed Long-period Linear generators. As a benchmark, Mersenne Twister algorithm is
characterized with k = 19937, ∆1 = 6750 and Z1 = 135.

The WELL generator is characterized by the following A matrix













T5,7,0 0 . . .
T0 0 . . .

0 I
. . .

. . .
. . .
. . . I 0

0 L 0














,

where T. are specific matrices, I the identity matrix and L has ones on its “top left” corner. The first
two lines are not entirely sparse but “fill” with T. matrices. All T.’s matrices are here to change the
state in a very efficient way, while the subdiagonal (nearly full of ones) is used to shift the unmodified
part of the current state to the next one. See Panneton et al. (2006) for details.

The MT generator can be obtained with special values of T.’s matrices. Panneton et al. (2006)
proposes a set of parameters, where they computed dimension gap number ∆1. The full table can be
found in Panneton et al. (2006), we only sum up parameters for those implemented in this package in
table 1.

name k N1 ∆1

WELL512a 512 225 0

WELL1024a 1024 407 0

WELL19937a 19937 8585 4

WELL44497a 44497 16883 7

Table 1: Specific WELL generators

Let us note that for the last two generators a tempering step is possible in order to have maximally
equidistributed generator (i.e. (d, l)-equidistributed for all d and l). These generators are implemented
in this package thanks to the C code of L’Ecuyer and Panneton.

2.1.5 SIMD-oriented Fast Mersenne Twister algorithms

A decade after the invention of MT, Matsumoto & Saito (2008) enhances their algorithm with the
computer of today, which have Single Instruction Mutiple Data operations letting to work conceptually
with 128 bits integers.

MT and its successor are part of the family of multiple-recursive matrix generators since they
verify a multiple recursive equation with matrix constants. For MT, we have the following recurrence

xk+n = xk

(
Iω−r 0
0 0

)

A⊕ xk+1

(
0 0
0 Ir

)

A⊕ xk+m.

︸ ︷︷ ︸

h(xk,xk+1,...,xm,...,xk+n−1)

for the k + nth term.
Thus the MT recursion is entirely characterized by

h(ω0, . . . , ωn−1) = (ω0|ω1)A⊕ ωm,

where ωi denotes the ith word integer (i.e. horizontal vectors of N2).
The general recurrence for the SFMT algorithm extends MT recursion to

h(ω0, . . . , ωn−1) = ω0A⊕ ωmB ⊕ ωn−2C ⊕ ωn−1D,
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where A,B,C,D are sparse matrices over N2, ωi are 128-bit integers and the degree of recursion is
n =

⌈
19937
128

⌉
= 156.

The matrices A,B,C and D for a word w are defined as follows,

• wA =

(

w
128
<< 8

)

⊕ w,

• wB =

(

w
32
>> 11

)

⊗ c, where c is a 128-bit constant and ⊗ the bitwise AND operator,

• wC = w
128
>> 8,

• wD = w
32
<< 18,

where
128
<< denotes a 128-bit operation while

32
>> a 32-bit operation, i.e. an operation on the four

32-bit parts of 128-bit word w.
Hence the transition function of SFMT is given by

f : (Nω
2 )

n 7→ (Nω
2 )

n

(ω0, . . . , ωn−1) 7→ (ω1, . . . , ωn−1, h(ω0, . . . , ωn−1)),

where (Nω
2 )

n is the state space.
The selection of recursion and parameters was carried out to find a good dimension of equidistri-

bution for a given a period. This step is done by studying the characteristic polynomial of f . SFMT
allow periods of 2p − 1 with p a (prime) Mersenne exponent11. Matsumoto & Saito (2008) proposes
the following set of exponents 607, 1279, 2281, 4253, 11213, 19937, 44497, 86243, 132049 and 216091.

The advantage of SFMT over MT is the computation speed, SFMT is twice faster without SIMD
operations and nearly fourt times faster with SIMD operations. SFMT has also a better equidistribu-
tion12 and a better recovery time from zeros-excess states13. The function SFMT provides an interface
to the C code of Matsumoto and Saito.

2.2 Quasi random generation

Before explaining and detailing quasi random generation, we must (quickly) explain Monte-Carlo14

methods, which have been introduced in the forties. In this section, we follow the approach of Nieder-
reiter (1978).

Let us work on the d-dimensional unit cube Id = [0, 1]d and with a (multivariate) bounded
(Lebesgues) integrable function f on Id. Then we define the Monte Carlo approximation of inte-
gral of f over Id by

∫

Id
f(x)dx ≈ 1

n

n∑

i=1

f(Xi),

where (Xi)1≤i≤n are independent random points from Id.
The strong law of large numbers ensures the almost surely convergence of the approximation.

Furthermore, the expected integration error is bounded by O( 1√
n
), with the interesting fact it does

not depend on dimension d. Thus Monte Carlo methods have a wide range of applications.
The main difference between (pseudo) Monte-Carlo methods and quasi Monte-Carlo methods is

that we no longer use random points (xi)1≤i≤n but deterministic points. Unlike statistical tests,
numerical integration does not rely on true randomness. Let us note that quasi Monte-Carlo methods
date from the fifties, and have also been used for interpolation problems and integral equations solving.

11a Mersenne exponent is a prime number p such that 2p − 1 is prime. Prime numbers of the form 2p − 1 have the
special designation Mersenne numbers.

12See linear algebra arguments of Matsumoto & Nishimura (1998).
13states with too many zeros.
14according to wikipedia the name comes from a famous casino in Monaco.
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In the following, we consider a sequence ”’Furthermore the convergence condition on the sequence
(ui)i is to be uniformly distributed in the unit cube Id with the following sense:

∀J ⊂ Id, lim
n→+∞

1

n

n∑

i=1

11J(ui) = λd(J),

where λd stands for the d-dimensional volume (i.e. the d-dimensional Lebesgue measure) and 11J the
indicator function of subset J . The problem is that our discrete sequence will never constitute a “fair”
distribution in Id, since there will always be a small subset with no points.

Therefore, we need to consider a more flexible definition of uniform distribution of a sequence.
Before introducing the discrepancy, we need to define CardE(u1, . . . , un) as

∑n
i=1 11E(ui) the number

of points in subset E. Then the discrepancy Dn of the n points (ui)1≤i≤n in Id is given by

Dn = sup
J∈J

∣
∣
∣
∣

CardJ(u1, . . . , un)

n
− λd(J)

∣
∣
∣
∣

where J denotes the family of all subintervals of Id of the form
∏d

i=1[ai, bi]. If we took the family

of all subintervals of Id of the form
∏d

i=1[0, bi], Dn is called the star discrepancy (cf. Niederreiter
(1992)).

Let us note that the Dn discrepancy is nothing else than the L∞-norm over the unit cube of
the difference between the empirical ratio of points (ui)1≤i≤n in a subset J and the theoretical point
number in J . A L2-norm can be defined as well, see Niederreiter (1992) or Jäckel (2002).

The integral error is bounded by
∣
∣
∣
∣
∣

1

n

n∑

i=1

f(ui)−
∫

Id
f(x)dx

∣
∣
∣
∣
∣
≤ Vd(f)Dn,

where Vd(f) is the d-dimensional Hardy and Krause variation15 of f on Id (supposed to be finite).
Actually the integral error bound is the product of two independent quantities: the variability of

function f through Vd(f) and the regularity of the sequence through Dn. So, we want to minimize
the discrepancy Dn since we generally do not have a choice in the “problem” function f .

We will not explain it but this concept can be extented to subset J of the unit cube Id in order to
have a similar bound for

∫

J f(x)dx.
In the literature, there were many ways to find sequences with small discrepancy, generally called

low-discrepancy sequences or quasi-random points. A first approach tries to find bounds for these
sequences and to search the good parameters to reach the lower bound or to decrease the upper
bound. Another school tries to exploit regularity of function f to decrease the discrepancy. Sequences
coming from the first school are called quasi-random points while those of the second school are called
good lattice points.

2.2.1 Quasi-random points and discrepancy

Until here, we do not give any example of quasi-random points. In the unidimensional case, an easy
example of quasi-random points is the sequence of n terms given by ( 1

2n ,
3
2n , . . . ,

2n−1
2n ). This sequence

has a discrepancy 1
n , see Niederreiter (1978) for details.

The problem with this finite sequence is it depends on n. And if we want different points numbers,
we need to recompute the whole sequence. In the following, we will on work the first n points of an
infinite sequence in order to use previous computation if we increase n.

Moreover we introduce the notion of discrepancy on a finite sequence (ui)1≤i≤n. In the above
example, we are able to calculate exactly the discrepancy. With infinite sequence, this is no longer
possible. Thus, we will only try to estimate asymptotic equivalents of discrepancy.

15Interested readers can find the definition page 966 of Niederreiter (1978). In a sentence, the Hardy and Krause
variation of f is the supremum of sums of d-dimensional delta operators applied to function f .
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The discrepancy of the average sequence of points is governed by the law of the iterated logarithm
:

lim sup
n→+∞

√
nDn√

log log n
= 1,

which leads to the following asymptotic equivalent for Dn:

Dn = O

(√

log log n

n

)

.

2.2.2 Van der Corput sequences

An example of quasi-random points, which have a low discrepancy, is the (unidimensional) Van der
Corput sequences.

Let p be a prime number. Every integer n can be decomposed in the p basis, i.e. there exists some
integer k such that

n =

k∑

j=1

ajp
j .

Then, we can define the radical-inverse function of integer n as

φp(n) =

k∑

j=1

aj
pj+1

.

And finally, the Van der Corput sequence is given by (φp(0), φp(1), . . . , φp(n), . . . ) ∈ [0, 1[. First terms
of those sequence for prime numbers 2 and 3 are given in table 2.

n in p-basis φp(n)
n p = 2 p = 3 p = 5 p = 2 p = 3 p = 5

0 0 0 0 0 0 0

1 1 1 1 0.5 0.333 0.2

2 10 2 2 0.25 0.666 0.4

3 11 10 3 0.75 0.111 0.6

4 100 11 4 0.125 0.444 0.8

5 101 12 10 0.625 0.777 0.04

6 110 20 11 0.375 0.222 0.24

7 111 21 12 0.875 0.555 0.44

8 1000 22 13 0.0625 0.888 0.64

Table 2: Van der Corput first terms

The big advantage of Van der Corput sequence is that they use p-adic fractions easily computable
on the binary structure of computers.

2.2.3 Halton sequences

The d-dimensional version of the Van der Corput sequence is known as the Halton sequence. The nth
term of the sequence is define as

(φp1(n), . . . , φpd(n)) ∈ Id,
where p1, . . . , pd are pairwise relatively prime bases. The discrepancy of the Halton sequence is asymp-

totically O
(
log(n)d

n

)

.
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The following Halton theorem gives us better discrepancy estimate of finite sequences. For any
dimension d ≥ 1, there exists an finite sequence of points in Id such that the discrepancy

Dn = O

(
log(n)d−1

n

)

16.

Therefore, we have a significant guarantee there exists quasi-random points which are outperforming
than traditional Monte-Carlo methods.

2.2.4 Faure sequences

The Faure sequences is also based on the decomposition of integers into prime-basis but they have
two differences: it uses only one prime number for basis and it permutes vector elements from one
dimension to another.

The basis prime number is chosen as the smallest prime number greater than the dimension d, i.e.
3 when d = 2, 5 when d = 3 or 4 etc. . . In the Van der Corput sequence, we decompose integer n
into the p-basis:

n =

k∑

j=1

ajp
j .

Let a1,j be integer aj used for the decomposition of n. Now we define a recursive permutation of aj :

∀2 ≤ D ≤ d, aD,j =
k∑

j=i

Ci
jaD−1,j mod p,

where Ci
j denotes standard combination j!

i!(j−i)! . Then we take the radical-inversion φp(aD,1, . . . , aD,k)
defined as

φp(a1, . . . , ak) =

k∑

j=1

aj
pj+1

,

which is the same as above for n defined by the aD,i’s.
Finally the (d-dimensional) Faure sequence is defined by

(φp(a1,1, . . . , a1,k), . . . , φp(ad,1, . . . , ad,k)) ∈ Id.

In the bidimensional case, we work in 3-basis, first terms of the sequence are listed in table 3.

2.2.5 Sobol sequences

This sub-section is taken from unpublished work of Diethelm Wuertz.
The Sobol sequence xn = (xn,1, . . . , xn,d) is generated from a set of binary functions of length ω

bits (vi,j with i = 1, . . . , ω and j = 1, . . . , d). vi,j , generally called direction numbers are numbers
related to primitive (irreducible) polynomials over the field {0, 1}.

In order to generate the jth dimension, we suppose that the primitive polynomial in dimension j
is

pj(x) = xq + a1x
q−1 + · · ·+ aq−1x+ 1.

Then we define the following q-term recurrence relation on integers (Mi,j)i

Mi,j = 2a1Mi−1,j ⊕ 22a2Mi−2,j ⊕ · · · ⊕ 2q−1aq−1Mi−q+1,j ⊕ 2qaqMi−q,j ⊕ Mi−q,

where i > q.

16if the sequence has at least two points, cf. Niederreiter (1978).
17we omit commas for simplicity.
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n a13a12a11
17 a23a22a21 φ(a13..) φ(a23..)

0 000 000 0 0
1 001 001 1/3 1/3
2 002 002 2/3 2/3

3 010 012 1/9 7/9
4 011 010 4/9 1/9
5 012 011 7/9 4/9

6 020 021 2/9 5/9
7 021 022 5/9 8/9
8 022 020 8/9 2/9

9 100 100 1/27 1/27
10 101 101 10/27 10/27
11 102 102 19/27 19/27

12 110 112 4/27 22/27
13 111 110 12/27 4/27
14 112 111 22/27 12/27

Table 3: Faure first terms

This allow to compute direction numbers as

vi,j =Mi,j/2
i.

This recurrence is initialized by the set of arbitrary odd integers v1,j2
ω, . . . , v,j2

qω, which are smaller
than 2, . . . , 2q respectively. Finally the jth dimension of the nth term of the Sobol sequence is with

xn,j = b1v1,j ⊕ b2v2,j ⊕ · · · ⊕ vω,j ,

where bk’s are the bits of integer n =
∑ω−1

k=0 bk2
k. The requirement is to use a different primitive

polynomial in each dimension. An e?cient variant to implement the generation of Sobol sequences was
proposed by Antonov & Saleev (1979). The use of this approach is demonstrated in Bratley & Fox
(1988) and Press et al. (1996).

2.2.6 Scrambled Sobol sequences

Randomized QMC methods are the basis for error estimation. A generic recipe is the following:
Let A1, . . . , An be a QMC point set and Xi a scrambled version of Ai. Then we are searching for
randomizations which have the following properties:

• Uniformity: The Xi makes the approximator Î = 1
N

∑N
i=1 f(Xi) an unbiased estimate of I =

∫

[0,1]d f(x)dx.

• Equidistribution: The Xi form a point set with probability 1; i.e. the random- ization process
has preserved whatever special properties the underlying point set had.

The Sobol sequences can be scrambled by the Owen’s type of scrambling, by the Faure-Tezuka type
of scrambling, and by a combination of both.

The program we have interfaced to R is based on the ACM Algorithm 659 described by Bratley
& Fox (1988) and Bratley et al. (1992). Modifications by Hong & Hickernell (2001) allow for a
randomization of the sequences. Furthermore, in the case of the Sobol sequence we followed the
implementation of Joe & Kuo (2003) which can handle up to 1111 dimensions. Joe & Kuo (2008)
propose implementations up to 21201 dimensions.

To interface the Fortran routines to the R environment some modifications had to be performed.
One important point was to make possible to re-initialize a sequence and to recall a sequence without
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renitialization from R. This required to remove BLOCKDATA, COMMON and SAVE statements from
the original code and to pass the initialization variables through the argument lists of the subroutines,
so that these variables can be accessed from R.

2.2.7 Kronecker sequences

Another kind of low-discrepancy sequence uses irrational number and fractional part. The fractional
part of a real x is denoted by {x} = x − ⌊x⌋. The infinite sequence ({nα})n≤0 has a bound for its
discrepancy

Dn ≤ C
1 + log n

n
.

This family of infinite sequence ({nα})n≤0 is called the Kronecker sequence.
A special case of the Kronecker sequence is the Torus algorithm where irrational number α is a

square root of a prime number. The nth term of the d-dimensional Torus algorithm is defined by

({n√p1}, . . . , {n
√
pd}) ∈ Id,

where (p1, . . . , pd) are prime numbers, generally the first d prime numbers. With the previous inequal-
ity, we can derive an estimate of the Torus algorithm discrepancy:

O

(
1 + log n

n

)

.

2.2.8 Mixed pseudo quasi random sequences

Sometimes we want to use quasi-random sequences as pseudo random ones, i.e. we want to keep the
good equidistribution of quasi-random points but without the term-to-term dependence.

One way to solve this problem is to use pseudo random generation to mix outputs of a quasi-random
sequence. For example in the case of the Torus sequence, we have repeat for 1 ≤ i ≤ n

• draw an integer ni from Mersenne-Twister in {0, . . . , 2ω − 1}
• then ui = {ni

√
p}

2.2.9 Good lattice points

In the above methods we do not take into account a better regularity of the integrand function f than
to be of bounded variation in the sense of Hardy and Krause. Good lattice point sequences try to use
the eventual better regularity of f .

If f is 1-periodic for each variable, then the approximation with good lattice points is
∫

Id
f(x)dx ≈ 1

n

n∑

i=1

f

(
i

n
g

)

,

where g ∈ Zd is suitable d-dimensional lattice point. To impose f to be 1-periodic may seem too brutal.
But there exists a method to transform f into a 1-periodic function while preserving regularity and
value of the integrand (see Niederreiter 1978, page 983).

We have the following theorem for good lattice points. For every dimension d ≥ 2 and integer
n ≥ 2, there exists a lattice points g ∈ Zd which coordinates relatively prime to n such that the
discrepancy Dn of points { 1ng}, . . . , {nng} satisfies

Ds <
d

n
+

1

2n

(
7

5
+ 2 logm

)d

.

Numerous studies of good lattice points try to find point g which minimizes the discrepancy.
Korobov test g of the following form

(
1,m, . . . ,md−1

)
with m ∈ N. Bahvalov tries Fibonnaci numbers

(F1, . . . , Fd). Other studies look directly for the point α = g
n e.g. α =

(

p
1

d+1 , . . . , p
d

d+1

)

or some

cosinus functions. We let interested readers to look for detailed information in Niederreiter (1978).
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3 Examples of distinguishing from truly random numbers

For a good generator, it is not computationally easy to distinguish the output of the generator from
truly random numbers, if the seed or the index in the sequence is not known. In this section, we present
examples of generators, whose output may be easily distinguished from truly random numbers.

An example of such a generator is the older version of Wichmann-Hill from 1982. For this generator,
we can even predict the next number in the sequence, if we know the last already generated one.
Verifying such a predicition is easy and it is, of course, not valid for truly random numbers. Hence, we
can easily distinguish the output of the generator from truly random numbers. An implementation of
this test in R derived from McCullough (2008) is as follows.

> wh.predict <- function(x)

+ {

+ M1 <- 30269

+ M2 <- 30307

+ M3 <- 30323

+ y <- round(M1*M2*M3*x)

+ s1 <- y %% M1

+ s2 <- y %% M2

+ s3 <- y %% M3

+ s1 <- (171*26478*s1) %% M1

+ s2 <- (172*26070*s2) %% M2

+ s3 <- (170*8037*s3) %% M3

+ (s1/M1 + s2/M2 + s3/M3) %% 1

+ }

> RNGkind("Wichmann-Hill")

> xnew <- runif(1)

> maxerr <- 0

> for (i in 1:1000) {

+ xold <- xnew

+ xnew <- runif(1)

+ err <- abs(wh.predict(xold) - xnew)

+ maxerr <- max(err, maxerr)

+ }

> print(maxerr)

[1] 0

The printed error is 0 on some machines and less than 5 · 10−16 on other machines. This is clearly
different from the error obtained for truly random numbers, which is close to 1.

The requirement that the output of a random number generator should not be distinguishable from
the truly random numbers by a simple computation, is directly related to the way, how a generator
is used. Typically, we use the generated numbers as an input to a computation and we expect that
the distribution of the output (for different seeds or for different starting indices in the sequence) is
the same as if the input are truly random numbers. A failure of this assumption implies, besides of a
wrong result of our simulation, that observing the output of the computation allows to distinguish the
output from the generator from truly random numbers. Hence, we want to use a generator, for which
we may expect that the calculations used in the intended application cannot distinguish its output
from truly random numbers.

In this context, it has to be noted that many of the currently used generators for simulations can
be distinguished from truly random numbers using the arithmetic mod 2 (XOR operation) applied
to individual bits of the output numbers. This is true for Mersenne Twister, SFMT and also all
WELL generators. The basis for tolerating this is based on two facts. First, the arithmetic mod 2 and
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extracting individual bits of real numbers is not directly used in typical simulation problems and real
valued functions, which represent these operations, are extremely discontinuous and such functions
also do not typically occur in simulation problems. Another reason is that we need to observe quite a
long history of the output to detect the difference from true randomness. For example, for Mersenne
Twister, we need 624 consecutive numbers.

On the other hand, if we use a cryptographically strong pseudorandom number generator, we may
avoid distinguishing from truly random numbers under any known efficient procedure. Such generators
are typically slower than Mersenne Twister type generators. The factor of slow down is, for example
for AES, about 5. However, note that for simulation problems, which require intensive computation
besides the generating random numbers, using slower, but better, generator implies only negligible
slow down of the computation as a whole.

4 Description of the random generation functions

In this section, we detail the R functions implemented in randtoolbox and give examples.

4.1 Pseudo random generation

For pseudo random generation, R provides many algorithms through the function runif parametrized
with .Random.seed. We encourage readers to look in the corresponding help pages for examples and
usage of those functions. Let us just say runif use the Mersenne-Twister algorithm by default and
other generators such as Wichmann-Hill, Marsaglia-Multicarry or Knuth-TAOCP-200218.

4.1.1 congruRand

The randtoolbox package provides two pseudo-random generators functions : congruRand and SFMT.
congruRand computes linear congruential generators, see sub-section 2.1.1. By default, it computes
the Park & Miller (1988) sequence, so it needs only the observation number argument. If we want to
generate 10 random numbers, we type

> congruRand(10)

[1] 0.12139430 0.27396810 0.58182109

[4] 0.66710459 0.02692346 0.50260732

[7] 0.32122284 0.79223320 0.06330936

[10] 0.04038768

One will quickly note that two calls to congruRand will not produce the same output. This is due
to the fact that we use the machine time to initiate the sequence at each call. But the user can set
the seed with the function setSeed:

> setSeed(1)

> congruRand(10)

[1] 7.826369e-06 1.315378e-01

[3] 7.556053e-01 4.586501e-01

[5] 5.327672e-01 2.189592e-01

[7] 4.704462e-02 6.788647e-01

[9] 6.792964e-01 9.346929e-01

One can follow the evolution of the nth integer generated with the option echo=TRUE.

18see Wichmann & Hill (1982), Marsaglia (1994) and Knuth (2002) for details.
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> setSeed(1)

> congruRand(10, echo=TRUE)

1 th integer generated : 1

2 th integer generated : 16807

3 th integer generated : 282475249

4 th integer generated : 1622650073

5 th integer generated : 984943658

6 th integer generated : 1144108930

7 th integer generated : 470211272

8 th integer generated : 101027544

9 th integer generated : 1457850878

10 th integer generated : 1458777923

[1] 7.826369e-06 1.315378e-01

[3] 7.556053e-01 4.586501e-01

[5] 5.327672e-01 2.189592e-01

[7] 4.704462e-02 6.788647e-01

[9] 6.792964e-01 9.346929e-01

We can check that those integers are the 10 first terms are listed in table 4, coming from http:

//www.firstpr.com.au/dsp/rand31/.

n xn n xn
1 16807 6 470211272
2 282475249 7 101027544
3 1622650073 8 1457850878
4 984943658 9 1458777923
5 1144108930 10 2007237709

Table 4: 10 first integers of Park & Miller (1988) sequence

We can also check around the 10000th term. From the site http://www.firstpr.com.au/dsp/

rand31/, we know that 9998th to 10002th terms of the Park-Miller sequence are 925166085, 1484786315,
1043618065, 1589873406, 2010798668. The congruRand generates

> setSeed(1614852353)

> congruRand(5, echo=TRUE)

1 th integer generated : 1614852353

2 th integer generated : 925166085

3 th integer generated : 1484786315

4 th integer generated : 1043618065

5 th integer generated : 1589873406

[1] 0.4308140 0.6914075 0.4859725

[4] 0.7403425 0.9363511

with 1614852353 being the 9997th term of Park-Miller sequence.
However, we are not limited to the Park-Miller sequence. If we change the modulus, the increment

and the multiplier, we get other random sequences. For example,

> setSeed(12)

> congruRand(5, mod = 2^8, mult = 25, incr = 16, echo= TRUE)

http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/
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1 th integer generated : 12

2 th integer generated : 60

3 th integer generated : 236

4 th integer generated : 28

5 th integer generated : 204

[1] 0.234375 0.921875 0.109375

[4] 0.796875 0.984375

Those values are correct according to Planchet et al. 2005, page 119.
Here is a example list of RNGs computable with congruRand:

RNG mod mult incr

Knuth - Lewis 232 1664525 1.01e919

Lavaux - Jenssens 248 31167285 1
Haynes 264 6.36e1720 1
Marsaglia 232 69069 0
Park - Miller 231 − 1 16807 0

Table 5: some linear RNGs

One may wonder why we implement such a short-period algorithm since we know the Mersenne-
Twister algorithm. It is provided to make comparisons with other algorithms. The Park-Miller RNG
should not be viewed as a “good” random generator.

Finally, congruRand function has a dim argument to generate dim- dimensional vectors of random
numbers. The nth vector is build with d consecutive numbers of the RNG sequence (i.e. the nth term
is the (un+1, . . . , un+d)).

4.1.2 SFMT

The SF- Mersenne Twister algorithm is described in sub-section 2.1.5. Usage of SFMT function imple-
menting the SF-Mersenne Twister algorithm is the same. First argument n is the number of random
variates, second argument dim the dimension.

> SFMT(10)

> SFMT(5, 2) #bi dimensional variates

[1] 0.89261930 0.06137007 0.73847286

[4] 0.80674566 0.95039920 0.18850544

[7] 0.09541254 0.33776126 0.68568127

[10] 0.89290811

[,1] [,2]

[1,] 0.26877150 0.2830861

[2,] 0.28622458 0.4133985

[3,] 0.41804085 0.4601084

[4,] 0.03945581 0.3222465

[5,] 0.35869000 0.6011139

A third argument is mexp for Mersenne exponent with possible values (607, 1279, 2281, 4253,
11213, 19937, 44497, 86243, 132049 and 216091). Below an example with a period of 2607 − 1:

> SFMT(10, mexp = 607)

191013904223.
20636412233846793005.
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[1] 0.05081088 0.07366899 0.58092294

[4] 0.82448127 0.09645679 0.59769345

[7] 0.11545351 0.96352891 0.30449198

[10] 0.62635586

Furthermore, following the advice of Matsumoto & Saito (2008) for each exponent below 19937,
SFMT uses a different set of parameters21 in order to increase the independence of random generated
variates between two calls. Otherwise (for greater exponent than 19937) we use one set of parameters22.

We must precise that we do not implement the SFMT algorithm, we “just” use the C code of
Matsumoto & Saito (2008). For the moment, we do not fully use the strength of their code. For
example, we do not use block generation and SSE2 SIMD operations.

4.2 Quasi-random generation

4.2.1 Halton sequences

The function halton implements both the Van Der Corput (unidimensional) and Halton sequences.
The usage is similar to pseudo-RNG functions

> halton(10)

> halton(10, 2)

[1] 0.5000 0.2500 0.7500 0.1250 0.6250

[6] 0.3750 0.8750 0.0625 0.5625 0.3125

[,1] [,2]

[1,] 0.5000 0.33333333

[2,] 0.2500 0.66666667

[3,] 0.7500 0.11111111

[4,] 0.1250 0.44444444

[5,] 0.6250 0.77777778

[6,] 0.3750 0.22222222

[7,] 0.8750 0.55555556

[8,] 0.0625 0.88888889

[9,] 0.5625 0.03703704

[10,] 0.3125 0.37037037

You can use the init argument set to FALSE (default is TRUE) if you want that two calls to
halton functions do not produce the same sequence (but the second call continues the sequence from
the first call.

> halton(5)

> halton(5, init=FALSE)

[1] 0.500 0.250 0.750 0.125 0.625

[1] 0.3750 0.8750 0.0625 0.5625 0.3125

init argument is also available for other quasi-RNG functions.

21this can be avoided with usepset argument to FALSE.
22These parameter sets can be found in the C function initSFMT in SFMT.c source file.
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4.2.2 Sobol sequences

The function sobol implements the Sobol sequences with optional sampling (Owen, Faure-Tezuka or
both type of sampling). This sub-section also comes from an unpublished work of Diethelm Wuertz.

To use the different scrambling option, you just to use the scrambling argument: 0 for (the
default) no scrambling, 1 for Owen, 2 for Faure-Tezuka and 3 for both types of scrambling.

> sobol(10)

[1] 0.5000 0.7500 0.2500 0.3750 0.8750

[6] 0.6250 0.1250 0.1875 0.6875 0.9375

It is easier to see the impact of scrambling by plotting two-dimensional sequence in the unit square.
Below we plot the default Sobol sequence and Sobol scrambled by Owen algorithm, see figure 1.

> par(mfrow = c(1,2))

> plot(sobol(1000, 2))

> plot(sobol(10^3, 2, scrambling=1))
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Figure 1: Sobol (two sampling types)

4.2.3 Faure sequences

In a near future, randtoolbox package will have an implementation of Faure sequences. For the
moment, there is no function faure.

4.2.4 Torus algorithm (or Kronecker sequence)

The function torus implements the Torus algorithm.

> torus(10)

[1] 0.41421356 0.82842712 0.24264069

[4] 0.65685425 0.07106781 0.48528137

[7] 0.89949494 0.31370850 0.72792206

[10] 0.14213562
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These numbers are fractional parts of
√
2, 2
√
2, 3
√
2, . . . , see sub-section 2.2.1 for details.

> torus(5, use =TRUE)

[1] 0.2753084 0.6895219 0.1037355

[4] 0.5179491 0.9321626

The optional argument useTime can be used to the machine time or not to initiate the seed. If we do
not use the machine time, two calls of torus produces obviously the same output.

If we want the random sequence with prime number 7, we just type:

> torus(5, p =7)

[1] 0.6457513 0.2915026 0.9372539

[4] 0.5830052 0.2287566

The dim argument is exactly the same as congruRand or SFMT. By default, we use the first prime
numbers, e.g. 2, 3 and 5 for a call like torus(10, 3). But the user can specify a set of prime numbers,
e.g. torus(10, 3, c(7, 11, 13)). The dimension argument is limited to 100 00023.

As described in sub-section 2.2.8, one way to deal with serial dependence is to mix the Torus algo-
rithm with a pseudo random generator. The torus function offers this operation thanks to argument
mixed (the Torus algorithm is mixed with SFMT).

> torus(5, mixed =TRUE)

[1] 0.09034634 0.49590015 0.90635395

[4] 0.55779648 0.55338973

In order to see the difference between, we can plot the empirical autocorrelation function (acf in R),
see figure 2.

> par(mfrow = c(1,2))

> acf(torus(10^5))

> acf(torus(10^5, mix=TRUE))

4.3 Visual comparisons

To understand the difference between pseudo and quasi RNGs, we can make visual comparisons of
how random numbers fill the unit square.

First we compare SFMT algorithm with Torus algorithm on figure 3.

> par(mfrow = c(1,2))

> plot(SFMT(1000, 2))

> plot(torus(10^3, 2))

Secondly we compare WELL generator with Faure-Tezuka-scrambled Sobol sequences on figure 4.

> par(mfrow = c(1,2))

> plot(WELL(1000, 2))

> plot(sobol(10^3, 2, scrambling=2))

23the first 100 000 prime numbers are take from http://primes.utm.edu/lists/small/millions/.

http://primes.utm.edu/lists/small/millions/
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Figure 2: Auto-correlograms
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Figure 3: SFMT vs. Torus algorithm

4.4 Applications of QMC methods

4.4.1 d dimensional integration

Now we will show how to use low-discrepancy sequences to compute a d-dimensional integral defined
on the unit hypercube. We want compute

Icos(d) =

∫

Rd

cos(||x||)e||x||2dx ≈ πd/2

n

n∑

i=1

cos





√
√
√
√

d∑

j=1

(Φ−1)2 (tij)



 .

where Φ−1 denotes the quantile function of the standard normal distribution.



4 DESCRIPTION OF THE RANDOM GENERATION FUNCTIONS 20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WELL 512a

u

v

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sobol (Faure−Tezuka)

u

v

Figure 4: WELL vs. Sobol

We simply use the following code to compute the Icos(25) integral whose exact value is −1356914.

> I25 <- -1356914

> nb <- c(1200, 14500, 214000)

> ans <- NULL

> for(i in 1:3)

+ {

+ tij <- sobol(nb[i], dim=25,

+ scrambling=0, normal=TRUE)

+ Icos <- sqrt(rowSums(tij^2/2))

+ Icos <- mean(cos(Icos)) * pi^(25/2)

+ ans <- rbind(ans, c(n=nb[i],

+ I25=Icos, Delta=(Icos-I25)/I25))

+ }

> data.frame(ans)

n I25 Delta

1 1200 -1387776 2.274434e-02

2 14500 -1361153 3.123811e-03

3 214000 -1356839 -5.554484e-05

The results obtained from the Sobol Monte Carlo method in comparison to those obtained by Pa-
pageorgiou & Traub (2000) with a generalized Faure sequence and in comparison with the quadrature
rules of Namee & Stenger (1967), Genz (1982) and Patterson (1968) are listed in the following table.

4.4.2 Pricing of a Vanilla Call

In this sub-section, we will present one financial application of QMC methods. We want to price
a vanilla European call in the framework of a geometric Brownian motion for the underlying asset.
Those options are already implemented in the package fOptions of Rmetrics bundle24.

The payoff of this classical option is

f(ST ) = (ST −K)+,

24created by Wuertz et al. (2007b).
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n 1200 14500 214000

Faure (P&T) 0.001 0.0005 0.00005

Sobol (s=0) 0.02 0.003 0.00006
s=1 0.004 0.0002 0.00005
s=2 0.001 0.0002 0.000002
s=3 0.002 0.0009 0.00003

Quadrature (McN&S) 2 0.75 0.07
G&P 2 0.4 0.06

Table 6: list of errors

where K is the strike price. A closed formula for this call was derived by Black & Scholes (1973).
The Monte Carlo method to price this option is quite simple

1. simulate sT,i for i = 1 . . . n from starting point s0,
2. compute the mean of the discounted payoff 1

n

∑n
i=1 e

−rT (sT,i −K)+.

With parameters (S0 = 100, T = 1, r = 5%, K = 60, σ = 20%), we plot the relative error as a
function of number of simulation n on figure 5.

We test two pseudo-random generators (namely Park Miller and SF-Mersenne Twister) and one
quasi-random generator (Torus algorithm). No code will be shown, see the file qmc.R in the package
source. But we use a step-by-step simulation for the Brownian motion simulation and the inversion
function method for Gaussian distribution simulation (default in R).
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Figure 5: Error function for Vanilla call

As showed on figure 5, the convergence of Monte Carlo price for the Torus algorithm is extremely
fast. Whereas for SF-Mersenne Twister and Park Miller prices, the convergence is very slow.
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4.4.3 Pricing of a DOC

Now, we want to price a barrier option: a down-out call i.e. an Downward knock-Out Call25. These
kind of options belongs to the path-dependent option family, i.e. we need to simulate whole trajectories
of the underlying asset S on [0, T ].

In the same framework of a geometric Brownian motion, there exists a closed formula for DOCs (see
Rubinstein & Reiner (1991)). Those options are already implemented in the package fExoticOptions
of Rmetrics bundle26.

The payoff of a DOC option is

f(ST ) = (ST −K)+11(τH>T ),

where K is the strike price, T the maturity, τH the stopping time associated with the barrier H and
St the underlying asset at time t.

As the price is needed on the whole period [0, T ], we produc as follows:

1. start from point st0 ,
2. for simulation i = 1 . . . n and time index j = 1 . . . d

• simulate stj ,i ,
• update disactivation boolean Di

3. compute the mean of the discounted payoff 1
n

∑n
i=1 e

−rT (sT,i −K)+Di,

where n is the simulation number, d the point number for the grid of time and Di the opposite of
boolean Di.

In the following, we set T = 1, r = 5%, st0 = 100, H = K = 50, d = 250 and σ = 20%. We test
crude Monte Carlo methods with Park Miller and SF-Mersenne Twister generators and a quasi-Monte
Carlo method with (multidimensional) Torus algorithm on the figure 6.
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Figure 6: Error function for Down Out Call

25DOC is disactived when the underlying asset hits the barrier.
26created by Wuertz et al. (2007a).
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One may wonder why the Torus algorithm is still the best (on this example). We use the d-
dimensional Torus sequence. Thus for time tj , the simulated underlying assets (stj ,i)i are computed
with the sequence (i{√pj})i. Thanks to the linear independence of the Torus sequence over the
rationals27, we guarantee a non-correlation of Torus quasi-random numbers.

However, these results do not prove the Torus algorithm is always better than traditional Monte
Carlo. The results are sensitive to the barrier level H, the strike price X (being in or out the money
has a strong impact), the asset volatility σ and the time point number d.

Actuaries or readers with actuarial background can find an example of actuarial applications of
QMC methods in Albrecher et al. (2003). This article focuses on simulation methods in ruin models
with non-linear dividend barriers.

5 Random generation tests

Tests of random generators aim to check if the output u1, . . . , un, . . . could be considered as indepen-
dent and identically distributed (i.i.d.) uniform variates for a given confidence level. There are two
kinds of tests of the uniform distribution: first on the interval ]0, 1[, second on the binary set {0, 1}.
In this note, we only describe tests for ]0, 1[ outputs (see L’Ecuyer & Simard (2007) for details about
these two kind of tests).

Some RNG tests can be two-level tests, i.e. we do not work directly on the RNG output ui’s but
on a function of the output such as the spacings (coordinate difference of the sorted sample).

5.1 Test on one sequence of n numbers

5.1.1 Goodness of Fit

Goodness of Fit tests compare the empirical cumulative distribution function (cdf) Fn of ui’s with a
specific distribution (U(0, 1) here). The most known test are Kolmogorov-Smirnov, Crámer-von Mises
and Anderson-Darling tests. They use different norms to quantify the difference between the empirical
cdf Fn and the true cdf FU(0,1)

.

• Kolmogorov-Smirnov statistic is

Kn =
√
n sup

x∈R

∣
∣
∣Fn(x)− FU(0,1)

(x)
∣
∣
∣ ,

• Crámer-von Mises statistic is

W 2
n = n

∫ +∞

−∞

(

Fn(x)− FU(0,1)
(x)
)2
dFU(0,1)

(x),

• and Anderson-Darling statistic is

A2
n = n

∫ +∞

−∞

(

Fn(x)− FU(0,1)
(x)
)2
dFU(0,1)

(x)

FU(0,1)
(x)(1− FU(0,1)

(x))
.

Those statistics can be evaluated empirically thanks to the sorted sequence of ui’s. But we will not
detail any further those tests, since according to L’Ecuyer & Simard (2007) they are not powerful for
random generation testing.

27i.e. for k ̸= j, ∀i, (i{√pj})i and (i{√pk})i are linearly independent over Q.
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5.1.2 The gap test

The gap test investigates for special patterns in the sequence (ui)1≤i≤n. We take a subset [l, u] ⊂ [0, 1]
and compute the ’gap’ variables with

Gi =

{
1 if l ≤ Ui ≤ u
0 otherwise.

The probability p that Gi equals to 1 is just the u− l (the Lebesgue measure of the subset). The test
computes the length of zero gaps. If we denote by nj the number of zero gaps of length j.

The chi-squared statistic of a such test is given by

S =

m∑

j=1

(nj − npj)2
npj

,

where pj = (1 − p)2pj is the probability that the length of gaps equals to j; and m the max number
of lengths. In theory m equals to +∞, but in pratice, it is a large integer. We fix m to be at least

⌊
log(10−1)− 2 log(1− p)− log(n)

log(p)

⌋

,

in order to have lengths whose appearance probabilitie is at least 0.1.

5.1.3 The order test

The order test looks for another kind of patterns. We test a d-tuple, if its components are ordered
equiprobably. For example with d = 3, we should have an equal number of vectors (ui, ui+1, ui+2)i
such that

• ui < ui+1 < ui+2,
• ui < ui+2 < ui+1,
• ui+1 < ui < ui+2,
• ui+1 < ui+2 < ui,
• ui+2 < ui < ui+1

• and ui+1 < ui+2 < ui.

For some d, we have d! possible orderings of coordinates, which have the same probability to appear
1
d! . The chi-squared statistic for the order test for a sequence (ui)1≤i≤n is just

S =

d!∑

j=1

(nj −m 1
d!)

2

m 1
d!

,

where nj ’s are the counts for different orders and m = n
d . Computing d! possible orderings has an

exponential cost, so in practive d is small.

5.1.4 The frequency test

The frequency test works on a serie of ordered contiguous integers (J = [i1, . . . , il] ∩ Z). If we denote
by (ni)1≤i≤n the sample number of the set I, the expected number of integers equals to j ∈ J is

1

il − i1 + 1
× n,

which is independent of j. From this, we can compute a chi-squared statistic

S =
l∑

j=1

(Card(ni = ij)−m)2

m
,

where m = n
d .



5 RANDOM GENERATION TESTS 25

5.2 Tests based on multiple sequences

Under the i.i.d. hypothesis, a vector of output values ui, . . . , ui+t−1 is uniformly distributed over the
unit hypercube [0, 1]t. Tests based on multiple sequences partition the unit hypercube into cells and
compare the number of points in each cell with the expected number.

5.2.1 The serial test

The most intuitive way to split the unit hypercube [0, 1]t into k = dt subcubes. It is achieved by
splitting each dimension into d > 1 pieces. The volume (i.e. a probability) of each cell is just 1

k .
The associated chi-square statistic is defined as

S =

m∑

j=1

(Nj − λ)2
λ

,

where Nj denotes the counts and λ = n
k their expectation.

5.2.2 The collision test

The philosophy is still the same: we want to detect some pathological behavior on the unit hypercube
[0, 1]t. A collision is defined as when a point vi = (ui, . . . , ui+t−1) falls in a cell where there are already
points vj ’s. Let us note C the number of collisions

The distribution of collision number C is given by

P (C = c) =
n−c−1∏

i=0

k − i
k

1

kc
2S

n−c
n ,

where 2S
k
n denotes the Stirling number of the second kind28 and c = 0, . . . , n− 1.

But we cannot use this formula for large n since the Stirling number need O(n log(n)) time to be
computed. As L’Ecuyer et al. (2002) we use a Gaussian approximation if λ = n

k >
1
32 and n ≥ 28, a

Poisson approximation if λ < 1
32 and the exact formula otherwise.

The normal approximation assumes C follows a normal distribution with meanm = n−k+k
(
k−1
k

)n

and variance very complex (see L’Ecuyer & Simard (2007)). Whereas the Poisson approximation

assumes C follows a Poisson distribution of parameter n2

2k .

5.2.3 The φ-divergence test

There exist generalizations of these tests where we take a function of counts Nj , which we called
φ-divergence test. Let f be a real valued function. The test statistic is given by

k−1∑

j=0

f(Nj).

We retrieve the collision test with f(x) = (x − 1)+ and the serial test with f(x) = (x−λ)2

λ . Plenty of
statistics can be derived, for example if we want to test the number of cells with at least b points,
f(x) = 11(x=b). For other statistics, see L’Ecuyer et al. (2002).

28they are defined by 2S
k
n = k × 2S

k
n−1 + 2S

k−1
n−1 and 2S

1
n = 2S

n
n = 1. For example go to wikipedia.
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5.2.4 The poker test

The poker test is a test where cells of the unit cube [0, 1]t do not have the same volume. If we split
the unit cube into dt cells, then by regrouping cells with left hand corner having the same number of
distinct coordinates we get the poker test. In a more intuitive way, let us consider a hand of k cards
from k different cards. The probability to have exactly c different cards is

P (C = c) =
1

kk
k!

(k − c)! 2S
c
k,

where C is the random number of different cards and 2S
d
n the second-kind Stirling numbers. For a

demonstration, go to Knuth (2002).

6 Description of RNG test functions

In this section, we will give usage examples of RNG test functions, in a similar way as section 4
illustrates section 2 - two first sub-sections. The last sub-section focuses on detecting a particular
RNG.

> par(mfrow = c(1,2))

> hist(SFMT(10^3), 100)

> hist(torus(10^3), 100)

Histogram of SFMT(10^3)
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6.1 Test on one sequence of n numbers

Goodness of Fit tests are already implemented in R with the function ks.test for Kolmogorov-Smirnov
test and in package adk for Anderson-Darling test. In the following, we will focus on one-sequence
test implemented in randtoolbox.

6.1.1 The gap test

The function gap.test implements the gap test as described in sub-section 5.1.2. By default, lower
and upper bound are l = 0 and u = 0.5, just as below.

> gap.test(runif(1000))
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Gap test

chisq stat = 8, df = 10

, p-value = 0.63

(sample size : 1000)

length observed freq theoretical freq

1 126 125

2 64 62

3 31 31

4 20 16

5 12 7.8

6 1 3.9

7 1 2

8 0 0.98

9 0 0.49

10 0 0.24

11 0 0.12

If you want l = 1/3 and u = 2/3 with a SFMT sequence, you just type

> gap.test(SFMT(1000), 1/3, 2/3)

6.1.2 The order test

The Order test is implemented in function order.test for d-uples when d = 2, 3, 4, 5. A typical call
is as following

> order.test(runif(4000), d=4)

Order test

chisq stat = 19, df = 23

, p-value = 0.72

(sample size : 1000)

observed number 30 51 35 45 48 41

39 44 38 35 33 41 45 35 47 43 50 40

46 47 44 48 41 34

expected number 42

Let us notice that the sample length must be a multiple of dimension d, see sub-section 5.1.3.

6.1.3 The frequency test

The frequency test described in sub-section 5.1.4 is just a basic equi-distribution test in [0, 1] of the
generator. We use a sequence integer to partition the unit interval and test counts in each sub-interval.

> freq.test(runif(1000), 1:4)

Frequency test
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chisq stat = 1, df = 3

, p-value = 0.8

(sample size : 1000)

observed number 252 248 261 239

expected number 250

6.2 Tests based on multiple sequences

Let us study the serial test, the collision test and the poker test.

6.2.1 The serial test

Defined in sub-section 5.2.1, the serial test focuses on the equidistribution of random numbers in
the unit hypercube [0, 1]t. We split each dimension of the unit cube in d equal pieces. Currently in
function serial.test, we implement t = 2 and d fixed by the user.

> serial.test(runif(3000), 3)

Serial test

chisq stat = 7.3, df = 8

, p-value = 0.51

(sample size : 3000)

observed number 169 181 181 153

148 178 171 162 157

expected number 167

In newer version, we will add an argument t for the dimension.

6.2.2 The collision test

The exact distribution of collision number costs a lot of time when sample size and cell number
are large (see sub-section 5.2.2). With function coll.test, we do not yet implement the normal
approximation.

The following example tests Mersenne-Twister algorithm (default in R) and parameters implying
the use of the exact distribution (i.e. n < 28 and λ > 1/32).

> coll.test(runif, 2^7, 2^10, 1)

Collision test

chisq stat = 22, df = 15

, p-value = 0.11

exact distribution

(sample number : 1000/sample size : 128

/ cell number : 1024)

collision observed expected

number count count
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1 4 2.3

2 14 10

3 20 29

4 47 62

5 121 102

6 163 138

7 155 156

8 139 151

9 129 126

10 95 93

11 49 61

12 34 36

13 20 19

14 6 8.9

15 3 3.9

16 1 1.5

When the cell number is far greater than the sample length, we use the Poisson approximation
(i.e. λ < 1/32). For example with congruRand generator we have

> coll.test(congruRand, 2^8, 2^14, 1)

Collision test

chisq stat = 2.2, df = 7

, p-value = 0.95

Poisson approximation

(sample number : 1000/sample size : 256

/ cell number : 16384)

collision observed expected

number count count

0 136 135

1 272 271

2 269 271

3 183 180

4 84 90

5 43 36

6 10 12

7 3 3.4

Note that the Normal approximation is not yet implemented and those two approximations are not
valid when some expected collision numbers are below 5.

6.2.3 The poker test

Finally the function poker.test implements the poker test as described in sub-section 5.2.4. We
implement for any “card number” denoted by k. A typical example follows

> poker.test(SFMT(10000))

Poker test
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chisq stat = 3.2, df = 4

, p-value = 0.53

(sample size : 10000)

observed number 4 178 981 751 86

expected number 3.2 192 960 768 77

6.3 Hardness of detecting a difference from truly random numbers

Random number generators typically have an internal memory of fixed size, whose content is called the
internal state. Since the number of possible internal states is finite, the output sequence is periodic.
The length of this period is an important parametr of the random number generator. For example,
Mersenne-Twister generator, which is the default in R, has its internal state stored in 624 unsigned
integers of 32 bits each. So, the internal state consists of 19968 bits, but only 19937 are used. The
period length is 219937 − 1, which is a Mersenne prime.

Large period is not the only important parameter of a generator. For a good generator, it is not
computationally easy to distinguish the output of the generator from truly random numbers, if the seed
or the index in the sequence is not known. Generators, which are good from this point of view, are used
for cryptographic purposes. These generators are chosen so that there is no known procedure, which
could distinguish their output from truly random numbers within practically available computation
time. For simulations, this requirement is usually relaxed.

However, even for simulation purposes, considering the hardness of distinguishing the generated
numbers from truly random ones is a good measure of the quality of the generator. In particular, the
well-known empirical tests of random number generators such as Diehard29 or TestU01 L’Ecuyer &
Simard (2007) are based on comparing statistics computed for the generator with their values expected
for truly random numbers. Consequently, if a generator fails an empirical test, then the output of the
test provides a way to distinguish the generator from the truly random numbers.

Besides of general purpose empirical tests constructed without the knowledge of a concrete gener-
ator, there are tests specific to a given generator, which allow to distinguish this particular generator
from truly random numbers.

An example of a generator, whose output may easily be distinguished from truly random numbers,
is the older version of Wichmann-Hill from 1982. For this generator, we can even predict the next
number in the sequence, if we know the last already generated one. Verifying such a predicition is
easy and it is, of course, not valid for truly random numbers. Hence, we can easily distinguish the
output of the generator from truly random numbers. An implementation of this test in R derived
from McCullough (2008) is as follows.

> wh.predict <- function(x)

+ {

+ M1 <- 30269

+ M2 <- 30307

+ M3 <- 30323

+ y <- round(M1*M2*M3*x)

+ s1 <- y %% M1

+ s2 <- y %% M2

+ s3 <- y %% M3

+ s1 <- (171*26478*s1) %% M1

+ s2 <- (172*26070*s2) %% M2

29The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness, Research Sponsored
by the National Science Foundation (Grants DMS-8807976 and DMS-9206972), copyright 1995 George Marsaglia.
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+ s3 <- (170*8037*s3) %% M3

+ (s1/M1 + s2/M2 + s3/M3) %% 1

+ }

> RNGkind("Wichmann-Hill")

> xnew <- runif(1)

> err <- 0

> for (i in 1:1000)

+ {

+ xold <- xnew

+ xnew <- runif(1)

+ err <- max(err, abs(wh.predict(xold)-xnew))

+ }

> print(err)

[1] 0

The printed error is 0 on some machines and less than 5 · 10−16 on other machines. This is clearly
different from the error obtained for truly random numbers, which is close to 1.

The requirement that the output of a random number generator should not be distinguishable from
the truly random numbers by a simple computation, is also directly related to the way, how a generator
is used. Typically, we use the generated numbers as an input to a computation and we expect that the
distribution of the output (for different seeds or for different starting indices in the sequence) is the
same as if the input are truly random numbers. A failure of this assumption implies that observing
the output of the computation allows to distinguish the output from the generator from truly random
numbers. Hence, we want to use a generator, for which we may expect that the calculations used in
the intended application cannot distinguish its output from truly random numbers.

In this context, it has to be noted that many of the currently used generators for simulations can
be distinguished from truly random numbers using the arithmetic mod 2 applied to individual bits of
the output numbers. This is true for Mersenne Twister, SFMT and also all WELL generators. The
basis for tolerating this is based on two facts.

First, the arithmetic mod 2 and extracting individual bits of real numbers is not directly used in
typical simulation problems and real valued functions, which represent these operations are extremely
discontinuous and such functions also do not typically occur in simulation problems. Another reason
is that we need to observe quite a long history of the output to detect the difference from true
randomness. For example, for Mersenne Twister, we need 624 consecutive numbers.

On the other hand, if we use a cryptographically strong pseudorandom number generator, we may
avoid a difference from truly random numbers under any known efficient procedure. Such generators
are typically slower than Mersenne Twister type generators. The factor of slow down may be, for
example, 5. If the simulation problem requires intensive computation besides the generating random
numbers, using slower, but better, generator may imply only negligible slow down of the computation
as a whole.

7 Calling the functions from other packages

In this section, we briefly present what to do if you want to use this package in your package. This
section is mainly taken from package expm available on R-forge.

Package authors can use facilities from randtoolbox in two ways:

• call the R level functions (e.g. torus) in R code;

• if random number generators are needed in C, call the routine torus,. . .

Using R level functions in a package simply requires the following two import directives:
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Imports: randtoolbox

in file DESCRIPTION and

import(randtoolbox)

in file NAMESPACE.
Accessing C level routines further requires to prototype the function name and to retrieve its

pointer in the package initialization function R init pkg , where pkg is the name of the package.
For example if you want to use torus C function, you need

void (*torus)(double *u, int nb, int dim,

int *prime, int ismixed, int usetime);

void R_init_pkg(DllInfo *dll)

{

torus = (void (*) (double, int, int,

int, int, int)) \

R_GetCCallable("randtoolbox", "torus");

}

See file randtoolbox.h to find headers of RNGs. Examples of C calls to other functions can be found
in this package with the WELL RNG functions.

The definitive reference for these matters remains the Writing R Extensions manual, page 20 in
sub-section “specifying imports exports” and page 64 in sub-section “registering native routines”.
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Jäckel, P. (2002), Monte Carlo methods in finace, John Wiley & Sons. 7

Joe, S. & Kuo, F. (2003), ‘Remark on algorithm 659: Implementing sobol’s quasi-random sequence
generator’, ACM Trans. Math. Softw. 29, 49–57. 10

Joe, S. & Kuo, F. (2008), ‘Constructing sobol sequences with better two-dimensional projections’,
SIAM J. Sci. Comput 30, 2635–2654. 10

Knuth, D. E. (2002), The Art of Computer Programming: seminumerical algorithms, Vol. 2, 3rd
edition edn, Massachusetts: Addison-Wesley. 2, 3, 4, 13, 26

L’Ecuyer, P. (1990), ‘Random numbers for simulation’, Communications of the ACM 33, 85–98. 2, 3

L’Ecuyer, P. & Simard, R. (2007), ‘Testu01: A c library for empirical testing of random number
generators’, ACM Trans. on Mathematical Software 33(4), 22. 23, 25, 30

L’Ecuyer, P., Simard, R. & Wegenkittl, S. (2002), ‘Sparse serial tests of uniformity for random number
generations’, SIAM Journal on scientific computing 24(2), 652–668. 25

Marsaglia, G. (1994), ‘Some portable very-long-period random number generators’, Computers in
Physics 8, 117–121. 13

Matsumoto, M. & Nishimura, T. (1998), ‘Mersenne twister: A 623-dimensionnally equidistributed
uniform pseudorandom number generator’, ACM Trans. on Modelling and Computer Simulation
8(1), 3–30. 3, 6

Matsumoto, M. & Saito, M. (2008), SIMD-oriented Fast Mersenne Twister: a 128-bit pseudorandom
number generator, Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer. 5, 6, 16

McCullough, B. D. (2008), ‘Microsoft excel’s ‘not the wichmann–hill’ random number generators’,
Computational Statistics and Data Analysis 52, 4587–4593. 12, 30

Namee, J. M. & Stenger, F. (1967), ‘Construction of ful ly symmetric numerical integration formulas’,
Numerical Mathatematics 10, 327–344. 20



REFERENCES 34

Niederreiter, H. (1978), ‘Quasi-monte carlo methods and pseudo-random numbers’, Bulletin of the
American Mathematical Society 84(6). 1, 6, 7, 9, 11

Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, SIAM,
Philadelphia. 7

Panneton, F., L’Ecuyer, P. & Matsumoto, M. (2006), ‘Improved long-period generators based on linear
recurrences modulo 2’, ACM Trans. on Mathematical Software 32(1), 1–16. 4, 5

Papageorgiou, A. & Traub, J. (2000), ‘Faster evaluation of multidimensional integrals’,
arXiv:physics/0011053v1 p. 10. 20

Park, S. K. & Miller, K. W. (1988), ‘Random number generators: good ones are hard to find.’,
Association for Computing Machinery 31(10), 1192–2001. 1, 2, 4, 13, 14

Patterson, T. (1968), ‘The optimum addition of points to quadrature formulae’, Mathematics of Com-
putation pp. 847–856. 20

Planchet, F., Thérond, P. & Jacquemin, J. (2005), Modèles Financiers En Assurance, Economica. 15
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