Casting Data with exportRecordsTyped

2023-12-31

Contents

Introduction 1

Casting Data 2
Customizing a Field Type Casting 2
Customizing Field Casting with User-Made Functions 3
Customizing a Casting for a Single Field oo 4

Defining Custom Casting Lists 7

Appendix 8
Casting Field Types o o o e 8
Casting Functions Provided by redcapAPI 9
Default Casting List e 10

Introduction

The addition of exportRecordsTyped opened a great deal of flexibility and potential for customization when
exporting data from REDCap and preparing them for analysis. The tasks of preparing data are broadly
categorized into three phases

1. Missing Value Detection
2. Field Validation
3. Casting Data

This document will focus on casting data and customizing casting to fit the user’s preferences.

library(redcapAPI)
url <- "https://redcap.vanderbilt.edu/api/" # Our institutions REDCap instance

unlockREDCap(c(rcon = "Sandbox"),
envir = .GlobalEnv,
keyring = "API_KEYs",
url = url)

<environment: R_GlobalEnv>

Casting Data

The default casting functions were chosen with consideration for what is believed to be the most frequently
desired results (the default casting list is shown in the appendix). It is inevitable that the circumstances
of a particular project will necessitate customization. Furthermore, the decisions regarding default casting
are inherently opinionated, and some users will prefer different castings. This section will discuss how to
customize casting for field types as well as how to customize the casting of a single field.

A full listing of the casting functions provided by redcapAPI are listed in the “Value” section of
?fieldValidationAndCasting.

Customizing a Field Type Casting

Using the cast argument, the user may issue alternative casting instructions for any of the supported field
types (listed in the appendix). In the following call, any fields having the type date_ will be cast using the
as.Date() function instead of as.P0SIXct (). Meanwhile, all other field types will be cast using the default
casting list.

L
Demonstrate default casting behavior
Rec <- exportRecordsTyped(rcon,

fields = c("date_example"))
class(Rec$date_example)

[1] "POSIXct" "POSIXt"

HHBRARHHRUHBRBHBRRRHRRRHRBRBRBRRRRRRB R AR R R BRRRHBRRHBRRRBRRRHRBRBHBRR RIS
Demonstrate casting with as.Date()
Rec <- exportRecordsTyped(rcon,

fields = c("date_example"),

cast = list(date_ = as.Date))
class(Rec$date_example)

[1] "Date"

Radio button and drop down fields are field types where users frequently need a value different than the
default. In most cases, the user desires that these fields be cast to their coded values instead of the labeled
values. Compare the results of these three commands:

HAHHRRAHHRR AR AR R AR RRAAHR R AR R R R RAARR AR
Returns a factor with levels "Balalatka", "Ukulele", "Banjo", "Guitar"
Rec <- exportRecordsTyped(rcon,
fields = c("radio_example"))
Rec$radio_example

[1] Balalaika Ukulele Banjo

attr(,"label")

[1] Radio button example

Levels: Balalaika Ukulele Banjo Guitar

class(Rec$radio_example)

[1] "factor"

i i
Returns a factor with levels "3", "4", "&5", "€"
Rec <- exportRecordsTyped(rcon,

fields = "radio_example",

cast = list(radio = castCode))
Rec$radio_example

[1]1 34 5

attr(,"label")

[1] Radio button example
Levels: 3 45 6

class(Rec$radio_example)

[1] "factor"

HHBRRRHHRUHBRBHBRRRHRRRHBRRRBRRRRRRBRBRRRBRRRHBRRHRBRRRBRRRHBRBHBRRRHH
Returns a character value of the labeled wvalues
Rec <- exportRecordsTyped(rcon,

fields = "radio_example",

cast = list(radio = castLabelCharacter))
Rec$radio_example

[1] "Balalaika" "Ukulele" "Banjo"
attr(,"label")
[1] "Radio button example"

class(Rec$radio_example)

[1] "character"

Customizing Field Casting with User-Made Functions

It is also permissible to use user-made functions in casting. Consider the scenario where it is necessary to
multiply a numeric field by 3 when performing the export. This may be accomplished by first defining a
function then passing it to the override for the number field type.

Custom functions should have the arguments x, field_name, and coding. These arguments are necessary,
even if they will not be used by the function.

multiply3 <- function(x, field_name, coding) as.numeric(x) * 3

G g
Return the actual values from the project
Rec <- exportRecordsTyped(rcon,
fields = c("radio_example",
"number _example"))
Rec

record_id redcap_event_name number_example radio_example

1 1 Event 1 (Arm 1: Arm 1) 72.0404 Balalaika
2 2 Event 1 (Arm 1: Arm 1) 18.9252 Ukulele
3 3 Event 1 (Arm 1: Arm 1) 17.8558 Banjo

s
Return the values with the custom casting function
Rec <- exportRecordsTyped(rcon,
fields = c("radio_example",
"number_example"),
cast = list(number = multiply3))

Rec

#i record_id redcap_event_name number_example radio_example
#it 1 1 Event 1 (Arm 1: Arm 1) 216.1212 Balalaika
2 2 Event 1 (Arm 1: Arm 1) 56.7756 Ukulele
##t 3 3 Event 1 (Arm 1: Arm 1) 53.5674 Banjo

It should be noted that applying a custom function in this way would impact all of the fields of type “number”.
It would be rare that such an outcome is desirable. These custom functions can also be written in a manner
that impacts only one specific field.

Customizing a Casting for a Single Field

User-written functions used in casting overrides must contain the arguments x, field_name, and coding,
even if these arguments are not intended to be used by the function. Their inclusion, however, makes it
possible to write casting overrides that target only a specific field. In this example, a function is written
that rounds number_example to two decimal places, but other “number” fields are cast using the default
function. By adding an if statement, a test can be performed against the field name and modifications can
be applied only to the targeted field.

round2_one_field <- function(x, field_name, coding){
x <- as.numeric(x)
if (field_name == "number_example") round(x, 2) # round to two decimal places
else x # return other fields unaltered

}

L
Default casting behavior
Rec <- exportRecordsTyped(rcon,
fields = c("number_example",
"number_example_duplicate"))

Rec

record_id redcap_event_name number_example number_example_duplicate
##t 1 1 Event 1 (Arm 1: Arm 1) 72.0404 72.0404
2 2 Event 1 (Arm 1: Arm 1) 18.9252 18.9252
3 3 Event 1 (Arm 1: Arm 1) 17.8558 17.8558

L
Use the user-defined function for casting
Rec <- exportRecordsTyped(rcon,

fields = c("number_example",
"number_example_duplicate"),
cast = list(number = round2_one_field))

Rec

record_id redcap_event_name number_example number_example_duplicate
1 1 Event 1 (Arm 1: Arm 1) 72.04 72.0404
#it 2 2 Event 1 (Arm 1: Arm 1) 18.93 18.9252
3 3 Event 1 (Arm 1: Arm 1) 17.86 17.8558

Radio buttons and drop down fields are, again, field types where such customization is frequently needed.
Consider the case of a radio button field where the coded values have special meaning. However, other radio
button fields in the project are desired to return the labeled values for categorical analysis. A user-defined
function can be written to accommodate this scenario.

In this example, the radio_example labels identify an stringed instrument, and the coding indicates the
number of strings on that instrument. The user is able to single out radio_example to return numeric
values in the following manner:

special_cast_radio <- function(x, field_name, coding){
if (field_name %in)% "radio_example"){
as.numeric(x) # Cast target field as numeric
} else {
castLabel(x, field_name, coding) # still uses the default for
the non-targeted fields

i
Using the default casting
Rec <- exportRecordsTyped(rcon,
fields = c("radio_example",
"radio_example_duplicate"))

Rec

record_id redcap_event_name radio_example radio_example_duplicate
1 1 Event 1 (Arm 1: Arm 1) Balalaika Balalaika
2 2 Event 1 (Arm 1: Arm 1) Ukulele Ukulele
3 3 Event 1 (Arm 1: Arm 1) Banjo Banjo

L
Use the user-defined function to change casting of one field
Rec <- exportRecordsTyped(rcon,
fields = c("radio_example",
"radio_example_duplicate"),
cast = list(radio = special_cast_radio))

Rec

record_id redcap_event_name radio_example radio_example_duplicate
#t 1 1 Event 1 (Arm 1: Arm 1) 3 Balalaika
2 2 Event 1 (Arm 1: Arm 1) 4 Ukulele
3 3 Event 1 (Arm 1: Arm 1) 5 Banjo

While all of the examples so far have focused on alternate casting for a single type, the user is not restricted
to only one type. The user may designate alternate castings for as many types as they choose.

Rec <- exportRecordsTyped(rcon,
fields = c("date_example",
"radio_example",
"number _example"),
cast = list(date_ as.Date,
radio = special_cast_radio,
number = round2_one_field))
Rec[c("record_id", "date_example", "radio_example", "number_example")]

record_id date_example radio_example number_example

1 1 2020-09-19 3 72.04
2 2 2021-06-07 4 18.93
3 3 2022-03-14 5 17.86

Defining Custom Casting Lists

The default casting list is populated with functions that are expected to meet the needs of most analyses.
Users may have different preferences they wish to apply on a regular basis, and typing out their customizations
to every call could be burdensome and time consuming. An option for expediting casting preferences is to
save the preferred casting list as an object that can be retrieved for regular use.

The user may define objects within a script, such as

round2_one_field <- function(x, field_name, coding){
X <- as.numeric(x)
if (field_name == "number_example") round(x, 2) # round to two decimal places
else x # return other fields unaltered

}

special_cast_radio <- function(x, field_name, coding){
if (field_name %in% "radio_example"){
as.numeric (x) # Cast target field as numeric
} else {
castLabel(x, field_name, coding) # still uses the default for
the non-targeted fields
}
}

preferred_casting <- list(date_ = as.Date,
number = round2 one_field,
radio = special_cast_radio)

It is important to note that the user need not specify a casting function for each type. Any types not specified
in preferred_casting will utilize the default casting function.

Some options for retrieving the preferred_casting list include:

1. Save the code in a script and run it using source.

2. Save the objects from a script to a .Rdata file and add them to the environment using load.
3. Include the list as part of an internally used package.

4. Save the objects to the user’s .Rprofile.

If the user were to choose to use source to load the objects, utilization of the preferred casting list would
look like

source("path/to/casting_source.R")
Rec <- exportRecordsTyped(rcon,
casting = preferred_casting)

Appendix

Casting Field Types

e bioportal: Text fields that are validated using the BioPortal Ontology service.

e calc: Calculated fields.

e checkbox: Checkbox fields.

o date_: Text fields with the “Date” validation type.

o datetime_: Text fields with the “Datetime” validation type.

e datetime_seconds_: Text fields with the “Datetime with seconds” validation type.

e dropdown: Drop down multiple choice fields.

e float: Text fields with the “Number” validation type.

e form_complete: Fields automatically added by REDCap indicating the completion status of the form.

o int: Text fields with the “Integer” validation type. This appears to be a legacy type, and integer
appears to be used by more recent version of REDCap.

o integer: Text fields with the “Integer” validation type.

e number: Text fields with the “Number” validation type.

e number_1idp: Text fields with the “number (1 decimal place)” validation type.

e number_1dp_comma_decimal: Text fields with the “number (1 decimal place - comma as decimal)”
validation type.

e number_2dp: Text fields with the “number (2 decimal place)” validation type.

e number_2dp_comma_decimal: Text fields with the “number (2 decimal place - comma as decimal)”
validation type.

e radio: Radio button fields.

o select: Possible alias for dropdown or radio.

e sql: Fields that use a SQL query to make a drop down tools from another project.

o system: Fields automatically provided by REDCap for the project. These include redcap_event_name,
redcap_data_access_group, redcap_repeat_instrument, and redcap_repeat_instance.

e time_mm_ss: Text fields with the “Time (MM:SS)” validation type.

e time_hh_mm_ss: Text fields with the “Time (HH:MM:SS)” validation type.

e truefalse: True - False fields.

e yesno: Yes - No fields.

Casting Functions Provided by redcapAPI

Function Name Object Type Returned
castLabel factor
castLabelCharacter character
castCode factor
castCodeCharacter character
castRaw character
castChecked factor
castCheckedCharacter character
castCheckLabel factor
castCheckLabelCharacter character
castCheckCode factor
castCheckCodeCharacter character
castCheckForImport numeric
castDpNumeric numeric
castDpCharacter character
castTimeHHMM character
castTimeMMSS character
castLogical logical

Default Casting List

.default_cast <- list(

date_ = function(x, ...) as.P0SIXct(x, format = "JY-Y%m-%d"),
datetime_ = function(x, ...) as.P0SIXct(x, format = "} Y-Ym-%d %H:%M"),
datetime_seconds_ = function(x, ...) as.P0SIXct(x, format = "%Y-Ym-%d %H:%M:%S"),
time_mm_ss = function(x, .) chron::times(ifelse(is.na(x),
NA,
paste0("00:",x)),
format=c(times="h:m:s")),
time_hh _mm_ss = function(x, ...) chron::times(x, format=c(times="h:m:s")),
time = function(x, ...) chron::times(gsub(" ("\\d{2}:\\d{2}$)",
"\\1:00", x),
format=c(times="h:m:s")),
float = as.numeric,
number = as.numeric,
number_1dp = as.numeric,
number_1dp_comma_decimal = castDpNumeric(),
number_2dp = as.numeric,
number_2dp_comma_decimal = castDpNumeric(),
calc = as.numeric,
int = as.integer,
integer = as.numeric,
yesno = castlLabel,
truefalse = function(x, ...) x=='1' | tolower(x) =='true',
checkbox = castChecked,
form_complete = castLabel,
select = castLabel,
radio = castLabel,
dropdown = castLabel,
sql = castlLabel,
system = castLabel,
bioportal = castLabel

10

