Package 'sasLM'

October 2, 2024

Version 0.10.5

Title 'SAS' Linear Model

Description This is a core implementation of 'SAS' procedures for linear models -GLM, REG, ANOVA, TTEST, FREQ, and UNIVARIATE. Some R packages provide type II and type III SS. However, the results of nested and complex designs are often different from those of 'SAS.' Different results does not necessarily mean incorrectness. However, many wants the same results to SAS. This package aims to achieve that. Reference: Littell RC, Stroup WW, Freund RJ (2002, ISBN:0-471-22174-0).

Depends R (\geq 3.5.0), mvtnorm

Imports methods

Suggests MASS

Author Kyun-Seop Bae [aut, cre]

Maintainer Kyun-Seop Bae <k@acr.kr>

Copyright 2020-, Kyun-Seop Bae

License GPL-3

Repository CRAN

URL https://cran.r-project.org/package=sasLM

NeedsCompilation no

Date/Publication 2024-10-02 06:10:08 UTC

Contents

asLM-package	4
f	5
10v1	5
lov2	7
10v3	8
spirinCHD	9
BEdata	10
k	10
3Υ	12

Clest	. 13
Coll	. 14
CONTR	. 15
Cor.test	. 16
corFisher	17
cSS	18
CumAlpha	. 19
CV	. 19
Diffogram	
Drift	
e1	
e2	
e3	
EMS	
est	. 25
ESTM	. 26
estmb	. 27
ExitP	. 28
g2inv	. 29
G2SWEEP	. 30
geoCV	. 31
geoMean	
GLM	
is.cor.	
Kurtosis	
KurtosisSE	
lfit	
lr	
lr0	
LSM	
Max	
Mean	
Median	
Min	
ModelMatrix	. 44
mtest	. 45
N	. 46
OR	. 46
ORcmh	. 47
ORinv	. 48
ORmn	. 49
ORmn1	. 51
pB	. 52
Pcor.test	. 52
-	. 55 . 54
pD	
PDIFF	
PocockBound	. 56

Contents

pResD
QuartileRange
Range
RanTest
RD
RDinv
RDmn
RDmn1 63
REG
regD
RR
RRinv
RRmn
RRmn1
satt
ScoreCI
SD
SEM
seqBound
seqCI
Skewness
SkewnessSE
SLICE
SS
T3MS 79
T3test
tmtest
trimmedMean
tsum
tsum0
tsum1
tsum2
tsum3
TTEST
UCL
UNIV
vtest
WhiteTest
ztest

Index

sasLM-package

Description

This is a core implementation of 'SAS' procedures for linear models - GLM, REG, and ANOVA. Some packages provide type II and type III SS. However, the results of nested and complex designs are often different from those of 'SAS'. A different result does not necessarily mean incorrectness. However, many want the same result with 'SAS'. This package aims to achieve that. Reference: Littell RC, Stroup WW, Freund RJ (2002, ISBN:0-471-22174-0).

Details

This will serve those who want SAS PROC GLM, REG, and ANOVA in R.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
## SAS PROC GLM Script for Typical Bioequivalence Data
# PROC GLM DATA=BEdata;
#
   CLASS SEQ SUBJ PRD TRT;
#
   MODEL LNCMAX = SEQ SUBJ(SEQ) PRD TRT;
   RANDOM SUBJ(SEQ)/TEST;
#
   LSMEANS TRT / DIFF=CONTROL("R") CL ALPHA=0.1;
#
   ODS OUTPUT LSMeanDiffCL=LSMD;
#
# DATA LSMD; SET LSMD;
#
   PE = EXP(DIFFERENCE);
   LL = EXP(LowerCL);
#
   UL = EXP(UpperCL);
#
# PROC PRINT DATA=LSMD; RUN;
##
## SAS PROC GLM equivalent
BEdata = af(BEdata, c("SEQ", "SUBJ", "PRD", "TRT")) # Columns as factor
formula1 = log(CMAX) ~ SEQ/SUBJ + PRD + TRT # Model
GLM(formula1, BEdata) # ANOVA tables of Type I, II, III SS
RanTest(formula1, BEdata, Random="SUBJ") # Hypothesis test with SUBJ as random
ci0 = CIest(formula1, BEdata, "TRT", c(-1, 1), 0.90) # 90$ CI
exp(ci0[, c("Estimate", "Lower CL", "Upper CL")]) # 90% CI of GMR
## 'nlme' or SAS PROC MIXED is preferred for an unbalanced case
## SAS PROC MIXED equivalent
# require(nlme)
# Result = lme(log(CMAX) ~ SEQ + PRD + TRT, random=~1|SUBJ, data=BEdata)
# summary(Result)
# VarCorr(Result)
```

af

```
# ci = intervals(Result, 0.90) ; ci
# exp(ci$fixed["TRTT",])
##
```

af

Convert some columns of a data.frame to factors

Description

Conveniently convert some columns of data.frame into factors.

Usage

af(DataFrame, Cols)

Arguments

DataFrame	adata.frame
Cols	column names or indices to be converted

Details

It performs conversion of some columns in a data. frame into factors conveniently.

Value

Returns a data. frame with converted columns.

Author(s)

Kyun-Seop Bae k@acr.kr

aov1

ANOVA with Type I SS

Description

ANOVA with Type I SS.

Usage

aov1(Formula, Data, BETA=FALSE, Resid=FALSE)

Arguments

Formula	a conventional formula for a linear model.
Data	a data.frame to be analyzed
ΒΕΤΑ	if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to SOLUTION option of SAS PROC GLM
Resid	if TRUE, fitted values (y hat) and residuals will be returned

Details

It performs the core function of SAS PROC GLM, and returns Type I SS. This accepts continuous independent variables also.

Value

The result table is comparable to that of SAS PROC ANOVA.

Df	degree of freedom
Sum Sq	sum of square for the set of contrasts
Mean Sq	mean square
F value	F value for the F distribution
Pr(>F)	proability of larger than F value

Next returns are optional.

Parameter	Parameter table with standard error, t value, p value. TRUE is 1, and FALSE is 0 in the Estimable column. This is returned only with BETA=TRUE option.
Fitted	Fitted value or y hat. This is returned only with Resid=TRUE option.
Residual	Weigthed residuals. This is returned only with Resid=TRUE option.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
aov1(uptake ~ Plant + Type + Treatment + conc, CO2)
aov1(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE)
aov1(uptake ~ Plant + Type + Treatment + conc, CO2, Resid=TRUE)
aov1(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE, Resid=TRUE)
```

aov2

Description

ANOVA with Type II SS.

Usage

aov2(Formula, Data, BETA=FALSE, Resid=FALSE)

Arguments

Formula	a conventional formula for a linear model.
Data	a data.frame to be analyzed
BETA	if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to SOLUTION option of SAS PROC GLM
Resid	if TRUE, fitted values (y hat) and residuals will be returned

Details

It performs the core function of SAS PROC GLM, and returns Type II SS. This accepts continuous independent variables also.

Value

The result table is comparable to that of SAS PROC ANOVA.

Df	degree of freedom	
Sum Sq	sum of square for the set of contrasts	
Mean Sq	mean square	
F value	F value for the F distribution	
Pr(>F)	proability of larger than F value	
Next returns are optional.		
Parameter	Parameter table with standard error, t value, p value. TRUE is 1, and FALSE is 0 in the Estimable column. This is returned only with BETA=TRUE option.	

Fitted	Fitted value or y ha	t. This is returned only	y with Resid=TRUE option.

Residual	Weigthed residuals.	This is returned	only with R	esid=TRUE option.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
aov2(uptake ~ Plant + Type + Treatment + conc, CO2)
aov2(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE)
aov2(uptake ~ Plant + Type + Treatment + conc, CO2, Resid=TRUE)
aov2(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE, Resid=TRUE)
aov2(uptake ~ Type, CO2)
aov2(uptake ~ Type - 1, CO2)
```

```
aov3
```

ANOVA with Type III SS

Description

ANOVA with Type III SS.

Usage

aov3(Formula, Data, BETA=FALSE, Resid=FALSE)

Arguments

Formula	a conventional formula for a linear model.
Data	a data.frame to be analyzed
ΒΕΤΑ	if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to SOLUTION option of SAS PROC GLM $$
Resid	if TRUE, fitted values (y hat) and residuals will be returned

Details

It performs the core function of SAS PROC GLM, and returns Type III SS. This accepts continuous independent variables also.

Value

The result table is comparable to that of SAS PROC ANOVA.

Df	degree of freedom
Sum Sq	sum of square for the set of contrasts
Mean Sq	mean square
F value	F value for the F distribution
Pr(>F)	proability of larger than F value

Next returns are optional.

Parameter	Parameter table with standard error, t value, p value. TRUE is 1, and FALSE is 0
	in the Estimable column. This is returned only with BETA=TRUE option.
Fitted	Fitted value or y hat. This is returned only with Resid=TRUE option.
Residual	Weigthed residuals. This is returned only with Resid=TRUE option.

aspirinCHD

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
aov3(uptake ~ Plant + Type + Treatment + conc, CO2)
aov3(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE)
aov3(uptake ~ Plant + Type + Treatment + conc, CO2, Resid=TRUE)
aov3(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE, Resid=TRUE)
```

aspirinCHD

An example data for meta-analysis - aspirin in coronary heart disease

Description

The data is from 'Canner PL. An overview of six clinical trials of aspirin in coronary heart disease. Stat Med. 1987'

Usage

aspirinCHD

Format

A data frame with 6 rows.

- y1 death event count of aspirin group
- n1 total subjet of aspirin group
- y2 death event count of placebo group
- n2 total subject of placebo group

Details

This data is for educational purpose.

References

Canner PL. An overview of six clinical trials of aspirin in coronary heart disease. Stat Med. 1987;6:255-263.

BEdata

Description

Contains Cmax data from a real bioequivalence study.

Usage

BEdata

Format

A data frame with 91 observations on the following 6 variables.

- ADM Admission or Hospitalization Group Code: 1, 2, or 3
- SEQ Group or Sequence character code: 'RT' or 'TR"
- PRD Period numeric value: 1 or 2
- TRT Treatment or Drug code: 'R' or 'T'
- SUBJ Subject ID
- CMAX Cmax values

Details

This contains a real data of 2x2 bioequivalence study, which has three different hospitalization groups. See Bae KS, Kang SH. Bioequivalence data analysis for the case of separate hospitalization. Transl Clin Pharmacol. 2017;25(2):93-100. doi.org/10.12793/tcp.2017.25.2.93

bk

Beautify the output of knitr::kable

Description

Trailing zeros after integer is somewhat annoying. This removes those in the vector of strings.

Usage

```
bk(ktab, rpltag=c("n", "N"), dig=10)
```

ktab	an output of knitr::kable
rpltag	tag string of replacement rows. This is usually "n" which means the sample count.
dig	maximum digits of decimals in the kable output

Details

This is convenient if used with tsum0, tsum1, tsum2, tsum3, This requires knitr::kable.

Value

A new processed vector of strings. The class is still knitr_kable.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

tsum0, tsum1, tsum2, tsum3

Examples

```
## OUTPUT example
# t0 = tsum0(CO2, "uptake", c("mean", "median", "sd", "length", "min", "max"))
# bk(kable(t0)) # requires knitr package
#
# |
       x |
# |:-----:|
# |mean | 27.21310|
# |median | 28.30000|
# |sd
        | 10.81441|
        | 84
# |n
                 - 1
# |min
       | 7.70000|
# |max
         | 45.50000|
# t1 = tsum(uptake ~ Treatment, CO2,
           e=c("mean", "median", "sd", "min", "max", "length"),
#
           ou=c("chilled", "nonchilled"),
#
#
          repl=list(c("median", "length"), c("med", "N")))
#
# bk(kable(t1, digits=3)) # requires knitr package
#
       | chilled| nonchilled| Combined|
# |
# |:----|-----:|------:|
# |mean | 23.783|
                     30.643 27.213
# |med | 19.700|
                     31.300
                              28.300
# |sd
      | 10.884|
                     9.705|
                              10.814
# |min | 7.700|
                     10.600|
                               7.700|
# |max | 42.400|
                     45.500|
                              45.500|
# |N
     | 42
              42 | 84
                                   - 1
```

Description

GLM, REG, aov1 etc. functions can be run by levels of a variable.

Usage

BY(FUN, Formula, Data, By, ...)

Arguments

FUN	Function name to be called such as GLM, REG
Formula	a conventional formula for a linear model.
Data	a data.frame to be analyzed
Ву	a variable name in the Data
	arguments to be passed to FUN function

Details

This mimics SAS procedues' BY clause.

Value

a list of FUN function outputs. The names are after each level.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
BY(GLM, uptake ~ Treatment + as.factor(conc), CO2, By="Type")
BY(REG, uptake ~ conc, CO2, By="Type")
```

ΒY

Description

Get point estimate and its confidence interval with given contrast and alpha value using t distribution.

Usage

CIest(Formula, Data, Term, Contrast, conf.level=0.95)

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
Term	a factor name to be estimated
Contrast	a level vector. Level is alphabetically ordered by default.
conf.level	confidence level of confidence interval

Details

Get point estimate and its confidence interval with given contrast and alpha value using t distribution.

Value

Estimate	point estimate of the input linear contrast
Lower CL	lower confidence limit
Upper CL	upper confidence limit
Std. Error	standard error of the point estimate
t value	value for t distribution
Df	degree of freedom
Pr(> t)	probability of larger than absolute t value from t distribution with residual's degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
CIest(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata, "TRT", c(-1, 1), 0.90) # 90% CI
```

CIest

Coll

Description

Collearity diagnostics with tolerance, VIF, eigenvalue, condition index, variance proportions

Usage

Coll(Formula, Data)

Arguments

Formula	fomula of the model
Data	input data as a matrix or data.frame

Details

Sometimes collinearity diagnostics after multiple linear regression are necessary.

Value

Tol	tolerance of independent variables	
VIF	variance inflation factor of independent variables	
Eigenvalue	eigenvalue of Z'Z (crossproduct) of standardized independent variables	
Cond. Index	condition index	
Proportions of variances		
	under the names of coefficients	

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

Coll(mpg ~ disp + hp + drat + wt + qsec, mtcars)

CONTR

Description

Do F test with a given set of contrasts.

Usage

CONTR(L, Formula, Data, mu=0)

Arguments

L	contrast matrix. Each row is a contrast.
Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
mu	a vector of mu for the hypothesis L. The length should be equal to the row count
	of L.

Details

It performs F test with a given set of contrasts (a matrix). It is similar to the CONTRAST clause of SAS PROC GLM. This can test the hypothesis that the linear combination (function)'s mean vector is mu.

Value

Returns sum of square and its F value and p-value.

Df	degree of freedom
Sum Sq	sum of square for the set of contrasts
Mean Sq	mean square
F value	F value for the F distribution
Pr(>F)	proability of larger than F value

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

cSS

Examples

 $\label{eq:contract} CONTR(t(c(0, -1, 1)), uptake ~ Type, CO2) \mbox{ $\#$ sum of square $GLM(uptake ~ Type, CO2) $\#$ compare with the above $$$

Cor.test

Description

Testing correlation between numeric columns of data with Pearson method.

Usage

Cor.test(Data, conf.level=0.95)

Arguments

Data	a matrix or a data.frame
conf.level	confidence level

Details

It uses all numeric columns of input data. It uses "pairwise.complete.obs" rows.

Value

Row names show which columns are used for the test

Estimate	point estimate of correlation
Lower CL	upper confidence limit
Upper CL	lower condidence limit
t value	t value of the t distribution
Df	degree of freedom
Pr(> t)	probability with the t distribution

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

Cor.test(mtcars)

corFisher

Description

Testing correlation between two numeric vectors by Fisher's Z transformation

Usage

corFisher(x, y, conf.level=0.95, rho=0)

Arguments

х	the first input numeric vector
у	the second input numeric vector
conf.level	confidence level
rho	population correlation rho under null hypothesis

Details

This accepts only two numeric vectors.

Value

Ν	sample size, length of input vectors
r	sample correlation
Fisher.z	Fisher's z
bias	bias to correct
rho.hat	point estimate of population rho
conf.level	confidence level for the confidence interval
lower	lower limit of confidence interval
upper	upper limit of confidence interval
rho0	population correlation rho under null hypothesis
p.value	p value under the null hypothesis

Author(s)

Kyun-Seop Bae k@acr.kr

References

Fisher RA. Statistical Methods for Research Workers. 14e. 1973

Examples

corFisher(mtcars\$disp, mtcars\$hp, rho=0.6)

Description

Calculates sum of squares of a contrast from a lfit result.

Usage

cSS(K, rx, mu=0, eps=1e-8)

Arguments

К	contrast matrix. Each row is a contrast.
rx	a result of lfit function
mu	a vector of mu for the hypothesis K. The length should be equal to the row count of K.
eps	Less than this value is considered as zero.

Details

It calculates sum of squares with given a contrast matrix and a lfit result. It corresponds to SAS PROC GLM CONTRAST. This can test the hypothesis that the linear combination (function)'s mean vector is mu.

Value

Returns sum of square and its F value and p-value.

Df	degree of freedom
Sum Sq	sum of square for the set of contrasts
Mean Sq	mean square
F value	F value for the F distribution
Pr(>F)	proability of larger than F value

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

CONTR

Examples

```
rx = REG(uptake ~ Type, CO2, summarize=FALSE)
cSS(t(c(0, -1, 1)), rx) # sum of square
GLM(uptake ~ Type, CO2) # compare with the above
```

cSS

CumAlpha

Description

Cumulative alpha values with repeated hypothesis with a fixed upper bound z-value.

Usage

CumAlpha(x, K=2, side=2)

Arguments

Х	fixed upper z-value bound for the repeated hypothesis test
К	total number of tests
side	1=one-side test, 2=two-side test

Details

It calculates cumulative alpha-values for the even-interval repeated hypothesis test with a fixed upper bound z-value. It assumes linear (proportional) increase of information amount and Brownian motion of z-value, i.e. the correlation is $sqrt(t_i/t_j)$.

Value

The result is a matrix.

titime of test, Even-interval is assumed.cum.alphacumulative alpha valued

Author(s)

Kyun-Seop Bae k@acr.kr

References

Reboussin DM, DeMets DL, Kim K, Lan KKG. Computations for group sequential boundaries using the Lan-DeMets function method. Controlled Clinical Trials. 2000;21:190-207.

Examples

CumAlpha(x=qnorm(1 - 0.05/2), K=10) # two-side Z-test with alpha=0.05 for ten times

Description

Coefficient of variation in percentage.

Usage

CV(y)

Arguments

y a numeric vector

Details

It removes NA.

Value

Coefficient of variation in percentage.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

CV(mtcars\$mpg)

Diffogram

Plot Pairwise Differences

Description

Plot pairwise differences by a common.

Usage

```
Diffogram(Formula, Data, Term, conf.level=0.95, adj="lsd", ...)
```

C٧

Drift

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
Term	a factor name to be estimated
conf.level	confidence level of confidence interval
adj	"lsd", "tukey", "scheffe", "bon", or "duncan" to adjust p-value and confidence limit
	arguments to be passed to plot

Details

This usually shows the shortest interval. It corresponds to SAS PROC GLM PDIFF. For adjust method "dunnett", see PDIFF function.

Value

no return value, but a plot on the current device

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

LSM, PDIFF

Examples

Diffogram(uptake ~ Type*Treatment + as.factor(conc), CO2, "as.factor(conc)")

Drift

Drift defined by Lan and DeMets for Group Sequential Design

Description

Calculate the drift value with given upper bounds (z-valuse), times of test, and power.

Usage

Drift(bi, ti=NULL, Power=0.9)

bi	upper bound z-values
ti	times of test. These should be in the range of [0, 1]. If omitted, even-interval is assumed.
Power	target power at the final test

Details

It calculates the drift value with given upper bound z-values, times of test, and power. If the times of test is not given, even-interval is assumed. mvtnorm::pmvt (with noncentrality) is better than pmvnorm in calculating power and sample size. But, Lan-DeMets used multi-variate normal rather than multi-variate noncentral t distributionh. This function followed Lan-DeMets for the consistency with previous results.

Value

Drift value for the given condition

Author(s)

Kyun-Seop Bae k@acr.kr

References

Reboussin DM, DeMets DL, Kim K, Lan KKG. Computations for group sequential boundaries using the Lan-DeMets function method. Controlled Clinical Trials. 2000;21:190-207.

Examples

Drift(seqBound(ti=(1:5)/5)[, "up.bound"])

e1

Get a Contrast Matrix for Type I SS

Description

Makes a contrast matrix for type I SS using forward Doolittle method.

Usage

e1(XpX, eps=1e-8)

Arguments

ХрХ	crossprodut of a design or model matrix. This should have appropriate column
	names.
eps	Less than this value is considered as zero.

Details

It makes a contrast matrix for type I SS. If zapsmall is used, the result becomes more inaccurate.

Value

A contrast matrix for type I SS.

e2

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
x = ModelMatrix(uptake ~ Plant + Type + Treatment + conc, CO2)
round(e1(crossprod(x$X)), 12)
```

e2

Get a Contrast Matrix for Type II SS

Description

Makes a contrast matrix for type II SS.

Usage

e2(x, eps=1e-8)

Arguments

х	an output of ModelMatrix
eps	Less than this value is considered as zero.

Details

It makes a contrast matrix for type II SS. If zapsmall is used, the result becomes more inaccurate.

Value

A contrast matrix for type II SS.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
round(e2(ModelMatrix(uptake ~ Plant + Type + Treatment + conc, CO2)), 12)
round(e2(ModelMatrix(uptake ~ Type, CO2)), 12)
round(e2(ModelMatrix(uptake ~ Type - 1, CO2)), 12)
```

Description

Makes a contrast matrix for type III SS.

Usage

e3(x, eps=1e-8)

Arguments

х	an output of ModelMatrix
eps	Less than this value is considered as zero.

Details

It makes a contrast matrix for type III SS. If zapsmall is used, the result becomes more inaccurate.

Value

A contrast matrix for type III SS.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
round(e3(ModelMatrix(uptake ~ Plant + Type + Treatment + conc, CO2)), 12)
```

EMS

Expected Mean Square Formula

Description

Calculates a formula table for expected mean square of the given contrast. The default is for Type III SS.

Usage

EMS(Formula, Data, Type=3, eps=1e-8)

e3

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
Туре	type of sum of squares. The default is 3. Type 4 is not supported yet.
eps	Less than this value is considered as zero.

Details

This is necessary for further hypothesis tests of nesting factors.

Value

A coefficient matrix for Type III expected mean square

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
f1 = log(CMAX) ~ SEQ/SUBJ + PRD + TRT
EMS(f1, BEdata)
EMS(f1, BEdata, Type=1)
EMS(f1, BEdata, Type=2)
```

est

Estimate Linear Functions

Description

Estimates Linear Functions with a given GLM result.

Usage

```
est(L, X, rx, conf.level=0.95, adj="lsd", paired=FALSE)
```

L	a matrix of linear contrast rows to be tested
Х	a model (design) matrix from ModelMatrix
rx	a result of lfit function
conf.level	confidence level of confidence limit
adj	adjustment method for grouping. This supports "tukey", "bon", "scheffe", "dun- can", and "dunnett". This only affects grouping, not the confidence interval.
paired	If this is TRUE, L matrix is for the pairwise comparison such as PDIFF function.

Details

It tests rows of linear function. Linear function means linear combination of estimated coefficients. It corresponds to SAS PROC GLM ESTIMATE. Same sample size per group is assumed for the Tukey adjustment.

Value

Estimate	point estimate of the input linear contrast
Lower CL	lower confidence limit by "lsd" method
Upper CL	upper confidence limit by "lsd" method
Std. Error	standard error of the point estimate
t value	value for t distribution for other than "scheffe" method
F value	value for F distribution for "scheffe" method only
Df	degree of freedom of residuals
Pr(> t)	probability of larger than absolute t value from t distribution with residual's degree of freedom, for other than "scheffe" method
Pr(>F)	probability of larger than F value from F distribution with residual's degree of freedom, for "scheffe" method only

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

ESTM, PDIFF

Examples

```
x = ModelMatrix(uptake ~ Type, CO2)
rx = REG(uptake ~ Type, CO2, summarize=FALSE)
est(t(c(0, -1, 1)), x$X, rx) # Quebec - Mississippi
t.test(uptake ~ Type, CO2) # compare with the above
```

ESTM

Estimate Linear Function

Description

Estimates Linear Function with a formula and a dataset.

Usage

ESTM(L, Formula, Data, conf.level=0.95)

estmb

Arguments

L	a matrix of linear functions rows to be tested
Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
conf.level	confidence level of confidence limit

Details

It tests rows of linear functions. Linear function means linear combination of estimated coefficients. It is similar to SAS PROC GLM ESTIMATE. This is a convenient version of est function.

Value

Estimate	point estimate of the input linear contrast
Lower CL	lower confidence limit
Upper CL	upper confidence limit
Std. Error	standard error of the point estimate
t value	value for t distribution
Df	degree of freedom
Pr(> t)	probability of larger than absolute t value from t distribution with residual's degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

est

Examples

ESTM(t(c(0, -1, 1)), uptake ~ Type, CO2) # Quevec - Mississippi

estmb Estimability Check

Description

Check the estimability of row vectors of coefficients.

Usage

estmb(L, X, g2, eps=1e-8)

Arguments

L	row vectors of coefficients
Х	a model (design) matrix from ModelMatrix
g2	g2 generalized inverse of crossprod(X)
eps	absolute value less than this is considered to be zero.

Details

It checks the estimability of L, row vectors of coefficients. This corresponds to SAS PROC GLM ESTIMATE. See <Kennedy Jr. WJ, Gentle JE. Statistical Computing. 1980> p361 or <Golub GH, Styan GP. Numerical Computations for Univariate Linear Models. 1971>.

Value

a vector of logical values indicating which row is estimable (as TRUE)

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

G2SWEEP

ExitP

Exit Probability with cumulative Z-test in Group Sequential Design

Description

Exit probabilities with given drift, upper bounds, and times of test.

Usage

```
ExitP(Theta, bi, ti=NULL)
```

Theta	drift value defined by Lan-DeMets. See the reference.
bi	upper bound z-values
ti	times of test. These should be in the range of [0, 1]. If omitted, even-interval is assumed.

g2inv

Details

It calculates exit proabilities and cumulative exit probabilities with given drift, upper z-bounds and times of test. If the times of test is not given, even-interval is assumed. mvtnorm::pmvt (with noncentrality) is better than pmvnorm in calculating power and sample size. But, Lan-DeMets used multi-variate normal rather than multi-variate noncentral t distributionh. This function followed Lan-DeMets for the consistency with previous results.

Value

The result is a matrix.

ti	time of test
bi	upper z-bound
cum.alpha	cumulative alpha-value

Author(s)

Kyun-Seop Bae k@acr.kr

References

Reboussin DM, DeMets DL, Kim K, Lan KKG. Computations for group sequential boundaries using the Lan-DeMets function method. Controlled Clinical Trials. 2000;21:190-207.

Examples

b0 = seqBound(ti=(1:5)/5)[, "up.bound"]
ExitP(Theta = Drift(b0), bi = b0)

g2inv

Generalized type 2 inverse matrix, g2 inverse

Description

Generalized inverse is usually not unique. Some programs use this algorithm to get a unique generalized inverse matrix. This uses SWEEP operator and works for non-square matrix also.

Usage

g2inv(A, eps=1e-08)

A	a matrix to be inverted
eps	Less than this value is considered as zero.

Details

See 'SAS Technical Report R106, The Sweep Operator: Its importance in Statistical Computing' by J. H. Goodnight for the detail.

Value

g2 inverse

Author(s)

Kyun-Seop Bae k@acr.kr

References

Searle SR, Khuri AI. Matrix Algebra Useful for Statistics. 2e. John Wiley and Sons Inc. 2017.

See Also

G2SWEEP

Examples

```
A = matrix(c(1, 2, 4, 3, 3, -1, 2, -2, 5, -4, 0, -7), byrow=TRUE, ncol=4) ; A g2inv(A)
```

G2SWEEP

Generalized inverse matrix of type 2 for linear regression

Description

Generalized inverse is usually not unique. Some programs use this algorithm to get a unique generalized inverse matrix.

Usage

```
G2SWEEP(A, Augmented=FALSE, eps=1e-08)
```

A	a matrix to be inverted. If A is not a square matrix, G2SWEEP calls g2inv function.
Augmented	If this is TRUE and A is a model(design) matrix X, the last column should be X'y, the last row y'X, and the last cell y'y. See the reference and example for the detail. If the input matrix A is not a square matrix, Augmented option cannot be TRUE.
eps	Less than this value is considered as zero.

geoCV

Details

Generalized inverse of g2-type is used by some softwares to do linear regression. See 'SAS Technical Report R106, The Sweep Operator: Its importance in Statistical Computing' by J. H. Goodnight for the detail.

Value

when Augmented=FALSE

ordinary g2 inverse

when Augmented=TRUE

g2 inverse and beta hats in the last column and the last row, and sum of square error (SSE) in the last cell

attribute "rank"

the rank of input matrix

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

lfit, ModelMatrix

Examples

```
f1 = uptake ~ Type + Treatment # formula
x = ModelMatrix(f1, CO2) # Model matrix and relevant information
y = model.frame(f1, CO2)[, 1] # observation vector
nc = ncol(x$X) # number of columns of model matrix
XpY = crossprod(x$X, y)
aXpX = rbind(cbind(crossprod(x$X), XpY), cbind(t(XpY), crossprod(y)))
ag2 = G2SWEEP(aXpX, Augmented=TRUE)
b = ag2[1:nc, (nc + 1)] ; b # Beta hat
iXpX = ag2[1:nc, 1:nc] ; iXpX # g2 inverse of X'X
SSE = ag2[(nc + 1), (nc + 1)] ; SSE # Sum of Square Error
DFr = nrow(x$X) - attr(ag2, "rank") ; DFr # Degree of freedom for the residual
Comment the balant with the abave
```

Compare the below with the above REG(f1, CO2) aov1(f1, CO2)

geoCV

Geometric Coefficient of Variation in percentage

Description

Geometric coefficient of variation in percentage.

geoMean

Usage

geoCV(y)

Arguments

y a numeric vector

Details

It removes NA. This is sqrt(exp(var(log(x))) - 1)*100.

Value

Geometric coefficient of variation in percentage.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

geoMean

Examples

geoCV(mtcars\$mpg)

geoMean

Geometric Mean without NA

Description

mean without NA values.

Usage

geoMean(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

geometric mean value

32

GLM

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

geoCV

Examples

geoMean(mtcars\$mpg)

GLM

General Linear Model similar to SAS PROC GLM

Description

GLM is the main function of this package.

Usage

```
GLM(Formula, Data, BETA=FALSE, EMEAN=FALSE, Resid=FALSE, conf.level=0.95,
Weights=1)
```

Arguments

Formula	a conventional formula for a linear model.
Data	a data.frame to be analyzed
BETA	if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to SOLUTION option of SAS PROC GLM
EMEAN	if TRUE, least square means (or expected means) will be returned. This is equivalent to LSMEANS clause of SAS PROC GLM
Resid	if TRUE, fitted values (y hat) and residuals will be returned
conf.level	confidence level for the confidence limit of the least square mean
Weights	weights for the weighted least square

Details

It performs the core function of SAS PROC GLM. Least square means for the interaction term of three variables is not supported yet.

Value

The result is comparable to that of SAS PROC GLM.

ANOVA	ANOVA table for the model
Fitness	Some measures of goodness of fit such as R-square and CV
Туре І	Type I sum of square table
Type II	Type II sum of square table
Type III	Type III sum of square table
Parameter	Parameter table with standard error, t value, p value. TRUE is 1, and FALSE is 0 in the Estimable column. This is returned only with BETA=TRUE option.
Expected Mean	Least square (or expected) mean table with confidence limit. This is returned only with EMEAN=TRUE option.
Fitted	Fitted value or y hat. This is returned only with Resid=TRUE option.
Residual	Weigthed residuals. This is returned only with Resid=TRUE option.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
GLM(uptake ~ Type*Treatment + conc, C02[-1,]) # Making data unbalanced
GLM(uptake ~ Type*Treatment + conc, C02[-1,], BETA=TRUE)
GLM(uptake ~ Type*Treatment + conc, C02[-1,], EMEAN=TRUE)
GLM(uptake ~ Type*Treatment + conc, C02[-1,], Resid=TRUE)
GLM(uptake ~ Type*Treatment + conc, C02[-1,], BETA=TRUE, EMEAN=TRUE)
GLM(uptake ~ Type*Treatment + conc, C02[-1,], BETA=TRUE, EMEAN=TRUE, Resid=TRUE)
```

is.cor

Is it a correlation matrix?

Description

Testing if the input matrix is a correlation matrix or not

Usage

is.cor(m, eps=1e-16)

Arguments

m	a presumed correlation matrix
eps	epsilon value. An absolute value less than this is considered as zero.

34

Kurtosis

Details

A diagonal component should not be necessarily 1. But it should be close to 1.

Value

TRUE or FALSE

Author(s)

Kyun-Seop Bae k@acr.kr

Kurtosis Kurtosis

Description

Kurtosis with a conventional formula.

Usage

Kurtosis(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

Estimate of kurtosis

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

KurtosisSE

KurtosisSE

Description

Standard error of the estimated kurtosis with a conventional formula.

Usage

```
KurtosisSE(y)
```

Arguments у

a vector of numerics

Details

It removes NA in the input vector.

Value

Standard error of the estimated kurtosis

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

Kurtosis

```
LCL
```

Lower Confidence Limit

Description

The estimate of the lower bound of confidence limit using t-distribution

Usage

LCL(y, conf.level=0.95)

0	
У	a vector of numerics
conf.level	confidence level
lfit

Details

It removes NA in the input vector.

Value

The estimate of the lower bound of confidence limit using t-distribution

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

UCL

Linear Fit

Description

Fits a least square linear model.

Usage

lfit(x, y, eps=1e-8)

Arguments

х	a result of ModelMatrix
У	a column vector of response, dependent variable
eps	Less than this value is considered as zero.

Details

Minimum version of least square fit of a linear model

Value

coeffcients	beta coefficients
g2	g2 inverse
rank	rank of the model matrix
DFr	degree of freedom for the residual
SSE	sum of squares error
SST	sum of squares total
DFr2	degree of freedom of the residual for beta coefficient

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

ModelMatrix

Examples

```
f1 = uptake ~ Type*Treatment + conc
x = ModelMatrix(f1, C02)
y = model.frame(f1, C02)[,1]
lfit(x, y)
```

lr

Linear Regression with g2 inverse

Description

Coefficients calculated with g2 inverse. Output is similar to summary(lm()).

Usage

lr(Formula, Data, eps=1e-8)

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
eps	Less than this value is considered as zero.

Details

It uses G2SWEEP to get g2 inverse. The result is similar to summary(lm()) without options.

Value

The result is comparable to that of SAS PROC REG.

Estimate	point estimate of parameters, coefficients
Std. Error	standard error of the point estimate
t value	value for t distribution
Pr(> t)	probability of larger than absolute t value from t distribution with residual's degree of freedom

lr0

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
lr(uptake ~ Plant + Type + Treatment + conc, CO2)
lr(uptake ~ Plant + Type + Treatment + conc - 1, CO2)
lr(uptake ~ Type, CO2)
lr(uptake ~ Type - 1, CO2)
```

lr0

Simple Linear Regressions with Each Independent Variable

Description

Usually, the first step to multiple linear regression is simple linear regressions with a single independent variable.

Usage

lr0(Formula, Data)

Arguments

Formula	a conventional formula for a linear model. Intercept will always be added.
Data	a data.frame to be analyzed

Details

It performs simple linear regression for each independent variable.

Value

Each row means one simple linear regression with that row name as the only independent variable.

estimate of the intecept
standard error of the intercept
estimate of the slope
standard error of the slope
R-squared for the simple linear model
p-value of slope or the model

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
lr0(uptake ~ Plant + Type + Treatment + conc, CO2)
lr0(mpg ~ ., mtcars)
```

LSM

Least Square Means

Description

Estimates least square means using g2 inverse.

Usage

```
LSM(Formula, Data, Term, conf.level=0.95, adj="lsd", hideNonEst=TRUE, PLOT=FALSE, descend=FALSE, ...)
```

Arguments

Formula	a conventional formula of model
Data	data.frame
Term	term name to be returned. If there is only one independent variable, this can be omitted.
conf.level	confidence level for the confidence limit
adj	adjustment method for grouping, "lsd"(default), "tukey", "bon", "duncan", "scheffe" are available. This does not affects SE, Lower CL, Upper CL of the output table.
hideNonEst	logical. hide non-estimables
PLOT	logical. whether to plot LSMs and their confidence intervals
descend	logical. This specifies the plotting order be ascending or descending.
	arguments to be passed to plot

Details

It corresponds to SAS PROC GLM LSMEANS. The result of the second example below may be different from emmeans. This is because SAS or this function calculates mean of the transformed continuous variable. However, emmeans calculates the average before the transformation. Interaction of three variables is not supported yet. For adjust method "dunnett", see PDIFF function.

Value

Returns a table of expectations, t values and p-values.

Group	group character. This appears with one-way ANOVA or Term or adj argument is provided.
LSmean	point estimate of least square mean

40

LowerCL	lower confidence limit with the given confidence level by "lsd" method
UpperCL	upper confidence limit with the given confidence level by "lsd" method
SE	standard error of the point estimate
Df	degree of freedom of point estimate

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

PDIFF, Diffogram

Examples

```
LSM(uptake ~ Type, CO2[-1,])

LSM(uptake ~ Type - 1, CO2[-1,])

LSM(uptake ~ Type*Treatment + conc, CO2[-1,])

LSM(uptake ~ Type*Treatment + conc - 1, CO2[-1,])

LSM(log(uptake) ~ Type*Treatment + log(conc) - 0.202[-1,])

LSM(log(uptake) ~ Type*Treatment + as.factor(conc), CO2[-1,])

LSM(log(uptake) ~ Type*Treatment + as.factor(conc) - 0.202[-1,])

LSM(log(uptake) ~ Type*Treatment + as.factor(conc) - 0.202[-1,])

LSM(log(uptake) ~ Type*Treatment + as.factor(conc) - 1, CO2[-1,])

LSM(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata)

LSM(log(CMAX) ~ SEQ/SUBJ + PRD + TRT - 1, BEdata)
```

Max

Max without NA

Description

maximum without NA values.

Usage

Max(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

maximum value

Median

Author(s)

Kyun-Seop Bae k@acr.kr

Mean

Mean without NA

Description

mean without NA values.

Usage

Mean(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

mean value

Author(s)

Kyun-Seop Bae k@acr.kr

Median

Median without NA

Description

median without NA values.

Usage

Median(y)

Arguments

y a vector of numerics

42

Min

Details

It removes NA in the input vector.

Value

median value

Author(s)

Kyun-Seop Bae k@acr.kr

Min

Min without NA

Description

minimum without NA values.

Usage

Min(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

minimum value

Author(s)

Kyun-Seop Bae k@acr.kr

ModelMatrix

Description

This model matrix is similar to model.matrix. But it does not omit unnecessary columns.

Usage

ModelMatrix(Formula, Data, KeepOrder=FALSE, XpX=FALSE)

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
Keep0rder	If KeepOrder is TRUE, terms in Formula will be kept. This is for Type I SS.
ХрХ	If XpX is TRUE, the cross-product of the design matrix $(XpX, X'X)$ will be returned instead of the design matrix (X) .

Details

It makes the model(design) matrix for GLM.

Value

Model matrix and attributes similar to the output of model.matrix.

Х	design matrix, i.e. model matrix
ХрХ	cross-product of the design matrix, X'X
terms	detailed information about terms such as formula and labels
termsIndices	term indices
assign	assignemnt of columns for each term in order, different way of expressing term indices

Author(s)

Kyun-Seop Bae k@acr.kr

mtest

Description

This is comparable to SAS PROC TTEST except using summarized input (sufficient statistics).

Usage

mtest(m1, s1, n1, m0, s0, n0, conf.level=0.95)

Arguments

m1	mean of the first (test, active, experimental) group
s1	sample standard deviation of the first group
n1	sample size of the first group
mØ	mean of the second (reference, control, placebo) group
s0	sample standard deviation of the second group
n0	sample size of the second group
conf.level	confidence level

Details

This uses summarized input. This also produces confidence intervals of means and variances by group.

Value

The output format is comparable to SAS PROC TTEST.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

TTEST, tmtest, ztest

Examples

mtest(5.4, 10.5, 3529, 5.1, 8.9, 5190) # NEJM 388;15 p1386

Ν

Description

Number of observations excluding NA values

Usage

N(y)

Arguments y

a vector of numerics

Details

It removes NA in the input vector.

Value

Count of the observation

Author(s)

Kyun-Seop Bae k@acr.kr

OR

Odds Ratio of two groups

Description

Odds Ratio between two groups

Usage

OR(y1, n1, y2, n2, conf.level=0.95)

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level

ORcmh

Details

It calculates odds ratio of two groups. No continuity correction here. If you need percent scale, multiply the output by 100.

Value

The result is a data.frame.

odd1	proportion from the first group
odd2	proportion from the second group
OR	odds ratio, odd1/odd2
SElog	standard error of log(OR)
lower	lower confidence limit of OR
upper	upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

RD, RR, RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn

Examples

OR(104, 11037, 189, 11034) # no continuity correction

ORcmh

Odds Ratio of two groups with strata by CMH method

Description

Odds ratio and its score confidence interval of two groups with stratification by Cochran-Mantel-Haenszel method

Usage

ORcmh(d0, conf.level=0.95)

Arguments

d0 A data.frame or matrix, of which each row means a strata. This should have four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for sample size of each strata. The second group is usually the control group.

conf.level confidence level

Details

It calculates odds ratio and its score confidence interval of two groups. This can be used for metaanalysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

odd1	odd from the first group, $y1/(n1 - y1)$
odd2	odd from the second group, $y2/(n2 - y2)$
OR	odds ratio, odd1/odd2. The point estimate of common OR is calculated with MH weight.
lower	lower confidence limit of OR
upper	upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn, RDinv, RRinv, ORinv

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE)
colnames(d1) = c("y1", "n1", "y2", "n2")
ORcmh(d1)
```

```
ORinv
```

Odds Ratio of two groups with strata by inverse variance method

Description

Odds ratio and its score confidence interval of two groups with stratification by inverse variance method

Usage

```
ORinv(d0, conf.level=0.95)
```

Arguments

d0	A data frame or matrix, of which each row means a stratum. This should have
	four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1
	and n2 for sample size of each strata. The second group is usually the control
	group.
conf.level	confidence level

48

ORmn

Details

It calculates odds ratio and its confidence interval of two groups by inverse variance method. This supports stratification. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

odd1	odd from the first group, $y1/(n1 - y1)$
odd2	odd from the second group, $y2/(n2 - y2)$
OR	odds ratio, odd1/odd2. The point estimate of common OR is calculated with MH weight.
lower	lower confidence limit of OR
upper	upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn, RDinv, RRinv, ORcmh

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE)
colnames(d1) = c("y1", "n1", "y2", "n2")
ORinv(d1)
```

ORmn

Odds Ratio and Score CI of two groups with strata by MN method

Description

Odds ratio and its score confidence interval of two groups with stratification by the Miettinen and Nurminen method

Usage

ORmn(d0, conf.level=0.95, eps=1e-8)

Arguments

d0	A data.frame or matrix, of which each row means a strata. This should have four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for sample size of each strata. The second group is usually the control group.
conf.level	confidence level
eps	absolute value less than eps is regarded as negligible

Details

It calculates odds ratio and its score confidence interval of the two groups. The confidence interval is asymmetric, and there is no standard error in the output. This supports stratification. This implementation uses uniroot function, which usually gives at least 5 significant digits. Whereas PropCIs::orscoreci function uses incremental or decremental search by the factor of 1.001 which gives only about 3 significant digits. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

odd1	odd from the first group, $y1/(n1 - y1)$
odd2	odd from the second group, $y2/(n2 - y2)$
OR	odds ratio, odd1/odd2. The point estimate of common OR is calculated with MN weight.
lower	lower confidence limit of OR
upper	upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

RDmn1, RRmn1, ORmn1, RDmn, RRmn, RDinv, RRinv, ORinv, ORcmh

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE)
colnames(d1) = c("y1", "n1", "y2", "n2")
ORmn(d1)
```

0Rmn1

Odds Ratio and Score CI of two groups without strata by the MN method

Description

Odds ratio and its score confidence interval of two groups without stratification

Usage

ORmn1(y1, n1, y2, n2, conf.level=0.95, eps=1e-8)

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level
eps	absolute value less than eps is regarded as negligible

Details

It calculates odds ratio and its score confidence interval of the two groups. The confidence interval is asymmetric, and there is no standard error in the output. This does not support stratification. This implementation uses uniroot function, which usually gives at least 5 significant digits. Whereas PropCIs::orscoreci function uses incremental or decremental search by the factor of 1.001 which gives only less than 3 significant digits.

Value

There is no standard error.

odd1	odd from the first group, $y1/(n1 - y1)$
odd2	odd from the second group, $y2/(n2 - y2)$
OR	odds ratio, odd1/odd2
lower	lower confidence limit of OR
upper	upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

RDmn1, RRmn1, RDmn, RRmn, ORmn

Examples

ORmn1(104, 11037, 189, 11034)

рΒ

Plot Confidence and Prediction Bands for Simple Linear Regression

Description

It plots bands of the confidence interval and prediction interval for simple linear regression.

Usage

pB(Formula, Data, Resol=300, conf.level=0.95, lx, ly, ...)

Arguments

Formula	a formula
Data	a data.frame
Resol	resolution for the output
conf.level	confidence level
lx	x position of legend
ly	y position of legend
	arguments to be passed to plot

Details

It plots. Discard return values. If 1x or 1y is missing, the legend position is calculated automatically.

Value

Ignore return values.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
pB(hp ~ disp, mtcars)
pB(mpg ~ disp, mtcars)
```

Pcor.test

Description

Testing partial correlation between many columns of data with Pearson method.

Usage

```
Pcor.test(Data, x, y)
```

Arguments

Data	a numeric matrix or data.frame
x	names of columns to be tested
У	names of control columns

Details

It performs multiple partial correlation test. It uses "complete.obs" rows of x and y columns.

Value

Row names show which columns are used for the test

Estimate	point estimate of correlation
Df	degree of freedom
t value	t value of the t distribution
Pr(> t)	probability with the t distribution

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
Pcor.test(mtcars, c("mpg", "hp", "qsec"), c("drat", "wt"))
```

Description

Four standard diagnostic plots for regression.

Usage

pD(rx, Title=NULL)

Arguments

rx	a result of lm, which can give fitted, residuals, and rstandard.
Title	title to be printed on the plot

Details

Most frequently used diagnostic plots are 'observed vs. fitted', 'standardized residual vs. fitted', 'distribution plot of standard residuals', and 'Q-Q plot of standardized residuals'.

Value

Four diagnostic plots in a page.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

pD(lm(uptake ~ Plant + Type + Treatment + conc, CO2), "Diagnostic Plot")

PDIFF

Pairwise Difference

Description

Estimates pairwise differences by a common method.

Usage

рD

PDIFF

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
Term	a factor name to be estimated
conf.level	confidence level of confidence interval
adj	"lsd", "tukey", "scheffe", "bon", "duncan", or "dunnett" to adjust p-value and confidence limit
ref	reference or control level for Dunnett test
PLOT	whether to plot or not the diffogram
reverse	reverse A - B to B - A
	arguments to be passed to plot

Details

It corresponds to PDIFF option of SAS PROC GLM.

Value

Returns a table of expectations, t values and p-values. Output columns may vary according to the adjustment option.

Estimate	point estimate of the input linear contrast
Lower CL	lower confidence limit
Upper CL	upper confidence limit
Std. Error	standard error of the point estimate
t value	value for t distribution
Df	degree of freedom
Pr(> t)	probability of larger than absolute t value from t distribution with residual's degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

LSM, Diffogram

Examples

```
PDIFF(uptake ~ Type*Treatment + as.factor(conc), CO2, "as.factor(conc)")
PDIFF(uptake ~ Type*Treatment + as.factor(conc), CO2, "as.factor(conc)", adj="tukey")
```

PocockBound

Description

Cumulative alpha values with cumulative hypothesis test with a fixed upper bound z-value in group sequential design.

Usage

```
PocockBound(K=2, alpha=0.05, side=2)
```

Arguments

К	total number of tests
alpha	alpha value at the final test
side	1=one-side test, 2=two-side test

Details

Pocock suggested a fixed upper bound z-value for the cumulative hypothesis test in group sequential designs.

Value

a fixed upper bound z-value for the K times repated hypothesis test with a final alpha-value. Attributes are;

ti	time of test, Even-interval is assumed.
cum.alpha	cumulative alpha valued

Author(s)

Kyun-Seop Bae k@acr.kr

References

Reboussin DM, DeMets DL, Kim K, Lan KKG. Computations for group sequential boundaries using the Lan-DeMets function method. Controlled Clinical Trials. 2000;21:190-207.

Examples

PocockBound(K=2) # Z-value of upper bound for the two-stage design

pResD

Description

Nine residual diagnostics plots.

Usage

pResD(rx, Title=NULL)

Arguments

rx	a result of lm, which can give fitted, residuals, and rstandard.
Title	title to be printed on the plot

Details

SAS-style residual diagnostic plots.

Value

Nine residual diagnostic plots in a page.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

pResD(lm(uptake ~ Plant + Type + Treatment + conc, CO2), "Residual Diagnostic Plot")

QuartileRange Inter-Quartile Range

Description

Interquartile range (Q3 - Q1) with a conventional formula.

Usage

QuartileRange(y, Type=2)

Arguments

У	a vector of numerics
Туре	a type specifier to be passed to IQR function

Details

It removes NA in the input vector. Type 2 is SAS default, while Type 6 is SPSS default.

Value

The value of an interquartile range

Author(s)

Kyun-Seop Bae k@acr.kr

Range Range

Description

The range, maximum - minimum, as a scalar value.

Usage

Range(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

A scalar value of a range

Author(s)

Kyun-Seop Bae k@acr.kr

RanTest

Description

Hypothesis test of with specified type SS using random effects as error terms. This corresponds to SAS PROC GLM's RANDOM /TEST clause.

Usage

```
RanTest(Formula, Data, Random="", Type=3, eps=1e-8)
```

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
Random	a vector of random effects. All should be specified as primary terms, not as in- teraction terms. All interaction terms with random factor are regarded as random effects.
Туре	Sum of square type to be used as contrast
eps	Less than this value is considered as zero.

Details

Type can be from 1 to 3. All interaction terms with random factor are regarded as random effects. Here the error term should not be MSE.

Value

Returns ANOVA and E(MS) tables with specified type SS.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
RanTest(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata, Random="SUBJ")
fBE = log(CMAX) ~ ADM/SEQ/SUBJ + PRD + TRT
RanTest(fBE, BEdata, Random=c("ADM", "SUBJ"))
RanTest(fBE, BEdata, Random=c("ADM", "SUBJ"), Type=2)
RanTest(fBE, BEdata, Random=c("ADM", "SUBJ"), Type=1)
```

Description

Risk (proportion) difference between two groups

Usage

RD(y1, n1, y2, n2, conf.level=0.95)

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level

Details

It calculates risk difference between the two groups. No continuity correction here. If you need percent scale, multiply the output by 100.

Value

The result is a data.frame.

p1	proportion from the first group
p2	proportion from the second group
RD	risk difference, p1 - p2
SE	standard error of RD
lower	lower confidence limit of RD
upper	upper confidence limit of RD

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

RR, OR, RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn

Examples

RD(104, 11037, 189, 11034) # no continuity correction

RD

RDinv

Description

Risk difference and its score confidence interval between two groups with stratification by inverse variance method

Usage

RDinv(d0, conf.level=0.95)

Arguments

d0	A data.frame or matrix, of which each row means a stratum. This should have
	four columns named y1, n1, y2, and n2; y1 and y2 for events of each group,
	n1 and n2 for the sample size of each stratum. The second group is usually the control group.
conf.level	confidence level

Details

It calculates risk difference and its confidence interval between two groups by inverse variance method. If you need percent scale, multiply the output by 100. This supports stratification. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

p1	proportion from the first group, y1/n1
p2	proportion from the second group, y2/n2
RD	risk difference, p1 - p2. The point estimate of common RD is calculated with MH weight.
lower	lower confidence limit of RD
upper	upper confidence limit of RD

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn, RRinv, ORinv, ORcmh

RDmn

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE)
colnames(d1) = c("y1", "n1", "y2", "n2")
RDinv(d1)
```

RDmn

Risk Difference and Score CI between two groups with strata by the MN method

Description

Risk difference and its score confidence interval between two groups with stratification by the Miettinen and Nurminen method

Usage

RDmn(d0, conf.level=0.95, eps=1e-8)

Arguments

d0	A data.frame or matrix, of which each row means a stratum. This should have
	four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1
	and n2 for sample size of each stratum. The second group is usually the control
	group. Maximum allowable value for n1 and n2 is 1e8.
conf.level	confidence level
eps	absolute value less than eps is regarded as negligible

Details

It calculates risk difference and its score confidence interval between the two groups. The confidence interval is asymmetric, and there is no standard error in the output. If you need percent scale, multiply the output by 100. This supports stratification. This implementation uses uniroot function which usually gives at least 5 significant digits. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

p1	proportion from the first group, y1/n1
p2	proportion from the second group, y2/n2
RD	risk difference, p1 - p2. The point estimate of common RD is calculated with MN weight.
lower	lower confidence limit of RD
upper	upper confidence limit of RD

62

RDmn1

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

RDmn1, RRmn1, ORmn1, RRmn, ORmn, RDinv, RRinv, ORinv, ORcmh

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE)
colnames(d1) = c("y1", "n1", "y2", "n2")
RDmn(d1)
```

RDmn1	Risk Difference and Score CI between two groups without strata by the
	MN method

Description

Risk difference and its score confidence interval between two groups without stratification

Usage

RDmn1(y1, n1, y2, n2, conf.level=0.95, eps=1e-8)

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group. Maximum allowable value is 1e8.
y2	positive event count of control (the second) group
n2	total count of control (the second) group. Maximum allowable value is 1e8.
conf.level	confidence level
eps	absolute value less than eps is regarded as negligible

Details

It calculates risk difference and its score confidence interval between the two groups. The confidence interval is asymmetric, and there is no standard error in the output. If you need percent scale, multiply the output by 100. This does not support stratification. This implementation uses uniroot function which usually gives at least 5 significant digits.

Value

There is no standard error.

p1	proportion from the first group, y1/n1
p2	proportion from the second group, y2/n2
RD	risk difference, p1 - p2
lower	lower confidence limit of RD
upper	upper confidence limit of RD

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

RRmn1, ORmn1, RDmn, RRmn, ORmn

Examples

RDmn1(104, 11037, 189, 11034)

REG

Regression of Linear Least Square, similar to SAS PROC REG

Description

REG is similar to SAS PROC REG.

Usage

```
REG(Formula, Data, conf.level=0.95, HC=FALSE, Resid=FALSE, Weights=1,
    summarize=TRUE)
```

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
conf.level	confidence level for the confidence limit
HC	heteroscedasticity related output is required such as HC0, HC3, White's first and second moment specification test
Resid	if TRUE, fitted values (y hat) and residuals will be returned
Weights	weights for each observation or residual square. This is usually the inverse of each variance.
summarize	If this is FALSE, REG returns just lfit result.

REG

Details

It performs the core function of SAS PROC REG.

Value

The result is comparable to that of SAS PROC REG.

The first part is ANOVA table.

The second part is measures about fitness.

The third part is the estimates of coefficients.

Estimate	point estimate of parameters, coefficients
Estimable	estimability: 1=TRUE, 0=FALSE. This appears only when at least one inestimability occurs.
Std. Error	standard error of the point estimate
Lower CL	lower confidence limit with conf.level
Upper CL	lower confidence limit with conf.level
Df	degree of freedom
t value	value for t distribution
Pr(> t)	probability of larger than absolute t value from t distribution with residual's degree of freedom

The above result is repeated using HC0 and HC3, with following White's first and second moment specification test, if HC option is specified. The t values and their p values with HC1 and HC2 are between those of HC0 and H3.

Fitted	Fitted value or y hat. This is returned only with Resid=TRUE option.
Residual	Weighted residuals. This is returned only with Resid=TRUE option.

If summarize=FALSE, REG returns;

coeffcients	beta coefficients
g2	g2 inverse
rank	rank of the model matrix
DFr	degree of freedom for the residual
SSE	sum of square error

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

lr

Examples

```
REG(uptake ~ Plant + Type + Treatment + conc, CO2)
REG(uptake ~ conc, CO2, HC=TRUE)
REG(uptake ~ conc, CO2, Resid=TRUE)
REG(uptake ~ conc, CO2, HC=TRUE, Resid=TRUE)
REG(uptake ~ conc, CO2, summarize=FALSE)
```

```
regD
```

Regression of Conventional Way with Rich Diagnostics

Description

regD provides rich diagnostics such as student residual, leverage(hat), Cook's D, studentized deleted residual, DFFITS, and DFBETAS.

Usage

regD(Formula, Data)

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed

Details

It performs the conventional regression analysis. This does not use g2 inverse, therefore it cannot handle a singular matrix. If the model(design) matrix is not full rank, use REG or fewer parameters.

Value

Coefficients	conventional coefficients summary with Wald statistics
Diagnostics	Diagnostics table for detecting outlier or influential/leverage points. This in- cludes fitted (Predicted), residual (Residual), standard error of residual(se_resid), studentized residual(RStudent), hat(Leverage), Cook's D, studentized deleted residual(sdResid), DIFFITS, and COVRATIO.
DFBETAS	Column names are the names of coefficients. Each row shows how much each coefficient is affected by deleting the corressponding row of observation.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

regD(uptake ~ conc, CO2)

Description

Relative Risk between the two groups

Usage

RR(y1, n1, y2, n2, conf.level=0.95)

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level

Details

It calculates relative risk of the two groups. No continuity correction here. If you need percent scale, multiply the output by 100.

Value

The result is a data.frame.

p1	proportion from the first group
p2	proportion from the second group
RR	relative risk, p1/p2
SElog	standard error of log(RR)
lower	lower confidence limit of RR
upper	upper confidence limit of RR

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

RD, OR, RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn

Examples

RR(104, 11037, 189, 11034) # no continuity correction

RR

RRinv

Description

Relative risk and its score confidence interval of two groups with stratification by inverse variance method

Usage

RRinv(d0, conf.level=0.95)

Arguments

d0	A data frame or matrix, of which each row means a stratum. This should have
	four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1
	and n2 for sample size of each stratum. The second group is usually the control
	group.
conf.level	confidence level

Details

It calculates relative risk and its confidence interval of two groups by inverse variance method. This supports stratification. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

p1	proportion from the first group, y1/n1
p2	proportion from the second group, y2/n2
RR	relative risk, p1/p2. The point estimate of common RR is calculated with MH weight.
lower	lower confidence limit of RR
upper	upper confidence limit of RR

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn, RDinv, ORinv, ORcmh

RRmn

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE)
colnames(d1) = c("y1", "n1", "y2", "n2")
RRinv(d1)
```

RRmn

Relative Risk and Score CI of two groups with strata by the MN method

Description

Relative risk and its score confidence interval of two groups with stratification by the Miettinen and Nurminen method

Usage

RRmn(d0, conf.level=0.95, eps=1e-8)

Arguments

d0	A data.frame or matrix, of which each row means a strata. This should have
	four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1
	and n2 for sample size of each stratum. The second group is usually the control
	group.
conf.level	confidence level
eps	absolute value less than eps is regarded as negligible

Details

It calculates relative risk and its score confidence interval of the two groups. The confidence interval is asymmetric, and there is no standard error in the output. This supports stratification. This implementation uses uniroot function, which usually gives at least 5 significant digits. Whereas PropCIs::riskscoreci function uses cubic equation approximation which gives only about 2 significant digits. This can be used for meta-analysis also.

Value

The following output will be returned for each strata and common value. There is no standard error.

p1	proportion from the first group, y1/n1
p2	proportion from the second group, y2/n2
RR	relative risk, p1/p2. Point estimate of common RR is calculated with MN weight.
lower	lower confidence limit of RR
upper	upper confidence limit of RR

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

RDmn1, RRmn1, ORmn1, RDmn, ORmn, RDinv, RRinv, ORinv, ORcmh

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE)
colnames(d1) = c("y1", "n1", "y2", "n2")
RRmn(d1)
```

RRmn1	Relative Risk and Score CI of two groups without strata by by MN
	method

Description

Relative risk and its score confidence interval of the two groups without stratification

Usage

RRmn1(y1, n1, y2, n2, conf.level=0.95, eps=1e-8)

Arguments

у1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level
eps	absolute value less than eps is regarded as negligible

Details

It calculates the relative risk and its score confidence interval of the two groups. The confidence interval is asymmetric, and there is no standard error in the output. This does not support stratification. This implementation uses uniroot function, which usually gives at least 5 significant digits. Whereas PropCIs::riskscoreci function uses cubic equation approximation which gives only about 2 significant digits.

satt

Value

There is no standard error.

p1	proportion from the first group, y1/n1
p2	proportion from the second group, y2/n2
RR	relative risk, p1/p2
lower	lower confidence limit of RR
upper	upper confidence limit of RR

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

RDmn1, ORmn1, RDmn, RRmn, ORmn

Examples

RRmn1(104, 11037, 189, 11034)

satt

Satterthwaite Approximation of Variance and Degree of Freedom

Description

Calculates pooled variance and degree of freedom using Satterthwaite equation.

Usage

satt(vars, dfs, ws=c(1, 1))

Arguments

vars	a vector of variances
dfs	a vector of degree of freedoms
WS	a vector of weights

Details

The input can be more than two variances.

Value

Variance	approximated variance
Df	degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

ScoreCI

Score Confidence Interval for a Proportion or a Binomial Distribution

Description

Score confidence of a proportion in one group

Usage

ScoreCI(y, n, conf.level=0.95)

Arguments

У	positive event count of a group
n	total count of a group
conf.level	confidence level

Details

It calculates score confidence interval of a proportion in one group. The confidence interval is asymmetric and there is no standard error in the output. If you need percent scale, multiply the output by 100.

Value

The result is a data.frame. There is no standard error.

PE	point estimation for the proportion
Lower	lower confidence limit of Prop
Upper	upper confidence limit of Prop

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

binom.test,prop.test
SD

Examples

ScoreCI(104, 11037)

SD

Standard Deviation

Description

Standard deviation of a sample.

Usage

SD(y)

Arguments

у

a vector of numerics

Details

It removes NA in the input vector. The length of the vector should be larger than 1.

Value

Sample standard deviation

Author(s)

Kyun-Seop Bae k@acr.kr

SEM

Standard Error of the Sample Mean

Description

The estimate of the standard error of the sample mean

Usage

SEM(y)

Arguments

y a vector of numerics

seqBound

Details

It removes NA in the input vector.

Value

The estimate of the standard error of the sample mean

Author(s)

Kyun-Seop Bae k@acr.kr

seqBound

Sequential bounds for cumulative Z-test in Group Sequential Design

Description

Sequential upper bounds for cumulative Z-test on accumaltive data. Z values are correlated. This is usually used for group sequential design.

Usage

seqBound(ti, alpha = 0.05, side = 2, t2 = NULL, asf = 1)

Arguments

ti	times for test. These should be [0, 1].
alpha	goal alpha value for the last test at time 0.
side	1=one-side test, 2=two-side test
t2	fractions of information amount. These should be [0, 1]. If not available, ti will be used instead.
asf	alpha spending function. 1=O'Brien-Flemming, 2=Pocock, 3=alpha*ti, 4=al-pha*ti^1.5, 5=alpha*ti^2

Details

It calculates upper z-bounds and cumulative alpha-values for the repeated test in group sequential design. The correlation is assumed to be $sqrt(t_i/t_j)$.

Value

The result is a matrix.

ti	time of test
bi	upper z-bound
cum.alpha	cumulative alpha-value

74

seqCI

Author(s)

Kyun-Seop Bae k@acr.kr

References

Reboussin DM, DeMets DL, Kim K, Lan KKG. Computations for group sequential boundaries using the Lan-DeMets function method. Controlled Clinical Trials. 2000;21:190-207.

Examples

```
seqBound(ti=(1:5)/5)
seqBound(ti=(1:5)/5, asf=2)
```

seqCI

Confidence interval with the last Z-value for the group sequential design

Description

Confidence interval with given upper bounds, time of tests, the last Z-value, and confidence level.

Usage

seqCI(bi, ti, Zval, conf.level=0.95)

Arguments

bi	upper bound z-values
ti	times for test. These should be [0, 1].
Zval	the last z-value from the observed data. This is not necessarily the planned final Z-value.
conf.level	confidence level

Details

It calculates confidence interval with given upper bounds, time of tests, the last Z-value, and confidence level. It assumes two-side test. mvtnorm::pmvt (with noncentrality) is better than pmvnorm in calculating power, sample size, and confidence interval. But, Lan-DeMets used multi-variate normal rather than multi-variate noncentral t distributionh. This function followed Lan-DeMets for the consistency with previous results. For the theoretical background, see the reference.

Value

confidence interval of Z-value for the given confidence level.

Author(s)

Kyun-Seop Bae k@acr.kr

References

Reboussin DM, DeMets DL, Kim K, Lan KKG. Computations for group sequential boundaries using the Lan-DeMets function method. Controlled Clinical Trials. 2000;21:190-207.

Examples

```
seqCI(bi = c(2.53, 2.61, 2.57, 2.47, 2.43, 2.38),
    ti = c(.2292, .3333, .4375, .5833, .7083, .8333), Zval=2.82)
```

Description

Skewness with a conventional formula.

Usage

```
Skewness(y)
```

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

Estimate of skewness

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

SkewnessSE

SkewnessSE

Description

Standard errof of the skewness with a conventional formula.

Usage

SkewnessSE(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

Standard error of the estimated skewness

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

Skewness

SLICE

F Test with Slice

Description

Do F test with a given slice term.

Usage

SLICE(Formula, Data, Term, By)

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
Term	a factor name (not interaction) to calculate the sum of square and do F test with least square means
Ву	a factor name to be used for slice

Details

It performs F test with a given slice term. It is similar to the SLICE option SAS PROC GLM.

Value

Returns sum of square and its F value and p-value. Row names are the levels of the slice term.

Df	degree of freedom
Sum Sq	sum of square for the set of contrasts
Mean Sq	mean square
F value	F value for the F distribution
Pr(>F)	proability of larger than F value

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

SLICE(uptake ~ Type*Treatment, CO2, "Type", "Treatment")
SLICE(uptake ~ Type*Treatment, CO2, "Treatment", "Type")

SS

Sum of Square

Description

Sum of squares with ANOVA.

Usage

SS(x, rx, L, eps=1e-8)

Arguments

х	a result of ModelMatrix containing design information
rx	a result of lfit
L	linear hypothesis, a full matrix matching the information in x
eps	Less than this value is considered as zero.

T3MS

Details

It calculates sum of squares and completes the ANOVA table.

Value

ANOVA table a classical ANOVA table without the residual(Error) part.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

ModelMatrix, lfit

T3MS

Type III Expected Mean Square Formula

Description

Calculates a formula table for expected mean square of Type III SS.

Usage

T3MS(Formula, Data, L0, eps=1e-8)

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
LØ	a matrix of row linear contrasts, if missed, e3 is used
eps	Less than this value is considered as zero.

Details

This is necessary for further hypothesis tests of nesting factors.

Value

A coefficient matrix for Type III expected mean square

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

T3MS(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata)

T3test

Description

Hypothesis test of Type III SS using an error term other than MSE. This corresponds to SAS PROC GLM's RANDOM /TEST clause.

Usage

```
T3test(Formula, Data, H="", E="", eps=1e-8)
```

Arguments

Formula	a conventional formula for a linear model
Data	a data.frame to be analyzed
Н	Hypothesis term
E	Error term
eps	Less than this value is considered as zero.

Details

It tests a factor of type III SS using some other term as an error term. Here the error term should not be MSE.

Value

Returns one or more ANOVA table(s) of type III SS.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
T3test(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata, E=c("SEQ:SUBJ"))
T3test(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata, H="SEQ", E=c("SEQ:SUBJ"))
```

tmtest

Description

This produces essentially the same to t.test except using summarized input (sufficient statistics).

Usage

tmtest(m1, s1, n1, m0, s0, n0, conf.level=0.95, nullHypo=0, var.equal=F)

Arguments

m1	mean of the first (test, active, experimental) group
s1	sample standard deviation of the first group
n1	sample size of the first group
mØ	mean of the second (reference, control, placebo) group
s0	sample standard deviation of the second group
n0	sample size of the second group
conf.level	confidence level
nullHypo	value for the difference of means under null hypothesis
var.equal	assumption on the variance equality

Details

The default is Welch t-test with Satterthwaite approximation.

Value

The output format is very similar to t.test

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

mtest, TTEST, ztest

Examples

tmtest(5.4, 10.5, 3529, 5.1, 8.9, 5190) # NEJM 388;15 p1386
tmtest(5.4, 10.5, 3529, 5.1, 8.9, 5190, var.equal=TRUE)

trimmedMean

Description

Trimmed mean wrapping mean function.

Usage

trimmedMean(y, Trim=0.05)

Arguments

У	a vector of numerics
Trim	trimming proportion. Default is 0.05

Details

It removes NA in the input vector.

Value

The value of trimmed mean

Author(s)

Kyun-Seop Bae k@acr.kr

tsum

Table Summary

Description

Summarize a continuous dependent variable with or without independent variables.

Usage

```
tsum(Formula=NULL, Data=NULL, ColNames=NULL, MaxLevel=30, ...)
```

Arguments

Formula	a conventional formula
Data	a data.frame or a matrix
ColNames	If there is no Formula, this will be used.
MaxLevel	More than this will not be handled.
	arguments to be passed to tsum0, tsum1, tsum2, or tsum3

tsum0

Details

A convenient summarization function for a continuous variable. This is a wrapper function to tsum0, tsum1, tsum2, or tsum3.

Value

A data.frame of descriptive summarization values.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

tsum0, tsum1, tsum2, tsum3

Examples

```
tsum(lh)
t(tsum(CO2))
t(tsum(uptake ~ Treatment, CO2))
tsum(uptake ~ Type + Treatment, CO2)
print(tsum(uptake ~ conc + Type + Treatment, CO2), digits=3)
```

tsum0

Table Summary 0 independent(x) variable

Description

Summarize a continuous dependent(y) variable without any independent(x) variable.

Usage

tsum0(d, y, e=c("Mean", "SD", "N"), repl=list(c("length"), c("n")))

Arguments

d	a data.frame or matrix with colnames
У	y variable name, a continuous variable
е	a vector of summarize function names
repl	list of strings to replace after summarize. The length of list should be 2, and both should have the same length.

Details

A convenient summarization function for a continuous variable.

Value

A vector of summarized values

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

tsum, tsum1, tsum2, tsum3

Examples

```
tsum0(CO2, "uptake")
tsum0(CO2, "uptake", repl=list(c("mean", "length"), c("Mean", "n")))
```

tsum1

Table Summary 1 independent(x) variable

Description

Summarize a continuous dependent(y) variable with one independent(x) variable.

Usage

```
tsum1(d, y, u, e=c("Mean", "SD", "N"), ou="", repl=list(c("length"), ("n")))
```

Arguments

d	a data.frame or matrix with colnames
У	y variable name. a continuous variable
u	x variable name, upper side variable
e	a vector of summarize function names
ou	order of levels of upper side x variable
repl	list of strings to replace after summarize. The length of list should be 2, and both should have the same length.

Details

A convenient summarization function for a continuous variable with one x variable.

Value

A data.frame of summarized values. Row names are from e names. Column names are from the levels of x variable.

tsum2

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

tsum, tsum0, tsum2, tsum3

Examples

```
tsum1(CO2, "uptake", "Treatment")
tsum1(CO2, "uptake", "Treatment",
    e=c("mean", "median", "sd", "min", "max", "length"),
    ou=c("chilled", "nonchilled"),
    repl=list(c("median", "length"), c("med", "n")))
```

tsum2

Table Summary 2 independent(x) variables

Description

Summarize a continuous dependent(y) variable with two independent(x) variables.

Usage

```
tsum2(d, y, l, u, e=c("Mean", "SD", "N"), h=NULL, ol="", ou="", rm.dup=TRUE,
    repl=list(c("length"), c("n")))
```

Arguments

d	a data.frame or matrix with colnames
У	y variable name. a continuous variable
1	x variable name to be shown on the left side
u	x variable name to be shown on the upper side
е	a vector of summarize function names
h	a vector of summarize function names for the horizontal subgroup. If NULL, it becomes the same as e argument.
ol	order of levels of left side x variable
ou	order of levels of upper side x variable
rm.dup	if TRUE, duplicated names of levels are specified on the first occurrence only.
repl	list of strings to replace after summarize. The length of list should be 2, and both should have the same length.

Details

A convenient summarization function for a continuous variable with two x variables; one on the left side, the other on the upper side.

Value

A data.frame of summarized values. Column names are from the levels of u. Row names are basically from the levels of 1.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

tsum, tsum0, tsum1, tsum3

Examples

```
tsum2(CO2, "uptake", "Type", "Treatment")
tsum2(CO2, "uptake", "Type", "conc")
tsum2(CO2, "uptake", "Type", "Treatment",
        e=c("mean", "median", "sd", "min", "max", "length"),
        ou=c("chilled", "nonchilled"),
        repl=list(c("median", "length"), c("med", "n")))
```

tsum3

Table Summary 3 independent(x) variables

Description

Summarize a continuous dependent(y) variable with three independent(x) variables.

Usage

Arguments

d	a data.frame or matrix with colnames
У	y variable name. a continuous variable
1	a vector of two x variable names to be shown on the left side. The length should be 2.
u	x variable name to be shown on the upper side
e	a vector of summarize function names
h	a list of two vectors of summarize function names for the first and second hori- zontal subgroups. If NULL, it becomes the same as e argument.
ol1	order of levels of 1st left side x variable
ol2	order of levels of 2nd left side x variable

ou	order of levels of upper side x variable
rm.dup	if TRUE, duplicated names of levels are specified on the first occurrence only.
repl	list of strings to replace after summarize. The length of list should be 2, and
	both should have the same length.

Details

A convenient summarization function for a continuous variable with three x variables; two on the left side, the other on the upper side.

Value

A data.frame of summarized values. Column names are from the levels of u. Row names are basically from the levels of 1.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

tsum, tsum0, tsum1, tsum2

Examples

```
tsum3(C02, "uptake", c("Type", "Treatment"), "conc")
tsum3(C02, "uptake", c("Type", "Treatment"), "conc",
        e=c("mean", "median", "sd", "min", "max", "length"),
        h=list(c("mean", "sd", "length"), c("mean", "length")),
        ol2=c("chilled", "nonchilled"),
        repl=list(c("median", "length"), c("med", "n")))
```

TTEST

Independent two groups t-test comparable to PROC TTEST

Description

This is comparable to SAS PROC TTEST.

Usage

TTEST(x, y, conf.level=0.95)

Arguments

х	a vector of data from the first (test, active, experimental) group
У	a vector of data from the second (reference, control, placebo) group
conf.level	confidence level

Details

Caution on choosing the row to use in the output.

Value

The output format is comparable to SAS PROC TTEST.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

mtest, tmtest, ztest

Examples

TTEST(mtcars[mtcars\$am==1, "mpg"], mtcars[mtcars\$am==0, "mpg"])

UCL

Upper Confidence Limit

Description

The estimate of the upper bound of the confidence limit using t-distribution

Usage

UCL(y, conf.level=0.95)

Arguments

У	a vector of numerics
conf.level	confidence level

Details

It removes NA in the input vector.

Value

The estimate of the upper bound of the confidence limit using t-distribution

Author(s)

Kyun-Seop Bae k@acr.kr

UNIV

Description

Returns descriptive statistics of a numeric vector.

Usage

UNIV(y, conf.level = 0.95)

Arguments

У	a numeric vector
conf.level	confidence level for confidence limit

Details

A convenient and comprehensive function for descriptive statistics. NA is removed during the calculation. This is similar to SAS PROC UNIVARIATE.

Value

nAll	count of all elements in the input vector
nNA	count of NA element
IINA	count of NA element
nFinite	count of finite numbers
Mean	mean excluding NA
SD	standard deviation excluding NA
CV	coefficient of variation in percent
SEM	standard error of the sample mean, the sample mean divided by nFinite
LowerCL	lower confidence limit of mean
UpperCL	upper confidence limit of mean
TrimmedMean	trimmed mean with trimming 1 - confidence level
Min	minimum value
Q1	first quartile value
Median	median value
Q3	third quartile value
Max	maximum value
Range	range of finite numbers. maximum - minimum
IQR	inter-quartile range type 2, which is SAS default
MAD	median absolute deviation

VarLL	lower confidence limit of variance
VarUL	upper confidence limit of variance
Skewness	skewness
SkewnessSE	standard error of skewness
Kurtosis	kurtosis
KurtosisSE	kurtosis
GeometricMean	geometric mean, calculated only when all given values are positive.
GeometricCV	geometric coefficient of variation in percent, calculated only when all given values are positive.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

UNIV(1h)

vtest

F-Test for the ratio of two groups' variances

Description

F-test for the ratio of two groups' variances. This is similar to var.test except using the summarized input.

Usage

vtest(v1, n1, v0, n0, ratio=1, conf.level=0.95)

Arguments

v1	sample variance of the first (test, active, experimental) group
n1	sample size of the first group
v0	sample variance of the second (reference, control, placebo) group
n0	sample size of the second group
ratio	value for the ratio of variances under null hypothesis
conf.level	confidence level

Details

For the confidence interval of one group, use UNIV function.

WhiteTest

Value

The output format is very similar to var.test.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
vtest(10.5<sup>2</sup>, 5190, 8.9<sup>2</sup>, 3529) # NEJM 388;15 p1386
vtest(2.3<sup>2</sup>, 13, 1.5<sup>2</sup>, 11, conf.level=0.9) # Red book p240
```

WhiteTest White's Model Specification Test

Description

This is shown in SAS PROC REG as the Test of First and Second Moment Specification.

Usage

WhiteTest(rx)

Arguments

rx a result of lm

Details

This is also called as White's general test for heteroskedasticity.

Value

Returns a direct test result by more coomplex theorem 2, not by simpler corollary 1.

Author(s)

Kyun-Seop Bae k@acr.kr

References

White H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 1980;48(4):817-838.

Examples

WhiteTest(lm(mpg ~ disp, mtcars))

ztest

Description

This is similar to two groups t-test, but using standard normal (Z) distribution.

Usage

ztest(m1, s1, n1, m0, s0, n0, conf.level=0.95, nullHypo=0)

Arguments

m1	mean of the first (test, active, experimental) group
s1	known standard deviation of the first group
n1	sample size of the first group
mØ	mean of the second (reference, control, placebo) group
s0	known standard deviationo of the second group
n0	sample size of the second group
conf.level	confidence level
nullHypo	value for the difference of means under null hypothesis

Details

Use this only for known standard deviations (or variances) or very large sample sizes per group.

Value

The output format is very similar to t.test

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

mtest, tmtest, TTEST

Examples

ztest(5.4, 10.5, 3529, 5.1, 8.9, 5190) # NEJM 388;15 p1386

Index

* 2x2 Table ORcmh, 47 ORmn, 49 ORmn1, 51 RD, 60 RDmn, 62 RDmn1, 63 RR, 67 RRmn, 69 RRmn1, 70 *** Descriptive Statistics** UNIV, 89 * Group Sequential Design CumAlpha, 19 Drift, 21 ExitP, 28 PocockBound, 56 seqBound, 74 seqCI, 75 * Meta-analysis ORinv, 48 RDinv, 61 RRinv, 68 * Plot pB, 52 pD, 54 pResD, 57 * Table Summary tsum, 82 tsum0, 83 tsum1, 84 tsum2, 85 tsum3, 86 * datasets aspirinCHD, 9 BEdata, 10 * t-test mtest, 45 tmtest, 81

TTEST, 87 ztest, 92 af, 5 aov1, 5 aov2, 7 aov3, 8 aspirinCHD, 9 BEdata, 10 binom.test, 72 bk, 10 BY, 12 CIest, 13 Coll, 14 CONTR, 15, 18 Cor.test.16 corFisher, 17 cSS, 15, 18 CumAlpha, 19 CV, 20 Diffogram, 20, 41, 55 Drift, 21 e1, 22 e2, 23 e3, 24 EMS, 24 est, 25, 27 ESTM, 26, 26 estmb, 27 ESTMIMATE (ESTM), 26 ExitP, 28 g2inv, 29 G2SWEEP, 28, 30, 30 geoCV, 31, 33 geoMean, 32, 32 GLM, 33

INDEX

94 is.cor, 34 Kurtosis, 35, 36 KurtosisSE, 35, 36 LCL, 36 lfit, 31, 37, 79 lr, 38, 65 lr0.39 LSM, 21, 40, 55 Max, 41 Mean, 42 Median, 42 Min, 43 ModelMatrix, 31, 38, 44, 79 mtest, 45, 81, 88, 92 N, 46 OR, 46, 60, 67 ORcmh, 47, 49, 50, 61, 63, 68, 70 ORinv, 48, 48, 50, 61, 63, 68, 70 ORmn, 47-49, 49, 52, 60, 61, 63, 64, 67, 68, 70, 71 ORmn1, 47-50, 51, 60, 61, 63, 64, 67, 68, 70, 71 pB, 52 Pcor.test, 53 pD, 54 PDIFF, 21, 26, 41, 54 PocockBound, 56 pResD, 57 prop.test, 72 QuartileRange, 57 Range, 58 RanTest, 59 RD, 47, 60, 67 RDinv, 48-50, 61, 63, 68, 70 RDmn, 47-50, 52, 60, 61, 62, 64, 67, 68, 70, 71 RDmn1, 47-50, 52, 60, 61, 63, 63, 67, 68, 70, 71 REG, 64 regD, 66 RR, 47, 60, 67 RRinv, 48-50, 61, 63, 68, 70 RRmn, 47–50, 52, 60, 61, 63, 64, 67, 68, 69, 71 RRmn1, 47-50, 52, 60, 61, 63, 64, 67, 68, 70, 70

sasLM(sasLM-package), 4

sasLM-package, 4 satt, 71 ScoreCI, 72 SD, 73 SEM, 73 seqBound, 74 seqCI, 75 Skewness, 76, 77 SkewnessSE, 76, 77 SLICE, 77 SS, 78 T3MS, 79 T3test, 80 tmtest, 45, 81, 88, 92 trimmedMean, 82 tsum, 82, 84-87 tsum0, 11, 83, 83, 85-87 tsum1, 11, 83, 84, 84, 86, 87 tsum2, 11, 83-85, 85, 87 tsum3, 11, 83-86, 86 TTEST, 45, 81, 87, 92 UCL, 37, 88 UNIV, <mark>89</mark> vtest, 90 WhiteTest, 91 ztest, 45, 81, 88, 92