Package ‘seas’

May 22, 2025

Type Package

Version 0.7-0

Date 2025-05-14

Title Seasonal Analysis and Graphics, Especially for Climatology
Depends R(>=2.15.0), MASS

Description Capable of deriving seasonal statistics, such as * “normals", and
analysis of seasonal data, such as departures. This package also has
graphics capabilities for representing seasonal data, including boxplots for
seasonal parameters, and bars for summed normals. There are many specific
functions related to climatology, including precipitation normals,
temperature normals, cumulative precipitation departures and precipitation
interarrivals. However, this package is designed to represent any
time-varying parameter with a discernible seasonal signal, such as found
in hydrology and ecology.

License GPL (>=2)
URL https://github.com/mwtoews/seas

BugReports https://github.com/mwtoews/seas/issues

NeedsCompilation yes

Author Mike Toews [aut, cre] (ORCID: <https://orcid.org/0000-0003-3657-7963>)
Maintainer Mike Toews <mwtoews@gmail.com>

Repository CRAN

Date/Publication 2025-05-22 05:00:07 UTC

Contents

seas-package L.
ATI28551.DLY o o
change L e e e
conv365toGregorian L. Lo e e
dathomog L
GEIStNNAME e e e e e e e e e

https://github.com/mwtoews/seas
https://github.com/mwtoews/seas/issues
https://orcid.org/0000-0003-3657-7963

2 seas-package

hidden e 10
IMAZE.SCAS.SUM . . . v v v v v v v et e e e e e e e e e e e e e e e 11
interarrival L L L e 13
lars e 15
mkann e 17
MKSEAS e 18
mksub . .. 22
mscdata e 23
MSCSI . . o v v v e e e e e e e e 26
plotinterarrival 27
plot.seas.norm e e e 28
plot.seas.suml e 29
precip.dep e e 31
readmSC e e 32
SASm . . . L 35
seas.check L L 36
SCASMIOTTIL .+ v v v v v e e e e e e e e e e e e e e e e 38
SEAS.SUIM & o v v v vt e e e e e e e e e e e e e e e e e e 41
seas.temp.ploto 44
seas.var.ploto 45
SeasOpts o 47
summerlando L. 50
writehelp 50
yeardength 52
YEArPlOY e e e e e 53
Index 55
seas-package Seasonal statistics: the ‘seas’ package for R
Description

The seas package for the R programming environment is capable of conveying descriptive statistics
and graphics for seasonal variables, as found in climatology, hydrology and ecology. Seasonal
variables can be continuous (i.e., temperature) or discontinuous (i.e., precipitation). An annum
can be partitioned into many arbitrary divisions, or seasonal components, such as by month or
into other fixed intervals. Boxplots are used to describe the seasonal distributions of continuous
variables. Discontinuous variables need to be summed over time to smooth the irregularities before
the variable can evaluated and visualized. Statistics, such as precipitation normals, may be derived
from the summed variables, using the mean or median methods. Other tools and utilities provided
in the package can calculate precipitation interarrivals, cumulative precipitation departures, find
changes between two normals, and import data from archive formats.

To get started, try some examples, such as seas.sum, seas.norm. There will be more help added
here someday!

Source code and issues are at https://github.com/mwtoews/seas

https://github.com/mwtoews/seas

Al1128551.DLY 3

Author(s)
Mike Toews

References

Toews, M.W., Whitfield, P.H., and Allen, D.M. 2007. Seasonal statistics: The ‘seas’ package for R.
Computers & Geosciences, 33 (7), 944-951, doi:10.1016/j.cageo.2006.11.011

Examples

Show a list of changes to the package:
file.show(system.file("ChangelLog"”, package="seas"))

A1128551.DLY MSC daily climate data file (DLY archive format) and instructions for
Canadian Daily Climate Data CD-ROMs for analysis

Description

Meteorological Service of Canada daily climate data (DLY archive format) from Vernon. This
document also describes how to obtain data from the Canadian Daily Climate Data CD-ROMs for
analysis in seas.

Format

MSC DLY archive format (4-digit year).

Details
The sample file name is ‘A1128551.DLY’, which contains daily climate data from Vernon, British
Columbia. Load this file using read.msc.

This file was created using the instructions below, with the addition of renaming the file extension
from ‘*.ALL’ to ‘*.DLY’.

How to obtain Canadian Daily Climate Data

Two CDCD CD-ROMs are currently available for free download, which have data from 11,216
locations throughout Canada.

This procedure shows how to extract the data using ‘CDEX.EXE’, which requires a DOS environ-
ment. There is, however, an alternative Python module, which can batch extract data from the
CD-ROMs. If you are using a non-Microsoft platform, you could try ‘DOSBox’ to emulate the
DOS environment (tested on Debian and Mac OS X; hint: mount the CD-ROM drive by using -t
cdrom option).

To extract data from the CD-ROM:

1. Insert CD-ROM, and run ‘CDEX.EXE’ (or double-click it)

https://doi.org/10.1016/j.cageo.2006.11.011

4 Al1128551.DLY

. Select a ‘district’; press ‘enter’
. Select a ‘station’; press ‘enter’
. Select ‘Elements to Convert’, and select the desired fields using the ‘space bar’; press ‘enter’

. Change ‘Drive/directory of output files’ to a convenient location, for example ‘C: \TEMP’

() NV, B NS S}

. Press ‘F10’ to extract the data (the name of the file is the 7-digit alphanumeric station number,
followed by a *.ALL’ extension)

7. Repeat these steps for each meteorological station desired (if there are more).
Multiple stations can be imported and combined before or after importing into R. Multiple files can
be concatenated into one from the system shell (e.g. DOS: COPY *.ALL new.dly, or UNIX: cat

*.ALL > new.dly). This cleans up the R workspace by only using one object to refer to several
stations. Stations can be referred to functions in seas using their IDs.

To import the archive file into R:

1. Start R; type library(seas)

2. Import using dat <- read.msc("/temp/C1161661.ALL") (note that R uses forward slashes
for directories, but you could alternatively type "C:\TEMPW\C1161661.ALL" on a Microsoft-
based platform to ‘escape’ the back slash characters)

To export the data from R in a more convenient format for other programs, use write.csv(dat, "out.csv");
MS Excel users may want to turn NA values into the format recognized by Excel, so modify the ex-
pression to write.csv(dat, "out.csv",na="#N/A").

Author(s)
Mike Toews

Source

Data provided by the Meteorological Service of Canada, with permission.

This data may only be reproduced for personal use; any other reproduction is permitted only with
the written consent of Environment Canada (https://weather.gc.ca/mainmenu/contact_us_
e.html).

References

https://web.archive.org/web/20130625230337/http://climate.weatheroffice.gc.ca/prods_
servs/documentation_index_e.html (archived) Technical Documentation - Documentation for

the Digital Archive of Canadian Climatological Data (Surface) Identified By Element
http://climate.weatheroffice.gc.ca/prods_servs/index_e.html#cdcd (dead link) CDCD
CD-ROM download location

https://www.dosbox.com for emulating DOS on non-Microsoft platforms

https://www.intevation.de/~bernhard/archiv/uwm/canadian_climate_cdformat/ an alter-
native method of extracting data from the CDCD CD-ROMs using a Python module by Bernhard
Reiter

https://weather.gc.ca/mainmenu/contact_us_e.html
https://weather.gc.ca/mainmenu/contact_us_e.html
https://web.archive.org/web/20130625230337/http://climate.weatheroffice.gc.ca/prods_servs/documentation_index_e.html
https://web.archive.org/web/20130625230337/http://climate.weatheroffice.gc.ca/prods_servs/documentation_index_e.html
https://www.dosbox.com
https://www.intevation.de/~bernhard/archiv/uwm/canadian_climate_cdformat/

change

See Also

read.msc

Examples

fname <- system.file("extdata”, "A1128551.DLY", package="seas")

print(fname)

dat <- read.msc(fname)

head(dat)
str(dat)

seas.temp.plot(dat)

year.plot(dat)

change

Find seasonal and annual changes between two data sets

Description

Find seasonal and annual changes between two data sets; relative and absolute changes are found
between the central tendency and spread of each seasonal state.

Usage

change(x1, x2,

cent =

p.cut =

Arguments

x1

X2
vari
var?2
width

cent

sprd

disc

inter

varl, var2 = varl, width = "mon”

"mean”, sprd = "sd", disc = FALSE, inter = FALSE,

0.3, start.day = 1, calendar)

a data.frame of seasonal data

a second data. frame of seasonal data
a variable in x1

a variable in x2

the width of the bins, see mkseas for more details; this will change the sample-
sizes between x1 and x2, which can affect the changes detected

a function to find a central tendency; usually this is mean, however median or
other functions can be used too

a function to find a spread around a central tendency; usually this will be sd
(standard-deviation), however mad or other functions can be used too

if the data are discontinuous, the seas.sum objects are created for vari/var2
to determine the changes; this is ideal for precipitation, and other sparsely dis-
tributed variables

interarrivals are calculated, and changes are found between wet and dry se-
ries

6 change

p.cut cut-off for wet/dry; see interarrival
start.day starting day
calendar calendar; if not specified it will try to read this from the attributes, otherwise it

is assumed to be a proleptic Gregorian calendar; see year.length

Details

This function is useful for finding changes between different states of seasonal data. Here, a state
represents how seasonal data behave statistically at either a time or place. The stability of a state
depends on both the variance throughout each portion of the season, as well as the number of years
of observations.

For instance, seasonal and annual changes in climate can be detected in climate data series, by
comparing the normals from two time periods.

Value

Returns a complex list of relative and absolute (if applicable) changes of vari/var2 between x1
and x2.

Seasonal and annual changes are identified independently of each other; where annual changes have
a ann prefix.

Relative changes are not found if x$var has values less than 0, such as Temperature measured in
degrees C or F.

Author(s)
Mike Toews

See Also

dathomog, lars

Examples

data(mscdata)
datl <- mksub(mscdata, id=1108447, start=1975, end=1984)
dat2 <- mksub(mscdata, id=1108447, start=1985, end=1995)

A few plot functions to make thing easy

plot.ch <- function(x, main, h, col) {
main <- paste(main, "between 1975-1984 and 1985-1994", sep="\n")
barplot(x, main=main)
abline(h=c(@, h), col=c(1, col), lty=c(1, 2))

3

plot.abs <- function(x, col="red"”, abs="abs"”, ann.abs="ann.abs") {
main <- sprintf(”Absolute change in %s", x$long.name[[1]1])
plot.ch(x[[abs]], main, x[[ann.abs]], col)

3

plot.rel <- function(x, col="orange", rel="rel”, ann.rel="ann.rel”) {
main <- sprintf(”"Relative change in %s", x$long.name[[1]1])

conv365toGregorian 7

plot.ch(x[[relll, main, x[[ann.rell], col)
3
plot.std <- function(x, col="purple") {
main <- sprintf(”"Relative change in the\nstandard deviation of %s",
x$long.name[[11])
plot.ch(x$sprd.rel, main, x$ann.sprd.rel, col)

}

Minimum temperature

ch <- change(dat1, dat2, "t_min")
str(ch)

plot.abs(ch)

plot.std(ch)

Cannot do ch$rel ; since div/0!

Precipitation

ch2 <- change(datl, dat2, "precip”, width="DJF", disc=TRUE)
plot.abs(ch2, "blue")

plot.rel(ch2, "purple”)

plot.std(ch2)

conv365toGregorian Converts a data.frame using a 365-day calendar to a Gregorian cal-
endar

Description
Converts a data. frame with a 365-day calendar to a proleptic Gregorian calendar, repeating data
from December 30th on a leap year to the remaining and missing December 31st.

Usage

conv365toGregorian(x)

Arguments

X a data.frame with a date column

Details

This function may be expanded in the future to be more flexible.

Value

Returns a data. frame with Gregorian calendar dates.

Author(s)
Mike Toews

8 dathomog

dathomog Homogenize daily data sets

Description
Homogenizes daily data from two data sets into one data set; optionally show cross-plots to examine
how well correlated that data sets are.

Usage
dathomog(x1, x2, by = "date”, plot = FALSE)

Arguments
x1 a data.frame of seasonal data; 1st selection
X2 a data.frame or seasonal data; 2nd selection
by name of common column, usually ‘date’, which is of class Date
plot logical; produce cross-plots and correlation statistics of the variables between
the two data sets
Details

Data from x1 has priority over x2. Where data from x1 is either NA or missing (outside of time
range), data from x2 will be used (if available). Otherwise data form x1 will be used directly.
Variables will be homogenized where their names are identical, found using names.

The cross-plots of the data are shown only for interest. They show useful correlation statistics, and
a best-fit line using perpendicular offsets (which are preferred in this case over traditional linear
regression). At some point, the equations for this line may be used to adjust the values from x2,
however this can always be done externally to this function by pre-processing x2.

Value
Returns a data. frame of seasonal data required by most functions in seas. Variable names of the
structure are found by a union of the names of x1 and x2.

Warning
Weather stations should be sufficiently close enough to approximate the same weather. This distance
depends on the spatial distance and local climatology.

Author(s)
Mike Toews

References

http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html

getstnname 9

Examples

data(mscdata)

dat1 <- mksub(mscdata, id=2100630)

dat2 <- mksub(mscdata, id=1108447)

year.plot(dat1)

year.plot(dat2)

newdata <- dathomog(datl, dat2)

year.plot(newdata)

message(paste(c("This is a rather poor example, since the”,
"two stations are nowhere near each other"),
collapse="\n"))

getstnname Get station name

Description

Retrieves the full name from mscstn using an ID

Usage

getstnname(id)

Arguments

id numeric or character ID array

Details

This function simply converts the ID used in climate data frames into a meaningful name using
mscstn. Presently it is useful only for Meteorological Service of Canada weather stations in BC,
AB and YT, however getstnname can be overridden by another (similar) function and data object
for other regions.

Value

Returns the station name(s). If the ID does not exist, returns NULL.

Author(s)
Mike Toews

See Also

mscstn, mscdata, .seastitle

10 hidden

Examples

data(mscdata)

mscdata$id[1]
getstnname(mscdata$id[1])

ids <- levels(mscdata$id)
data.frame(id=I(ids), name=getstnname(ids))

hidden Return title and properties for seasonal graphs

Description

Return title, x- and y-axis labels for seasonal graphs. Also, draw the month grid.

Usage

.seasxlab(width, start.day)
.seasylab(var, long.name = NULL, units = NULL)
.seastitle(main = NULL, id = NULL, name = NULL,
orig = NULL, fun = NULL, range = NA)
.seasmonthgrid(width, days, start = 1, rep = @, start.day = 1, month.label)

Arguments

orig original object name, which is used if no other name can be found from id or
name

var original variable name in names (orig)

width size of bin; see mkseas

start.day the starting day of annum for the first bin; as either a Date or integer of day of
the year

main main title of plot; overrides any other title, but appends year range if show. range=TRUE

long.name a long name for var, used for labelling y-axis

units units of var, used for labelling y-axis

id station ID, which is used to fetch a station name using getstnname

name a name, which is used for labels

fun function, if applicable

range year range; c(start.year, end.year)

days also known as bin.lengths, which represents the maximum number of days
expected in each bin for a complete annum

start the starting bin number

rep the number of repeated bins

month.label logical; put month name labels on grid

image.seas.sum 11

Details

These functions are intended for producing the graphics, and do not need to be used directly.

The month grid is drawn by . seasmonthgrid, and can be fine-tuned by setting some options in the
R environment, found in seas.month.grid. This list, for instance, has len to adjust the length
of each month label, and col for the colour of the lines. See SeasOpts for all available options, and
instructions on how to change them.

The main and variable/unit label formatting can also be customized by setting other options, docu-
mented in SeasOpts.
Value

.seasxlab, .seasylab and .seastitle return a character label intended for plots.

Author(s)

Mike Toews

See Also

getstnname, SeasOpts

Examples

setSeasOpts()

.seasxlab(11, 1)
.seasxlab("mon", 1)

Not starting on January Tst
.seasxlab(11, 120)

Labelled according to month (and possibly day)
getOption("seas.label”)$month

.seasxlab("mon"”, as.Date("2000-08-01"))
getOption("seas.label”)$monthday
.seasxlab(365/20, as.Date("2000-08-15"))

image.seas.sum Show a seasonal sum data object

Description

Graphically display a seasonal sum object, as well as the method of solution of the median/quantile
“normal”

year.filter

power

contour

show.median

main

Details

image.seas.sum

Usage
S3 method for class 'seas.sum'
image(x, var, norm = "days", start = 1, rep = @, zlim, alim,
palette = colorRampPalette(c("white”, "blue"))(64),
year.filter, power, contour = TRUE, show.median, main, ...)
Arguments

X a seas.sum object

var the desired variable to show, otherwise will use the prime variable, defined in x

norm variable to normalize by, usually "days”, to produce unit/day

start starting bin number; e.g., for monthly sums, if start=>5, the plot will start on
"May" at the left-hand side; show.median cannot be produced if start is greater
than one, since the annual sums (row-wise) would be a mix of different annums

rep repetition of the bins (columns)

zlim range of normalized values displayed; this can be either a single number for
the maximum (minimum set to zero), or a c(min, max) range with a defined
minimum

alim if show.median, this is the range for the annual sums; this can either be a single
number for the maximum (minimum set to zero, or a c(min, max) range with a
defined minimum

palette colours for image; the use of colorRampPalette is recommended

specifies the annual seasons to display

this transforms the normalized values for the colours to a power (*), such as 0.5
for square-root (sqrt), or others; this can help improve the contrast in the dis-
play of data, but the quantities displayed in the colour-bar and contours remain
untransformed

logical; show contours in lower left-hand plot

logical; show how the median calculation is achieved graphically (computa-
tionally it is done using a secant method); see seas.norm for more information
on this method; this can only be shown if the annums (rows) are complete, so
start must be 1, and rep must be 0 (otherwise the row-wise sums would not be
the annual sums)

main title for plot, otherwise it will automatically be generated; NA suppresses a
title, and automatically adjusts the device margins

ignored

This is a graphical representation of a seas. sum object, and is far more informative than a traditional
precipitation ‘“normal” (i.e., precip.normor precip.norm)

If norm = "days" and show.median = TRUE (default), the seasonal sums appear in right-hand frames.
Horizontal and vertical lines indicate a ‘normal’ from the image, whereby the sum of the quantile
is equal to the median of the annual amount. This numerical solution is found using seas.norm.

interarrival

Author(s)

Mike Toews

See Also

13

sSeas.sum, seas.norm

See SeasOpts to modify other aspects of the plot

Examples

data(mscdata)
dat <- mksub(mscdata, id=1108447)

dat.ss <- seas.sum(dat, width="mon")
image(dat.ss)

image(dat.ss, contour=FALSE)

image(dat.ss, norm="active"”, start=6, rep=5)

different start day (not Jan 1st)
dat2.ss <- seas.sum(dat, start.day=as.Date("2001-08-01"))

image(dat2.
image(dat2.
image(dat2.
image(dat2.
image(dat2.
image(dat2.

ss)
ss,
ss,
ss,
ss,
ss,

power=2)

palette=rainbow(64), main=NA) # no title
palette=colorRampPalette(c("white"”, "darkgreen"))(16))
"snow")

"snow", power=0.5)

growing degree days for 10 degC

dat$gdd1o <- dat$t_mean - 10

dat$gddi1o[dat$gddio < @] <- @

attr(dat$gddie, "long.name") <- "growing degree days”

dat3.ss <- seas.sum(dat, var="gddl10")

image(dat3.ss, "gdd10", palette=colorRampPalette(c("white”, "red"))(64))

interarrival

Calculate the interarrivals between and within precipitation events

Description

Calculate the interarrivals (or spell periods), which are the number of days between precipitation
events (dry days), and the number of days of continuous precipitation (wet days).

Usage

interarrival(x, var = "precip”, p.cut = 0.3, inv = FALSE)

14

Arguments

X

var

p.cut

inv

Details

interarrival

a data.frame with Date and var columns of data; x can also have id or name
attributes

a variable on to which the interarrivals are calculated; default is "precip”

days with precipitation values greater than p.cut are considered to be wet days,
and the complement are dry days; a trace amount of 0.3 mm is suggested

logical; invert convention of the starting date such that the date is the first wet
day if inv=FALSE (default), or the date is the first dry day if inv=TRUE

The interarrival is the same as the spell period (i.e., dry spell), however this function simultaneously
counts the number of dry and wer days relative to a single date. The date represents the first day of
precipitation (if inv=TRUE, this convention is inverted to the first day of non-precipitation).

Missing or NA precipitation values voids the number of counted days between and within segments,
which implies that days without precipitation need to explicitly have zeros.

Value

interarrival object (which inherits the data. frame class) with date, wet, dry columns.

The table has id and name attributes (if available from x).

Author(s)
Mike Toews

References

von Storch, H. and Zwiers, EW., 1999. Statistical analysis in climate research, Cambridge: Cam-
bridge University Press, 484 p.

See Also

plot.interarrival

Examples

data(mscdata)

van.int <- interarrival (mksub(mscdata, id=1108447))

summary(van.int)

van.int[which.max(van.int$dry),]
van.int[which.max(van.int$wet),]

plot(van.int, ylog=FALSE, maxy=30)

lars 15

lars Read and write data from LARS-WG file formats

Description
Read and write data from the LARS-WG stochastic weather generator file formats; also convert to
a format for HELP

Usage

read synthetic or observed *.st file
read.lars(stfile, year.offset = 0)

write observed climate data (*.st and/or *.sr)
write.lars(x, stfile, datfile, site, lat, lon, alt)

experimental functions (may not work great; or at all!)
lars2help(infile, outfile, year.offset, site)

write.lars.scenario(file, x1, x2, name = "anomaly")
Arguments
stfile file name with ‘*.st’ extension; this is a ‘site file’ for LARS-WG which con-

tains meta-data for the climate data, and has the location of the the climate data
file; for write. lars, if this variable is NA or FALSE, this file will not be written
(however, datfile must be defined)

datfile file name with either “x.sr’ or ‘*x.dat’ extension; contains climate data, as
described by stfile; this does not need to be set if stfile is defined, as this
datum is found in the ‘st’ file

file file name with a ‘x.sce’ extension; this is a ‘scenario’ file with absolute and
relative changes of climate data

infile input file

outfile output file

X data. frame of climate data

x1 same as x

X2 same as x

year.offset offset of years between what is contained in the data files and what is needed in

R to produce a reasonable ‘Date’; this is required, for example, if synthetic data
are produced that start from an arbitrary year ‘1’ but represent climate from the
year ‘2000

site same as ‘[SITE] in ‘st’ file; if missing, this will try to read from attr (x$name);
this is the same as a ‘region’ for HELP

name scenario name

lat same as ‘LAT’ in ‘st’ file; if missing, this will try to be read from attr(x$latitude)

16 lars

lon same as ‘LON’ in ‘st’ file; if missing, this will try to be read from attr(x$longitude)
alt same as ‘ALT’ in ‘st’ file; if missing, this will try to be read from attr (x$elevation)
Details

These functions interface with the LARS-WG files (Version 4.0), which is a stochastic weather
generator by Mikhail Semenov.

The climate data files used with LARS-WG have two parts: (1)~a ‘site file’ with a ‘st’ extension,
containing the meta-data; and (2)~a data file with a ‘x.sr’ or ‘*.dat’ extension, containing all the
data. The variable names are translated according to the following table:

seas LARS-WG
year ‘YEAR’
yday ‘JDAY’
t_min ‘MIN’

t_max ‘MAX’
preicp ‘RAIN’
solar ‘RAD’
sun ‘SUN’
pet ‘PET’

To write climate data from R to a LARS-WG file, the data.frame names need to match those in
the seas-side of the table.

Data exported from write.lars always has legal (according to the Gregorian calendar) and in-
creasing sequence of days (even if there are gaps in x$date). Missing data values are written as
-99.

Synthetically generated data from LARS-WG use a 365-day calendar, and may need to be converted
to a Gregorian calendar, which can be done using conv365toGregorian.

lars2help and write.lars.scenario are experimental functions to translate data between LARS
and HELP (see write.help for more info).

Author(s)
Mike Toews

References

LARS-WG was can be downloaded for academic and research uses from
https://sites.google.com/view/lars-wg/

Semenov, M.A. and Barrow, E.M. 1997. Use of a stochastic weather generator in the development
of climate change scenarios. Climate Change, 35 (4), 397-414, doi:10.1023/A:1005342632279

See Also

write.help, read.sdsm, summerland example synthetic data, conv365toGregorian

https://sites.google.com/view/lars-wg/
https://doi.org/10.1023/A%3A1005342632279

mkann 17

Examples

stfile <- system.file("extdata”, "summerland.st”, package="seas")
print(stfile)

summ <- read.lars(stfile, year.offset=1960)

head(summ)

str(summ)

plot temperature
summ$t_mean <- rowMeans(summ[, c("t_min”, "t_max")])
seas.temp.plot(summ)

plot solar radiation
seas.var.plot(summ, "solar")

plot precipitation
summ.ss <- seas.sum(summ)
image (summ. ss)
plot(seas.norm(summ.ss))

mkann Make annum from a date

Description
Discretizes a date into an annum, using a starting day to specify the start of a season, and ends in
the next year.

Usage

mkann(x, start.day, calendar)

Arguments
X A data. frame with a date column (of Date or POSIXct class)
It may also be a vector of Date or POSIXct class
start.day This is the starting day of the annum, and can be specified as either a Date,
where year is ignored (e.g., as.Date("2000-08-01") for August Ist of any
year); or it can be a day of the year, from 1-365
calendar if unspecified, it will be attempted to be read from attr(x$date); otherwise it
is assumed to be a normal proleptic Gregorian calendar; see year.length
Details

This date function finds the annual-breaks between seasons, using a start.day. Often, the start.day
is 1, or January lst, in which case simply the year is returned, since the season starts on January

1 and ends on December 31st. Otherwise, each annual break is set using start.day, and the an-
num is identified by the range of years, for example 1991_1992, identifying a season starting on
start.day in 1991, and ending in the day before start.day in 1992.

18 mkseas

The length of each year depends on the calendar; see year.length for details.

A choice of start.day can influence annual totals using seas. sum, such as annual precipitation.
For instance, if a particular winter in the Northern hemisphere has snow before and after the new
year, these would be divided counting annual sums based on the year, whereas if start.day were
before the winter season, the annual sum would be calculated throughout the winter season.

Value

Returns factors for each date given in x, grouped by each annum.

Author(s)
Mike Toews

References

https://en.wikipedia.org/wiki/Gregorian_calendar

See Also

mkseas, seas.sum

Examples

data(mscdata)

dat <- mksub(mscdata, id=1108447)

dat$ann1 <- mkann(dat, start.day=1)

dat$ann2 <- mkann(dat, start.day=as.Date("2000-02-01"))
dat$ann3 <- mkann(dat, start.day=as.Date("2000-08-01"))
table(dat$anni)

table(dat$ann2)

table(dat$ann3)

dat[26:36, c("date”, paste("ann”, 1:3, sep=""))]

mkseas Make a date into a seasonal factor

Description
Discretizes a date within a year into a bin (or factor) for analysis, such as 11-day groups or by
month.

Usage

mkseas(x, width = 11, start.day = 1, calendar, year)

https://en.wikipedia.org/wiki/Gregorian_calendar

mkseas 19

Arguments

X A data. frame with a date column (of Date or POSIXct class)

It can also be an integer specifying the Julian day (specify year to determine the
leap year)

If it is omitted, the full number of days will be calculated for the year, determined
by either year or calendar

width either numeric or other character value; if it is numeric, it specifies the num-
ber of days in each bin (default is 11 days); if character it specifies a common
calendar usage, such as "mon” for months; see details below

start.day this is the start of the season, specified as either a as a Date to specify a month
and day (year is ignored; day of month is ignored if width relates to a month), or
as a numeric day of year, between 1 and the number of days for the calendarter
a leap day

calendar used to determine the number of days per year and per bin; if not specified, a
proleptic Gregorian calendar is assumed; see year.length

year required if x is omitted, or if x is a Julian day integer and width is non-numeric;
used to calculate leap year

Details

This useful date function groups days of a year into discrete bins (or into a factor). Statistical and
plotting functions can be applied to a variable contained within each bin. An example of this would
be to find the monthly temperature averages, where month is the bin.

If width is integer, the width of each bin (except for the last) will be exactly width days. Since
the number of days in a year are not consistent, nor are always perfectly divisible by width, the
numbers of days in the last bin will vary. mkseas determines that last bin must have at least 20% of
the number of observations for a leap year, otherwise it is merged into the second to last bin (which
will have extra numbers of days). If width is numeric (i.e. 366/12), the width of each bin varies
slightly. Using width = 366/12 is slightly different than width = "mon”. Leap years only affect the
last bin.

Other common classifications based on the Gregorian calendar can be used if width is given a
character array. All of these systems are arbitrary: having different numbers of days in each bin,
and leap years affecting the number of days in February. The most common, of course, is by month
("mon"). Meteorological quarterly seasons ("DJF") are based on grouping three months, starting
with December. This style of grouping is commonly used in climate literature, and is preferred over
the season names ‘winter’, ‘spring’, ‘summer’, and ‘autumn’, which apply to only one hemisphere.
The less common annual quarterly divisions ("JFM") are similar, except that grouping begins with
January. Zodiac divisions ("zod") are included for demonstrative purposes, and are based on the
Tropical birth dates (common in Western-culture horoscopes) starting with Aries (March 21).

Here are the complete list of options for the width argument:

* numeric: the width of each bin (or group) in days
* 366/n: divide the year into n sections

mon": month intervals (abbreviated month names)

¢ "month”: month intervals (full month names)

20 mkseas

* "DJF": meteorological quarterly divisions: DJF, MAM, JJA, SON
e "JFM": annual quarterly divisions: JFM, AMJ, JAS, OND

e "JF": annual six divisions: JF, MA, Al, JA, SO, ND

» "zod": zodiac intervals (abbreviated symbol names)

e "zodiac": zodiac intervals (full zodiac names)

If a non-Gregorian calendar is used (see year . length), the number of days in a year can be set using
calendar attribute in the date column (using attr). For example, attr(x$date, "calendar”) <-
"365_day" will set the dates using a 365-day per year calendar, where February is always 28-days
in length. If this attribute is not set, it is assumed a normal Gregorian calendar is used. Calendars
with 360-days per year (or 30-days per month) are incorrectly handled, since February cannot have
30 days, however this can be forced by including a duplicate February date in x for each year.

Value

Returns an array of factors for each date given in x. The factor also has four attributes: width,
start.day, calendar (assumed to be 366, unless from attribute set in Date), and an array days
showing the maximum number of days in each bin.

See examples for its application.

Locale warning

Month names generated using "mon"” or "months" are locale specific, and depend on your operating
system and system language settings. Normally, abbreviated month names should have exactly three
characters or less, with no trailing decimals. However, Microsoft-based operating systems have an
inconsistent set of abbreviated month names between locales. For example, abbreviated month
names in English locales have three letters with no period at the end, while French locales have 3—4
letters with a decimal at the end. If your OS is POSIX, you should have consistent month names
in any locale. This can be fixed by setting options(”seas.month.len") <- 3, which forces the
length of the months to be three-characters in length.

To avoid any issues supporting locales, or to use English month names, simply revert to a C locale:
Sys.setlocale(loc="C").

Note

The phase of the Gregorian solar year (begins Julian day 1, or January 1st) is not in sync with the
phase of "DJF" (begins Julian day 335/336) or "zod" (begins Julian day 80/81). If either of these
systems are to be used, ensure that there are several years of data, or that the phase of the data is the
same as the beginning Julian day.

For instance, if one years worth of data beginning on Julian day 1 is factored into "DJF" bins, the
first bin will mix data from the first three months, and from the last month. The last three bins will
have a continuous set of data. If the values are not perfectly periodic, the first bin will have higher
variance, due to the mixing of data separated by nearly a year.

Author(s)
Mike Toews

mkseas

References

https://en.wikipedia.org/wiki/Solar_calendar

See Also

mkann, seas. sum

Examples

Demonstrate the number of days in each category
ylab <- "Number of days”

barplot(table(mkseas(width="mon", year=2005)),
main="Number of days in each month”,
ylab=ylab)

barplot(table(mkseas(width="zod", year=2005)),
main="Number of days in each zodiac sign”,
ylab=ylab)

barplot(table(mkseas(width="DJF", year=2005)),
main="Number of days in each meteorological season”,
ylab=ylab)

barplot(table(mkseas(width=5, year=2004)),
main="5-day categories”, ylab=ylab)

barplot(table(mkseas(width=11, year=2005)),
main="11-day categories"”, ylab=ylab)

barplot(table(mkseas(width=366 / 12, year=2005)),
main="Number of days in 12-section year"”,
sub="Note: not exactly the same as months")

Application using synthetic data

dat <- data.frame(date=as.Date(paste(2005, 1:365), "%Y %j"),
value=(-cos(1:365 * 2 * pi / 365) * 10 + rnorm(365) * 3 + 10))

attr(dat$date, "calendar”) <- "365_day"

dat$d5 <- mkseas(dat, 5)
dat$d11 <- mkseas(dat, 11)
dat$month <- mkseas(dat, "mon")
dat$DJF <- mkseas(dat, "DJF")

plot(value ~ date, dat)
plot(value ~ d5, dat)
plot(value ~ d11, dat)
plot(value ~ month, dat)
plot(value ~ DJF, dat)

head(dat)

21

https://en.wikipedia.org/wiki/Solar_calendar

22 mksub

tapply(dat$value, dat$month, mean, na.rm=TRUE)
tapply(dat$value, dat$DJF, mean, na.rm=TRUE)

dat[which.max(dat$value),]
dat[which.min(dat$value),]

start on a different day
st.day <- as.Date("2000-06-01")

dat$month <- mkseas(dat, "mon", start.day=st.day)
dat$d11 <- mkseas(dat, 11, start.day=st.day)
dat$DJF <- mkseas(dat, "DJF", start.day=st.day)

plot(value ~ d11, dat,

main=.seasxlab(11, start.day=st.day))
plot(value ~ month, dat,

main=.seasxlab("mon", start.day=st.day))
plot(value ~ DJF, dat,

main=.seasxlab("DJF", start.day=st.day))

mksub Make a subset of seasonal data

Description
Creates a subset of a data. frame with temporal observations, using IDs and start and ending dates
or years.

Usage

mksub(x, start, end, id)

Arguments
X a data frame with temporal observations
start either a starting Date or integer year; if omitted minimum will be used
end either an ending Date or year; if omitted will use same year as start, and if
start is omitted, will use maximum year
id unique station identifier (if present), which is assumed to be a column of x as
x$1id; it is used to extract a subset of data from a single ID
Details

This utility function is useful for creating temporal subsets of seasonal data and for extracting a
single station out of a data.frame with multiple stations or sets. The x object can have many
columns, representing measured variables for each day, which will be returned with their original
attributes.

If id is used, that station will be extracted from x. If id is not provided, but there are more than one
unique IDs in x$id, the first unique ID will be extracted, with a warning.

mscdata 23

Value
Returns a subset of a data. frame with the same columns and attributes as x, except id, which will
be retained as an attribute (e.g., attr(x, "id")).

Author(s)
Mike Toews

See Also

read.msc, mscdata

Examples

data(mscdata)

All available data from one station
summary (mksub(mscdata, id=1108447))

One year
str(mksub(mscdata, id=1108447, start=1980))

A range of years
str(mksub(mscdata, id=1108447, start=1980, end=1989))

A range of dates

summary (mksub(mscdata, id=1108447,
start=as.Date("1975-08-01"),
end=as.Date("2000-07-31")))

mscdata Meteorological Service of Canada sample climate data

Description
Sample climate data from the Meteorological Service of Canada (MSC) climate stations in western
Canada.

Usage

data(mscdata)

Format

A data.frame with 26358 daily observations on the following 10 variables (metric units of “°C’
and ‘mm’ per day):

id: factor used to distinguish multiple stations within a single data frame

year: integer year

24 mscdata

yday: integer day of year; 1-365 or 1-366

date: Date class

t_max: daily maximum temperature

t_min: daily minimum temperature

t_mean: daily mean temperature

precip: total daily precipitation

rain: total daily liquid-phase precipitation

snow: total daily solid-phase precipitation

The climate variables have attributes (attr of units and long.name to identify their units and long
names for plotting labels.

There are three climate stations in this data frame from:

ID Station Location Province
1096450 Prince George BC
1108447 Vancouver BC

2100630 Haines Junction YT

All data spans from 1975 to 2004 for each station. Missing values are present.

Details

The field id is optional, but very handy when handling multiple stations. Also, the day of year
(yday) and year are optional, since these are stored in the date, using
dat$date <- as.Date(paste(dat$year,dat$yday), %Y %j").

The units and long.name attributes stored in the climate variables are optional, but help annotate
the graphics.

Author(s)
Mike Toews

Source

Data provided by the Meteorological Service of Canada, with permission. This data may only be
reproduced for personal use; any other reproduction is permitted only with the written consent of
Environment Canada.

https://weather.gc.ca/
https://weather.gc.ca/mainmenu/contact_us_e.html
See Also

mscstn has MSC station ID codes, locations and names; mksub produces subsets of data; read.msc
reads MSC archive files, such as A1128551.DLY

https://weather.gc.ca/
https://weather.gc.ca/mainmenu/contact_us_e.html

mscdata

Examples

data(mscstn)
data(mscdata)
par.orig <- par(no.readonly=TRUE)

structure in R
str(mscdata)

first few rows
head(mscdata)

here are all the station IDs
stnids <- levels(mscdata$id)

show all data
rng.p <- range(mscdata$precip, na.rm=TRUE)
rng.t <- range(mscdata$t_mean, na.rm=TRUE)
par(mfcol=c(2, 3), mgp=c(2, 1, @), mar=c(3, 3, 3, 1), bty="1")
for (n in levels(mscdata$id)) {
dat <- mscdatal[mscdata$id == n,]
plot(t_mean ~ date, dat, "1", col="red"”, ylim=rng.t)
abline(h=0)
plot(precip ~ date, dat, "1", col="blue", ylim=rng.p, main=n)
3
par(par.orig)

show stations and station names available in this data frame
data.frame(stnids, name=getstnname(stnids))

dat <- mksub(mscdata, id=1108447)

dat$month <- mkseas(dat, "mon")

plot(t_mean ~ date, dat, "1")

plot(t_mean ~ date, dat, subset=(month == "Dec"))
seas.temp.plot(dat)

year.plot(dat)

plot high-resolution statistics
dly.tmp <- tapply(datt_mean, datyday,
quantile, c(5, 25, 50, 75, 95) / 100, na.rm=TRUE)
dly <- data.frame(yday=1:366,
t(matrix(unlist(dly.tmp), nrow=5)))
names(dly) <- c("yday", "d5", "d25", "median", "d75", "d95")
plot(median ~ yday, dly, "n", ylim=c(-5, 25),
ylab="mean temperature”, xlab="day of year")
polygon(c(1:366, 366:1), c(dly$d5, rev(dly$dd5)),
border=FALSE, col="grey80")
polygon(c(1:366, 366:1), c(dly$d25, rev(dly$d75)),
border=FALSE, col="grey50")
lines(median ~ yday, dly)
abline(h=0)

26 mscstn

mscstn Meteorological Service of Canada station information

Description
Meteorological Service of Canada weather station data, including national ID, station ID, Province,
latitude and longitude.

Format

A data. frame with 4493 climate stations with the following 6 columns:

name Full station name

nid National ID, alphanumeric key

sid Station ID, also used for airport codes
prov Canadian Province

lat Decimal degrees latitude; NADS3
long Decimal degrees longitude; NADS83

Details

This data object is used as a look-up table to convert a unique station identifier (nid) or ID into a
station name, using getstnname.

Currently, this data only includes weather stations from Alberta, British Columbia and the Yukon.

Author(s)
Mike Toews

Source

Provided by the Meteorological Service of Canada, with permission.

See Also

getstnname, mscdata, read.msc

Examples

str(seas::mscstn)

table(mscstn$prov)
plot(lat ~ long, seas::mscstn, pch=".")

plot.interarrival 27

plot.interarrival Plot interarrivals for precipitation

Description
Plots interarrivals for precipitation using boxplots, giving the typical number of continuous wet
days and dry days (or spells) throughout the season. The mean value is also drawn as a single line.
Usage

S3 method for class 'interarrival'
plot(x, width = 11, start = 1, rep = @, start.day = 1,

ylog = FALSE, maxy, main, ...)
Arguments
X an interarrival object with numbers of dry/wet days
width size of bin; see mkseas
start starting bin number; e.g., if width="mon" and start=5, the plot will start on
"May" at the left-hand side
rep repetition of the bins in the boxplot
start.day when width is numeric, this is the starting day of the year for the fist bin, or it
can be a Date to specify a month and day (year is ignored)
ylog logical; y-axis is logarithmic
maxy maximum number of days for the y-axis; it can either be passed as c(wet, dry),
or as a single value for both
main main title for plot, otherwise other title will be automatically generated
ignored
Author(s)
Mike Toews
See Also

interarrival, seas.var.plot
Examples
data(mscdata)

dat.int <- interarrival (mksub(mscdata, id=1108447))
plot(dat.int, width="mon")

plot(dat.int, ylog=FALSE, maxy=35, rep=10)

28 plot.seas.norm

plot.seas.norm Plot seasonal normal of a variable, including precipitation normals

Description

Plots a “normal” of a seasonal variable, including a precipitation normal (which shows rain and
snow fractions, where available). Significant missing data values are also indicated.

Usage

S3 method for class 'seas.norm'
plot(x, start =1, rep = 0, ylim,
varwidth = FALSE, normwidth = FALSE,

leg, add.alt = FALSE, main, ylab, ...)
Arguments

X a seas.norm object created by either seas.norm or precip.norm

start starting bin

rep repeat bins

ylim range of y-axis; either as a single value, c(@, max), or as two values c(min,

max)
varwidth logical; varies the width of each bar directly proportional to the frequency of

active days (defined by a threshold); the value is normalized according to the
next argument

normwidth normalizes the width of the bars to a fixed numeric value (in days), or the max-
imum value if given TRUE; the default FALSE value normalizes each bar to the
number of potentially active days

leg if TRUE shows a legend summary of the statistics in the upper left hand corner;
it can also be a c(x, y) pair or “locator” to manually place the legend on the
active graphics device

add.alt logical; adds imperial units on the right-hand y-axis
main title for plot; if it is missing, then it will automatically be generated
ylab y-axis label; if it is missing, then it will automatically be generated
ignored
Details

The varwidth variable is useful for separating different precipitation patterns throughout the sea-
son. It changes the width of the bar proportional to the frequency of precipitation events within the
bin. Ideally, the bars will be tall and narrow with intense storms that occur infrequently, such as
convective storms. Conversely the bars will be broader with less-intense rainfall events occurring
more frequently.

plot.seas.sum 29

Author(s)
Mike Toews

See Also

seas.norm, precip .horm, seas.sum

Examples

data(mscdata)

dat <- mksub(mscdata, id=1108447)

d.ss <- seas.sum(dat)

plot(seas.norm(d.ss))

plot(precip.norm(d.ss, fun=median))
plot(precip.norm(d.ss, fun=mean))
plot(precip.norm(d.ss, fun=mean, norm="active"))
plot(precip.norm(d.ss, fun=median, norm="active"))
plot(precip.norm(d.ss), start=15, rep=12)

mar <- par("mar")

plot(precip.norm(d.ss), add.alt=TRUE)

par(mar=mar)
d2.ss <- seas.sum(dat, start.day=as.Date("2000-08-01"))
plot(precip.norm(d2.ss, fun="mean"))

plot.seas.sum Plot boxplots of normalized seasonal sums

Description

Plots normalized seasonal sums using boxplots.

Usage
S3 method for class 'seas.sum'
plot(x, var, norm = "days"”, year.filter, ylim,
start = 1, rep = 0, col = "lightgrey”, main, ylab, ...)
Arguments
X a seas. sum object created by seas. sum
var name of seasonal variable in x
norm a variable to normalize by, either "days"” (to produce unit/day) or "active"
(unit/day, when active); it may also be a matrix with the same dimensions as
x$days

year.filter use only these years for analysis

30

ylim

start
rep
col
main
ylab

Details

plot.seas.sum

either a single value for c(@, ylim), or a range of c(min, max) for the y-axis
limits

starting bin at left-hand side of plot

repeat bins on right-hand side of plot

colour for boxplot, default is "lightgrey”

title for plot; if it is missing, then it will automatically be generated

y-axis label; if it is missing, then it will automatically be generated

ignored

This function is a boxplot interpretation of a seas. sum object. This is not the same as treating var
as a continuous variable and using seas.var.plot, since a seas.sum object has been smoothed.
Daily extreme values are not well represented here as a result.

Warning

The appearance of the boxplots are sensitive to the width parameter specified in the seas.sum
function on strongly discontinuous variables. Small bin widths capture the discontinuities better
than wider bins, and changes the skew of the distribution.

For instance, the median will appear to decrease as width decreases.

Author(s)

Mike Toews

See Also

seas.sum, image.seas.sum, seas.norm

Examples

data(mscdata)

par.orig <- par(no.readonly=TRUE)

on.exit(par.orig)

dat <- mksub(mscdata, id=1108447)
dat.ss <- seas.sum(dat)

Normalized by the number of days in each bin

plot(dat.ss)

Normalized by the number of active days in each bin
plot(dat.ss, norm="active")

Snow, using a different start day, and a better y-axis:
dat2.ss <- seas.sum(dat, var="snow”, width="mon",

par(yaxs="1")

start.day=as.Date("2000-08-01"))

precip.dep 31

plot(dat2.ss, var="snow")
plot(dat2.ss, var="snow"”, norm="active")

precip.dep Cumulative precipitation departure

Description

Calculate the cumulative precipitation departure (CPD) for a station with a given precipitation nor-

mal.
Usage
precip.dep(x, norm, var = "precip")
Arguments
X a seasonal data. frame of climate data
norm a precip.norm object containing the precipitation normal for the same station
as x
var a common seasonal variable found in x and norm
Details

This function is useful for looking at the behaviour of a precipitation time-series in relation to
its precipitation normal over an extended period of time. This is especially useful for identifying
changes in precipitation, and is useful for relating to groundwater recharge patterns.

Value

Returns a data. frame similar to x, but contains the departures in the dep column.

Note

The selection of fun in precip.norm, such as using mean or median, will affect the result of this
function; width has only a minor effect.

Periods with missing (NA) values in var of x will have a flat departure, neither increasing nor de-
creasing.

Author(s)
Mike Toews

See Also

precip.norm

32 read.msc

Examples

data(mscstn)
data(mscdata)

dat <- mksub(mscdata, id=1108447)

dat.ss <- seas.sum(dat)

dat.dep <- precip.dep(dat,precip.norm(dat.ss, fun="mean"))
plot(dep ~ date, dat.dep, type="1", main="CPD from mean normals")

dat.dep <- precip.dep(dat, precip.norm(dat.ss, fun="median"))
plot(dep ~ date, dat.dep, type="1", main="CPD from median normals")

read.msc Read a MSC archive file into a data.frame

Description

Reads a Meteorological Service of Canada (MSC) digital archive files (HLY and DLY formats) into
a data.frame.

Usage

read.msc(file, flags = FALSE, add.elem, format, verbose = TRUE)

Arguments
file file name (with path, if not in getwd); it can also be a connection, such as
bzfile
flags logical return the flags with the data. frame
add.elem either a data. frame or a 1ist with additional elements not found in this func-
tion
format parameter ignored and will be removed in a future release
verbose logical verbose output, such as number of stations, elements, records and years
in the archive file
Details

This function currently reads in HLY (hourly) and DLY (daily) archive formats. This is automat-
ically detected. The other formats, FIF (fifteen-minute) and MLY (monthly), are not currently
supported.

The input file can include multiple stations and multiple elements (measured variables). The multi-
ple stations are deciphered through the id column, and the multiple variables appear as columns to
the output data frame.

This function currently only reads a limited number of elements, however additional elements can
be used by editing two lines in the R source for this function.

read.msc 33

Value

Returns a data. frame object with the following minimum fields:

id: factor used to distinguish multiple stations within a single data frame

year: integer year

yday: integer day of year; 1-365 or 1-366

date: Date, useful for plotting a continuous time-series

datetime: POSIXct, includes date and time info, only included if file is in HLY archive format

element: numeric, with attributes set for units and long.name; these can be changed using
attr on dat$varname

flag: factor; included if flags=TRUE
The are as many element columns for each element found in the archive file, such as:

alias name long.name units
1 t_max daily maximum temperature °C
2 t_min daily minimum temperature = °C

3 t_mean daily mean temperature °C
10 rain total rainfall mm
11 snow total snowfall mm
12 precip total precipitation mm
13 snow_d snow on the ground cm
other elements optional

Additional elements (or variables) can be added by specifying the element variable, and their units
can be set using, for example, attr(dat$var, "units”) <- "cm".

Units are in common metric units: ‘mm’ for precipitation-related measurements, ‘cm’ for snow
depth, and ‘?C’ for temperature. The flag columns are a single character factor, described in the
MSC Archive documentation. Units are added to each column using, for example attr (dat$precip,
"units") <= "mm".

Author(s)
Mike Toews

Source

Climate data can be requested from MSC, or can be obtained directly from the Canadian Daily
Climate Data (CDCD) CD-ROMs, which are available for a free download (procedure described in
A1128551.DLY).

References

https://web.archive.org/web/20130625230337/http://climate.weatheroffice.gc.ca/prods_
servs/documentation_index_e.html (archived) Technical Documentation - Documentation for

the Digital Archive of Canadian Climatological Data (Surface) Identified By Element
http://climate.weatheroffice.gc.ca/prods_servs/index_e.html#cdcd (dead link) CDCD
CD-ROM download location

https://web.archive.org/web/20130625230337/http://climate.weatheroffice.gc.ca/prods_servs/documentation_index_e.html
https://web.archive.org/web/20130625230337/http://climate.weatheroffice.gc.ca/prods_servs/documentation_index_e.html

34 read.msc

See Also

mscstn, mksub, mkseas, A1128551.DLY

Examples

fname <- system.file("extdata”, "A1128551.DLY", package="seas")
print(fname)

dat <- read.msc(fname)

print(head(dat))

seas.temp.plot(dat)
year.plot(dat)

Show how to convert from daily to monthly data

dat$yearmonth <- factor(paste(format(dat$date, "%Y-%m"), 15, sep="-"))
mlydat <- data.frame(date=as.Date(levels(dat$yearmonth)))

mlydat$year <- factor(format(mlydat$date, "%Y"))

mlydat$month <- mkseas(mlydat, "mon")

means for temperature data
mlydat$t_max <- as.numeric(

tapply(datt_max, datyearmonth, mean, na.rm=TRUE))
mlydat$t_min <- as.numeric(

tapply(datt_min, datyearmonth, mean, na.rm=TRUE))
mlydat$t_mean <- as.numeric(

tapply(datt_mean, datyearmonth, mean, na.rm=TRUE))

sums for precipitation-related data
mlydat$rain <- as.numeric(

tapply(dat$rain, dat$yearmonth, sum, na.rm=TRUE))
mlydat$snow <- as.numeric(

tapply(dat$snow, dat$yearmonth, sum, na.rm=TRUE))
mlydat$precip <- as.numeric(

tapply(dat$precip, dat$yearmonth, sum, na.rm=TRUE))
print(head(mlydat), 12)

Show how to convert from a HLY file into daily summaries
Not run:

hlydat <- read.msc(bzfile("HLY11_L1127800.bz2"), flags=TRUE)
hlydat$date <- factor(hlydat$date)

sum the solar radiation for each day to find the 'total daily'

sumdat <- tapply(hlydat$solar, hlydat$date, sum, na.rm=TRUE)

dlydat <- data.frame(date=as.Date(names(sumdat)),
solar=as.numeric(sumdat))

sum the number of hours without measurements
sumdat <- tapply(hlydat$solar, hlydat$date,

function(v) (24 - sum(!is.na(v))))
dlydat$na <- as.integer(sumdat)

quality control to remove days with less than 4 hours missing

sdsm 35

Summerland <- dlydat[dlydat$na < 4,]
attr(Summerland$solar, "units”) <- "W/(m*2xday)"
attr(Summerland$solar, "long.name") <- "Daily total global solar radiation”

seas.var.plot(Summerland, var="solar"”, col="yellow", width=5)

End(Not run)

sdsm Read and write from SDSM

Description

Reads and writes the data format used in SDSM’s ‘DAT’ and ‘OUT’ extensions.

Usage

reading
read.sdsm(file, start = 1961, end = 2000, calendar)

writing
write.sdsm(dat, var, start, end, file = "")
Arguments
file name of ‘DAT’ or ‘OUT’ file
dat data. frame of variables to be written
start starting year
end ending year
var name of variable to be written from dat
calendar calendar used for data; if unspecified, this is assumed to be proleptic Grego-
rian (normal); however, for CCCma models this should be "365_day", and for
Hadley models this should be "360_day"; see year.length
Details

This function readings and writes climate data with the Statistical Downscaling Model, or SDSM.
The model uses ‘DAT’ extensions for input data, such as daily observations of mean temperature,
and ‘OUT’ extensions for modeled output.

Value

read.sdsmreturns a data. frame of the measured variables. The variables are named V1...Vn, for
n ensembles.

If a calendar is specified, this is stored as an attribute in the date data frame column.

36 seas.check

Author(s)

Mike Toews

References

Wilby, R.L., Dawson, C.W. and Barrow, E.M. 2002. SDSM — a decision support tool for the
assessment of regional climate change impacts, Environmental Modelling Software, 17 (2), 145—
157, doi:10.1016/S13648152(01)000603

SDSM can be downloaded free-of-charge for Windows platforms from
https://www.sdsm.org.uk/

CGCM1 and HADCM3 model data for SDSM can be downloaded from the Canadian Climate Im-
pacts and Scenarios website:
https://web.archive.org/web/20120218192015/http://www.cics.uvic.ca/scenarios/sdsm/
select.cgi (archived)

See Also

read.msc, change

Examples

Not run:

reading

fname <- system.file("extdata”, "GF_2050s_precip.OUT", package="seas")

gf50 <- read.sdsm(fname)

gf50.ss <- seas.sum(gf50, var=paste("V", 1:20, sep=""), name="Grand Forks")

analysis

image(gf50.ss, var="v1")
image(gf50.ss, var="v2")
image(gf50.ss, var="V3")

writing

data(mscdata)

hj <- mksub(mscdata, id=2100630)

fname <- paste(tempdir(), "HJ_Obs_prcp.DAT", sep="/")
write.sdsm(hj, "precip”, 1961, 2000, fname)

End(Not run)

seas.check Check the suitability of a data.frame, or seas.sum for seas

Description

Check the suitability of a data. frame or seas. sum object for seas.

https://doi.org/10.1016/S1364-8152%2801%2900060-3
https://www.sdsm.org.uk/
https://web.archive.org/web/20120218192015/http://www.cics.uvic.ca/scenarios/sdsm/select.cgi
https://web.archive.org/web/20120218192015/http://www.cics.uvic.ca/scenarios/sdsm/select.cgi

seas.check 37

Usage

seas.df.check(x, orig, var)
seas.sum.check(x, orig, var, norm, year.filter, ann.only)

Arguments
X a data frame with temporal observations
orig the original name of the data frame, for error messages
var one or more variables in x, which are tested; ignored if NULL or missing
norm something to normalize vars; it can either be the name of an array in x, amatrix
(binvs years), or a 3-dim array (used to normalize multiple var); this is tested
to see if norm exists, and that the dimension are consistent with x
year.filter a subset of x$years, which filters all the related arrays in the returned value
ann.only x$seas arrays are ignored
Details

This utility function simply checks the suitability of a data.frame or seas.sum objects for use
with seas.

If x is data. frame (using seas.df. check that is really required, is a ‘date’ column, named x$date
with a class of either 1ink{POSIXct} or 1ink{Date}, and one or more variables in the var columns
of x.

There must be at least one finite observation in each of var, if supplied.

These function is used within other functions, and is not intended to be called directly.

Value

seas.df.check returns a few helpful items from x in a 1ist using invisible:

id: station ID from one of attr(x,"”id") or x$id[1]
name: name of seasonal data, such as a place
year.range: integers of start, and ending years

calendar: an attribute from x$date; otherwise this will be NULL for a normal proleptic Gregorian
calendar

main: main title, from .seastitle
units: units for var[1]
long.name: long name for var[1]

ylab: y-axis label for var[1]

seas. sum. check returns x with modifications, depending on norm and year.filter.

Author(s)
Mike Toews

38

See Also

seas.norm

hidden functions for seas

Examples

data(mscdata)

dat <- mksub(mscdata, id=1108447)
str(seas.df.check(dat))

dat.ss <- seas.sum(dat)
str(seas.sum.check(dat.ss, norm="days"))

seas.norm

Calculate annual and seasonal ‘normal’ statistics, including precipi-
tation normals

Description

Calculates annual and seasonal ‘normal’ statistics on a seas.sum object, including precipitation
normals for rain, snow and total precipitation.

Usage
seas.norm(x, var, fun = "median”, norm = "days", year.filter,
ann.only = FALSE, precip.norm = FALSE)
precip.norm(x, fun = "median”, norm = "days"”, year.filter)
Arguments
X seas. sum object
var variable name for the ‘normal’; if omitted will use x$prime (the prime variable
of the seas. sum object), or if precip.norm=TRUE will be "precip”
norm variable for normalization of the sum, usually the number of "days" in each bin,

year.filter

fun

ann.only

precip.norm

but it can also be "active" to estimate the precipitation normal for days of active
precipitation

filter specific years for analysis

character of an existing function object, or a function to operate across the

number of years of observations, usually "mean” or "median” (default); details
described below

only annual statistics returned (saves time from other calculations)

logical; computes precipitation normal statistics, which is done slightly differ-
ently since it involves rain, snow and total precipitation; if TRUE, x$var must

"non

include "rain", "snow" and "precip" summed variables

seas.norm 39

Details

This function calculates the statistics of precipitation data on an annual and seasonal scope from a
seas. sum object.

The seasonal input data are normalized by the number of days in each bin, to produce a precipitation
rate in ‘mm/day’. This is because the number of days in each bin is not equal. The function fun is
then applied to the normalized precipitation, and operates along each bin, across multiple years of
data. The supplied function is usually "median” or "mean”, but it can also be a built in R function,
such as "var" for variance, or a composite such as:

function(i, na.rm)(quantile(i, 0.2, na.rm=na.rm, names=F)) the 20% quantile
function(i, na.rm)(mean(i, na.rm=na.rm)/(sd(i, na.rm=na.rm)*3)) skewness

If fun = "mean”, then the statistics are straightforward (using apply), however if fun = "median”
and there are more than 2 years of data, a different approach is taken. The median is a special case
of the quantile function, where the probability is 50% of the population. The median and quantile
functions are more resistant to outliers than mean, and can have advantages on precipitation data.
Precipitation occurring at a given time of year does not have a normal distribution since it is a
value that is not always occurring. It often has a left-skewed distribution, consisting of many zero
measurements, and few extreme precipitation events.

In this function, if fun = "median” (default) the median function is only used to calculate the me-
dian annual precipitation. The quantile function is used to calculate the seasonal statistics, since
the sum of medians applied in each bin are less than the median annual precipitation. This is be-
cause there are usually many measurements of no rain, which skew the distribution to the left. The
percentile for the quantile function is found using a secant method (Cheny and Kincaid, 1999) such
that the sum of the quantiles from each bin are equal to the median of the annual precipitation.

Snow and rain (which are the two components of precipitation) are calculated similarly (if fun =
"median”). The annual total rain and snow amounts are determined by finding the percentile of a
quantile function where the sum is equal to the median of the annual precipitation. The seasonal
snow and rain amounts are independently found using the same method to find the seasonal pre-
cipitation. The fraction of the snow in each bin, snow.frac.b = snow.b/(snow.b + rain.b) is
multiplied by the seasonal precipitation to determine the seasonal rain and snow amounts. This is
because the sum of rain and snow in each bin does not equal the seasonal precipitation. This way,
a figure with precip.only = TRUE and = FALSE will have identical daily precipitation rates in each
bin.

The pitfalls of calculating precipitation ‘normals’ is that it assumes that precipitation occurs every
day at a constant rate within each bin. This is not realistic, as the precipitation rates are much higher
when it is actually occurring.

Value
Returns a precip.norm object, which is a 1ist with the following elements:

seas An array of seasonal precipitation statistics: precip, rain and snow (if precip.only
= FALSE) are in ‘mm/day’; freq and na are the fraction of a day in which pre-
cipitation is occurring and that data is missing.

ann Annual precipitation statistics. precip, rain and snow (if precip.only = FALSE)
are in ‘mm/year’; active and na are the number of days per year which are ac-
tive (for example, days with precipitation) and that data are missing.

40

width

bins
bin.lengths
year.range
start.day
var

units
long.name
ann.only
precip.only
a.cut

fun

id

name

Note

from x

from x

maximum number of days in each bin
from x

from x

same as input parameter

units for var, using attr

long name for var, using attr
ann.only same as input parameter
from same as input parameter
from x

function used in analysis

from x

from x

seas.norm

Seasonal data are explicitly normalized to a rate per day (i.e., mm/day), and not per month (i.e.,
mm/month). This is because a time-derivative per month has unequal intervals of time, ranging
between 28 to 31 days. This directly creates up to 10% error in the analysis between months.

Units for annual normals, however, remain per year, since a year is a suitable time derivative.

Author(s)

Mike Toews

References

Cheny, E. W. and Kincaid, D. 1999, Numerical Mathematics and Computing, Pacific Grove: Brooks/Cole

Pub., 671 p.

Guttman, N.B. 1989, ‘Statistical descriptors of climate’, American Meteorological Society, 70, 602—

607.

See Also

plot.seas.norm, seas.var.plot, precip.dep

Examples

data(mscdata)

calculate precipitation normal

dat <- mksub(mscdata, id=1108447)

dat.ss <- seas.sum(dat)

dat.nm <- precip.norm(dat.ss, fun="mean")

seas.sum 41

plot precipitation normal
plot(dat.nm) # this is the same as plot.precip.norm(dat.nm)

use precipitation normal

dat.dep <- precip.dep(dat, dat.nm)

plot(dep ~ date, dat.dep, type="1",
main="CPD from mean normals")

seas.sum Seasonal sum data object

Description
Create a seasonal sum object used for analysis of precipitation data (among other things, such as
recharge rates); this object has sums in each ‘bin’ of a season, as well as for each annum (or year).
Usage

seas.sum(x, var, width = 11, start.day = 1, prime,
a.cut = 0.3, na.cut = 0.2)

Arguments
X a data. frame with daily variables to be summed, such as precipitation
var the names of one or more variables in x, such as c("rain","snow”, "precip”)
width a number specifying the width of the bin (factor) in days, or "mon"” for months
(see mkseas for others)
start.day the first day of the season, specified as either a Date or as an integer day of
the year; annual sums start on this day, and end a day before start.day in the
following year
prime a single variable from var which is the prime variable of interest, such as "precip”;
this is the variable used for comparison with a. cut and na. cut in the resulting
active and na dimensions
a.cut cut-off value for the day to be considered an active or ‘wet day’ (based on the
prime variable); a trace amount of 0.3 mm is suggested; if a. cut is NA or zero,
the active variable and analysis will be ignored
na.cut cut-off fraction of missing values; can be single value or a vector for c(annual, seasonal);
details given below
Details

This function is used to discretize and sum time-varying data in a data.frame for analysis in
seasonal and annual parts. This is particularly useful for calculating normals of rates, such as
precipitation and recharge. This function simply sums up each variable in each bin for each annum
(or year), and provides the results in several arrays.

42

seas.sum

Sums are not normalized, and represent a sum for the number of days in the bin (seasonal data) or
annum (for annual data). Seasonal data can be normalized by the number of days (for a rate per
day) or by the number of active days where prime > a.cut.

For annual sums, annums with many missing values are ignored (receiving a value of NA) since it
has insufficient data for a complete sum. The amount of allowable NA values per annum is controlled
by na.cut[1], which is a fraction of NA values for the whole annum (default is 0.2).

The seasonal sums are calculated independently from the annual sums. Individual bins from each
year with many missing values are ignored, where the amount of allowable NA values is controlled
by na.cut[2] (or na.cut[1], if the length of na. cut is 1). The default fraction of NAs in each bin
of each annum is 0.2.

Value

Returns a seas. sum object, which is a 1ist with the following elements:

ann: A data.frame of annual data; the columns are:

year: year, or annum

active: the number of ‘active’ days in the year where the prime variable is above a.cut (if
used)

days: number of days in each year

na: number of missing days in the year

var(s): annual sum of one or more variable; if the original units were mm/day, they are now
mm/year

seas: An array: of seasonal data; the dimensions are:

[[1]1]: year, or annum
[[2]]: bins, or seasonal factors generated by mkseas

[[3]]: sums of variables for each bin of each year; if the original unit was mm/day, it is now
mm per number of days, which is held in the days item

active: the number of ‘active’ days in the bin where the prime variable is above a. cut (if used)

days: an array of the number of days in each bin; this array is useful for normalizing the numbers
in seas to comparable units of mm/day

na: number of missing days in each bin
start.day: same as input

years: years (same as ann[[1]] and seas[[1]]); if start.day is not 1, this represents the starting
and ending years (i.e., 1991_1992) of each annum; see mkann

var: variable(s) which the sums represent (part of ann[[2]] and seas[[3]])

units: alist of units for each var, such as “mm/day’’; these are obtained from the units attribute
(using attr) found in x$var

long.name: a list of long names for each var; these are obtained from long.name in x$var; set
to be var if NULL

prime: a prime variable, such as "precip”
width: width argument passed to mkseas

bins: names of bins returned by mkseas (same as seas[[2]])

seas.sum 43

bin.lengths: the maximum length in days for each bin

year.range: range of years from x

precip.only: value used in argument (modified if insufficient data found in x)
na.cut: value used in argument

a.cut: value used in argument; if it is zero or NA, this will be FALSE

id: from attr(x,"id") (NULL if not set)

name: from attr(x,"name") (NULL if not set)

Author(s)
Mike Toews

See Also

To view the result try image. seas. sum, or alternatively, plot.seas.sum

To calculate and view a “normal”, use seas.norm and plot.seas.norm, or for precipitation use
precip.normand plot.precip.norm

Examples

data(mscdata)
dat <- mksub(mscdata, id=1108447)
dat.ss <- seas.sum(dat, width="mon")

Structure in R
str(dat.ss)

Annual data
dat.ss$ann

Demonstrate how to slice through a cubic array
dat.ss$seas["1990",,]

dat.ss$seas[,2,] # or "Feb"”, if using English locale
dat.ss$seas[,, "precip”]

Simple calculation on an array

(monthly.mean <- apply(dat.ss$seas[,,"precip”], 2, mean,na.rm=TRUE))
barplot(monthly.mean, ylab="Mean monthly total (mm/month)"”,
main="Un-normalized mean precipitation in Vancouver, BC")

text(6.5, 150, paste("Un-normalized rates given 'per month' should be",
"avoided since ~3-9% error is introduced”,

"to the analysis between months”, sep="\n"))

Normalized precip

norm.monthly <- dat.ss$seas[,,"precip”] / dat.ss$days
norm.monthly.mean <- apply(norm.monthly, 2, mean,na.rm=TRUE)
print(round(norm.monthly, 2))

print(round(norm.monthly.mean, 2))
barplot(norm.monthly.mean,

44

seas.temp.plot

ylab="Normalized mean monthly total (mm/day)”,
main="Normalized mean precipitation in Vancouver, BC")

Better graphics of data
dat.ss <- seas.sum(dat, width=11)

image(dat.ss)

seas.temp.plot

Plot seasonal temperature normals

Description

Plot seasonal temperature normals using boxplots, and also plot seasonal diurnal variability between
minimum and maximum temperature.

Usage

seas.temp.plot(x, width = 11, start = 1, rep = 0, start.day = 1,

Arguments

X

width
start

rep
start.day

var

add.alt
ylim

main
ylab

Details

= c("t_min”, "t_max", "t_mean"),

add.alt = FALSE, ylim, main, ylab, ...)

a data.frame with Date, t_min, t_max, and (optionally) t_mean columns; x
can also have id or name attributes to help give a title for the plot

size of bin; see mkseas

starting bin number; e.g., if width="mon" and start=5, the plot will start on
"May" at the left-hand side

repetition of the bins in the boxplots

if width is numeric, this is the day of year which is considered to be the start of
the first bin

array specifying the names of the columns in x which relate to the minimum,
maximum and mean temperatures; the units attribute for the y-axis label are
taken from the minimum, if available, otherwise it is assumed it is in °C

logical; add an alternative scale: if the units are in °C, the alternative is °F; if
units are °F, the alternative is °C; and if units are K, the alternative is °C

c(min, max) range for temperature, or y-axis
title for plot; if it is missing, then it will automatically be generated
y-axis label; if it is missing, then it will automatically be generated

ignored

Plots boxplots for seasonal temperature normals from mean daily temperature, and diurnal variabil-
ity with the mean difference of daily minimum and maximum temperatures (red vertical lines). If
the mean is not supplied, it is calculated from the mean of daily maximum and minimum tempera-

tures.

seas.var.plot 45

Value

Returns values from boxplot statistics on mean temperature.

Note
This function was formerly named plot.seas.temp, but required renaming as it is not an S3
method.

Author(s)
Mike Toews

See Also

seas.var.plot, plot.seas.norm, year.plot

Use mksub to make a subset of x.

Examples
data(mscdata)
dat <- mksub(mscdata, id=1108447)

seas.temp.plot(dat)
seas.temp.plot(dat, width="mon", add.alt=TRUE)

starting and ending elsewhere
seas.temp.plot(dat, start=18, rep=3)

seas.var.plot Plot seasonal normals of a given variable

Description

Plot seasonal normals of a variable using boxplots.

Usage

seas.var.plot(x, var, width = 11, start = 1, rep = 0, start.day = 1,
col, ylim, add.alt, alt.ylab, main, ylab, ylog, ...)

Arguments
X a data.frame with Date and var columns of data; x can also have id or name
attributes to help give a title for the plot
var a variable; a column name in x; this can also have attributes of units and

long.name to help give a title for the y-axis

width size of bin; see mkseas

46

start

rep

start.day
col

ylim
add.alt

alt.ylab

main
ylab
ylog

Details

seas.var.plot

starting bin number; e.g., if width="mon" and start=5, the plot will start on
"May" at the left-hand side

repetition of the bins in the boxplot

when width is numeric, this is the starting day of the year for the fist bin, or it
can be a Date to specify a month and day (year is ignored)

colour for the boxplots; the default is "1ightgrey”
c(min, max) range for y-axis

this adds an alternative axis, and is specified by c(slope, inter); for example,
if the primary measure is in °C, a secondary scale in K would be c(1,273.15),
orin °F would be c(5/9, 32); if ylog=TRUE, then this can also be TRUE to display
the log, transformed values of var on the alternative axis

label for the alternate y-axis (the primary y-axis label is set through attributes
for var in x)

title for plot; if it is missing, then it will automatically be generated
y-axis label; if it is missing, then it will automatically be generated

used to log,, transform values of var for the boxplots; this has a similar but
different affect than specifying par (ylog=TRUE) before this function

ignored

Shows normals of a seasonal variable using boxplots.

Value

Returns values from boxplot statistics on the variable.

Note

This function was formerly named plot. seas. var, but required renaming as it is not an S3 method.

Author(s)
Mike Toews

See Also

seas.var.plot, plot.seas.norm, year.plot.

Use mksub to make a subset of x.

Examples

opar <- par(no.readonly=FALSE)
on.exit(par(opar))

data(mscdata)

dat <- mksub(mscdata, id=1108447)

SeasOpts 47

seas.var.plot(dat, var="t_max", col="tomato",
add.alt=c(5/9, 32), alt.ylab="F")
abline(h=0)

par(opar) # reset graphics parameters

seas.var.plot(dat, var="t_min",
start=18, rep=16)

pdat <- dat[dat$precip > 0,]
attr(pdat$precip, "long.name”) <- "precipitation intensity”
attr(pdat$precip, "units") <- "mm/day”

par(ylog=TRUE)

seas.var.plot(pdat, var="precip"”, col="azure")
title(sub="These boxplots are simply plotted on a log-y scale”)

par(opar)

seas.var.plot(pdat, var="precip"”, col="azure", ylog=TRUE)
title(sub="These boxplots are based on log-transformed values")

seas.var.plot(pdat, var="precip"”, col="azure", ylog=TRUE, add.alt=TRUE)
title(sub="The actual axis for graph is on the right-side"”)

SeasOpts Options for seas

Description

Set default options for seas.

Usage

setSeasOpts()

Details

setSeasOpts sets all the default values for options in seas, and at some point it may support argu-
ments for styles, such as ‘black and white’. However, after the initial setting of options, users may
change the options to modify the look of graphics produced in seas.

Other details of the graphics can be modified using par. This includes the font sizes, back-ground
colour, font family, and many others. For example, setting par (cex=0.75) will reduce the font size
in the active device by 75% of the original size; while par (font.main=2) will change only the font
for the main titles.

Value

setSeasOpts() only sets the options in the current environment, and returns nothing.

This is automatically done when seas is loaded (using .onLoad).

48 SeasOpts

Options used in seas

Here are all the supported options for seas, with the default values shown for each option. Options
are stored in lists, which make them easy to ‘get’, but difficult to ‘set’, and is shown in the
Examples section at the bottom.

seas.main: formatting style for main title:

fmt: format for name and id (if available) as the first "%s", followed by a range of years as
the second "%s"; these are formatted by sprintf; "%s\n%s"

n_n

rngsep: separation between ranges of years; , other alternatives could be " to "
show.id: show id (if available) in main title; TRUE
show. fun: show function (where applicable) in main title; TRUE

seas.label: label formatting for variables:

fmt: label for name and units (if available); "%s (%s)", other alternatives could be "%s, %s"

monthday: format for month and day (see strftime for format codes); this can be either "%b
%-d" (for most Unix-like systems), "%b %#d" (for Windows systems), or "%b %d" (for
other systems); this should produce a string, such as ‘Aug 1’ for August 1st

month similar as previous, but when starting exactly on month-breaks; "%B"
ann a label for image. seas. sum; default is ‘annual’
seas.month.grid: setting for the display of the month grid (see . seasmonthgrid), which is com-
mon to many plots that use a numeric width in mkseas:
abb: abbreviate month names for grid; TRUE

len: trim month name lengths to a number, for instance to get JIFIMIAIMIJIJIAISIOINID, use
1; NULL

force: force the display of each month label using mtext, otherwise labels can be automati-
cally placed and adjusted for device using axis; TRUE

label: show a month label on the grid; TRUE
col: colour for month grid; "lightgrey”
lwd: width for month grid lines, multiplied by par ("1wd"); 1
1ty: style for month grid lines; 1
seas.bxp: attributes which affect the display of boxplots, used by various functions:
boxcol: default box-fill colour; "lightgrey”
outcex: outlier symbol size, multiplied by par(”cex"); 1
seas.temp: attributes which affect the display of seas. temp.plot (among other functions):
col: colours for boxplot fill and diurnal variability lines; c("lightgrey”, "red")
lwd: width of diurnal variability lines in seas. temp.plot, multiplied by par(”1lwd"); 3
seas.precip: attributes which affect the display of precipitation:
col: colour; "grey"
density: pattern density; NULL
angle: pattern angel; 45
lwd: thickness of box line, multiplied by par ("1lwd"); 1

seas.rain: attributes which affect the display of rain:

SeasOpts 49

col: colour; "lightblue”
density: pattern density; NULL
angle: pattern angel; 45
lwd: thickness of box line, multiplied by par ("1lwd"); 1
seas.snow: attributes which affect the display of snow:
col: colour; "lightgrey”
density: pattern density; NULL
angle: pattern angel; -45
lwd: thickness of box line, multiplied by par ("1lwd"); 1
seas.interarrival: attributes which affect the display of wet- and dry-spells in plot.interarrival;
organized as c(wet,dry):
col: colour; c("lightblue”, "orange")
seas.median: attributes which affect the display of the median lines in image. seas. sum:
col: colour; "red”
lwd: width of line, multiplied by par(”1wd"); 1
1ty: style of line; 1
seas.mean: attributes which affect the display of the mean lines in image. seas. sum:
col: colour; "red”
lwd: width of line, multiplied by par("1lwd"); 1
1ty: style of line; 1
seas.na: attributes which affect the display of NA or missing values in various plots:
col: colour; "red”
pch: character symbol; "x"

Author(s)
Mike Toews

See Also
hidden

Examples

if(is.null(getOption("seas.main")))
setSeasOpts()

Modify an option
getOption("seas.main")$show.id

cp <- orig <- getOption("seas.main")
cp$show.id <- FALSE
options(seas.main=cp)
getOption("seas.main")$show.id

options(seas.main=orig)

50 write.help

summerland Example LARS-WG data file of synthetic data from Summerland, BC

Description

Example LARS-WG data file of synthetic data from Summerland, BC.

Format

Both files are ASCII-based, and can be viewed in any text editor

e ‘summerland.sr’ is the ‘site file’, which contains the meta-data

e ‘summerland.dat’ is the data file

Details of these file formats can be found in the LARS-WG manual and help documentation.

Details
The sample file name was generated in LARS-WG from calibration of data from Summerland (MSC

ID: 1127800). Thirty-years were generated, each synthetic year has 365-days.

Author(s)
Mike Toews

See Also

read.lars, which contains an example using these files

write.help Write climate data in the format used by the HELP model

Description

Write climate data in the format used by the Hydrological Evaluation of Landfill Performance
(HELP) model. This exports the data using two slightly different variants of HELP: the DOS ver-
sions (3.07 to 3.80D) and for Visual HELP.

Usage

nn nn

write.help(file, dat, var = , hame = , region, lat,
visual.help = FALSE, metric = TRUE)

write.help 51

Arguments

file name of output file; [DOS] HELP uses extensions ‘x.D4’, ‘*.D7’, and ‘*.D13’
for daily precipitation, temperature and solar radiation, respectively; Visual HELP
uses the file names ‘_weather1.dat’, ‘_weather2.dat’ and ‘_weather3.dat’
for the same series of variables

dat data. frame of climate data

var variable to be exported; must be one of "precip”, "t_mean"” or "solar”

name character; location name

region character; region

lat numeric; location latitude in decimal degrees

visual.help logical formats output for Visual HELP; else formatted for the DOS HELP ver-
sions (default)

metric logical if using metric units (this only sets a flag, please ensure the data are in
either °C, mm/day and MJ/(m? - day) or °F, in./day and langleys/day)

Details

This utility function is experimental and has not been extensively tested; please report any errors to
me.

HELP requires continuous data; no missing values are allowed.

Data imported from SDSM use a 365-day calendar, and can be approximated using conv365toGregorian.

Author(s)

Mike Toews

References

HELP 3.07 - Original version for the US EPA; free download
https://www.epa.gov/land-research/hydrologic-evaluation-landfill-performance-help-model

HELP-D - Developed by Dr. Klaus Berger, University of Hamburg
https://www.geo.uni-hamburg.de/en/bodenkunde/service/help-model.html

Visual HELP - Uses a similar underlying code as HELP 3.07, but features a Windows GUI
https://www.waterloohydrogeologic.com/visual-help/ (dead link)

See Also

read.msc, read. sdsm, read. lars, conv365toGregorian

https://www.epa.gov/land-research/hydrologic-evaluation-landfill-performance-help-model
https://www.geo.uni-hamburg.de/en/bodenkunde/service/help-model.html

52 year.length

year.length Calculate the number of days in a year

Description

Determines the number of days per year using a given calendar.

Usage

year.length(x, calendar)

Arguments
X year or a Date
calendar calendar, see details
Details

The number of days per year depends on the choice of calendar. Calendar names used in the function
are the same defined for the CF conventions, used for netCDF files. If a calendar is not specified (or
NULL), then it is assumed to be a proleptic Gregorian calendar (which extends before 1582-10-15).
Other accepted calendars are:

e "360": always 360-days per year

e "365_day" or "noleap”: always 365-days per year

e "366" or "all_leap”: always 366-days per year

* "julian": 366 days on years divisible by 4, otherwise 365 days

Value

Returns a vector the same length as x with the numbers of days corresponding to each year.

Author(s)

Mike Toews

References
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.
html#calendar

See Also

mkseas, mkann

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#calendar
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#calendar

year.ploy 53

Examples

cal <- data.frame(year=c(1899, 1900, 1904, 2000, 2080, 2100))
cal[["Gregorian”]] <- year.length(cal$year)

cal[["Julian”]] <- year.length(cal$year, "julian")
cal[["360_day"]1] <- year.length(cal$year, "360_day")
cal[["365_day"]1] <- year.length(cal$year, "365_day")
cal[["366_day"]] <- year.length(cal$year, "366_day")

cal

year.ploy Plot annual temperature and precipitation statistics

Description

Plots a continuous set of annual temperature and precipitation statistics for a single climate station.

Usage
year.plot(x, start.day = 1, precip.only = FALSE, precip.ylim,
temp.ylim, na.cut = 10, ...)
Arguments
X a data. frame of climate data
start.day starting day of annum; either a Date or an integer day of year; this influences
the statistics for each year or annum; such as annual precipitation sums
precip.only only precipitation data is used; rain and snow ignored
precip.ylim range for precipitation graph
temp.ylim range for temperature graph
na.cut minimum number of missing data points in a year to make it void; temperature
and precipitation are treated independently
ignored
Details

This simply shows temperature using (boxplots) and annual precipitation totals. The red bars are
directly proportional to the fraction of missing (or NA) values for the year; statistics not shown if
there are more than na.cut NA values in a given year.

Note

This function was formerly named plot.year, but required renaming as it is not an S3 method.

Author(s)
Mike Toews

54 year.ploy

See Also

mscdata, seas.temp.plot, plot.seas.norm (can be used for precipitation normals), calculate
statistics with tapply

Examples

data(mscdata)
year.plot(mksub(mscdata, id=1108447))

year.plot(mksub(mscdata, id=1108447,
start=as.Date("”1975-08-01"),
end=as.Date("2004-07-31")),
start.day=as.Date("2000-08-01"))

Index

* connection
lars, 15
read.msc, 32
sdsm, 35
write.help, 50

x datagen
change, 5
conv365toGregorian, 7
dathomog, 8
interarrival, 13
mkann, 17
mkseas, 18
mksub, 22
precip.dep, 31
seas.norm, 38
seas.sum, 41
year.length, 52

+ datasets
A1128551.DLY, 3
mscdata, 23
mscstn, 26
summerland, 50

x file
lars, 15
read.msc, 32
sdsm, 35
write.help, 50

+ hplot
image.seas.sum, 11
plot.interarrival, 27
plot.seas.norm, 28
plot.seas.sum, 29
seas.temp.plot, 44
seas.var.plot, 45
year.ploy, 53

* manip
precip.dep, 31

+ package
seas-package, 2

55

interarrival, 13
mkann, 17
mkseas, 18
year.length, 52
* utilities
change, 5
conv365toGregorian, 7
dathomog, 8
getstnname, 9
hidden, 10
lars, 15
mkann, 17
mkseas, 18
mksub, 22
read.msc, 32
sdsm, 35
seas.check, 36
SeasOpts, 47
write.help, 50
year.length, 52
.onLoad, 47
.seasmonthgrid, 48
.seasmonthgrid (hidden), 10
.seastitle, 9, 37
.seastitle (hidden), 10
.seasxlab (hidden), 10
.seasylab (hidden), 10
A 12

A1128551.DLY, 3, 24, 33, 34
apply, 39

array, 37, 39

attr, 20, 24, 33, 40, 42
attributes, 14, 22, 33, 4446
axis, 48

boxplot, 45, 46, 53
bzfile, 32

56 INDEX

change, 5, 36 par, 47

character, 9, 19, 38 plot.interarrival, 14, 27,49

class, 37 plot.precip.norm, 43
colorRampPalette, 12 plot.precip.norm(plot.seas.norm), 28
connection, 32 plot.precip.sum(plot.seas.sum), 29
conv365toGregorian, 7, 16, 51 plot.seas.norm, 28, 40, 43, 45, 46, 54

plot.seas.sum, 29, 43
plot.seas.temp (seas.temp.plot), 44
plot.seas.var (seas.var.plot), 45

data.frame, 7, 23, 26, 32, 33, 36, 37,41
Date, 8, 10, 14, 15, 17, 19, 20, 22, 24, 33, 41,

44, 45,52 plot.year (year.ploy), 53
dathomog, 6, 8 POSIXct, 17, 19, 33
factor, 18-20, 23, 33 precip.dep, 31, 40
FALSE, 15 prec?p.norm,12,28,29,31,43
function, 5. 38, 40 precip.norm(seas.norm), 38
getstnname, 9, 10, 11, 26 quantile, 39
getwd, 32
read. lars, 50, 51
hidden, 10, 38, 49 read.lars (lars), 15
read.msc, 3, 5, 23, 24, 26, 32, 36, 51
image, 12 read.sdsm, /6, 51
image.seas.sum, 11, 30,43, 48, 49 read.sdsm (sdsm), 35
integer, 10, 19, 22-24, 33
interarrival, 5, 6, 13, 27 sd, 5
invisible, 37 sdsm, 35

seas (seas-package), 2

lars, 6,15 seas-package, 2

lars2help (lars), 15 seas.check, 36

l?ngth,42 seas.df.check (seas.check), 36
list, 6,11, 32,37, 39,42, 48 seas.norm, 2, 12, 13, 28-30, 38, 43
locator, 28

seas.sum, 2, 12, 13, 18, 21, 29, 30, 36-39, 41

logical, 10, 32, 38, 51 seas.sum. check (seas.check), 36

mad, 5 seas.temp.plot, 44, 48, 54
matrix, 37 seas.var.plot, 27, 40, 45, 45, 46
mean, 5, 31, 39, 49 SeasOpts, 11, 13,47

median, 5, 31, 39, 49 setSeasOpts (SeasOpts), 47
missing, 37 sprintf, 48

mkann, 17, 21, 42, 52 sqrt, 12

mkseas, 5, 10, 18, 18, 27, 34,41, 44, 45,48, 52 strftime, 48

mksub, 22, 24, 34, 46 summerland, 76, 50
mscdata, 9, 23, 23, 26, 54 Summerland.dat (lars), 15
mscstn, 9, 24, 26, 34 Summerland. st (lars), 15
mtext, 48 Sys.setlocale, 20

NA, 15 tapply, 54

names, 8

numeric, 9, 19, 33,48 union, 8§

options, /1 var, 39

INDEX

warning, 22
write.help, 16, 50
write.lars (lars), 15
write.sdsm (sdsm), 35

year.length, 6, 17-20, 35, 52
year.plot, 45, 46

year.plot (year.ploy), 53
year.ploy, 53

57

	seas-package
	A1128551.DLY
	change
	conv365toGregorian
	dathomog
	getstnname
	hidden
	image.seas.sum
	interarrival
	lars
	mkann
	mkseas
	mksub
	mscdata
	mscstn
	plot.interarrival
	plot.seas.norm
	plot.seas.sum
	precip.dep
	read.msc
	sdsm
	seas.check
	seas.norm
	seas.sum
	seas.temp.plot
	seas.var.plot
	SeasOpts
	summerland
	write.help
	year.length
	year.ploy
	Index

