Package ‘simhelpers’

January 10, 2025
Type Package
Title Helper Functions for Simulation Studies
Version 0.3.1

Description Calculates performance criteria measures and associated Monte Carlo standard er-
rors for simulation results. Includes functions to help run simulation studies, following a gen-
eral simulation workflow that closely aligns with the approach described by Mor-
ris, White, and Crowther (2019) <DOI:10.1002/sim.8086>. Also includes functions for calculat-
ing bootstrap confidence intervals (including normal, basic, studentized, percentile, bias-
corrected, and bias-corrected-and-accelerated) with tidy output, as well as for extrapolating con-
fidence interval coverage rates and hypothesis test rejection rates following techniques sug-
gested by Boos and Zhang (2000) <DOI:10.1080/01621459.2000.10474226>.

URL https://meghapsimatrix.github.io/simhelpers/

BugReports https://github.com/meghapsimatrix/simhelpers/issues
Depends R (>=2.10)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

SystemRequirements RStudio

Imports stats, furrr, tidyr, rstudioapi, Rdpack

Suggests dplyr, tibble, purrr, future, knitr, rmarkdown, pkgdown,
covr, testthat, kableExtra, ggplot2, broom, boot

RdMacros Rdpack
VignetteBuilder knitr
NeedsCompilation no

Author Megha Joshi [aut, cre] (<https://orcid.org/0000-0001-7936-076X>),
James Pustejovsky [aut] (<https://orcid.org/0000-0003-0591-9465>)

Maintainer Megha Joshi <megha. j456@gmail.com>
Repository CRAN
Date/Publication 2025-01-10 21:50:02 UTC

https://doi.org/10.1002/sim.8086
https://doi.org/10.1080/01621459.2000.10474226
https://meghapsimatrix.github.io/simhelpers/
https://github.com/meghapsimatrix/simhelpers/issues
https://orcid.org/0000-0001-7936-076X
https://orcid.org/0000-0003-0591-9465

2 alpha_res

Contents

alpha_res L
bootstrap_CIs e
bootstrap_pvals L e
bundle_sim e e
calc_absolute L s e
calc_coverage
calc_TeJection e e e e e e e e
calc_relative L
calc_relative_var e e
create_skeleton L e e e e e
evaluate_by_row
exXtrapolate_CoOVerage v v v v i i e e e e e e e e e
extrapolate_rejectiono e e e e e e
repeat_and_stack L.
Tipton_Pusto e
LTCS . . o e e e e e e e e e e e e e e e e e e s e e e
welch_Tes e

Index

alpha_res Cronbach’s alpha simulation results

Description

A dataset containing simulation results from estimating Cronbach’s alpha and its variance.

Usage

alpha_res

Format
A tibble with 1,000 rows and 3 variables:
A estimate of alpha.

Var_A estimate of the variance of alpha.

true_param true alpha used to generate the data.

bootstrap_ClIs 3

bootstrap_CIs Calculate one or multiple bootstrap confidence intervals

Description

Calculate one or multiple bootstrap confidence intervals, given a sample of bootstrap replications.

Usage

bootstrap_CIs(
boot_est,
boot_se = NULL,
est = NULL,
se = NULL,
influence = NULL,
CI_type = "percentile”,

level = 0.95,
B_vals = length(boot_est),
reps = 1L,
format = "wide",
seed = NULL
)
Arguments

boot_est vector of bootstrap replications of an estimator.

boot_se vector of estimated standard errors from each bootstrap replication.

est numeric value of the estimate based on the original sample. Required for CI_type
="normal”, CI_type = "basic"”,CI_type = "student”, and CI_type = "bias-corrected”.

se numeric value of the estimated standard error based on the original sample. Re-
quired for CI_type = "student”.

influence vector of empirical influence values for the estimator. Required for CI_type =
n BCa n .

CI_type Character string or vector of character strings indicating types of confidence in-
tervals to calculate. Options are "normal”, "basic”, "student”, "percentile”
(the default), "bias-corrected”, or "BCa".

level numeric value between 0 and 1 for the desired coverage level, with a default of
0.95.

B_vals vector of sub-sample sizes for which to calculate confidence intervals. Setting
B_vals = length(boot_est) (the default) will return bootstrap confidence in-
tervals calculated on the full set of bootstrap replications. For B_vals < length(boot_est),
confidence intervals will be calculated after sub-sampling (without replacement)
the bootstrap replications.

reps integer value for the number of sub-sample confidence intervals to generate

when B_vals < length(boot_est), with a default of reps = 1.

4 bootstrap_Cls

format character string controlling the format of the output. If format = "wide” (the
default), then different types of confidence intervals will be returned in separate
columns. If format = "long", then confidence intervals of different types will
appear on different rows of dataset. If format = "wide-1list", then different
types of confidence intervals will be returned in separate columns and the result
will be wrapped in an unnamed list.

seed Single numeric value to which the random number generator seed will be set.
Default is NULL, which does not set a seed.

Details

Confidence intervals are calculated following the methods described in Chapter 5 of Davison and
Hinkley (1997). For basic non-parametric bootstraps, the methods are nearly identical to the imple-
mentation in boot. ci from the boot package.

Value

If format = "wide”, the function returns a data. frame with reps rows per entry of B_vals, where
each row contains confidence intervals for one sub-sample replication.

If format = "long", the function returns a data. frame with one row for each CI_type, each repli-
cation, and each entry of B_vals, where each row contains a single confidence interval for one
sub-sample replication.

If format = "wide-1list", then the output will be structured as in format = "wide” but will be
wrapped in an unnamed list, which makes it easier to sore the output in a tibble, and will be assigned
the class "bootstrap_CIs".

References

Davison, A.C. and Hinkley, D.V. (1997). _Bootstrap Methods and Their Application_, Chapter 5.
Cambridge University Press.

Examples

generate t-distributed data
N <- 50

mu <- 2

nu<-5

dat <- mu + rt(N, df = nu)

create bootstrap replications
f <=\ {
c(
M = mean(x, trim = 0.1),
SE = sd(x) / sqrt(length(x))
)
3

booties <- replicate(399, {
sample(dat, replace = TRUE, size = N) |>
fO

bootstrap_pvals

»
res <- f(dat)

calculate bootstrap CIs from full set of bootstrap replicates
bootstrap_CIs(

boot_est = booties[1,],

boot_se = booties[2,],

est = res[1],

se = res[2],

CI_type = c("normal”,"basic"”,"student”,"percentile"”,"bias-corrected”),

format = "long”

Calculate bias-corrected-and-accelerated CIs
inf_vals <- res[1] - sapply(seq_along(dat), \(i) f(dat[-i1)[1])
bootstrap_CIs(

boot_est = booties[1,],

est = res[1],

influence = inf_vals,

CI_type = c("percentile”,"bias-corrected”,”BCa"),

format = "long"

)

calculate multiple bootstrap CIs using sub-sampling of replicates
bootstrap_CIs(

boot_est = booties[1,],

boot_se = booties[2,],

est = res[1],

se = res[2],

CI_type = c("normal”,"basic"”,"student"”,"percentile”,"bias-corrected”),

B_vals = 199,

reps = 4L,

format = "long”
)

calculate multiple bootstrap CIs using sub-sampling of replicates,
for each of several sub-sample sizes.
bootstrap_CIs(
boot_est = booties[1,],
boot_se = booties[2,],
est = res[1],
se = res[2],
CI_type = c("normal”,"basic"”,"student”,"percentile”),
B_vals = ¢(49,99,199),
reps = 4L,
format = "long”

bootstrap_pvals Calculate one or multiple bootstrap p-values

6 bootstrap_pvals

Description

Calculate one or multiple bootstrap p-values, given a bootstrap sample of test statistics.

Usage
bootstrap_pvals(
boot_stat,
stat,
alternative = "two-sided”,
B_vals = length(boot_stat),
reps = 1L,
enlist = FALSE,
seed = NULL
)
Arguments

boot_stat vector of bootstrap replications of a test statistic.

stat numeric value of the test statistic based on the original sample.

alternative a character string specifying the alternative hypothesis, must be one of " two-sided”
(the default), "greater" or "less".

B_vals vector of sub-sample sizes for which to calculate p-values. Setting B_vals =
length(boot_stat) (the default) will return a single p-value calculated on the
full set of bootstrap replications. For B_vals < length(boot_stat), p-values
will be calculated after sub-sampling (without replacement) the bootstrap repli-
cations.

reps integer value for the number of sub-sample p-values to generate when B_vals <
length(boot_stat), with a default of reps = 1.

enlist logical indicating whether to wrap the returned values in an unnamed list, with
a default of FALSE. Setting enlist = TRUE makes it easier to store the output as
a single entry in a tibble.

seed Single numeric value to which the random number generator seed will be set.
Default is NULL, which does not set a seed.

Details

p-values are calculated by comparing stat to the distribution of boot_stat, which is taken to
represent the null distribution of the test statistic. If alternative = "two-sided"” (the default), then
the p-value is the proportion of the bootstrap sample where the absolute value of the bootstrapped
statistic exceeds the absolute value of the original statistic. If alternative = "greater”, then the
p-value is the proportion of the bootstrap sample where the value of the bootstrapped statistic is
larger than the original statistic. If alternative = "less”, then the p-value is the proportion of the
bootstrap sample where the value of the bootstrapped statistic is less than the original statistic.

bootstrap_pvals 7

Value

The format of the output depends on several contingencies. If only a single value of B_vals is
specified and reps = 1, then the function returns a vector with a single p-value. If only a single
value of B_vals is specified but B_vals < length(boot_stat) and reps > 1, then the function
returns a vector p-values, with an entry for each sub-sample replication. If B_vals is a vector of
multiple values, then the function returns a list with one entry per entry of B_vals, where each entry
is a vector of length reps with entries for each sub-sample replication.

If enlist = TRUE, then results will be wrapped in an unnamed list, which makes it easier to sore the
output in a tibble.

References

Davison, A.C. and Hinkley, D.V. (1997). _Bootstrap Methods and Their Application_, Chapter 4.
Cambridge University Press.

Examples

generate data from two distinct populations
dat <- data.frame(
group = rep(c("A","B"), c(40, 50)),
y = ¢(
rgamma (40, shape =
rgamma (50, shape

|
~

, scale = 2),
, scale = 4)

1
w

)

)
stat <- t.test(y ~ group, data = dat)$statistic

create bootstrap replications under the null of no difference
boot_dat <- dat
booties <- replicate(399, {
boot_dat$group <- sample(dat$group)
t.test(y ~ group, data = boot_dat)$statistic
»

calculate bootstrap p-values from full set of bootstrap replicates
bootstrap_pvals(boot_stat = booties, stat = stat)

calculate multiple bootstrap p-values using sub-sampling of replicates
bootstrap_pvals(

boot_stat = booties, stat = stat,

B_vals = 199,

reps = 4L
)

calculate multiple bootstrap p-values using sub-sampling of replicates,
for each of several sub-sample sizes.
bootstrap_pvals(
boot_stat = booties, stat = stat,
B_vals = c(49,99,199),
reps = 4L
)

bundle_sim

bundle_sim

Bundle functions into a simulation driver function

Description

Bundle a data-generation function, a data-analysis function, and (optionally) a performance sum-
mary function into a simulation driver.

Usage
bundle_sim(
f_generate,
f_analyze,
f_summarize = NULL,
reps_name = "reps”,
seed_name = "seed”,
summarize_opt_name = "summarize",
row_bind_reps = TRUE
)
Arguments
f_generate function for data-generation
f_analyze function for data-analysis. The first argument must be the data, in the format

f_summarize

reps_name

seed_name

generated by f_analyze().

function for calculating performance summaries across replications. The first
argument must be the replicated data analysis results. Default is NULL, so that
no summary function is used.

character string to set the name of the argument for the number of replications,
with a default value of "reps”.

character string to set the name of the argument for the seed option, with a
default value of "seed”. Set to NULL to remove the argument from the simulation
driver.

summarize_opt_name

row_bind_reps

character string to set the name of the argument for where to apply f_summarize
to the simulation results, with a default value of "summarize”. Ignored if no
f_summarize function is specified. Set to NULL to remove the argument from
the simulation driver.

logical indicating whether to combine the simulation results into a data frame
using rbind(), with a default value of TRUE. If FALSE, then the function will
return replications in a list and so f_summarize must be able to take a list as its
first argument.

calc_absolute 9

Value

A function to repeatedly run the ‘f_generate‘ and ‘f_analyze‘ functions and (optionally) apply
‘f_summarize‘ to the resulting replications.

Examples

f_G <= rnorm
f_A <- function(x, trim = @) data.frame(y_bar = mean(x, trim = trim))
f_S <- function(x, calc_sd = FALSE) {
if (calc_sd) {
res_SD <- apply(x, 2, sd)
res <- data.frame(M = colMeans(x), SD = res_SD)
} else {
res <- data.frame(M = colMeans(x))
}
res

}

bundle data-generation and data-analysis functions
siml <- bundle_sim(f_generate = f_G, f_analyze = f_A)
args(siml)

resl <- sim1(4, n = 70, mean = 0.5, sd = 1, trim = 0.2)
resi

bundle data-generation, data-analysis, and performance summary functions
sim2 <- bundle_sim(f_generate = f_G, f_analyze = f_A, f_summarize = f_S)

args(sim2)
res2 <- sim2(24, n =7, mean = @, sd = 1, trim = 0.2, calc_sd = TRUE)
res2

bundle data-generation and data-analysis functions, returning results as a list
sim3 <- bundle_sim(f_generate = f_G, f_analyze = f_A, row_bind_reps = FALSE)

args(sim3)
res3 <- sim3(4, n = 70, mean = 0.5, sd = 3, trim = 0.2)
res3
calc_absolute Calculate absolute performance criteria and MCSE
Description

Calculates absolute bias, variance, mean squared error (mse) and root mean squared error (rmse).
The function also calculates the associated Monte Carlo standard errors.
Usage

calc_absolute(
data,

10 calc_coverage

estimates,
true_param,
criteria = c("bias"”, "variance”, "stddev”, "mse", "rmse"),
winz = Inf
)
Arguments
data data frame or tibble containing the simulation results.
estimates vector or name of column from data containing point estimates.
true_param vector or name of column from data containing corresponding true parameters.
criteria character or character vector indicating the performance criteria to be calculated,
with possible options "bias”, "variance”, "stddev"”, "mse”, and "rmse".
winz numeric value for winsorization constant. If set to a finite value, estimates will
be winsorized at the constant multiple of the inter-quartile range below the 25th
percentile or above the 75th percentile of the distribution. For instance, setting
winz = 3 will truncate estimates that fall below P25 - 3 * IQR or above P75 + 3
*IQR.
Value

A tibble containing the number of simulation iterations, performance criteria estimate(s) and the
associated MCSE.

Examples

calc_absolute(data = t_res, estimates = est, true_param = true_param)

calc_coverage Calculate confidence interval coverage, width and MCSE

Description

Calculates confidence interval coverage and width. The function also calculates the associated
Monte Carlo standard errors. The confidence interval percentage is based on how you calculated
the lower and upper bounds.

Usage

calc_coverage(
data,
lower_bound,
upper_bound,
true_param,
criteria = c("coverage", "width"),
winz = Inf

calc_rejection 11

Arguments
data data frame or tibble containing the simulation results.
lower_bound vector or name of column from data containing lower bounds of confidence
intervals.
upper_bound vector or name of column from data containing upper bounds of confidence
intervals.
true_param vector or name of column from data containing corresponding true parameters.
criteria character or character vector indicating the performance criteria to be calculated,
with possible options "coverage” and "width".
winz numeric value for winsorization constant. If set to a finite value, estimates will
be winsorized at the constant multiple of the inter-quartile range below the 25th
percentile or above the 75th percentile of the distribution. For instance, setting
winz = 3 will truncate estimates that fall below P25 - 3 * IQR or above P75 + 3
*IQR.
Value

A tibble containing the number of simulation iterations, performance criteria estimate(s) and the
associated MCSE.
Examples

calc_coverage(data = t_res, lower_bound = lower_bound,
upper_bound = upper_bound, true_param = true_param)

calc_rejection Calculate rejection rate and MCSE

Description

Calculates rejection rate. The function also calculates the associated Monte Carlo standard error.

Usage
calc_rejection(data, p_values, alpha = 0.05, format = "wide")
Arguments
data data frame or tibble containing the simulation results.
p_values vector or name of column from data containing p-values.
alpha scalar or vector indicating the nominal alpha level(s). Default value is set to the
conventional .05.
format option "wide” (the default) will produce a tibble with one row, with separate

variables for each specified alpha. Option "long"” will produce a tibble with
one row per specified alpha.

12 calc_relative

Value

A tibble containing the number of simulation iterations, performance criteria estimate and the asso-
ciated MCSE.

Examples

calc_rejection(data = t_res, p_values = p_val)

calc_relative Calculate relative performance criteria and MCSE

Description

Calculates relative bias, mean squared error (relative mse), and root mean squared error (relative
rmse). The function also calculates the associated Monte Carlo standard errors.

Usage
calc_relative(
data,
estimates,
true_param,
criteria = c("relative bias"”, "relative mse"”, "relative rmse"),
winz = Inf
)
Arguments
data data frame or tibble containing the simulation results.
estimates vector or name of column from data containing point estimates.
true_param vector or name of column from data containing corresponding true parameters.
criteria character or character vector indicating the performance criteria to be calculated,
with possible options "relative bias”, "relative mse"”, and "relative rmse"”.
winz numeric value for winsorization constant. If set to a finite value, estimates will
be winsorized at the constant multiple of the inter-quartile range below the 25th
percentile or above the 75th percentile of the distribution. For instance, setting
winz = 3 will truncate estimates that fall below P25 - 3 * IQR or above P75 + 3
*IQR.
Value

A tibble containing the number of simulation iterations, performance criteria estimate(s) and the
associated MCSE.

calc_relative_var

Examples

13

calc_relative(data = t_res, estimates = est, true_param = true_param)

calc_relative_var

Calculate jack-knife Monte Carlo SE for variance estimators

Description

Calculates relative

bias, mean squared error (relative mse), and root mean squared error (relative

rmse) of variance estimators. The function also calculates the associated jack-knife Monte Carlo

standard errors.

Usage

calc_relative_var(

data,
estimates,

var_estimates,

criteria = c('

winz = Inf,

'relative bias”, "relative mse"”, "relative rmse”),

var_winz = winz

Arguments

data
estimates

var_estimates

criteria

winz

var_winz

data frame or tibble containing the simulation results.
vector or name of column from data containing point estimates.

vector or name of column from data containing variance estimates for point
estimator in estimates.

character or character vector indicating the performance criteria to be calculated,

non

with possible options "relative bias”, "relative mse”, and "relative rmse”.

numeric value for winsorization constant. If set to a finite value, estimates will
be winsorized at the constant multiple of the inter-quartile range below the 25th
percentile or above the 75th percentile of the distribution. For instance, setting
winz = 3 will truncate estimates that fall below P25 - 3 * IQR or above P75 + 3
*IQR.

numeric value for winsorization constant for the variance estimates. If set to a
finite value, variance estimates will be winsorized at the constant multiple of the
inter-quartile range below the 25th percentile or above the 75th percentile of the
distribution. For instance, setting var_winz = 3 will truncate variance estimates
that fall below P25 - 3 * IQR or above P75 + 3 * IQR. By default var_winz is
set to the same constant as winsorize.

14 evaluate_by_row

Value
A tibble containing the number of simulation iterations, performance criteria estimate(s) and the
associated MCSE.

Examples

calc_relative_var(data = alpha_res, estimates = A, var_estimates = Var_A)

create_skeleton Open a simulation skeleton

Description

Creates and opens a .R file containing a skeleton for writing a Monte Carlo simulation study.

Usage

create_skeleton()

Examples

Not run:
create_skeleton()

End(Not run)

evaluate_by_row Evaluate a simulation function on each row of a data frame or tibble

Description

Evaluates a simulation function on each row of a data frame or tibble containing parameter values.
Returns a single tibble with parameters and simulation results. The function uses furrr: : future_pmap,
which allows for easy parallelization.

Usage

evaluate_by_row(
params,
sim_function,
results_name = ".results”,
.progress = FALSE,
.options = furrr::furrr_options(),
system_time = TRUE

)

extrapolate_coverage

Arguments

params

sim_function

results_name

.progress

.options

system_time

Value

15

data frame or tibble containing simulation parameter values. Each row should
represent a separate set of parameter values.

function to be evaluated, with argument names matching the variable names in
params. The function must return a data. frame, tibble, or vector.

additional arguments passed to sim_function.

character string to set the name of the column storing the results of the simula-
tion. Defaultis ".results”.

A single logical. Should a progress bar be displayed? Only works with multises-
sion, multicore, and multiprocess futures. Note that if a multicore/multisession
future falls back to sequential, then a progress bar will not be displayed.
Warning: The .progress argument will be deprecated and removed in a future
version of furrr in favor of using the more robust progressr package.

The future specific options to use with the workers. This must be the result
from a call to furrr_options().

logical indicating whether to print computation time. TRUE by default.

A tibble containing parameter values and simulation results.

Examples

df <- data.frame(
n = 3:5,
lambda = seq(8,
)

evaluate_by_row(d

16, 4)

f, rpois)

extrapolate_coverage Extrapolate coverage and width using sub-sampled bootstrap confi-

dence intervals.

Description

Given a set of bootstrap confidence intervals calculated across sub-samples with different numbers
of replications, extrapolates confidence interval coverage and width of bootstrap confidence inter-
vals to a specified (larger) number of bootstraps. The function also calculates the associated Monte
Carlo standard errors. The confidence interval percentage is based on how you calculated the lower

and upper bounds.

https://CRAN.R-project.org/package=progressr

extrapolate_coverage(

data,
CI_subsamples,
true_param,
B_target = Inf,

criteria = c("coverage”", "width"),

winz = Inf,

nested = FALSE,
format = "wide",
width_trim = 0,
cover_na_val = NA,
width_na_val = NA

extrapolate_coverage

Arguments

data

CI_subsamples

true_param

B_target
criteria

winz

nested

format

width_trim

cover_na_val

width_na_val

data frame or tibble containing the simulation results.

list or name of column from data containing list of confidence intervals calcu-
lated based on sub-samples with different numbers of replications.

vector or name of column from data containing corresponding true parameters.

number of bootstrap replications to which the criteria should be extrapolated,
with a default of B = Inf.

character or character vector indicating the performance criteria to be calculated,
with possible options "coverage” and "width".

numeric value for winsorization constant. If set to a finite value, estimates will
be winsorized at the constant multiple of the inter-quartile range below the 25th
percentile or above the 75th percentile of the distribution. For instance, setting
winz = 3 will truncate estimates that fall below P25 - 3 * IQR or above P75 + 3
*IQR.

logical value controlling the format of the output. If FALSE (the default), then
the results will be returned as a data frame with rows for each distinct number
of bootstraps. If TRUE, then the results will be returned as a data frame with a
single row, with each performance criterion containing a nested data frame.

character string controlling the format of the output when CI_subsamples has
results for more than one type of confidence interval. If "wide"” (the default),
then each performance criterion will have a separate column for each CI type. If
"long", then each performance criterion will be a single variable, with separate
rows for each CI type.

numeric value specifying the trimming percentage to use when summarizing CI
widths across replications from a single set of bootstraps, with a default of 0.0
(i.e., use the regular arithmetic mean).

numeric value to use for calculating coverage if bootstrap CI end-points are
missing. Default is NA.

numeric value to use for calculating width if bootstrap CI end-points are missing.
Default is NA.

extrapolate_coverage 17

Value
A tibble containing the number of simulation iterations, performance criteria estimate(s) and the
associated MCSE.

References
Boos DD, Zhang J (2000). “Monte Carlo evaluation of resampling-based hypothesis tests.” Journal
of the American Statistical Association, 95(450), 486—492. doi:10.1080/01621459.2000.10474226.

Examples

dgp <- function(N, mu, nu) {
mu + rt(N, df = nu)

3
estimator <- function(
dat,
B_vals = c(49,59,89,99),
m= 4,
trim = 0.1
) A

compute estimate and standard error
N <- length(dat)

est <- mean(dat, trim = trim)

se <- sd(dat) / sqgrt(N)

compute booties
booties <- replicate(max(B_vals), {
x <- sample(dat, size = N, replace = TRUE)
data.frame(
M = mean(x, trim = trim),
SE = sd(x) 7/ sqrt(N)
)
}, simplify = FALSE) |>
dplyr::bind_rows()

confidence intervals for each B_vals
CIs <- bootstrap_CIs(

boot_est = booties$M,

boot_se = booties$SE,

est = est,

se = se,

CI_type = c("normal”,"basic”,"student”,"percentile”),
B_vals = B_vals,

reps = m,

format = "wide-list”

)

res <- data.frame(
est = est,

https://doi.org/10.1080/01621459.2000.10474226

18 extrapolate_rejection

se = se
)
res$CIs <- CIs
res

3

#' build a simulation driver function
simulate_bootCIs <- bundle_sim(
f_generate = dgp,
f_analyze = estimator

)

boot_results <- simulate_bootCIs(
reps = 50, N =20, mu =2, nu = 3,
B_vals = seq(49, 199, 50),

)

extrapolate_coverage(
data = boot_results,
CI_subsamples = CIs,
true_param = 2

)

extrapolate_coverage(
data = boot_results,
CI_subsamples = CIs,
true_param = 2,
B_target = 999,
format = "long"

extrapolate_rejection Extrapolate coverage and width using sub-sampled bootstrap confi-
dence intervals.

Description

Given a set of bootstrap confidence intervals calculated across sub-samples with different numbers
of replications, extrapolates confidence interval coverage and width of bootstrap confidence inter-
vals to a specified (larger) number of bootstraps. The function also calculates the associated Monte
Carlo standard errors. The confidence interval percentage is based on how you calculated the lower
and upper bounds.

Usage

extrapolate_rejection(
data,
pvalue_subsamples,

extrapolate_rejection

19

B_target = Inf,

alpha = 0.05,
nested = FALSE,
format = "wide”
)
Arguments
data data frame or tibble containing the simulation results.

pvalue_subsamples

B_target

alpha

nested

format

Value

list or name of column from data containing list of confidence intervals calcu-
lated based on sub-samples with different numbers of replications.

number of bootstrap replications to which the criteria should be extrapolated,
with a default of B = Inf.

scalar or vector indicating the nominal alpha level(s). Default value is set to the
conventional .05.

logical value controlling the format of the output. If FALSE (the default), then
the results will be returned as a data frame with rows for each distinct number
of bootstraps. If TRUE, then the results will be returned as a data frame with a
single row, with each performance criterion containing a nested data frame.

character string controlling the format of the output when CI_subsamples has
results for more than one type of confidence interval. If "wide"” (the default),
then each performance criterion will have a separate column for each CI type. If
"long", then each performance criterion will be a single variable, with separate
rows for each CI type.

A tibble containing the number of simulation iterations, performance criteria estimate(s) and the

associated MCSE.

References

Boos DD, Zhang J (2000). “Monte Carlo evaluation of resampling-based hypothesis tests.” Journal
of the American Statistical Association, 95(450), 486—492. doi:10.1080/01621459.2000.10474226.

Examples

function to generate data from two distinct populations
dgp <- function(N_A, N_B, shape_A, scale_A, shape_B, scale_B) {

data.frame(

group = rep(c("A","B"), c(N_A, N_B)),

y = ¢c(

rgamma(N_A, shape = shape_A, scale = scale_A),

rgamma(N_B, shape

)

scale_B)

shape_B, scale

https://doi.org/10.1080/01621459.2000.10474226

20

extrapolate_rejection

function to do a bootstrap t-test
estimator <- function(
dat,
B_vals = c(49,59,89,99), # number of booties to evaluate
pval_reps = 4L
) A
stat <- t.test(y ~ group, data = dat)$statistic

create bootstrap replications under the null of no difference
boot_dat <- dat
booties <- replicate(max(B_vals), {
boot_dat$group <- sample(dat$group)
t.test(y ~ group, data = boot_dat)$statistic
1))

calculate multiple bootstrap p-values using sub-sampling of replicates
res <- data.frame(stat = stat)

res$pvalue_subsamples <- bootstrap_pvals(
boot_stat = booties,
stat = stat,
B_vals = B_vals,
reps = pval_reps,
enlist = TRUE

res

create simulation driver
simulate_boot_pvals <- bundle_sim(
f_generate = dgp,
f_analyze = estimator

)

replicate the bootstrap process

X <- simulate_boot_pvals(
reps = 50L,
N_A = 20, N_B = 25,
shape_A = 7, scale_A
shape_B = 4, scale B = 3,
B_vals = c(49, 99, 149, 199),
pval_reps = 2L

)

2’

extrapolate_rejection(
data = x,
pvalue_subsamples = pvalue_subsamples,
B_target = 1999,
alpha = c(.01, .05, .10)
)

extrapolate_rejection(

repeat_and_stack 21

data = x,

pvalue_subsamples = pvalue_subsamples,
B_target = Inf,

alpha = c(.01, .05, .10),

nested = TRUE

repeat_and_stack Repeat an expression multiple times and (optionally) stack the results.

Description

Repeat an expression (usually involving random number generation) multiple times. Optionally,
organize the results into a data. frame that stacks the output from all replications of the expression.

Usage

repeat_and_stack(n, expr, stack = TRUE)

Arguments

n Number of times to repeat the expression

expr An expression to be evaluated.

stack Logical value indicating whether to organize the results into a data. frame.
Value

If stack = TRUE (the default), the results of each evaluation of expr will be stacked together us-
ing rbind. If stack = FALSE, a list of length n with entries corresponding to the output of each
replication of expr.

Examples

repeat_and_stack(n = 3, data.frame(x = rexp(2)))

repeat_and_stack(n = 3, data.frame(x = rexp(2)), stack = FALSE)

22 t res

Tipton_Pusto Results for Figure 2 of Tipton & Pustejovsky (2015)

Description

A dataset containing simulation results comparing small sample correction methods for cluster ro-
bust variance estimation in meta-analysis.

Usage

Tipton_Pusto

Format

A tibble with 15,300 rows and 8 variables:

num_studies the number of studies included in the meta-analysis.
r correlation between outcomes.

Isq measure of heterogeneity of true effects.

contrast type of contrast that was tested.

test small sample method used.

q the number of parameters in the hypothesis test.

rej_rate the Type 1 error rate.

mcese the Monte Carlo standard error for the estimate of the Type 1 error rate.

Source

Tipton E, Pustejovsky JE (2015). “Small-sample adjustments for tests of moderators and model
fit using robust variance estimation in meta-regression.” Journal of Educational and Behavioral
Statistics, 40(6), 604—-634. doi:10.3102/1076998615606099.

t_res t-test simulation results

Description

A dataset containing simulation results from a study that just runs a t-test.

Usage

t_res

https://doi.org/10.3102/1076998615606099

welch_res 23

Format
A tibble with 1,000 rows and 5 variables:

est estimate of the mean difference.

p_val p-value from the t-test.

lower_bound lower bound of the confidence interval.
upper_bound upper bound of the confidence interval.

true_param true mean difference used to generate the data.

welch_res Welch t-test simulation results

Description

A dataset containing simulation results from a study comparing Welch t-test to the conventional
t-test.

Usage

welch_res

Format
A tibble with 16,000 rows and 11 variables:

nl sample size for Group 1.

n2 sample size for Group 2.

mean_diff true difference in means of two groups used to generate the data.
iterations number of iterations.

seed seed used to generate data.

method indicates whether Welch or conventional t-test was used.

est estimate of the mean difference.

var variance of the estimate.

p_val p-value from the t-test.

lower_bound lower bound of the confidence interval.

upper_bound upper bound of the confidence interval.

Index

+ datasets
alpha_res, 2
t_res, 22
Tipton_Pusto, 22
welch_res, 23

alpha_res, 2

boot.ci, 4
bootstrap_CIs, 3
bootstrap_pvals, 5
bundle_sim, 8

calc_absolute, 9
calc_coverage, 10
calc_rejection, 11
calc_relative, 12
calc_relative_var, 13
create_skeleton, 14

evaluate_by_row, 14
extrapolate_coverage, 15
extrapolate_rejection, 18

furrr_options(), 15
repeat_and_stack, 21

t_res, 22
Tipton_Pusto, 22

welch_res, 23

24

	alpha_res
	bootstrap_CIs
	bootstrap_pvals
	bundle_sim
	calc_absolute
	calc_coverage
	calc_rejection
	calc_relative
	calc_relative_var
	create_skeleton
	evaluate_by_row
	extrapolate_coverage
	extrapolate_rejection
	repeat_and_stack
	Tipton_Pusto
	t_res
	welch_res
	Index

