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bartlettFactor Bartlett correction factor for empirical likelihood with estimating
equations
Description

Compute the Bartlett correction factor b for empirical likelihood based on the moment conditions
E{g(X;00)} = 0. The function implements the rotation in (Liu and Chen 2010) and evaluates b
either from raw moments (unadjusted) or from the bias-reduced moment estimators recommended
in their paper.
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Usage

bartlettFactor(x, centre = TRUE, bias.adj = TRUE)

Arguments
X Numeric vector or matrix of estimating functions. If a matrix, rows are observa-
tions and columns are the components of g.
centre Logical. If “TRUE® (default), centre each column of ‘x* by its sample mean

before computing the correction (this corresponds to plugging in a consistent 6
so that n =1 >~ g;(0) ~ 0).

bias.adj Logical. If “TRUE* (default), use the bias-reduced moment estimators. When
n < 4, the adjustment is disabled automatically.

Details

Let V(0) = Var{g(X, )}, and let P be the orthogonal matrix of eigenvectors of V(). Define the

rotated variables Y; = ¢;(A)P (observations in rows), and write a">"* = E(Y"Y*S...Y*t) with
Q' = E(Y'TZ)

The Bartlett factor (Theorem 1 of (Liu and Chen 2010)) can be written compactly as
1¢1 Qs 1 (arst)Q
iy iy ey
q 2 Z o’ oSS 3 Zf arrassatt

T,8 r,8,t

where ¢ is the dimension of g. The first double sum is over all pairs (r, s), and the triple sum is
over all triples (r, s, t).

For adjusted-EL applications, the implementation also uses the equivalent decomposition b =b_1 -
b_2.

When bias.adj = TRUE, all moments are replaced by the bias-reduced estimators given in Eq. (10)
and the table beneath it in (Liu and Chen 2010).

Value

Numeric scalar: the estimated Bartlett correction factor . For multivariate inputs, the value has an
attribute "components” equal to c(b1, b2) where b =b_1 - b_2. If bias.adj = TRUE, attributes
"unadjusted” and "unadjusted.components” store the corresponding unadjusted estimates.

References
Liu Y, Chen J (2010). “Adjusted empirical likelihood with high-order precision.” The Annals of
Statistics, 38(3). ISSN 0090-5364, doi:10.1214/09a0s750.

Examples
set.seed(1)
# One-dimensional: Bartlett factor for the mean

x <- rchisq(50, df = 4)
bartlettFactor(x) # Bias-adjusted


https://doi.org/10.1214/09-aos750
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bartlettFactor(x, bias.adj=FALSE)

# Multi-variate g(X; theta): columns are components of g

n <- 100

g <- cbind(rchisq(n, 4)-4, rchisq(n, 3)-3, rchisq(n, 6)-6, rnorm(n))
bartlettFactor(g) # Bias-adjusted, centred

bartlettFactor(g, centre = FALSE) # The true average was used in g

brentMin Brent’s local minimisation

Description

Brent’s local minimisation

Usage

brentMin(
f,
interval,
lower = NA_real_,
upper = NA_real_,

tol = 1e-08,
maxiter = 200L,
trace = 0L
)
Arguments
f A function to be minimised on an interval.
interval A length-2 vector containing the end-points of the search interval.
lower Scalar: the lower end point of the search interval. Not necessary if interval is
provided.
upper Scalar: the upper end point of the search interval. Not necessary if interval is
provided.
tol Small positive scalar: stopping criterion. The search stops when the distance
between the current candidate and the midpoint of the bracket is smaller than
the dynamic threshold 2 * (sqrt(DBL_EPSILON) * abs(x) + tol)
maxiter Positive integer: the maximum number of iterations.
trace Integer: 0, 1, or 2. Amount of tracing information on the optimisation progress

printed. trace = @ produces no output, trace = 1 reports the starting and final
results, and trace = 2 provides detailed iteration-level output.
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Details

This is an adaptation of the implementation by John Burkardt (currently available at [https://people.math.sc.edu/Burkardt/m_s

This function is similar to local_min or R_zeroin2-style logic, but with the following additions:
the number of iterations is tracked, and the algorithm stops when the standard Brent criterion is met
or if the maximum iteration count is reached. The code stores the approximate final bracket width
in estim.prec, like in [uniroot()]. If the minimiser is pinned to an end point, estim.prec = NA.

There are no preliminary iterations, unlike [brentZero()].

TODO: add preliminary iterations.

Value

A list with the following elements:

root Location of the minimum.
f.root Function value at the minimuim location.
iter Total iteration count used.

estim.prec Estimate of the final bracket size.

Examples

f <- function (x) (x - 1/3)*2
brentMin(f, c(0, 1), tol = 0.0001)
brentMin(function(x) x*2*(x-1), lower = @, upper = 10, trace = 1)

brentZero Brent’s local root search with extended capabilities

Description

Brent’s local root search with extended capabilities

Usage

brentZero(
f,
interval,
lower = NA_real_,
upper = NA_real_,
f_lower = NULL,
f_upper = NULL,

extendInt = "no",
tol = 1e-08,
maxiter = 500L,
trace = 0L



Arguments

.F
interval

lower

upper

f_lower

f_upper

extendInt

tol

maxiter

trace

Value

brentZero

The function for which the root is sought.
A length-2 vector containing the end-points of the search interval

Scalar: the lower end point of the search interval. Not necessary if interval is
provided.

Scalar: the upper end point of the search interval. Not necessary if interval is
provided.

Scalar: same as f(upper). Passing this value saves time if f(lower) is slow to
compute and is known.

Scalar: same as f(lower).
Character:

"no” Do not extend the interval (default).

yes" Attempt to extend both ends until a sign change is found.

"upX" Assumes the function is increasing around the root and extends upward
if needed.

"downX" Assumes the function is decreasing around the root and extends down-
ward if needed.

"right"” Attempt to extend the upper (right) end until a sign change is found.

"left"” Attempt to extend the lower (left) end until a sign change is found.
This behavior mirrors that of [uniroot()].

Small positive scalar: convergence tolerance. The search stops when the bracket
size is smaller than 2 * .Machine$double.eps x abs(x) + tol, or if the func-
tion evaluates to zero at the candidate root.

Positive integer: the maximum number of iterations before stopping.

Integer: 0, 1, or 2. Controls the verbosity of the output. trace = @ produces no
output, trace = 1 reports the starting and final results, and trace = 2 provides
detailed iteration-level output.

A list with the following elements:

root Location of the root.

f.root Function value at the root.

iter Total iteration count used.

init.it Number of initial extendInt iterations if there were any; NA otherwise.

estim.prec Estimate of the final bracket size.

exitcode O for success, 1 for maximum initial iteration limit, 2 for maximum main iteration limit.
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Examples

f <- function (x, a) x - a
str(uniroot(f, c(@, 1), tol = 0.0001, a = 1/3))
uniroot(function(x) cos(x) - x, lower = -pi, upper = pi, tol = 1e-9)$root

# New capabilities: extending only one end of the interval

f <= function(x) x*2 - 1 # The roots are -1 and 1

brentZero(f, c(2, 3), extendInt = "left")

brentZero(f, c(2, 3), extendInt = "yes")

brentZero(f, c(2, 3), extendInt = "upX")

brentZero(f, c(@, 0.5), extendInt = "downX") # This one finds the left crossing

# This function is faster than the base R uniroot, and this is the primary
# reason why it was written in C++
system.time(replicate(1000, { shift <- runif(1, @, 2*pi)

uniroot(function(x) cos(x+shift) - x, lower = -pi, upper = pi)
1))
system.time(replicate(1000, { shift <- runif(1, @, 2*pi)
brentZero(function(x) cos(x+shift) - x, lower = -pi, upper = pi)
1))

# Roughly twice as fast

bw.CV Bandwidth Selectors for Kernel Density Estimation

Description

Finds the optimal bandwidth by minimising the density cross-valication or least-squares criteria.
Remember that since usually, the CV function is highly non-linear, the return value should be taken
with a grain of salt. With non-smooth kernels (such as uniform), it will oftern return the local
minimum after starting from a reasonable value. The user might want to standardise the input
matrix x by column (divide by some estimator of scale, like sd or IQR) and examine the behaviour
of the CV criterion as a function of unique bandwidth (same argument). If it seems that the optimum
is unique, then they may proceed by multiplying the bandwidth by the scale measure, and start the
search for the optimal bandwidth in multiple dimensions.

Usage

bw.CV(
X,
y = NULL,
weights = NULL,
kernel = "gaussian”,
order = 2,
PIT = FALSE,
chunks = 0,
robust.iterations = 0,
degree = 0,
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start.bw = NULL,

same =

tol = 1e-04,

try.grid = TRUE,
ndeps = 1e-05,

verbose

FALSE,

attach.attributes = FALSE,
control = list()

Arguments

X

weights

kernel

order

PIT

chunks

A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.

A numeric vector of responses (dependent variable) if the user wants least-
squares cross-validation.

A numeric vector of observation weights (typically counts) to perform weighted
operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-
ber of observations is assumed to be the sum of weights.

Character describing the desired kernel type. NB: due to limited machine preci-
sion, even Gaussian has finite support.

An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive
everywhere. Orders 4 and 6 produce some negative values, which reduces bias
but may hamper density estimation.

If TRUE, the Probability Integral Transform (PIT) is applied to all columns of
x via ecdf in order to map all values into the [0, 1] range. May be an integer
vector of indices of columns to which the PIT should be applied.

Integer: the number of chunks to split the task into (limits RAM usage but in-
creases overhead). @ = auto-select (making sure that no matrix has more than
2727 elements).

robust.iterations

degree
start.bw
same

tol
try.grid

ndeps

verbose

Passed to kernelSmooth if y is not NULL (for least-squares CV).
Passed to kernelSmooth if y is not NULL (for least-squares CV).
Numeric vector: initial value for bandwidth search.

Logical: use the same bandwidth for all columns of x?

Relative tolerance used by the optimiser as the stopping criterion.

Logical: if true, 10 different bandwidths around the rule-of-thumb one are tried
with multiplier 1.2*(-3:6)

Numerical-difference epsilon. Puts a lower bound on the result: the estimated
optimal bw cannot be less than this value.

Logical: print out the optimiser return code for diagnostics?

attach.attributes

control

Logical: if TRUE, returns the output of ‘optim()* for diagnostics.

List: extra arguments to pass to the control-argument list of ‘optim°.
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Details

If y is NULL and only x is supplied, returns the density-cross-validated bandwidth (DCV). If y is
supplied, then, returns the least-squares-cross-validated bandwidth (LSCV).

Value

Numeric vector or scalar of the optimal bandwidth.

Examples

set.seed(1) # Creating a data set with many duplicates

n.uniq <- 200

n <- 500

inds <- sort(ceiling(runif(n, @, n.uniq)))

x.uniq <- sort(rnorm(n.uniq))

y.uniq <- 1 + 0.1*x.uniq + sin(x.uniq) + rnorm(n.uniq)

X <- x.uniq[inds]

y <- y.uniq[inds]

w <= 1 + runif(n, @, 2) # Relative importance
data.table::setDTthreads(1) # For measuring the pure gains and overhead
RcppParallel: :setThreadOptions(numThreads = 1)

bw.grid <- seq(@.1, 1.3, 0.2)

CV <- LSCV(x, y, bw.grid, weights = w)

bw.init <- bw.grid[which.min(CV)]

bw.opt <- bw.CV(x, y, w) # 0.49, very close

g <- seq(-3.5, 3.5, 0.05)

yhat <- kernelSmooth(x, y, g, w, bw.opt, deduplicate.xout = FALSE)
oldpar <- par(mfrow = c(2, 1), mar = c(2, 2, 2, 0)+.1)

plot(bw.grid, CV, bty = "n", xlab = "", ylab = "", main = "Cross-validation")
points(bw.opt, LSCV(x, y, bw.opt, w), col = 2, pch = 15)
plot(x.uniq, y.uniq, bty = "n", xlab = "", ylab = "", main = "Optimal fit")
points(g, yhat, pch = 16, col = 2, cex = 0.5)
par(oldpar)
bw.rot Silverman’s rule-of-thumb bandwidth
Description

A fail-safe function that would return a nice Silverman-like bandwidth suggestion for data for which
the standard deviation might be NA or 0.

Usage

bw.rot(
X,
kernel = c("gaussian”, "uniform”, "triangular”, "epanechnikov"”, "quartic"),
na.rm = FALSE,
robust = TRUE,
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discontinuous = FALSE

Arguments

X

kernel

na.rm

robust

discontinuous

Details

A numeric vector without non-finite values.

n on n n n n

A string character: "gaussian”, "uniform”, "triangular”, "epanechnikov”,
or "quartic”.

Logical: should missing values be removed? Setting it to TRUE may cause
issues because variable-wise removal of NAs may return a bandwidth that is
inappropriate for the final data set for which it is suggested.

Logical: safeguard against extreme observations? If TRUE, uses min(sd(x),
IQR(x)/1.34) to estimate the spread.

Logical: if the true density is discontinuous (i.e. has jumps), then, the formula
for the optimal bandwidth for density estimation changes.

¥ = diag(o}) with det ¥ =[], of and £~ = diag(1/0})). Then, the formula 4.12 in Silverman
(1986) depends only on «, 8. a = diag(c?) (which depend only on the kernel and are fixed for
a multivariate normal), and on the L2-norm of the second derivative of the density. The (i, i)th
element of the Hessian of multi-variate normal (¢(z1, ..., zq) = ¢(X)) is ¢(X)(z? — 02) /0.

;=

The rule-of-thumb bandwidth is obtained under the assumption that the true density is multivariate
normal with zero covariances (i.e. a diagonal variance-covariance matrix). For details, see (Silver-

man 1986).

Value

A numeric vector of bandwidths that are a reasonable start optimal non-parametric density estima-

tion of x.

References

Silverman BW (1986). Density estimation for statistics and data analysis. New York: Chapman

and Hall.

Examples

set.seed(1); bw.rot(stats::rnorm(100)) # Should be 0.3787568 in R version 4.0.4
set.seed(1); bw.rot(matrix(stats::rnorm(500), ncol = 10)) # ©.4737872 ... 0.7089850
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ctracelr Compute empirical likelihood on a trajectory

Description

Compute empirical likelihood on a trajectory

Usage
ctracelr(z, ct = NULL, mu@, mul, N =5, order = 4, verbose = FALSE, ...)
Arguments
z Passed to [EL1()].
ct Passed to [EL1()].
mu@ Starting point of trajectory
mu’l End point of trajectory
N Number of segments into which the path is split (i. e. N+1 steps are used).
order Passed to [EL1()]. It is highly advised to avoid using NA (no extrapolation)
because the lambda search may fail with unmodified logarithm.
verbose Logical: report iteration progress?
Passed to [EL1()].
This function does not accept the starting lambda because it is much faster (3—5
times) to reuse the lambda from the previous iteration.
Value

A matrix with one row at each mean from mu0O to mul and a column for each EL return value
(except EL weights).

Examples

# Plot 2.5 from Owen (2001)
earth <- c(
5.5, 5.61, 4.88, 5.07, 5.26, 5.55, 5.36, 5.29, 5.58, 5.65, 5.57, 5.53, 5.62, 5.29,
5.44, 5.34, 5.79, 5.1, 5.27, 5.39, 5.42, 5.47, 5.63, 5.34, 5.46, 5.3, 5.75, 5.68, 5.85
)
EL1(earth, mu = 5.1, verbose = TRUE)
logELR <- ctracelr(earth, mu@ = 5.1, mul = 5.65, N = 55, verbose = TRUE)
hist(earth, breaks = seq(4.75, 6, 1/8))
plot(logELRL, 1], exp(logELR[, 2]), bty = "n", type = "1",
xlab = "Earth density”, ylab = "ELR")

# Two-dimensional trajectory

set.seed(1)

xy <- matrix(rexp(200), ncol = 2)

logELR2 <- ctracelr(xy, mu@ = c(0.5, ©0.5), mul = c(1.5, 1.5), N = 100)
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dampedNewton

dampedNewton

Damped Newton optimiser

Description

Damped Newton optimiser

Usage

dampedNewton(

fn,
par,

thresh = 1e-30,

itermax =
verbose =
alpha =

beta

backeps

Arguments

fn

par
thresh
itermax

verbose

alpha

beta

backeps

Value

A list:

References

100,
FALSE,

A function that returns a list: f, f*, £”. If the function takes vector arguments,
the dimensions of the list components must be 1, dim X, (dim X) x (dim X). The
function must be (must be twice continuously differentiable at x)

Numeric vector: starting point.
A small scalar: stop when Newton decrement squared falls belowe thresh.
Maximum iterations. Consider optimisation failed if the maximum is reached.

Logical: if true, prints the tracing infornation (iteration log).

This is a translation of Algorithm 9.5 from (Boyd and Vandenberghe 2004) into
C++.

Back-tracking parameter strictly between 0 and 0.5: acceptance of a decrease in
function value by alpha*f of the prediction.

Back-tracking parameter strictly between 0 and 1: reduction of the step size
until the stopping criterion is met. 0.1 corresponds to a very crude search, 0.8
corresponds to a less crude search.

Back-tracking threshold: the search can miss by this much. Consider setting it
to le-10 if backtracking seems to be failing due to round-off.

Boyd S, Vandenberghe L (2004). Convex Optimization. Cambridge University Press.
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Examples

f1 <- function(x)

list(fn = x - log(x), gradient = 1 - 1/x, Hessian = matrix(1/x*2, 1, 1))
optim(2, function(x) f1(x)L["fn"]1], gr = function(x) f1(x)[["gradient”]], method = "BFGS")
dampedNewton(f1, 2, verbose = TRUE)

# The minimum of f3 should be roughly at -0.57
3 <- function(x)

list(fn = sum(exp(x) + 0.5 * x*2), gradient = exp(x) + x, Hessian = diag(exp(x) + 1))
dampedNewton(f3, seq(@.1, 5, length.out = 11), verbose = TRUE)

DCV Density cross-validation

Description

Density cross-validation

Usage
DCV(
X ’
bw,
weights = NULL,
same = FALSE,
kernel = "gaussian”,
order = 2,
PIT = FALSE,
chunks = 0,
no.dedup = FALSE
)
Arguments
X A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.
bw Candidate bandwidth values: scalar, vector, or a matrix (with columns corre-
sponding to columns of x).
weights A numeric vector of observation weights (typically counts) to perform weighted
operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-
ber of observations is assumed to be the sum of weights.
same Logical: use the same bandwidth for all columns of x?

Note: since DCV requires computing the leave-one-out estimator, repeated ob-
servations are combined first; the de-duplication is therefore forced in cross-
validation. The only situation where de-duplication can be skipped is passing
de-duplicated data sets from outside (e.g. inside optimisers).



14 EL

kernel Character describing the desired kernel type. NB: due to limited machine preci-
sion, even Gaussian has finite support.

order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive
everywhere. Orders 4 and 6 produce some negative values, which reduces bias
but may hamper density estimation.

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of
x via ecdf in order to map all values into the [0, 1] range. May be an integer
vector of indices of columns to which the PIT should be applied.

chunks Integer: the number of chunks to split the task into (limits RAM usage but in-
creases overhead). @ = auto-select (making sure that no matrix has more than
2727 elements).

no.dedup Logical: if TRUE, sets deduplicate.x and deduplicate.xout to FALSE (short-
hand).

Value

A numeric vector of the same length as bw or nrow(bw).

Examples

set.seed(1)

X <= rlnorm(100); x <- c(x[1], x) # x with 1 duplicate

bws <- exp(seq(-3, 0.5, 0.1))

plot(bws, DCV(x, bws), log = "x", bty = "n", main = "Density CV")

EL Unified empirical likelihood wrapper

Description

Call ELO(), EL1(), or EuL() through a single interface. If extrapolation is requested, switch to
dedicated functions. Anything method-specific goes into EL . args.

Usage
EL(
Z)
ct = NULL,
mu = NULL,
shift = NULL,

type = c("auto”, "EL1", "ELQ", "EuL"),

chull.fail = c("none"”, "taylor”, "wald", "adjusted”, "adjusted2"”, "balanced"),
renormalise = FALSE,

return.weights = FALSE,

weight.tolerance = NULL,

verbose = FALSE,
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Arguments

z A numeric vector or a matrix with one data vector per column.

ct Numeric count variable with non-negative values that indicates the multiplicity
of observations.

mu Hypothesised mean, default (@ ... @) in Rreol(2)

shift The value to add in the denominator (useful in case there are extra Lagrange
multipliers): 1 + X' Z + shi ft.

type Character: one of c("auto”, "EL1", "ELQ", "EuL"). If "auto”, uses "EL1"
for multi-variate data and "EL@" for uni-variate.

chull.fail Character: "none” calls the original EL (which may return -Inf in case of
a convex-hull violation), "taylor” calls [EXEL1()], "wald" calls [EXEL2()],
"adjusted” adds one pseudo-observation as in (Chen et al. 2008), "adjusted2”
adds one (in 1D) or two (2D+) pseudo-observations with improved coverage
rate according to (Liu and Chen 2010), and "balanced” adds two pseudo-
observations according to (Emerson and Owen 2009).

renormalise If FALSE, then uses the total sum of counts as the number of observations, like

in vanilla empirical likelihood, due to formula (2.9) in (Owen 2001), otherwise
re-normalises the counts to 1 according to (Cosma et al. 2019) (p. 170, the
topmost formula).

return.weights Logical: if TRUE, returns the empirical probabilities. Default is memory-saving
(FALSE).
weight.tolerance

Weight tolerance for counts to improve numerical stability (defaults to sqrt (.Machine$double.eps)
times the maximum weight).

verbose Logical: print output diagnostics?

Named extra arguments passed to the selected back-end (e.g. order, itermax,
lambda.init, vt, trunc. to, boundary.tolerance, ...).

Value

A list with either the return value of the selected back-end or (for extrapolation methods) at least
the logelr list value and extrapolation attributes.

References

Chen J, Variyath AM, Abraham B (2008). “Adjusted empirical likelihood and its properties.” Jour-
nal of Computational and Graphical Statistics, 17(2), 426—443. doi:10.1198/106186008x321068.

Cosma A, Kostyrka AV, Tripathi G (2019). “Inference in conditional moment restriction models
when there is selection due to stratification.” In Huynh KP, Jacho-Chavez DT, Tripathi G (eds.),
The Econometrics of Complex Survey Data: Theory and Applications, 137-171. Emerald Publish-
ing Limited. ISBN 978-1-78756-726-9.

Emerson SC, Owen AB (2009). “Calibration of the empirical likelihood method for a vector mean.”
Electronic Journal of Statistics, 3, 1161-1192. ISSN 1935-7524, doi:10.1214/09¢js518.
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Liu Y, Chen J (2010). “Adjusted empirical likelihood with high-order precision.” The Annals of
Statistics, 38(3). ISSN 0090-5364, doi:10.1214/09a0s750.

Owen AB (2001). Empirical Likelihood. Chapman and Hall/CRC, New York, USA.

Examples

# ELO with extras:

EL(type = "EL@", z = 1:9, mu = 4, boundary.tolerance = 1e-8)
# EL1 with a custom order and iteration cap:

set.seed(1)

x <= cbind(rnorm(30), runif(30)-0.5)

EL(type = "EL1", z = x, mu = c(@, @), order = 4, itermax = 50, return.weights = TRUE)
# EuL with vt and truncation:

set.seed(1)

EL(type = "EuL”, z = x, vt = runif(NROW(x)), weight.tolerance = 0.1, trunc.to

0.1)

# Extrapolated variants

set.seed(1)

EL(type = "EL@", z=1:9, mu =12, chull.fail = "taylor”, exel.control = list(xlim = c(2, 8)))
EL(type = "EL1", z = 1:9, mu = 12, chull.fail = "wald"”, exel.control = list(fmax = 10))
x <= matrix(runif(20), ncol = 2)

EL(x, mu = c(@, @), chull.fail = "adjusted")

EL(x, mu = c(@, @), chull.fail = "adjusted2")

EL(x, mu = c(@, @), chull.fail = "balanced")

ELO Uni-variate empirical likelihood via direct lambda search

Description

Empirical likelihood with counts to solve one-dimensional problems efficiently with Brent’s root
search algorithm. Conducts an empirical likelihood ratio test of the hypothesis that the mean of z is
mu. The names of the elements in the returned list are consistent with the original R code in (Owen
2017).

Usage
ELO(
Z ’
mu = NULL,
ct = NULL,
shift = NULL,

renormalise = FALSE,
return.weights = FALSE,
weight.tolerance = NULL,
boundary.tolerance = 1e-09,
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trunc.to = 0,

deriv = FALSE,

log.control = list(order = NULL, lower = NULL, upper = NULL),
verbose = FALSE

)
Arguments

z A numeric vector containing the observations.

mu Hypothesised mean of z in the moment condition.

ct Numeric count variable with non-negative values that indicates the multiplic-
ity of observations. Can be fractional. Very small counts below the threshold
weight.tolerance are zeroed.

shift The value to add in the denominator (useful in case there are extra Lagrange
multipliers): 14+ X' Z + shi ft.

renormalise If FALSE, then uses the total sum of counts as the number of observations, like

in vanilla empirical likelihood, due to formula (2.9) in (Owen 2001), otherwise
re-normalises the counts to 1 according to (Cosma et al. 2019) (see p. 170, the
topmost formula).

return.weights Logical: if TRUE, returns the empirical probabilities. Default is memory-saving
(FALSE).
weight.tolerance
Weight tolerance for counts to improve numerical stability (defaults to sqrt (.Machine$double.eps)
times the maximum weight).
boundary.tolerance
Relative tolerance for determining when lambda is not an interior solution be-
cause it is too close to the boundary. Unit: fraction of the feasble bracket length.

trunc.to Counts under weight.tolerance will be set to this value. In most cases, set-
ting this to @ (default) or weight.tolerance is a viable solution for the zero-
denominator problem.

deriv Logical: if TRUE, computes and returns the first two derivatives of log-ELR w.r.t.
mu.
log.control List of arguments passed to [logTaylor()].
verbose Logical: if TRUE, prints warnings.
Details

This function provides the core functionality for univariate empirical likelihood. The technical
details is given in (Cosma et al. 2019), although the algorithm used in that paper is slower than the
one provided by this function.

Since we know that the EL probabilities belong to (0, 1), the interval (bracket) for A search can be
determined in the spirit of formula (2.9) from (Owen 2001). Let 2] := z; — p be the recentred
observations.

pi=c¢;/N-(1+ Az —&-s)_1
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The probabilities are bounded from above: p; < 1 for all i, therefore,
ci/N-(1+Xzf+s)t<1

ci/N —1—s5< Az}
Two cases: either 2] < 0, or 2z > 0 (cases with 2 = 0 are trivially excluded because they do not
affect the EL). Then,
(¢i/N—=1—=3s)/z7 >\ Vi:z <0
(¢i/N—=1—=s)/z; <A, Vi:z; >0

which defines the search bracket:

Amin = max (¢;/N —1—s)/z}

Q27 >0 !

Amax 1= min (¢;/N —1—3s)/z}
iz} <0

)\min <AL >\max

(This derivation contains s, which is the extra shift that extends the function to allow mixed condi-
tional and unconditional estimation; Owen’s textbook formula corresponds to s = 0.)

The actual tolerance of the lambda search in brentZero is 2|Apax|€m + tol/2, where tol is
.Machine$double.eps and ¢, is .Machine$double. eps.

The sum of log-weights is maximised without Taylor expansion, forcing mu to be inside the convex
hull of z. If a violation is happening, consider using log.control(order =4) or switching to
Euclidean likelihood via [EuL()].

Value

A list with the following elements:

logelr Logarithm of the empirical likelihood ratio.
lam The Lagrange multiplier.
wts Observation weights/probabilities (of the same length as z).

converged TRUE if the algorithm converged, FALSE otherwise (usually means that mu is not within
the range of z, i.e. the one-dimensional convex hull of z).

iter The number of iterations used (from brentZero).
bracket The admissible interval for lambda (that is, yielding weights between 0 and 1).
estim.prec The approximate estimated precision of lambda (from brentZero).

f.root The value of the derivative of the objective function w.r.t. lambda at the root (from brentZero).
Values > sqrt(.Machine$double.eps) indicate convergence problems.

deriv If requested, the first two derivatives of log-ELR w.r.t. mu
exitcode An integer indicating the reason of termination.

message Character string describing the optimisation termination status.
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References

Cosma A, Kostyrka AV, Tripathi G (2019). “Inference in conditional moment restriction models
when there is selection due to stratification.” In Huynh KP, Jacho-Chavez DT, Tripathi G (eds.),
The Econometrics of Complex Survey Data: Theory and Applications, 137-171. Emerald Publish-
ing Limited. ISBN 978-1-78756-726-9.

Owen AB (2001). Empirical Likelihood. Chapman and Hall/CRC, New York, USA.
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See Also

[EL1()] for multi-variate EL based on minimisation w.r.t. lambda.

Examples

# Figure 2.4 from Owen (2001) -- with a slightly different data point
earth <- c(
5.5, 5.61, 4.88, 5.07, 5.26, 5.55, 5.36, 5.29, 5.58, 5.65, 5.57, 5.53, 5.62, 5.29,
5.44, 5.34, 5.79, 5.1, 5.27, 5.39, 5.42, 5.47, 5.63, 5.34, 5.46, 5.3, 5.75, 5.68, 5.85
)
# Root searching (ELQ) is faster than minimisation w.r.t. lambda (EL1)
set.seed(1)
system.time(r@ <- replicate(40, ELO(sample(earth, replace = TRUE), mu
set.seed(1)
system.time(r1 <- replicate(40, EL1(sample(earth, replace = TRUE), mu = 5.517)))

5.517)))

plot(apply(re, 2, "[[", "logelr"), apply(ril, 2, "[[", "logelr") - apply(reo, 2, "[[", "logelr"),

bty = "n", xlab = "log(ELR) computed via dampened Newthon method”,
main = "Discrepancy between EL1 and EL@", ylab = "")
abline(h = 0, 1ty = 2)

# Handling the convex hull violation differently

ELO(1:9)

ELO(1:9, log.control = list(order = 2)) # Warning + huge lambda
ELO(1:9, log.control = list(order = 4)) # Warning + huge lambda

# Warning: depending on the compiler, the discrepancy between EL and EL®@

# can be one million (1) times larger than the machine epsilon despite both of them

# being written in pure R

# The results from Apple clang-1400.0.29.202 and Fortran GCC 12.2.0 are different from
# those obtained under Ubuntu 22.04.4 + GCC 11.4.0-1ubuntul~22.04,

# Arch Linux 6.6.21 + GCC 14.1.1, and Windows Server 2022 + GCC 13.2.0

out® <- EL@(earth, mu = 5.517, return.weights = TRUE)[1:4]

outl <- EL1(earth, mu = 5.517, return.weights = TRUE)[1:4]

print(c(out@$lam, outli$lam), 16)

# Value of lambda ELO EL1
# aarch64-apple-darwin20 -1.5631313957?7???? -1.56313139557?27?
# Windows, Ubuntu, Arch -1.563131395492627 -1.563131395492627
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EL1

Self-concordant multi-variate empirical likelihood with counts

Description

Implements the empirical-likelihood-ratio test for the mean of the coordinates of z (with the hy-
pothesised value mu). The counts need not be integer; in the context of local likelihoods, they can
be kernel observation weights.

Usage

EL1(
z,
mu = NULL,
ct = NULL,
shift = NULL,
lambda.init =
renormalise =
return.weight
lower = NULL,
upper = NULL,
order = NA,
weight.tolera
deriv = FALSE

NULL,
FALSE,
s = FALSE,

nce = NULL,

’

thresh = 1e-30,

itermax = 100

verbose = FAL
alpha = 0.3,
beta = 0.8,
backeps = 0,
gradtol = Te-
steptol = Te-
ftol = 1e-14,

stallmax = 5

Arguments

z
mu

ct

shift

lambda.init

L,
SE,

12,
12,

A numeric vector or a matrix with one data vector per column.
Hypothesised mean, default (@ ... @) in Rneol(2),

Numeric count variable with non-negative values that indicates the multiplicity
of observations.

The value to add in the denominator (useful in case there are extra Lagrange
multipliers): 1+ N Z + shift.

Starting lambda, default (@ ... @). Improves speed and accuracy in sequential
problems if supplied from the previous iteration.
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renormalise If FALSE, then uses the total sum of counts as the number of observations, like
in vanilla empirical likelihood, due to formula (2.9) in (Owen 2001), otherwise
re-normalises the counts to 1 according to (Cosma et al. 2019) (p. 170, the
topmost formula).

return.weights Logical: if TRUE, returns the empirical probabilities. Default is memory-saving

(FALSE).
lower Lower cut-off for [logTaylor()], default 1/NROW(z).
upper Upper cut-off for [logTaylor()], default Inf.
order Positive even integer such that the Taylor approximation of this order to log z is

self-concordant; usually 4 or 2. Passed to [logTaylor()].
weight.tolerance

Weight tolerance for counts to improve numerical stability (defaults to sqrt (.Machine$double.eps)
times the maximum weight).

deriv Logical: if TRUE, computes and returns the first two directional derivatives of
log-ELR w.r.t. mu in the direction of the hypothesised value.

thresh Target tolerance on the squared Newton decrement: loop stops when decr*2 <=
thresh. (If verbose is TRUE, decrement itself is printed.)

itermax Maximum number of outer iterations of the damped Newton method (seems
ample).

verbose Logical: print output diagnostics?

alpha Backtracking line search Armijo parameter: acceptance of a decrease in function

value by af of the prediction based on the linear extrapolation. Smaller makes
acceptance easier.

beta Backtracking step shrinkage factor in [@, 1]. 0.1 corresponds to a very crude
search, 0.8 corresponds to a less crude search.

backeps Backtrack threshold, a small slack added to Armijo RHS: the search can miss
by this much. Acceptif f(x +tp) < f(z) + atg’p + backeps. Consider setting
it to Te-10 if backtracking seems to be failing due to round-off.

gradtol Gradient tolerance: stop if | |g|| <= gradtol.

steptol Step tolerance: stop if the relative size is tiny: | |x2-x1]|/max(1, |[|x2]]) <
ftol.

ftol Function change tolerance: stop if the relative function-value change is less than
ftol.

stallmax Stop if both rel_step <= steptol and rel_f <= ftol hold for this many con-

secutive iterations.

Details

Negative weights are not allowed. They could be useful in some applications, but they can destroy
convexity or even boundedness. They also make the Newton step fail to be of least squares type.

This function relies on the improved computational strategy for the empirical likelihood. The search
of the lambda multipliers is carried out via a dampened Newton method with guaranteed conver-
gence owing to the fact that the log-likelihood is replaced by its Taylor approximation of any desired
order (default: 4, the minimum value that ensures self-concordance).
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Implementation note: the EL solver also guarantees a descent direction; if the Newton step is non-
descent or non-finite, it falls back to steepest descent (negative gradient), which keeps the line
search well-behaved.

Tweak alpha and beta with extreme caution. See (Boyd and Vandenberghe 2004), pp. 464—466
for details. It is necessary that @ < alpha<1/2 and @ <beta < 1. alpha = 0.3 seems better than
0.01 on some 2-dimensional test data (sometimes fewer iterations).

The argument names, except for lambda. init, are matching the original names in Art B. Owen’s
implementation. The highly optimised one-dimensional counterpart, [ELO()], is designed to return
a faster and a more accurate solution in the one-dimensional case.

Value

A list with the following values:

logelr Log of empirical likelihood ratio (equal to O if the hypothesised mean is equal to the sample
mean)

lam Vector of Lagrange multipliers

wts Observation weights/probabilities (vector of length n)

deriv Length-2 vector: directional first and second derivatives along the ray toward mu (if deriv =
TRUE)

converged TRUE if algorithm converged. FALSE usually means that mu is not in the convex hull of
the data. Then, a very small likelihood is returned (instead of zero).

iter Number of iterations taken.
ndec Newton decrement (see Boyd & Vandenberghe).

gradnorm Norm of the gradient of log empirical likelihood.

Source

This original code was written for (Owen 2013) and [published online](https://artowen.su.domains/empirical/)
by Art B. Owen (March 2015, February 2017). The present version was rewritten in Rcpp and
slightly reworked to contain fewer inner functions and loops.

References
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Cosma A, Kostyrka AV, Tripathi G (2019). “Inference in conditional moment restriction models
when there is selection due to stratification.” In Huynh KP, Jacho-Chavez DT, Tripathi G (eds.),
The Econometrics of Complex Survey Data: Theory and Applications, 137-171. Emerald Publish-
ing Limited. ISBN 978-1-78756-726-9.

Owen AB (2001). Empirical Likelihood. Chapman and Hall/CRC, New York, USA.

Owen AB (2013). “Self-concordance for empirical likelihood.” Canadian Journal of Statistics,
41(3), 387-397.
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See Also

[logTaylor()], [ELO()]

Examples

earth <- c(
5.5, 5.61, 4.88, 5.07, 5.26, 5.55, 5.36, 5.29, 5.58, 5.65, 5.57, 5.53, 5.62, 5.29,
5.44, 5.34, 5.79, 5.1, 5.27, 5.39, 5.42, 5.47, 5.63, 5.34, 5.46, 5.3, 5.75, 5.68, 5.85

)
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EL1(earth, mu = 5.517, verbose = TRUE) # 5.517 is the modern accepted value

# Linear regression through empirical likelihood
coef.1lm <- coef(Im(mpg ~ hp + am, data = mtcars))
xmat <- cbind(1, as.matrix(mtcars[, c("hp”, "am")1))
yvec <- mtcars$mpg
foc.lm <- function(par, x, y) { # The sample average of this
resid <- y - drop(x %*% par) # must be @
resid * x

}

minusEL <- function(par) -EL1(foc.lm(par, xmat, yvec), itermax = 10)$logelr
coef.el <- optim(c(26, -0.06, 5.3), minusEL, control = list(maxit = 100))$par
abs(coef.el - coef.lm) / coef.lm # Relative difference

# Likelihood ratio testing without any variance estimation
# Define the profile empirical likelihood for the coefficient on am
minusPEL <- function(par.free, par.am)

-EL1(foc.1m(c(par.free, par.am), xmat, yvec), itermax = 20)$logelr
# Constrained maximisation assuming that the coef on par.am is 3.14
coef.el.constr <- optim(coef.el[1:2], minusPEL, par.am = 3.14)$par
print(-2 * EL1(foc.1lm(c(coef.el.constr, 3.14), xmat, yvec))$logelr)
# Exceeds the critical value gchisq(@.95, df = 1)

EuL

Multi-variate Euclidean likelihood with analytical solution

Description

Multi-variate Euclidean likelihood with analytical solution

Usage

EuL(
z,
mu
ct
vt

shift

NULL,
NULL,
NULL,
= NULL,

weight.tolerance = NULL,
trunc.to = 0,
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renormalise

EuL

TRUE,

return.weights = FALSE,
verbose = FALSE

Arguments

z
mu
ct

vt

shift

Numeric data vector.
Hypothesised mean of z in the moment condition.

Numeric count variable with non-negative values that indicates the multiplic-
ity of observations. Can be fractional. Very small counts below the threshold
weight.tolerance are zeroed.

Numeric vector: non-negative variance weights for estimating the conditional
variance of z. Probabilities are returned only for the observations where vt > 0.

The value to add in the denominator (useful in case there are extra Lagrange
multipliers): 1 + X' Z + shi ft.

weight.tolerance

trunc.to

renormalise

return.weights

verbose

Details

Weight tolerance for counts to improve numerical stability (defaults to sqrt (.Machine$double.eps)
times the maximum weight).

Counts under weight.tolerance will be set to this value. In most cases, set-
ting this to @ (default) or weight.tolerance is a viable solution for the zero-
denominator problem.

If FALSE, then uses the total sum of counts as the number of observations, like
in vanilla empirical likelihood, due to formula (2.9) in (Owen 2001), otherwise
re-normalises the counts to 1 according to (Cosma et al. 2019) (see p. 170, the
topmost formula).

Logical: if TRUE, returns the empirical probabilities. Default is memory-saving
(FALSE).

Logical: if TRUE, prints warnings.

The arguments ct and vt are responsible for smoothing of the moment function and conditional
variance, respectively. The objective function is

L ny (i =)’
T 1, \Pid = Cij)”
min > D Ly

i=1 j=1

, where [;; is 1 if v;; # 0.

This estimator is numerically equivalent to the Sieve Minimum Distance estimator of (Ai and Chen
2003) with kernel sieves, but this interface provides more flexibility through the two sets of weights.
If ct and vt are not provided, their default value is set to 1, and the resulting estimator is the CUE-
GMM estimator: a quadratic form in which the unconditional mean vector is weighted by the
inverse of the unconditional variance.
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Value

A list with the same structure as that in [EL1()].

References

Ai C, Chen X (2003). “Efficient Estimation of Models with Conditional Moment Restrictions Con-
taining Unknown Functions.” Econometrica, 71(6), 1795-1843. ISSN 1468-0262, doi:10.1111/
14680262.00470.

Cosma A, Kostyrka AV, Tripathi G (2019). “Inference in conditional moment restriction models
when there is selection due to stratification.” In Huynh KP, Jacho-Chavez DT, Tripathi G (eds.),
The Econometrics of Complex Survey Data: Theory and Applications, 137-171. Emerald Publish-
ing Limited. ISBN 978-1-78756-726-9.

Owen AB (2001). Empirical Likelihood. Chapman and Hall/CRC, New York, USA.

See Also
[EL10]

Examples

set.seed(1)

z <= cbind(rnorm(10), runif(10))
colMeans(z)

a <- EuL(z, return.weights = TRUE)
a$wts

sum(a$wts) # Unity

colSums(a$wts * z) # Zero

ExXEL1 Extrapolated EL of the first kind (Taylor expansion)

Description

Extrapolated EL of the first kind (Taylor expansion)

Usage
EXEL1(
Z,
mu,
type = c("auto”, "EL@", "EL1"),
exel.control = list(xlim = "auto”, fmax = NA, p = 0.999, df = NA),
)

ExEL2(


https://doi.org/10.1111/1468-0262.00470
https://doi.org/10.1111/1468-0262.00470
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Z’

mu,

type = c("auto”, "ELQ", "EL1"),

exel.control = list(xlim = "auto”, fmax = NA, p = 0.999, df = NA),

)
Arguments
z Passed to EL@/EL1.
mu Passed to ELQ/EL1.
type If "EL@", uses uni-variate [ELO()] for calculations; same for "EL1".

exel.control A list with the following elements: x1im — if "auto”, uses a quick boundary
detection, otherwise should be a length-two numeric vector; fmax — maximum
allowed chi-squared statistic value for a thorough root search with probability p
and degrees of freedom df.

Also passed to ELQ/EL1.

Value

A numeric vector of log-ELR statistic of the same length as mu.

Examples

z <-c(1, 4, 5, 5, 6, 6)
ExEL1(z, 0.5, ct = 1:6)

xseq <- seq(@, 7, 0.2)
plot(xseq, -2*ExEL1(z, mu = xseq, ct = 1:6))
abline(v = ¢(1.2, 5.8), h = gqchisq(0.99, 1), lty = 3)

# User-defined 'good' interval

ctrle <- list(xlim = c(-1, 8)); ctrll <- list(xlim = c(2.5, 5.5))
plot(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl@), bty = "n")
lines(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrll), col = 3)
abline(v = ctrl1$xlim, 1ty = 3)

# Root searching

ctrl2 <- list(fmax = qchisq(0.99, 1))

plot(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl@), bty = "n")
lines(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl2), col = 3)
abline(h = qchisq(@.99, 1), 1ty = 3)

# With EL1 vs. EL@ -- very little discrepancy

xseq <- seq(0.8, 1.4, length.out = 101)

plot(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl@), bty = "n")
lines(xseq, -2*ExEL1(z, xseq, ct = 1:6, type = "EL@"), col = 3)

lines(xseq, -2*ExEL1(z, xseq, ct = 1:6, type = "EL1"), col = 2, 1ty = 2, lwd = 2)

# Comparing ExEL2 vs ExEL1 with bridges containing exp(x)
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z <- -4:4

ct <- 9:1

xseq <- seq(-7, 10.5, 0.1)

x1 <- range(xseq)

a0 <- ExEL1(z, mu = xseq, ct = ct, exel.control = list(xlim = c(-11, 11)))

al <- ExEL1(z, mu = xseq, ct = ct)

a2 <- ExEL2(z, mu = xseq, ct = ct)

vl <- attr(al, "xlim")

v2 <- c(attr(a2, "bridge.left")[c("x1", "x2")]1, attr(a2, "bridge.right")[c("x1", "x2")1)

plot(xseq, a0, ylim = c(-300, @), xlim = x1, main = "ExEL splices”,

bty = "n", xlab = "mu", ylab = "logELR(mu)")
lines(xseq, al, col = 2, lwd = 2)
lines(xseq, a2, col = 4, lwd = 2)
abline(v = v2, 1ty = 3)
lines(xseq, attr(a2, "parabola.coef”) * (xseq - attr(a2, "parabola.centre"))*2, 1ty = 2)
legend("topright”, c("Taylor”, "Wald"”, "ax*2"),

col = c(2, 4, 1), lwd = c(2, 2, 1), 1ty = c(1, 1, 2))

dx <- diff(xseql[1:2])

plot(xseq[-1]1, diff(al)/dx, col = 2, type = "1", lwd = 2,
main = "Derivatives of ExXEL splice”, bty = "n", ylim = c(-100, 100),
xlab = "mu", ylab = "d/dmu logELR(mu)")

lines(xseq[-1]1, diff(a2)/dx, col = 4, 1lwd = 2)

abline(v = c(vl, v2), 1ty = 3, col = "#00000055")

legend("topright”, c("Taylor”, "Wald"), col = c(2, 4), lwd = 2)

# Multivariate extension

set.seed(1)

X <- cbind(rchisq(30, 3), rchisq(30, 3))
ct <- runif(30)
-2*EXELT(X, mu
-2*EXEL2(X, mu

c(-1, -1), ct
c(-1, -1), ct

ct) # Outside the hull
ct)

getSELWeights Construct memory-efficient weights for estimation

Description

This function constructs SEL weights with appropriate trimming for numerical stability and optional
renormalisation so that the sum of the weights be unity

Usage

getSELWeights(x, bw = NULL, ..., trim = NULL, renormalise = TRUE)
Arguments

X A numeric vector (with many close-to-zero elements).

bw A numeric scalar or a vector passed to ‘kernelWeights*.
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Other arguments pased to kernelWeights.

trim A trimming function that returns a threshold value below which the weights are
ignored. In common applications, this function should tend to O as the length of
x increases.

renormalise Logical; passed to ‘sparseVectorToList".

Value

A list with indices of large enough elements.

Examples

getSELWeights(1:5, bw = 2, kernel = "triangular")

kernelDensity Kernel density estimation

Description

Kernel density estimation

Usage

kernelDensity(
X)
xout = NULL,
weights = NULL,
bw = NULL,
kernel = c("gaussian”, "uniform”, "triangular”, "epanechnikov”, "quartic"),
order = 2,
convolution = FALSE,
chunks = 0,
PIT = FALSE,
deduplicate.x = TRUE,
deduplicate.xout = TRUE,
no.dedup = FALSE,
return.grid = FALSE

)
Arguments
X A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.
xout A vector or a matrix of data points with ncol (xout) = ncol(x) at which the

user desires to compute the weights, density, or predictions. In other words, this
is the requested evaluation grid. If NULL, then x itself is used as the grid.
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weights

bw

kernel

order

convolution

chunks

PIT

deduplicate.x
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A numeric vector of observation weights (typically counts) to perform weighted
operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-
ber of observations is assumed to be the sum of weights.

Bandwidth for the kernel: a scalar or a vector of the same length as ncol(x).
Since it is the crucial parameter in many applications, a warning is thrown if the
bandwidth is not supplied, and then, Silverman’s rule of thumb (via bw.row())
is applied to *every dimension* of x.

Character describing the desired kernel type. NB: due to limited machine preci-
sion, even Gaussian has finite support.

An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive
everywhere. Orders 4 and 6 produce some negative values, which reduces bias
but may hamper density estimation.

Logical: if FALSE, returns the usual kernel. If TRUE, returns the convolution
kernel that is used in density cross-validation.

Integer: the number of chunks to split the task into (limits RAM usage but in-
creases overhead). @ = auto-select (making sure that no matrix has more than
2727 elements).

If TRUE, the Probability Integral Transform (PIT) is applied to all columns of
x via ecdf in order to map all values into the [0, 1] range. May be an integer
vector of indices of columns to which the PIT should be applied.

Logical: if TRUE, full duplicates in the input x and y are counted and trans-
formed into weights; subsetting indices to reconstruct the duplicated data set
from the unique one are also returned.

deduplicate.xout

no.dedup

return.grid

Value

Logical: if TRUE, full duplicates in the input xout are counted; subsetting in-
dices to reconstruct the duplicated data set from the unique one are returned.

Logical: if TRUE, sets deduplicate.x and deduplicate. xout to FALSE (short-
hand).

Logical: if TRUE, returns xout and appends the estimated density as the last
column.

The number of chunks for kernel density and regression estimation is chosen
in such a manner that the number of elements in the internal weight matrix
should not exceed 227 = 1.3 - 10%, which caps RAM use (64 bits = 8 bytes per
element) at 1 GB. Larger matrices are processed in parallel in chunks of size at
most 226 = 6.7 - 107 elements. The number of threads is 4 by default, which
can be changed by RcppParallel: :setThreadOptions(numThreads = 8) or
something similar.

A vector of density estimates evaluated at the grid points or, if return.grid, a matrix with the
density in the last column.

Examples

set.seed(1)
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X <- sort(rt(10000, df = 5)) # Observed values

g <- seq(-6, 6, 0.05) # Grid for evaluation

d2 <- kernelDensity(x, g, bw = 0.3, kernel = "epanechnikov", no.dedup = TRUE)

d4 <- kernelDensity(x, g, bw = 0.4, kernel = "quartic"”, order = 4, no.dedup = TRUE)
plot(g, d2, ylim = range(@, d2, d4), type = "1"); lines(g, d4, col = 2)

# De-duplication facilities for faster operations

set.seed(1) # Creating a data set with many duplicates

n.uniq <- 1000

n <- 4000

inds <- ceiling(runif(n, @, n.uniq))

x.uniqg <- matrix(rnorm(n.unigx1@), ncol = 10)

x <= x.unig[inds, ]

xout <- x.unig[ceiling(runif(n.unig*3, @, n.uniq)), ]

w <- runif(n)

data.table::setDTthreads(1) # For measuring the pure gains and overhead
RcppParallel: :setThreadOptions(numThreads = 1)

kd1 <- kernelDensity(x, xout, w, bw = 0.5)

kd2 <- kernelDensity(x, xout, w, bw = 0.5, no.dedup = TRUE)
statl <- attr(kdl, "duplicate.stats")

stat2 <- attr(kd2, "duplicate.stats")

print(stat1[3:5]) # De-duplication time -- worth it
print(stat2[3:5]) # Without de-duplication, slower
unname(prod((1 - stat1[1:21)) / (stat1[5] / stat2[5]1)) # > 1 = better time
# savings than expected, < 1 = worse time savings than expected
all.equal(as.numeric(kd1), as.numeric(kd2))

max(abs(kdl - kd2)) # Should be around machine epsilon or less

kernelDiscreteDensitySmooth

Density and/or kernel regression estimator with conditioning on dis-
crete variables

Description

Density and/or kernel regression estimator with conditioning on discrete variables

Usage

kernelDiscreteDensitySmooth(x, y = NULL, compact = FALSE, fun = mean)

Arguments
X A vector or a matrix/data frame of discrete explanatory variables (exogenous).
Non-integer values are fine because the data are split into bins defined by inter-
actions of these variables.
y Optional: a vector of dependent variable values.
compact Logical: return unique values instead of full data with repeated observations?

fun A function that computes a statistic of y inside every category defined by x.



kernelFun 31

Value

A list with x, density estimator (fhat) and, if y was provided, regression estimate.

Examples

set.seed(1)

x <= sort(rnorm(1000))

p <- 0.5*%pnorm(x) + @.25 # Propensity score

d <- as.numeric(runif(1000) < p)

# g = discrete version of x for binning

g <- as.numeric(as.character(cut(x, -4:4, labels = -4:3+0.5)))
dhat.x <- kernelSmooth(x = x, y = d, bw = 0.4, no.dedup = TRUE)
dhat.g <- kernelDiscreteDensitySmooth(x = g, y = d)

dhat.comp <- kernelDiscreteDensitySmooth(g, d, compact = TRUE)
plot(x, p, ylim = c(0, 1), bty = "n", type = "1", 1ty = 2)
points(x, dhat.x, col "#00000044")

points(dhat.comp, col = 2, pch = 16, cex = 2)
lines(dhat.comp$x, dhat.comp$fhat, col = 4, pch = 16, 1ty = 3)

kernelFun Basic univatiate kernel functions

Description

Computes 5 most popular kernel functions of orders 2 and 4 with the potential of returning an ana-
lytical convolution kernel for density cross-validation. These kernels appear in (Silverman 1986).

Usage

kernelFun(
X,
kernel = c("gaussian”, "uniform”, "triangular”, "epanechnikov"”, "quartic"),
order = c(2, 4),
convolution = FALSE

)
Arguments
X A numeric vector of values at which to compute the kernel function.
kernel Kernel type: uniform, Epanechnikov, triangular, quartic, or Gaussian.
order Kernel order. 2nd-order kernels are always non-negative. *k*-th-order kernels

have all moments from 1 to (k-1) equal to zero, which is achieved by having
some negative values. fj:; 2?k(z) = of = 1. This is useful because in this
case, the constant k_2 in formula 3.12 and 3.21 from Silverman (1986) is equal
to 1.

convolution Logical: return the convolution kernel? (Useful for density cross-validation.)
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Details

The kernel functions take non-zero values on [—1, 1], except for the Gaussian one, which is sup-
posed to have full support, but due to the rapid decay, is indistinguishable from machine epsilon
outside [—8.2924, 8.2924].

Value

A numeric vector of the same length as input.

References

Silverman BW (1986). Density estimation for statistics and data analysis. New York: Chapman
and Hall.

Examples

ks <= c("uniform”, "triangular”, "epanechnikov”, "quartic"”, "gaussian"”); names(ks) <- ks
os <- c(2, 4); names(os) <- paste@("o", o0s)
cols <- c("#0000Q0CC", "#00QOCCCC", "#CCOQQOCC", "#0QOAAQQCC", "#BB880QCC")
put.legend <- function() legend("topright”, legend = ks, 1ty = 1, col = cols, bty = "n")
xout <- seq(-4, 4, length.out = 301)
plot(NULL, NULL, xlim = range(xout), ylim = c(@, 1.1),
xlab = "", ylab = "", main = "Unscaled kernels”, bty = "n"); put.legend()
for (i in 1:5) lines(xout, kernelFun(xout, kernel = ks[i]), col = cols[i])
oldpar <- par(mfrow = c(1, 2))
plot(NULL, NULL, xlim = range(xout), ylim = c(-0.1, 0.8), xlab = "", ylab = "",
main = "4th-order kernels”, bty = "n"); put.legend()
for (i in 1:5) lines(xout, kernelFun(xout, kernel = ks[i], order = 4), col = cols[i])
par(mfrow = c(1, 1))
plot(NULL, NULL, xlim = range(xout), ylim = c(-0.25, 1.4), xlab = "", ylab = "",
main = "Convolution kernels”, bty = "n"); put.legend()
for (i in 1:5) {
for (j in 1:2) lines(xout, kernelFun(xout, kernel = ks[i], order = os[j],
convolution = TRUE), col = cols[i], 1ty = j)
}; legend("topleft”, c(”2nd order”, "4th order”), 1ty = 1:2, bty = "n")
par(oldpar)

# All kernels integrate to correct values; we compute the moments

mom <- Vectorize(function(k, o, m, c) integrate(function(x) x*m * kernelFun(x, k, o,
convolution = ¢), lower = -Inf, upper = Inf)$value)

for (m in 0:4) {
cat("\nComputing integrals of x*", m, " x f(x). \nSimple unscaled kernel:\n", sep = "")
print(round(outer(os, ks, function(o, k) mom(k, o, m = m, ¢ = FALSE)), 4))
cat("Convolution kernel:\n")
print(round(outer(os, ks, function(o, k) mom(k, o, m = m, ¢ = TRUE)), 4))

n
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kernelMixedDensity Density with conditioning on discrete and continuous variables

Description

Density with conditioning on discrete and continuous variables

Usage
kernelMixedDensity(
X’
by,
xout = NULL,
byout = NULL,

weights = NULL,
parallel = FALSE,

cores = 1,
preschedule

Arguments

X

by

xout

byout

weights

parallel

cores

preschedule

TRUE,

A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.

A variable containing unique identifiers of discrete categories.

A vector or a matrix of data points with ncol (xout) = ncol(x) at which the
user desires to compute the weights, density, or predictions. In other words, this
is the requested evaluation grid. If NULL, then x itself is used as the grid.

A variable containing unique identifiers of discrete categories for the output grid
(same points as xout)

A numeric vector of observation weights (typically counts) to perform weighted
operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-
ber of observations is assumed to be the sum of weights.

Logical: if TRUE, parallelises the calculation over the unique values of by. At
this moment, supports only parallel: :mclapply (therefore, will not work on
Windows).

Integer: the number of CPU cores to use. High core count = high RAM usage. If
the number of unique values of "by’ is less than the number of cores requested,
then, only length(unique(by)) cores are used.

Logical: passed as mc.preschedule to mclapply.

Passed to kernelDensity.
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Value

kernelMixedSmooth

A numeric vector of the density estimate of the same length as nrow(xout).

Examples

# Estimating 3 densities on something like a panel
set.seed(1)
n <- 200
x <= c(rnorm(n), rchisq(n, 4)/4, rexp(n, 1))
by <- rep(1:3, each = n)
xgrid <- seq(-3, 6, 0.1)
out <- expand.grid(x = xgrid, by = 1:3)
fhat <- kernelMixedDensity(x = x, xout = out$x, by = by,
plot(xgrid, dnorm(xgrid)/3, type = "1", bty = "n", lty =
xlab = "", ylab = "Density")
lines(xgrid, dchisq(xgrid*4, 4)*4/3, 1ty = 2, col = 2)
lines(xgrid, dexp(xgrid, 1)/3, 1ty = 2, col = 3)
for (i in 1:3) {
lines(xgrid, fhat[out$by == i], col = i, lwd = 2)
rug(x[by == i], col = i)
3
legend("top”, c("00", "10", "01", "11"), col = 2:5, lwd

byout = out$by)
2, ylim = c(@, 0.35),

kernelMixedSmooth Smoothing with conditioning on discrete and continuous variables

Description

Smoothing with conditioning on discrete and continuous variables

Usage
kernelMixedSmooth(
X,
Y,
by,
xout = NULL,
byout = NULL,

weights = NULL,
parallel = FALSE,
cores = 1,
preschedule = TRUE,
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Arguments

X A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.

y A numeric vector of dependent variable values.

by A variable containing unique identifiers of discrete categories.

xout A vector or a matrix of data points with ncol (xout) = ncol(x) at which the
user desires to compute the weights, density, or predictions. In other words, this
is the requested evaluation grid. If NULL, then x itself is used as the grid.

byout A variable containing unique identifiers of discrete categories for the output grid
(same points as xout)

weights A numeric vector of observation weights (typically counts) to perform weighted
operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-
ber of observations is assumed to be the sum of weights.

parallel Logical: if TRUE, parallelises the calculation over the unique values of by. At
this moment, supports only parallel: :mclapply (therefore, will not work on
Windows).

cores Integer: the number of CPU cores to use. High core count = high RAM usage. If
the number of unique values of ’by’ is less than the number of cores requested,
then, only length(unique(by)) cores are used.

preschedule Logical: passed as mc.preschedule to mclapply.
Passed to kernelSmooth (usually bw, gaussian for both; degree and robust.iterations
for "smooth"),

Value

A numeric vector of the kernel estimate of the same length as nrow(xout).

Examples

set.seed(1)

n <- 1000

z1 <- rbinom(n, 1, 0.5)

z2 <- rbinom(n, 1, 0.5)

x <= rnorm(n)

u <- rnorm(n)

y <=1+ x*2 + z1 + 2%z2 + z1%z2 + u

by <- as.integer(interaction(list(z1, z2)))

out <- expand.grid(x = seq(-4, 4, 0.25), by = 1:4)

yhat <- kernelMixedSmooth(x = x, y =y, by = by, bw = 1, degree = 1,
xout = out$x, byout = out$by)

plot(x, y)
for (i in 1:4) lines(out$x[out$by == i], yhat[out$by == i], col = i+1, lwd = 2)
legend("top”, c("00", "10", "01", "11"), col = 2:5, lwd = 2)

# The function works faster if there are duplicated values of the
# conditioning variables in the prediction grid and there are many
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# observations; this is illustrated by the following example
# without a custom grid
# In this example, ignore the fact that the conditioning variable is rounded
# and therefore contains measurement error (ruining consistency)
X <= rnorm(10000)
xout <- rnorm(5000)
xr <= round(x)
xrout <- round(xout)
w <- runif(10000, 1, 3)
y <=1+ x*2 + rnorm(10000)
by <- rep(1:4, each = 2500)
byout <- rep(1:4, each = 1250)
system. time(kernelMixedSmooth(x = x, y =y, by = by, weights = w,
xout = xout, byout = byout, bw = 1))

# wuser system elapsed
#0.144 0.000 0.144
system.time(kml <- kernelMixedSmooth(x = xr, y =y, by = by, weights =

xout = xrout, byout = byout, bw

|
=

D),

# user system elapsed

# 0.021 0.000 0.022

system.time(km2 <- kernelMixedSmooth(x = xr, y =y, by = by, weights = w,
xout = xrout, byout = byout, bw = 1, no.dedup = TRUE))

# wuser system elapsed

#0.138 0.001 0.137

all.equal(kml, km2)

# Parallel capabilities shine in large data sets
if (.Platform$0S.type != "windows") {
# A function to carry out the same estimation in multiple cores
pFun <- function(n) kernelMixedSmooth(x = rep(x, 2), y = rep(y, 2),
weights = rep(w, 2), by = rep(by, 2),
bw = 1, degree = @, parallel = TRUE, cores = n)
system.time(pFun(1)) # 0.6--0.7 s
system.time(pFun(2)) # 0.4--0.5 s
3

kernelSmooth Local kernel smoother

Description

Local kernel smoother

Usage
kernelSmooth(
X’
Y,
xout = NULL,

weights = NULL,
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bw = NULL,

kernel = c("gaussian”, "uniform”, "triangular”, "epanechnikov”, "quartic"),

order = 2,

convolution = FALSE,

chunks = 0,

PIT = FALSE,

LOO = FALSE,

degree = 0,

trim = function(x) 0.01/length(x),
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robust.iterations = 0,
robust = c("bisquare”, "huber"),

deduplicate.x

= TRUE,

deduplicate.xout = TRUE,
no.dedup = FALSE,
return.grid = FALSE

)
Arguments

X A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.

y A numeric vector of dependent variable values.

xout A vector or a matrix of data points with ncol (xout) = ncol(x) at which the
user desires to compute the weights, density, or predictions. In other words, this
is the requested evaluation grid. If NULL, then x itself is used as the grid.

weights A numeric vector of observation weights (typically counts) to perform weighted
operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-
ber of observations is assumed to be the sum of weights.

bw Bandwidth for the kernel: a scalar or a vector of the same length as ncol(x).
Since it is the crucial parameter in many applications, a warning is thrown if the
bandwidth is not supplied, and then, Silverman’s rule of thumb (via bw.row())
is applied to *every dimension* of x.

kernel Character describing the desired kernel type. NB: due to limited machine preci-
sion, even Gaussian has finite support.

order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive
everywhere. Orders 4 and 6 produce some negative values, which reduces bias
but may hamper density estimation.

convolution Logical: if FALSE, returns the usual kernel. If TRUE, returns the convolution
kernel that is used in density cross-validation.

chunks Integer: the number of chunks to split the task into (limits RAM usage but in-
creases overhead). @ = auto-select (making sure that no matrix has more than
2727 elements).

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of

x via ecdf in order to map all values into the [0, 1] range. May be an integer
vector of indices of columns to which the PIT should be applied.
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LOO Logical: If TRUE, the leave-one-out estimator is returned.

degree Integer: O for locally constant estimator (Nadaraya—Watson), 1 for locally linear
(Cleveland’s LOESS), 2 for locally quadratic (use with care, less stable, requires
larger bandwidths)

trim Trimming function for small weights to speed up locally weighted regression (if

degreeis 1 or 2).

robust.iterations
The number of robustifying iterations (due to Cleveland, 1979). If greater than
0, xout is ignored.

robust Character: "huber" for Huber’s local regression weights, "bisquare" for more
robust bi-square ones

deduplicate.x Logical: if TRUE, full duplicates in the input x and y are counted and trans-
formed into weights; subsetting indices to reconstruct the duplicated data set
from the unique one are also returned.

deduplicate.xout
Logical: if TRUE, full duplicates in the input xout are counted; subsetting in-
dices to reconstruct the duplicated data set from the unique one are returned.

no.dedup Logical: if TRUE, sets deduplicate.x and deduplicate. xout to FALSE (short-
hand).
return.grid If TRUE, prepends xout to the return results.

Standardisation is recommended for the purposes of numerical stability (some-
times 1m() might choke when the dependent variable takes very large absolute
values and its square is used).

The robust iterations are carried out, if requested, according to @cleveland1979robust.
Huber weights are never zero; bisquare weights create a more robust re-descending
estimator.

Note: if x and xout are different but robust iterations were requested, the robus-
tification can take longer. TODO: do not estimate on (X, grid), do the calculation
with K.full straight away.

Note: if LOO is used, it makes sense to de-duplicate observations first. By default,
this behaviour is not enforced in this function, but when it is called in cross-
validation routines, the de-duplication is forced. It makes no sense to zero out
once observation out of many repeated.

Value

A vector of predicted values or, if return.grid is TRUE, a matrix with the predicted values in the
last column.

Examples

set.seed(1)

n <- 300

<- sort(rt(n, df = 6)) # Observed values

<- seq(-4, 5, 0.1) # Grid for evaluation

<- function(x) 1 + x + sin(x) # True E(Y | X) = f(X)
<= f(x) + rt(n, df = 4)

< —H0o X
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# 3 estimators: locally constant + 2nd-order kernel,
# locally constant + 4th-order kernel, locally linear robust
b2lc <- suppressWarnings(bw.CV(x, y =y, kernel = "quartic”)
+ 0.8)

b4lc <- suppressWarnings(bw.CV(x, y =y, kernel = "quartic"”, order = 4,

try.grid = FALSE, start.bw = 3) + 1)
b211 <- bw.CV(x, y =y, kernel = "quartic"”, degree = 1, robust.iterations = 1,

try.grid = FALSE, start.bw = 3, verbose = TRUE)
m2lc <- kernelSmooth(x, y, g, bw = b2lc, kernel = "quartic”, no.dedup = TRUE)
m4lc <- kernelSmooth(x, y, g, bw = b4lc, kernel = "quartic”, order = 4, no.dedup = TRUE)
m21l <- kernelSmooth(x, y, g, bw = b211, kernel = "quartic”,

degree = 1, robust.iterations = 1, no.dedup = TRUE)

plot(x, y, xlim = c(-6, 7), col = "#00000088", bty = "n")
lines(g, f(g), col = "white"”, 1wd = 5); lines(g, f(g))
lines(g, m2lc, col = 2); lines(g, m4lc, col = 3); lines(g, m2ll, col = 4)
# De-duplication facilities for faster operations
set.seed(1) # Creating a data set with many duplicates
n.uniq <- 1000
n <- 4000
inds <- sort(ceiling(runif(n, @, n.uniq)))
x.uniq <- sort(rnorm(n.uniq))
y.uniq <- 1 + x.uniq + sin(x.unig*2) + rnorm(n.uniq)
X <- x.uniq[inds]
y <= y.uniq[inds]
xout <- x.unig[sort(ceiling(runif(n.unigx3, @, n.uniq)))]
w <- runif(n)
data.table::setDTthreads(1) # For measuring the pure gains and overhead
RcppParallel: :setThreadOptions(numThreads = 1)
kr1 <- kernelSmooth(x, y, xout, w, bw = 0.2)
kr2 <- kernelSmooth(x, y, xout, w, bw = 0.5, no.dedup = TRUE)
statl <- attr(kr1l, "duplicate.stats")
stat2 <- attr(kr2, "duplicate.stats")
print(stat1[3:5]) # De-duplication time -- worth it
print(stat2[3:5]) # Without de-duplication, slower
unname(prod((1 - stat1[1:2]1)) / (stat1[5] / stat2[5])) # > 1 = better time
# savings than expected, < 1 = worse time savings than expected
all.equal(as.numeric(kr1), as.numeric(kr2))
max(abs(kr1 - kr2)) # Should be around machine epsilon or less

# Example in 2 dimensions
# TODO

kernelWeights Kernel-based weights

Description

Kernel-based weights
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Usage
kernelWeights(
X,
xout = NULL,
bw = NULL,
kernel = c("gaussian”, "uniform”, "triangular”, "epanechnikov"”, "quartic"),
order = 2,
convolution = FALSE,
sparse = FALSE,
PIT = FALSE,
deduplicate.x = FALSE,
deduplicate.xout = FALSE,
no.dedup = FALSE
)
Arguments
X A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.
xout A vector or a matrix of data points with ncol(xout) = ncol(x) at which the
user desires to compute the weights, density, or predictions. In other words, this
is the requested evaluation grid. If NULL, then x itself is used as the grid.
bw Bandwidth for the kernel: a scalar or a vector of the same length as ncol(x).
Since it is the crucial parameter in many applications, a warning is thrown if the
bandwidth is not supplied, and then, Silverman’s rule of thumb (via bw.row())
is applied to *every dimension* of x.
kernel Character describing the desired kernel type. NB: due to limited machine preci-
sion, even Gaussian has finite support.
order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive
everywhere. Orders 4 and 6 produce some negative values, which reduces bias
but may hamper density estimation.
convolution Logical: if FALSE, returns the usual kernel. If TRUE, returns the convolution
kernel that is used in density cross-validation.
sparse Logical: TODO (should be ignored?)

Note that if pit = TRUE, then the kernel-based weights become nearest-neighbour
weights (i.e. not much different from the ones used internally in the built-in
loess function) since the distances now depend on the ordering of data, not the
values per se.

Technical remark: if the kernel is Gaussian, then, the ratio of the tail density to
the maximum value (at 0) is less than mach.eps/2 when abs(x) > 2*sqrt(106*log(2))
~ 8.572. This has implications the relative error of the calculation: even the
kernel with full support (theoretically) may fail to produce numerically distinct
values if the argument values are more than ~8.5 standard deviations away from
the mean.
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PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of
x via ecdf in order to map all values into the [0, 1] range. May be an integer
vector of indices of columns to which the PIT should be applied.

deduplicate.x Logical: if TRUE, full duplicates in the input x and y are counted and trans-
formed into weights; subsetting indices to reconstruct the duplicated data set
from the unique one are also returned.

deduplicate.xout

Logical: if TRUE, full duplicates in the input xout are counted; subsetting in-
dices to reconstruct the duplicated data set from the unique one are returned.

no.dedup Logical: if TRUE, sets deduplicate.x and deduplicate.xout to FALSE (short-
hand).

Value

A matrix of weights of dimensions nrow(xout) X nrow(x).

Examples

set.seed(1)
X <= sort(rnorm(1000)) # Observed values
g <- seq(-10, 10, @.1) # Grid for evaluation
w  <- kernelWeights(x, g, bw = 2, kernel = "triangular”)
wsp <- kernelWeights(x, g, bw = 2, kernel = "triangular"”, sparse = TRUE)
print(c(object.size(w), object.size(wsp)) / 1024) # Kilobytes used
image(g, x, w)
all.equal(w[, 1], # Internal calculation for one column
kernelFun((g - x[11)/2, "triangular”, 2, FALSE))

# Bare-bones interface to the C++ functions

# Example: 4th-order convolution kernels

x <- seq(-3, 5, length.out = 301)

ks <= c("uniform”, "triangular”, "epanechnikov", "quartic"”, "gaussian")
kmat <- sapply(ks, function(k) kernelFun(x, k, 4, TRUE))

matplot(x, kmat, type = "1", 1ty = 1, bty = "n", 1lwd = 2)
legend("topright”, ks, col = 1:5, lwd = 2)

logTaylor Modified logarithm with derivatives

Description

Modified logarithm with derivatives

Usage

logTaylor(x, lower = NULL, upper = NULL, der = @, order = 4)
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Arguments

X

lower

upper

der

order

Details

LSCV

Numeric vector for which approximated logarithm is to be computed.

Lower threshold below which approximation starts; can be a scalar of a vector
of the same length as x.

Upper threshold above which approximation starts; can be a scalar of a vector
of the same length as x.

Non-negative integer: 0 yields the function, 1 and higher yields derivatives

Positive integer: Taylor approximation order. If NA, returns 1og(x) or its deriva-
tive.

Provides a family of alternatives to -log() and derivative thereof in order to attain self-concordance
and computes the modified negative logarithm and its first derivatives. For lower <= x <= upper,
returns just the logarithm. For x < lower and x > upper, returns the Taylor approximation of the
given order. 4th order is the lowest that gives self concordance.

Value

A numeric matrix with (order+1) columns containing the values of the modified log and its deriva-

tives.

Examples

x <- seq(0.01%0.25, 270.25, length.out = 51)"4 - 0.11 # Denser where |f'| is higher

plot(x,

lines(x, logTaylor(x, lower
lines(x, logTaylor(x, lower

log(x)); abline(v = @, 1ty = 2) # Observe the warning
0.2), col = 2)
0.5), col = 3)

lines(x, logTaylor(x, lower = 1, upper = 1.2, order = 6), col = 4)

# Substitute log with its Taylor approx. around 1
x <- seq(0.1, 2, 0.05)
ae <- abs(sapply(2:6, function(o) log(x) - logTaylor(x, lower=1, upper=1, order=0)))
matplot(x[x!=1]1, ael[x!=1,], type = "1", log = "y", 1lwd = 2,
main = "Abs. trunc. err. of Taylor expansion at 1", ylab = "")

# Vanilla logarithm
identical(logTaylor(2, order = NA), log(2))

LScv

Least-squares cross-validation function for the Nadaraya-Watson es-
timator

Description

Least-squares cross-validation function for the Nadaraya-Watson estimator



LSCV 43

Usage
LSCV(
X )
Y,
bw,
weights = NULL,
same = FALSE,
degree = 0,
kernel = "gaussian”,
order = 2,
PIT = FALSE,
chunks = 0,
robust.iterations = 0,
cores = 1
)
Arguments
X A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.
y A numeric vector of dependent variable values.
bw Candidate bandwidth values: scalar, vector, or a matrix (with columns corre-
sponding to columns of x).
weights A numeric vector of observation weights (typically counts) to perform weighted
operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-
ber of observations is assumed to be the sum of weights.
same Logical: use the same bandwidth for all columns of x?
degree Integer: O for locally constant estimator (Nadaraya—Watson), 1 for locally linear
(Cleveland’s LOESS), 2 for locally quadratic (use with care, less stable, requires
larger bandwidths)
kernel Character describing the desired kernel type. NB: due to limited machine preci-
sion, even Gaussian has finite support.
order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive

everywhere. Orders 4 and 6 produce some negative values, which reduces bias
but may hamper density estimation.

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of
x via ecdf in order to map all values into the [0, 1] range. May be an integer
vector of indices of columns to which the PIT should be applied.

chunks Integer: the number of chunks to split the task into (limits RAM usage but in-
creases overhead). @ = auto-select (making sure that no matrix has more than
2727 elements).

robust.iterations
The number of robustifying iterations (due to Cleveland, 1979). If greater than
0, xout is ignored.
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cores

Value

pit

Integer: the number of CPU cores to use. High core count = high RAM usage.

Note: since LSCV requires zeroing out the diagonals of the weight matrix, re-
peated observations are combined first; the de-duplication is therefore forced
in cross-validation. The only situation where de-duplication can be skipped is
passing de-duplicated data sets from outside (e.g. inside optimisers).

A numeric vector of the same length as bw or nrow(bw).

Examples

set.seed(1) # Creating a data set with many duplicates
n.uniq <- 1000
n <- 4000
inds <- sort(ceiling(runif(n, @, n.uniq)))
x.uniq <- sort(rnorm(n.uniq))
y.unig <- 1 + 0.2*x.uniqg + 0.3*sin(x.uniq) + rnorm(n.uniq)
x <- x.unig[inds]
y <- y.uniq[inds]
w <= 1 + runif(n, @, 2) # Relative importance
data.table::setDTthreads(1) # For measuring pure gains and overhead
RcppParallel: :setThreadOptions(numThreads = 1)
bw.grid <- seq(@.1, 1.2, 0.05)
ncores <- if (.Platform$0S.type == "windows") 1 else 2
CV <- LSCV(x, y, bw.grid, weights = w, cores = ncores) # Parallel capabilities
bw.opt <- bw.grid[which.min(CV)]
g <- seq(-3.5, 3.5, 0.05)
yhat <- kernelSmooth(x, y, xout = g, weights = w,
bw = bw.opt, deduplicate.xout = FALSE)
oldpar <- par(mfrow = c(2, 1), mar = c(2, 2, 2, @)+.1)

plot(bw.grid, CV, bty = "n", xlab = "", ylab = "", main = "Cross-validation")
plot(x.uniq, y.uniq, bty = "n", xlab = "", ylab = "", main = "Optimal fit")
points(g, yhat, pch = 16, col = 2, cex = 0.5)
par(oldpar)
pit Probability integral transform
Description

Probability integral transform

Usage

pit(x, xout = NULL)
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Arguments
X A numeric vector of data points.
xout A numeric vector. If supplied, then the transformed function at the grid points
different from x takes values equidistant between themselves and the ends of the
interval to which they belong.
Value

A numeric vector of values strictly between 0 and 1 of the same length as xout (or x, if xout is

NULL).

Examples

set.seed(2)

x1 <- c(4, 3, 7, 10, 2, 2, 7, 2, 5, 6)

x2 <- sample(c(@, 0.5, 1, 2, 2.5, 3, 3.5, 10, 100), 25, replace = TRUE)
1 <- length(x1)

pit(x1)

plot(pit(x1), ecdf(x1)(x1), xlim = c(@, 1), ylim = c(@, 1), asp = 1)

abline(v = seq(@.5 / 1, 1 - 0.5 / 1, length.out = 1), col = "#00000044", 1ty = 2)

abline(v = c(0, 1))
points(pit(x1, x2), ecdf(x1)(x2), pch = 16, col = "#CC00Q0V88", cex = 0.9)
abline(v = pit(x1, x2), col = "#CC000044", 1ty = 2)

x1 <= c(1, 1, 3, 4, 6)

x2 <- c(o, 2, 2, 5.9, 7, 8)
pit(x1)

pit(x1, x2)

set.seed(1)

1 <10

x1 <= rlnorm(l)

x2 <- sample(c(x1, rlnorm(10)))

plot(pit(x1), ecdf(x1)(x1), xlim = c(@, 1), ylim = c(@, 1), asp = 1)

abline(v = seq(@.5 / 1, 1 - 0.5 / 1, length.out = 1), col = "#00000044", 1ty = 2)

abline(v = c(0, 1))
points(pit(x1, x2), ecdf(x1)(x2), pch = 16, col = "#CC000088", cex = 0.9)

prepareKernel Check the data for kernel estimation

Description

Checks if the order is 2, 4, or 6, transforms the objects into matrices, checks the dimensions,
provides the bandwidth, creates default arguments to pass to the C++ functions, carries out de-
duplication for speed-up etc.
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Usage
prepareKernel (
X y
y = NULL,
xout = NULL,
weights = NULL,
bw = NULL,
kernel = c("gaussian”, "uniform”, "triangular”, "epanechnikov"”, "quartic"),
order = 2,
convolution = FALSE,
sparse = FALSE,
deduplicate.x = TRUE,
deduplicate.xout = TRUE,
no.dedup = FALSE,
PIT = FALSE
)
Arguments
X A numeric vector, matrix, or data frame containing observations. For density,
the points used to compute the density. For kernel regression, the points corre-
sponding to explanatory variables.
y Optional: a vector of dependent variable values.
xout A vector or a matrix of data points with ncol(xout) = ncol(x) at which the
user desires to compute the weights, density, or predictions. In other words, this
is the requested evaluation grid. If NULL, then x itself is used as the grid.
weights A numeric vector of observation weights (typically counts) to perform weighted
operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-
ber of observations is assumed to be the sum of weights.
bw Bandwidth for the kernel: a scalar or a vector of the same length as ncol(x).
Since it is the crucial parameter in many applications, a warning is thrown if the
bandwidth is not supplied, and then, Silverman’s rule of thumb (via bw.row())
is applied to *every dimension* of x.
kernel Character describing the desired kernel type. NB: due to limited machine preci-
sion, even Gaussian has finite support.
order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive
everywhere. Orders 4 and 6 produce some negative values, which reduces bias
but may hamper density estimation.
convolution Logical: if FALSE, returns the usual kernel. If TRUE, returns the convolution
kernel that is used in density cross-validation.
sparse Logical: TODO (ignored)

deduplicate.x

Logical: if TRUE, full duplicates in the input x and y are counted and trans-
formed into weights; subsetting indices to reconstruct the duplicated data set
from the unique one are also returned.
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deduplicate.xout
Logical: if TRUE, full duplicates in the input xout are counted; subsetting in-
dices to reconstruct the duplicated data set from the unique one are returned.

no.dedup Logical: if TRUE, sets deduplicate.x and deduplicate. xout to FALSE (short-
hand).
PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of

x via ecdf in order to map all values into the [0, 1] range. May be an integer
vector of indices of columns to which the PIT should be applied.

Value

A list of arguments that are taken by [kernelDensity()] and [kernelSmooth()].

Examples

# De-duplication facilities

set.seed(1) # Creating a data set with many duplicates

n.uniq <- 10000

n <- 60000

inds <- ceiling(runif(n, @, n.uniq))

x.uniqg <- matrix(rnorm(n.unigx1@), ncol = 10)

x <= x.unig[inds, ]

y <= runif(n.uniq)[inds]

xout <- x.uniqg[ceiling(runif(n.unig*3, @, n.uniq)), 1

w <- runif(n)

print(system.time(al <- prepareKernel(x, y, xout, w, bw = 0.5)))

print(system.time(a2 <- prepareKernel(x, y, xout, w, bw = 0.5,
deduplicate.x = FALSE, deduplicate.xout = FALSE)))

print(c(object.size(al), object.size(a2)) / 1024) # Kilobytes used

# Speed-memory trade-off: 4 times smaller, takes 0.2 s, but reduces the

# number of matrix operations by a factor of

1 - prod(1 - al$duplicate.stats[1:2]) # 95% fewer operations

sum(al$weights) - sum(a2$weights) # Should be @ or near machine epsilon

(S

smoothEmplik Smoothed Empirical Likelihood function value

Description

Evaluates SEL function for a given moment function at a certain parameter value.

Usage

smoothEmplik(
rho,
theta,
data,
sel.weights = NULL,



48 smoothEmplik

weight.tolerance = 0,

type = c("auto”, "ELO", "EL1", "EuL"),

chull.fail = c("none”, "taylor”, "wald"”, "adjusted”, "adjusted2"”, "balanced"),
kernel.args = list(bw = NULL, kernel = "epanechnikov", order = 2, PIT = TRUE, sparse =

TRUE),
minus = FALSE,
cores = 1,

chunks = NULL,

sparse = FALSE,

verbose = FALSE,

bad.value = -Inf,

attach.attributes = c("none”, "all", "ELRs", "residuals”, "lam”, "nabla"”, "converged”,

"exitcode", "probabilities"),
)
Arguments

rho The moment function depending on parameters and data (and potentially other
parameters). Must return a numeric vector.

theta A parameter at which the moment function is evaluated.

data A data object on which the moment function is computed.

sel.weights Either a matrix with valid kernel smoothing weights with rows adding up to 1, or
a function that computes the kernel weights based on the data argument passed
to....

weight.tolerance
Passed to [EL()].

type Character: "auto” for empirical likelihood, "EuL” for Euclidean likelihood,
"ELQ" for one-dimensional empirical likelihood. "EL@" is *strongly* recom-
mended for 1-dimensional moment functions because it is faster and more ro-
bust: it searches for the Lagrange multiplier directly and has nice fail-safe op-
tions for convex hull failure.

chull.fail Passed to [EL()].

kernel.args A list of arguments passed to kernelWeights() if sel.weights is a function.

minus If TRUE, returns SEL times -1 (for optimisation via minimisation).

cores The number of cores used by parallel::mclapply to speed up the computa-
tion.

chunks The number of chunks into which the weight matrix is split for memory saving.

One chunk is good for sample sizes 2000 and below. If equal to the number
of observations, then, the smoothed likelihoods are computed in series, which
saves memory but computes kernel weights at every step of a loop, increasing
CPU time. If cores is greater than 1, parallelisation occurs within each chunk.

sparse Logical: convert the weight matrix to a sparse one?

verbose If TRUE, a progress bar is made to display the evaluation progress in case partial
or full memory saving is in place.
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bad.value

49

Replace non-finite individual SEL values with this value. May be useful if the
optimiser does not allow specific non-finite values (like L-BFGS-B).

attach.attributes

Value

If "none”, returns just the sum of expected likelihoods; otherwise, attaches cer-
tain attributes for diagnostics: "ELRs" for expected likelihoods, "residuals”
for the residuals (moment function values), "lam” for the Lagrange multipliers
lambda in the EL problems, "nabla” for d/d(lambda)EL (should be close to zero
because this must be true for any theta), "converged” for the convergence of
# individual EL problems, "exitcode” for the EL exit codes (0 for success),
"probabilities” for the matrix of weights (very large, not recommended for
sample sizes larger than 2000).

Passed to rho.

A scalar with the SEL value and, if requested, attributes containing the diagnostic information

attached to it.

Examples

set.seed(1)

x <= sort(rlnorm(50))

# Heteroskedastic DGP

y <= abs(1 + 1*x + rnorm(50) * (1 + x + sin(x)))
mod.OLS <- 1Im(y ~ x)

rho <- function(theta, ...)
w <- kernelWeights(x, PIT =

y - theta[1] - theta[2]*x # Moment fn
TRUE, bw = 0.25, kernel = "epanechnikov")

w <- w / rowSums(w)

image(x, x, w, log = "xy")
theta.vals <- list(c(1, 1), coef(mod.OLS))
SEL <- function(b, ...) smoothEmplik(rho = rho, theta = b, sel.weights =w, ...)

sapply(theta.vals, SEL) # Smoothed empirical likelihood
# SEL maximisation
ctl <- list(fnscale = -1, reltol = 1e-6, ndeps = rep(le-5, 2),

trace = 1, REPORT = 5)

b.init <- coef(mod.OLS)

b.init <- c¢(1.790207, 1.007491) # Only to speed up estimation
b.SEL <- optim(b.init, SEL, method = "BFGS", control = ctl)
print(b.SEL$par) # Closer to the true value (1, 1) than OLS

plot(x, y)

abline(1, 1, 1ty = 2)
abline(mod.OLS, col = 2)
abline(b.SEL$par, col = 4)

# Euclidean likelihood
SEuL <- function(b, ...) smoothEmplik(rho = rho, theta = b,

type = "EuL”, sel.weights = w, ...)

b.SEuL <- optim(coef(mod.OLS), SEuL, method = "BFGS", control = ctl)
abline(b.SEuL$par, col = 3)
cbind(SEL = b.SEL$par, SEuL = b.SEuL$par)
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# Now we start from (@, @), for which an extension is necessary

# because all residuals at this starting value are positive and the
# unmodified EL ratio for the test of equality to @ is -Inf

if (FALSE) ¢

SEL(c(0, 9))

SEL(c(@, @), chull.fail = "taylor")

SEL(c(@, @), chull.fail = "wald")

SEL(c(@, @), chull.fail = "adjusted")

SEL(c(@, @), chull.fail = "adjusted2")

SEL(c(@, @), chull.fail = "balanced”)

# The next example is very slow; approx. 1 minute

Experiment: a small bandwidth so that the spanning condition should fail often
It yields an appalling estimator
<- kernelWeights(x, PIT = TRUE, bw = 0.15, kernel = "epanechnikov")
<- w / rowSums(w)
The first option is faster but it may sometimes fails
.SELt <- optim(c(@, @), SEL, chull.fail = "taylor”,
method = "BFGS"”, control = ctl)
b.SELw <- optim(c(@, @), SEL, chull.fail = "wald",
method = "BFGS"”, control = ctl)

O #®# = = H# ¥

w <- kernelWeights(x, PIT = TRUE, bw = 0.15, kernel = "epanechnikov")
w <= w / rowSums(w)
# In this sense, Euclidean likelihood is robust to convex hull violations
b.SELu <- optim(c(@, @), SEuL, method = "BFGS", control = ctl)
bogrid <- seq(-1.5, 7, length.out = 51)
blgrid <- seq(-1.5, 4.5, length.out = 51)
bgrid <- as.matrix(expand.grid(bogrid, blgrid))
fi <- function(i) smoothEmplik(rho, bgrid[i, ], sel.weights = w, type = "ELQ",
EL.args = list(chull.fail = "taylor"))

ncores <- max(floor(parallel::detectCores()/2 - 1), 1)
chk <- Sys.getenv(”_R_CHECK_LIMIT_CORES_", "") # Limit to 2 cores for CRAN checks
if (nzchar(chk) && chk == "TRUE") ncores <- min(ncores, 2L)
selgrid <- unlist(parallel::mclapply(1:nrow(bgrid), fi, mc.cores = ncores))
selgrid <- matrix(selgrid, nrow = length(b@grid))
probs <- c(0.25, 0.5, 0.75, 0.8, 0.9, 0.95, 0.99, 1-10*seq(-4, -16, -2))
levs <- qchisq(probs, df = 2)
# levs <- c(1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000)
labs <- round(levs, 1)
cols <- rainbow(length(levs), end = 0.7, v = 0.7)
oldpar <- par(mar = c(4, 4, 2, ) + .1)
selgrid2 <- -2x(selgrid - max(selgrid, na.rm = TRUE))
contour(b@grid, blgrid, selgrid2, levels = levs,

labels = labs, col = cols, 1lwd = 1.5, bty = "n",

main = "'Safe' likelihood contours”, asp = 1)
image(bOgrid, blgrid, loglp(selgrid2))
# The narrow lines are caused by the fact that if two observations are close together
# at the edge, the curvature at that point is extreme

# The same with Euclidean likelihood
seulgrid <- unlist(parallel::mclapply(1:nrow(bgrid), function(i)
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smoothEmplik(rho, bgrid[i, ], sel.weights = w, type = "EuL"),
mc.cores = ncores))
seulgrid <- matrix(seulgrid, nrow = length(bogrid))
seulgrid2 <- -50*(seulgrid - max(seulgrid, na.rm = TRUE))
par(mar = c(4, 4, 2, @) + .1)
contour(bogrid, blgrid, seulgrid2, levels = levs,
labels = labs, col = cols, 1lwd = 1.5, bty = "n",

main = "'Safe' likelihood contours”, asp = 1)
image (bOgrid, blgrid, loglp(seulgrid2))
par(oldpar)
3
sparseVectorTolList Convert a weight vector to list
Description

This function saves memory (which is crucial in large samples) and allows one to speed up the
code by minimising the number of time-consuming subsetting operations and memory-consuming
matrix multiplications. We do not want to rely on extra packages for sparse matrix manipulation
since the EL smoothing weights are usually fixed at the beginning, and need not be recomputed
dynamically, so we recommend applying this function to the rows of a matrix. In order to avoid
numerical instability, the weights are trimmed at .01 / length(x). Using too much trimming may
cause the spanning condition to fail (the moment function values can have the same sign in some
neighbourhoods).

Usage

sparseVectorToList(x, trim = NULL, renormalise = FALSE)

sparseMatrixToList(x, trim = NULL, renormalise = FALSE)

Arguments
X A numeric vector or matrix (with many close-to-zero elements).
trim A trimming function that returns a threshold value below which the weights are
ignored. In common applications, this function should tend to O as the length of
x increases.
renormalise Logical: renormalise the sum of weights to one after trimming?
Value

A list with indices and values of non-zero elements.
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Examples

set.seed(1)

svdlm

m <- round(matrix(rnorm(100), 10, 10), 2)
mLas.logical(rbinom(100, 1, 0.7))] <- @
sparseVectorToList(m[, 3])
sparseMatrixToList(m)

svdlm

Least-squares regression via SVD

Description

Least-squares regression via SVD

Usage

svdlm(x, y, rel.tol = 1e-09, abs.tol = 1e-100)

Arguments

X

y
rel.tol

abs.tol

Value

Model matrix.
Response vector.
Relative zero tolerance for generalised inverse via SVD.

Absolute zero tolerance for generalised inverse via SVD.

Newton steps for many empirical likelihoods are of least-squares type. Denote
2" to be the generalised inverse of x. If SVD algorithm failures are encountered,
it sometimes helps to try svd(t(x)) and translate back. First check to ensure
that x does not contain NaN, or Inf, or -Inf.

The tolerances are used to check the closeness of singular values to zero. The
values of the singular-value vector d that are less than max(rel.tol * max(d),
abs.tol) are set to zero.

A vector of coefficients.

Examples

b.svd <- svdlm(x

= cbind(1, as.matrix(mtcars[, -1])), y = mtcars[, 11)

b.1m <- coef(lm(mpg ~ ., data = mtcars))
b.1Im - b.svd # Negligible differences
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tlog d-th derivative of the k-th-order Taylor expansion of log(x)

Description

d-th derivative of the k-th-order Taylor expansion of log(x)

Usage

tlog(x, a = as.numeric(c(1)), k = 4L, d = @oL)

Arguments
X Numeric: a vector of points for which the logarithm is to be evaluated
a Scalar: the point at which the polynomial approximation is computed
k Non-negative integer: maximum polynomial order in the Taylor expansion of
the original function. k = @ returns a constant.
d Non-negative integer: derivative order
Note that this function returns the d-th derivative of the k-th-order Taylor ex-
pansion, not the k-th-order approximation of the d-th derivative. Therefore, the
degree of the resulting polynomial is d — k.
Value

The approximating Taylor polynomial around a of the order d-k evaluated at x.

Examples

cl <- rainbow(9, end = 0.8, v = 0.8, alpha = 0.8)
a<-1.5
x <- seq(a*2, a/2, length.out = 101)
f <- function(x, d = @) if (d == @) log(x) else ((d%%2 == 1)*2-1) * 1/x*d * gamma(d)
oldpar <- par(mfrow = c(2, 3), mar = c(2, 2, 2.5, 0.2))
for (d in 0:5) {
y <= f(x, d =d)
plot(x, y, type = "1", 1wd = 7, bty = "n", ylim = range(0, y),
main = paste@("d*", d, "/dx*", d, " Taylor(Log(x))"))
for (k in 0:8) lines(x, tlog(x, a = a, k =k, d =d), col = cl[k+1], 1lwd = 1.5)
points(a, f(a, d = d), pch = 16, cex = 1.5, col = "white")
3
legend("topright”, as.character(@:8), title = "Order”, col = cl, 1lwd = 1)
par (oldpar)
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trimmed.weighted.mean Weighted trimmed mean

Description

Compute a weighted trimmed mean, i.e. a mean that assigns non-negative weights to the obser-
vations and (2) discards an equal share of total weight from each tail of the distribution before

averaging.
Usage
trimmed.weighted.mean(x, trim = @, w = NULL, na.rm = FALSE, ...)
Arguments
X Numeric vector of data values.
trim Single number in [0, 0.5]. Fraction of the total weight to cut from each tail.
w Numeric vector of non-negative weights of the same length as ‘x‘. If ‘NULL*
(default), equal weights are used.
na.rm Logical: should ‘NA‘ values in ‘x‘ or ‘w* be removed?
Further arguments passed to [‘weighted.mean()‘] (for compatibility).
Details

For example, ‘trim = 0.10° removes 10 from the right (20 Setting ‘trim = 0.5° returns the weighted
median.

The algorithm follows these steps:

1. Sort the data by ‘x‘ and accumulate the corresponding weights.
2. Identify the lower and upper cut-points that mark the central share of the total weight.

3. Drop observations whose cumulative weight lies entirely outside the cut-points and propor-
tionally down-weight the two (at most) remaining outermost observations.

4. Return the weighted mean of the retained mass. If ‘trim == 0.5°, only the 50

Value

A single numeric value: the trimmed weighted mean of ‘x‘. Returns ‘NA_real_° if no non-‘NA*
observations remain after optional ‘na.rm‘ handling.

See Also

[‘mean()] for the unweighted trimmed mean, [‘weighted.mean()‘] for the untrimmed weighted
mean.
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Examples

set.seed(1)
z <- rt(100, df = 3)
w <- pmin(1, 1 / abs(z)*2) # Far-away observations tails get lower weight

mean(z, trim = 0.20) # Ordinary trimmed mean
trimmed.weighted.mean(z, trim = 0.20) # Same

weighted.mean(z, w) # Ordinary weighted mean (no trimming)
trimmed.weighted.mean(z, w = w) # Same

trimmed.weighted.mean(z, trim
trimmed.weighted.mean(z, trim

w) # Weighted trimmed mean
w) # Weighted median

0.20, w
0.5, w

)
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