Package 'smoothemplik'

October 27, 2025

Title Smoothed Empirical Likelihood **Version** 0.0.16 Maintainer Andreï Victorovitch Kostyrka <andrei.kostyrka@gmail.com> **Description** Empirical likelihood methods for asymptotically efficient estimation of models based on conditional or unconditional moment restrictions; see Kitamura, Tripathi & Ahn (2004) <doi:10.1111/j.1468-0262.2004.00550.x> and Owen (2013) <doi:10.1002/cjs.11183>. Kernel-based non-parametric methods for density/regression estimation and numerical routines for empirical likelihood maximisation are implemented in 'Rcpp' for speed. License EUPL **Encoding UTF-8** URL https://github.com/Fifis/smoothemplik BugReports https://github.com/Fifis/smoothemplik/issues **Depends** R (>= 3.0.0) Imports parallel, Rcpp, RcppParallel, Rdpack, Matrix, data.table Suggests knitr, rmarkdown, testthat (>= 3.0.0), xml2 RdMacros Rdpack RoxygenNote 7.3.2 NeedsCompilation yes LinkingTo Rcpp, RcppArmadillo, RcppParallel, testthat SystemRequirements GNU make VignetteBuilder knitr Config/testthat/edition 3 Author Andreï Victorovitch Kostyrka [aut, cre] Repository CRAN **Date/Publication** 2025-10-27 18:20:02 UTC

Type Package

2 bartlettFactor

Contents

bart	lettFactor	Bartlett correction factor for empirical likelihood with e equations	estimating
Index			50
	a minica. weighted.fi	nean	5
		nean	
	1		
	-		
	=		
	· .		
	•		
		h	
		y	
	kernelFun		
		itySmooth	
	kernelDensity		2
	EuL		2
	1		
	_		

Description

Compute the Bartlett correction factor b for empirical likelihood based on the moment conditions $E\{g(X;\theta_0)\}=0$. The function implements the rotation in (Liu and Chen 2010) and evaluates b either from raw moments (unadjusted) or from the bias-reduced moment estimators recommended in their paper.

bartlettFactor 3

Usage

bartlettFactor(x, centre = TRUE, bias.adj = TRUE)

Arguments

Numeric vector or matrix of estimating functions. If a matrix, rows are observations and columns are the components of g.

centre Logical. If 'TRUE' (default), centre each column of 'x' by its sample mean before computing the correction (this corresponds to plugging in a consistent $\hat{\theta}$

so that $n^{-1} \sum g_i(\hat{\theta}) \approx 0$).

bias.adj Logical. If 'TRUE' (default), use the bias-reduced moment estimators. When

 $n \leq 4$, the adjustment is disabled automatically.

Details

Let $V(\theta) = \text{Var}\{g(X,\theta)\}$, and let P be the orthogonal matrix of eigenvectors of $V(\hat{\theta})$. Define the rotated variables $Y_i = g_i(\hat{\theta})P$ (observations in rows), and write $\alpha^{rs\cdots t} = E(Y^rY^s\cdots Y^t)$ with $\alpha^{rr} = E(Y_r^2)$.

The Bartlett factor (Theorem 1 of (Liu and Chen 2010)) can be written compactly as

$$b = \frac{1}{q} \left\{ \frac{1}{2} \sum_{r,s} \frac{\alpha^{rrss}}{\alpha^{rr} \alpha^{ss}} - \frac{1}{3} \sum_{r,s,t} \frac{(\alpha^{rst})^2}{\alpha^{rr} \alpha^{ss} \alpha^{tt}} \right\},\,$$

where q is the dimension of g. The first double sum is over all pairs (r, s), and the triple sum is over all triples (r, s, t).

For adjusted-EL applications, the implementation also uses the equivalent decomposition $b = b_1 - b_2$.

When bias.adj = TRUE, all moments are replaced by the bias-reduced estimators given in Eq. (10) and the table beneath it in (Liu and Chen 2010).

Value

Numeric scalar: the estimated Bartlett correction factor b. For multivariate inputs, the value has an attribute "components" equal to c(b1, b2) where $b = b_1 - b_2$. If bias.adj = TRUE, attributes "unadjusted" and "unadjusted.components" store the corresponding unadjusted estimates.

References

Liu Y, Chen J (2010). "Adjusted empirical likelihood with high-order precision." *The Annals of Statistics*, **38**(3). ISSN 0090-5364, doi:10.1214/09aos750.

Examples

```
set.seed(1)
# One-dimensional: Bartlett factor for the mean
x <- rchisq(50, df = 4)
bartlettFactor(x) # Bias-adjusted</pre>
```

4 brentMin

```
bartlettFactor(x, bias.adj=FALSE)

# Multi-variate g(X; theta): columns are components of g
n <- 100
g <- cbind(rchisq(n, 4)-4, rchisq(n, 3)-3, rchisq(n, 6)-6, rnorm(n))
bartlettFactor(g) # Bias-adjusted, centred
bartlettFactor(g, centre = FALSE) # The true average was used in g</pre>
```

brentMin

Brent's local minimisation

Description

Brent's local minimisation

Usage

```
brentMin(
   f,
   interval,
   lower = NA_real_,
   upper = NA_real_,
   tol = 1e-08,
   maxiter = 200L,
   trace = 0L
)
```

Arguments

f	A function to be minimised on an interval.
interval	A length-2 vector containing the end-points of the search interval.
lower	Scalar: the lower end point of the search interval. Not necessary if interval is provided.
upper	Scalar: the upper end point of the search interval. Not necessary if interval is provided.
tol	Small positive scalar: stopping criterion. The search stops when the distance between the current candidate and the midpoint of the bracket is smaller than the dynamic threshold $2 * (sqrt(DBL_EPSILON) * abs(x) + tol)$
maxiter	Positive integer: the maximum number of iterations.
trace	Integer: 0, 1, or 2. Amount of tracing information on the optimisation progress printed. trace = 0 produces no output, trace = 1 reports the starting and final

results, and trace = 2 provides detailed iteration-level output.

brentZero 5

Details

This is an adaptation of the implementation by John Burkardt (currently available at [https://people.math.sc.edu/Burkardt/m_s

This function is similar to local_min or R_zeroin2-style logic, but with the following additions: the number of iterations is tracked, and the algorithm stops when the standard Brent criterion is met or if the maximum iteration count is reached. The code stores the approximate final bracket width in estim.prec, like in [uniroot()]. If the minimiser is pinned to an end point, estim.prec = NA.

There are no preliminary iterations, unlike [brentZero()].

TODO: add preliminary iterations.

Value

A list with the following elements:

root Location of the minimum.

f.root Function value at the minimum location.

iter Total iteration count used.

estim.prec Estimate of the final bracket size.

Examples

```
f <- function (x) (x - 1/3)^2
brentMin(f, c(0, 1), tol = 0.0001)
brentMin(function(x) x^2*(x-1), lower = 0, upper = 10, trace = 1)
```

brentZero

Brent's local root search with extended capabilities

Description

Brent's local root search with extended capabilities

```
brentZero(
   f,
   interval,
   lower = NA_real_,
   upper = NA_real_,
   f_lower = NULL,
   f_upper = NULL,
   extendInt = "no",
   tol = 1e-08,
   maxiter = 500L,
   trace = 0L
)
```

6 brentZero

Arguments

f The function for which the root is sought.

interval A length-2 vector containing the end-points of the search interval

lower Scalar: the lower end point of the search interval. Not necessary if interval is

provided.

upper Scalar: the upper end point of the search interval. Not necessary if interval is

provided.

f_lower Scalar: same as f(upper). Passing this value saves time if f(lower) is slow to

compute and is known.

f_upper Scalar: same as f(lower).

extendInt Character:

"no" Do not extend the interval (default).

"yes" Attempt to extend both ends until a sign change is found.

"upX" Assumes the function is increasing around the root and extends upward if needed.

"downX" Assumes the function is decreasing around the root and extends downward if needed.

"right" Attempt to extend the upper (right) end until a sign change is found.
"left" Attempt to extend the lower (left) end until a sign change is found.

This behavior mirrors that of [uniroot()].

tol Small positive scalar: convergence tolerance. The search stops when the bracket

size is smaller than 2 * .Machine\$double.eps * abs(x) + tol, or if the func-

tion evaluates to zero at the candidate root.

maxiter Positive integer: the maximum number of iterations before stopping.

trace Integer: 0, 1, or 2. Controls the verbosity of the output. trace = 0 produces no

output, trace = 1 reports the starting and final results, and trace = 2 provides

detailed iteration-level output.

Value

A list with the following elements:

root Location of the root.

f.root Function value at the root.

iter Total iteration count used.

init.it Number of initial extendInt iterations if there were any; NA otherwise.

estim.prec Estimate of the final bracket size.

exitcode 0 for success, 1 for maximum initial iteration limit, 2 for maximum main iteration limit.

bw.CV 7

Examples

```
f \leftarrow function(x, a) x - a
str(uniroot(f, c(0, 1), tol = 0.0001, a = 1/3))
uniroot(function(x) cos(x) - x, lower = -pi, upper = pi, tol = 1e-9)$root
# New capabilities: extending only one end of the interval
f <- function(x) x^2 - 1 \# The roots are -1 and 1
brentZero(f, c(2, 3), extendInt = "left")
brentZero(f, c(2, 3), extendInt = "yes")
brentZero(f, c(2, 3), extendInt = "upX")
brentZero(f, c(0, 0.5), extendInt = "downX") # This one finds the left crossing
# This function is faster than the base R uniroot, and this is the primary
# reason why it was written in C++
system.time(replicate(1000, { shift <- runif(1, 0, 2*pi)</pre>
 uniroot(function(x) cos(x+shift) - x, lower = -pi, upper = pi)
system.time(replicate(1000, { shift <- runif(1, 0, 2*pi)</pre>
 brentZero(function(x) cos(x+shift) - x, lower = -pi, upper = pi)
}))
# Roughly twice as fast
```

bw.CV

Bandwidth Selectors for Kernel Density Estimation

Description

Finds the optimal bandwidth by minimising the density cross-valication or least-squares criteria. Remember that since usually, the CV function is highly non-linear, the return value should be taken with a grain of salt. With non-smooth kernels (such as uniform), it will oftern return the local minimum after starting from a reasonable value. The user might want to standardise the input matrix x by column (divide by some estimator of scale, like sd or IQR) and examine the behaviour of the CV criterion as a function of unique bandwidth (same argument). If it seems that the optimum is unique, then they may proceed by multiplying the bandwidth by the scale measure, and start the search for the optimal bandwidth in multiple dimensions.

```
bw.CV(
    x,
    y = NULL,
    weights = NULL,
    kernel = "gaussian",
    order = 2,
    PIT = FALSE,
    chunks = 0,
    robust.iterations = 0,
    degree = 0,
```

8 bw.CV

```
start.bw = NULL,
same = FALSE,
tol = 1e-04,
try.grid = TRUE,
ndeps = 1e-05,
verbose = FALSE,
attach.attributes = FALSE,
control = list()
)
```

Arguments

У

A numeric vector, matrix, or data frame containing observations. For density, the points used to compute the density. For kernel regression, the points corresponding to explanatory variables.

A numeric vector of responses (dependent variable) if the user wants least-

squares cross-validation.

weights A numeric vector of observation weights (typically counts) to perform weighted

operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-

ber of observations is assumed to be the sum of weights.

kernel Character describing the desired kernel type. NB: due to limited machine preci-

sion, even Gaussian has finite support.

order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive

everywhere. Orders 4 and 6 produce some negative values, which reduces bias

but may hamper density estimation.

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of

x via ecdf in order to map all values into the [0, 1] range. May be an integer

vector of indices of columns to which the PIT should be applied.

chunks Integer: the number of chunks to split the task into (limits RAM usage but in-

creases overhead). θ = auto-select (making sure that no matrix has more than

2²⁷ elements).

robust.iterations

Passed to kernelSmooth if y is not NULL (for least-squares CV).

degree Passed to kernelSmooth if y is not NULL (for least-squares CV).

start.bw Numeric vector: initial value for bandwidth search.

Same Logical: use the same bandwidth for all columns of x?

tol Relative tolerance used by the optimiser as the stopping criterion.

try.grid Logical: if true, 10 different bandwidths around the rule-of-thumb one are tried

with multiplier 1.2^(-3:6)

ndeps Numerical-difference epsilon. Puts a lower bound on the result: the estimated

optimal bw cannot be less than this value.

verbose Logical: print out the optimiser return code for diagnostics?

attach.attributes

Logical: if TRUE, returns the output of 'optim()' for diagnostics.

control List: extra arguments to pass to the control-argument list of 'optim'.

bw.rot 9

Details

If y is NULL and only x is supplied, returns the density-cross-validated bandwidth (DCV). If y is supplied, then, returns the least-squares-cross-validated bandwidth (LSCV).

Value

Numeric vector or scalar of the optimal bandwidth.

Examples

```
set.seed(1) # Creating a data set with many duplicates
n.uniq <- 200
n <- 500
inds <- sort(ceiling(runif(n, 0, n.uniq)))</pre>
x.uniq <- sort(rnorm(n.uniq))</pre>
y.uniq \leftarrow 1 + 0.1*x.uniq + sin(x.uniq) + rnorm(n.uniq)
x <- x.uniq[inds]</pre>
y <- y.uniq[inds]</pre>
w \leftarrow 1 + runif(n, 0, 2) \# Relative importance
data.table::setDTthreads(1) # For measuring the pure gains and overhead
RcppParallel::setThreadOptions(numThreads = 1)
bw.grid \leftarrow seq(0.1, 1.3, 0.2)
CV <- LSCV(x, y, bw.grid, weights = w)
bw.init <- bw.grid[which.min(CV)]</pre>
bw.opt \leftarrow bw.CV(x, y, w) # 0.49, very close
g \leftarrow seq(-3.5, 3.5, 0.05)
yhat <- kernelSmooth(x, y, g, w, bw.opt, deduplicate.xout = FALSE)</pre>
oldpar <- par(mfrow = c(2, 1), mar = c(2, 2, 2, 0)+.1)
plot(bw.grid, CV, bty = "n", xlab = "", ylab = "", main = "Cross-validation")
points(bw.opt, LSCV(x, y, bw.opt, w), col = 2, pch = 15)
plot(x.uniq, y.uniq, bty = "n", xlab = "", ylab = "", main = "Optimal fit")
points(g, yhat, pch = 16, col = 2, cex = 0.5)
par(oldpar)
```

bw.rot

Silverman's rule-of-thumb bandwidth

Description

A fail-safe function that would return a nice Silverman-like bandwidth suggestion for data for which the standard deviation might be NA or 0.

```
bw.rot(
    x,
    kernel = c("gaussian", "uniform", "triangular", "epanechnikov", "quartic"),
    na.rm = FALSE,
    robust = TRUE,
```

10 bw.rot

```
discontinuous = FALSE
)
```

Arguments

A numeric vector without non-finite values.

kernel A string character: "gaussian", "uniform", "triangular", "epanechnikov",

or "quartic".

na.rm Logical: should missing values be removed? Setting it to TRUE may cause

issues because variable-wise removal of NAs may return a bandwidth that is

inappropriate for the final data set for which it is suggested.

robust Logical: safeguard against extreme observations? If TRUE, uses min(sd(x)),

IQR(x)/1.34) to estimate the spread.

discontinuous Logical: if the true density is discontinuous (i.e. has jumps), then, the formula

for the optimal bandwidth for density estimation changes.

Details

 $\Sigma = \mathrm{diag}(\sigma_k^2)$ with $\det \Sigma = \prod_k \sigma_k^2$ and $\Sigma^{-1} = \mathrm{diag}(1/\sigma_k^2)$). Then, the formula 4.12 in Silverman (1986) depends only on α , β . $\alpha = \mathrm{diag}(\sigma_k^2)$ (which depend only on the kernel and are fixed for a multivariate normal), and on the L2-norm of the second derivative of the density. The (i, i)th element of the Hessian of multi-variate normal $(\phi(x_1,\ldots,x_d)=\phi(X))$ is $\phi(X)(x_i^2-\sigma_i^2)/\sigma_i^4$.

The rule-of-thumb bandwidth is obtained under the assumption that the true density is multivariate normal with zero covariances (i.e. a diagonal variance-covariance matrix). For details, see (Silverman 1986).

Value

A numeric vector of bandwidths that are a reasonable start optimal non-parametric density estimation of x.

References

Silverman BW (1986). Density estimation for statistics and data analysis. New York: Chapman and Hall.

Examples

```
set.seed(1); bw.rot(stats::rnorm(100)) # Should be 0.3787568 in R version 4.0.4
set.seed(1); bw.rot(matrix(stats::rnorm(500), ncol = 10)) # 0.4737872 ... 0.7089850
```

ctracelr 11

		-
\sim t	race	a I r
L. L	ıau	

Compute empirical likelihood on a trajectory

Description

Compute empirical likelihood on a trajectory

Usage

```
ctracelr(z, ct = NULL, mu0, mu1, N = 5, order = 4, verbose = FALSE, ...)
```

Arguments

z	Passed to [EL1()].
ct	Passed to [EL1()].
mu0	Starting point of trajectory
mu1	End point of trajectory
N	Number of segments into which the path is split (i. e. N+1 steps are used).
order	Passed to [EL1()]. It is highly advised to avoid using NA (no extrapolation) because the lambda search may fail with unmodified logarithm.
verbose	Logical: report iteration progress?
	Passed to [EL1()].
	This function does not accept the starting lambda because it is much faster (3–5 times) to reuse the lambda from the previous iteration.

Value

A matrix with one row at each mean from mu0 to mu1 and a column for each EL return value (except EL weights).

Examples

12 dampedNewton

dampedNewton

Damped Newton optimiser

Description

Damped Newton optimiser

Usage

```
dampedNewton(
  fn,
  par,
  thresh = 1e-30,
  itermax = 100,
  verbose = FALSE,
  alpha = 0.3,
  beta = 0.8,
  backeps = 0
)
```

Arguments

fn	A function that returns a list: f, f', f". If the function takes vector arguments, the dimensions of the list components must be 1, $\dim X$, $\dim X$ x $\dim X$. The function must be (must be twice continuously differentiable at x)
par	Numeric vector: starting point.
thresh	A small scalar: stop when Newton decrement squared falls belowe thresh.
itermax	Maximum iterations. Consider optimisation failed if the maximum is reached.
verbose	Logical: if true, prints the tracing infornation (iteration log). This is a translation of Algorithm 9.5 from (Boyd and Vandenberghe 2004) into C++.
alpha	Back-tracking parameter strictly between 0 and 0.5: acceptance of a decrease in function value by alpha*f of the prediction.
beta	Back-tracking parameter strictly between 0 and 1: reduction of the step size until the stopping criterion is met. 0.1 corresponds to a very crude search, 0.8 corresponds to a less crude search.
backeps	Back-tracking threshold: the search can miss by this much. Consider setting it to 1e-10 if backtracking seems to be failing due to round-off.

Value

A list:

References

Boyd S, Vandenberghe L (2004). Convex Optimization. Cambridge University Press.

DCV 13

Examples

```
f1 <- function(x)
  list(fn = x - log(x), gradient = 1 - 1/x, Hessian = matrix(1/x^2, 1, 1))
optim(2, function(x) f1(x)[["fn"]], gr = function(x) f1(x)[["gradient"]], method = "BFGS")
dampedNewton(f1, 2, verbose = TRUE)

# The minimum of f3 should be roughly at -0.57
f3 <- function(x)
  list(fn = sum(exp(x) + 0.5 * x^2), gradient = exp(x) + x, Hessian = diag(exp(x) + 1))
dampedNewton(f3, seq(0.1, 5, length.out = 11), verbose = TRUE)</pre>
```

DCV

Density cross-validation

Description

Density cross-validation

Usage

```
DCV(
    X,
    bw,
    weights = NULL,
    same = FALSE,
    kernel = "gaussian",
    order = 2,
    PIT = FALSE,
    chunks = 0,
    no.dedup = FALSE
)
```

Arguments

Х

A numeric vector, matrix, or data frame containing observations. For density, the points used to compute the density. For kernel regression, the points corresponding to explanatory variables.

bw

Candidate bandwidth values: scalar, vector, or a matrix (with columns corresponding to columns of x).

weights

A numeric vector of observation weights (typically counts) to perform weighted operations. If null, rep(1, NROW(x)) is used. In all calculations, the total number of observations is assumed to be the sum of weights.

same

Logical: use the same bandwidth for all columns of x?

Note: since DCV requires computing the leave-one-out estimator, repeated observations are combined first; the de-duplication is therefore forced in cross-validation. The only situation where de-duplication can be skipped is passing de-duplicated data sets from outside (e.g. inside optimisers).

kernel	Character describing the desired kernel type. NB: due to limited machine precision, even Gaussian has finite support.
order	An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive everywhere. Orders 4 and 6 produce some negative values, which reduces bias but may hamper density estimation.
PIT	If TRUE, the Probability Integral Transform (PIT) is applied to all columns of x via ecdf in order to map all values into the [0, 1] range. May be an integer vector of indices of columns to which the PIT should be applied.
chunks	Integer: the number of chunks to split the task into (limits RAM usage but increases overhead). \emptyset = auto-select (making sure that no matrix has more than 2^2 elements).
no.dedup	$Logical: if \ TRUE, sets \ deduplicate. \ x \ and \ deduplicate. \ xout \ to \ FALSE \ (short-hand).$

Value

A numeric vector of the same length as bw or nrow(bw).

Examples

```
 set.seed(1) \\ x \leftarrow rlnorm(100); \ x \leftarrow c(x[1], \ x) \quad \# \ x \ with \ 1 \ duplicate \\ bws \leftarrow exp(seq(-3, \ 0.5, \ 0.1)) \\ plot(bws, \ DCV(x, \ bws), \ log = "x", \ bty = "n", \ main = "Density CV")
```

EL

Unified empirical likelihood wrapper

Description

Call EL0(), EL1(), or EuL() through a single interface. If extrapolation is requested, switch to dedicated functions. Anything method-specific goes into EL.args.

```
EL(
    z,
    ct = NULL,
    mu = NULL,
    shift = NULL,
    type = c("auto", "EL1", "EL0", "EuL"),
    chull.fail = c("none", "taylor", "wald", "adjusted", "adjusted2", "balanced"),
    renormalise = FALSE,
    return.weights = FALSE,
    weight.tolerance = NULL,
    verbose = FALSE,
    ...
)
```

Arguments

A numeric vector or a matrix with one data vector per column.
 Numeric count variable with non-negative values that indicates the multiplicity

of observations.

mu Hypothesised mean, default $(0 \dots 0)$ in $R^{\text{ncol}(z)}$.

shift The value to add in the denominator (useful in case there are extra Lagrange

multipliers): $1 + \lambda' Z + shift$.

type Character: one of c("auto", "EL1", "EL0", "EuL"). If "auto", uses "EL1"

for multi-variate data and "EL0" for uni-variate.

chull.fail Character: "none" calls the original EL (which may return -Inf in case of

a convex-hull violation), "taylor" calls [ExEL1()], "wald" calls [ExEL2()], "adjusted" adds one pseudo-observation as in (Chen et al. 2008), "adjusted2" adds one (in 1D) or two (2D+) pseudo-observations with improved coverage rate according to (Liu and Chen 2010), and "balanced" adds two pseudo-

observations according to (Emerson and Owen 2009).

renormalise If FALSE, then uses the total sum of counts as the number of observations, like

in vanilla empirical likelihood, due to formula (2.9) in (Owen 2001), otherwise re-normalises the counts to 1 according to (Cosma et al. 2019) (p. 170, the

topmost formula).

return.weights Logical: if TRUE, returns the empirical probabilities. Default is memory-saving

(FALSE).

weight.tolerance

Weight tolerance for counts to improve numerical stability (defaults to sqrt(.Machine\$double.eps)

times the maximum weight).

verbose Logical: print output diagnostics?

.. Named extra arguments passed to the selected back-end (e.g. order, itermax,

lambda.init, vt, trunc.to, boundary.tolerance, ...).

Value

A list with either the return value of the selected back-end or (for extrapolation methods) at least the logelr list value and extrapolation attributes.

References

Chen J, Variyath AM, Abraham B (2008). "Adjusted empirical likelihood and its properties." *Journal of Computational and Graphical Statistics*, **17**(2), 426–443. doi:10.1198/106186008x321068.

Cosma A, Kostyrka AV, Tripathi G (2019). "Inference in conditional moment restriction models when there is selection due to stratification." In Huynh KP, Jacho-Chavez DT, Tripathi G (eds.), *The Econometrics of Complex Survey Data: Theory and Applications*, 137–171. Emerald Publishing Limited. ISBN 978-1-78756-726-9.

Emerson SC, Owen AB (2009). "Calibration of the empirical likelihood method for a vector mean." *Electronic Journal of Statistics*, **3**, 1161–1192. ISSN 1935-7524, doi:10.1214/09ejs518.

Liu Y, Chen J (2010). "Adjusted empirical likelihood with high-order precision." *The Annals of Statistics*, **38**(3). ISSN 0090-5364, doi:10.1214/09aos750.

Owen AB (2001). Empirical Likelihood. Chapman and Hall/CRC, New York, USA.

Examples

```
# EL0 with extras:
EL(type = "EL0", z = 1:9, mu = 4, boundary.tolerance = 1e-8)
# EL1 with a custom order and iteration cap:
set.seed(1)
x <- cbind(rnorm(30), runif(30)-0.5)</pre>
EL(type = "EL1", z = x, mu = c(0, 0), order = 4, itermax = 50, return.weights = TRUE)
# EuL with vt and truncation:
EL(type = "EuL", z = x, vt = runif(NROW(x)), weight.tolerance = 0.1, trunc.to = 0.1)
# Extrapolated variants
set.seed(1)
EL(type = "EL0", z = 1:9, mu = 12, chull.fail = "taylor", exel.control = list(xlim = c(2, 8)))
EL(type = "EL1", z = 1:9, mu = 12, chull.fail = "wald", exel.control = list(fmax = 10))
x <- matrix(runif(20), ncol = 2)</pre>
EL(x, mu = c(0, 0), chull.fail = "adjusted")
EL(x, mu = c(0, 0), chull.fail = "adjusted2")
EL(x, mu = c(0, 0), chull.fail = "balanced")
```

EL0

Uni-variate empirical likelihood via direct lambda search

Description

Empirical likelihood with counts to solve one-dimensional problems efficiently with Brent's root search algorithm. Conducts an empirical likelihood ratio test of the hypothesis that the mean of z is mu. The names of the elements in the returned list are consistent with the original R code in (Owen 2017).

```
EL0(
    z,
    mu = NULL,
    ct = NULL,
    shift = NULL,
    renormalise = FALSE,
    return.weights = FALSE,
    weight.tolerance = NULL,
    boundary.tolerance = 1e-09,
```

EL0 17

```
trunc.to = 0,
deriv = FALSE,
log.control = list(order = NULL, lower = NULL, upper = NULL),
verbose = FALSE
)
```

Arguments

z A numeric vector containing the observations.

mu Hypothesised mean of z in the moment condition.

ct Numeric count variable with non-negative values that indicates the multiplic-

ity of observations. Can be fractional. Very small counts below the threshold

weight.tolerance are zeroed.

shift The value to add in the denominator (useful in case there are extra Lagrange

multipliers): $1 + \lambda' Z + shift$.

renormalise If FALSE, then uses the total sum of counts as the number of observations, like

in vanilla empirical likelihood, due to formula (2.9) in (Owen 2001), otherwise re-normalises the counts to 1 according to (Cosma et al. 2019) (see p. 170, the

topmost formula).

return.weights Logical: if TRUE, returns the empirical probabilities. Default is memory-saving

(FALSE).

weight.tolerance

Weight tolerance for counts to improve numerical stability (defaults to sqrt(.Machine\$double.eps)

times the maximum weight).

boundary.tolerance

Relative tolerance for determining when lambda is not an interior solution be-

cause it is too close to the boundary. Unit: fraction of the feasble bracket length.

trunc.to Counts under weight.tolerance will be set to this value. In most cases, set-

ting this to 0 (default) or weight.tolerance is a viable solution for the zero-

denominator problem.

deriv Logical: if TRUE, computes and returns the first two derivatives of log-ELR w.r.t.

mu.

log.control List of arguments passed to [logTaylor()].

verbose Logical: if TRUE, prints warnings.

Details

This function provides the core functionality for univariate empirical likelihood. The technical details is given in (Cosma et al. 2019), although the algorithm used in that paper is slower than the one provided by this function.

Since we know that the EL probabilities belong to (0, 1), the interval (bracket) for λ search can be determined in the spirit of formula (2.9) from (Owen 2001). Let $z_i^* := z_i - \mu$ be the recentred observations.

$$p_i = c_i/N \cdot (1 + \lambda z_i^* + s)^{-1}$$

The probabilities are bounded from above: $p_i < 1$ for all i, therefore,

$$c_i/N \cdot (1 + \lambda z_i^* + s)^{-1} < 1$$

$$c_i/N - 1 - s < \lambda z_i^*$$

Two cases: either $z_i^* < 0$, or $z_i^* > 0$ (cases with $z_i^* = 0$ are trivially excluded because they do not affect the EL). Then,

$$(c_i/N - 1 - s)/z_i^* > \lambda, \ \forall i : z_i^* < 0$$

$$(c_i/N - 1 - s)/z_i^* < \lambda, \ \forall i : z_i^* > 0$$

which defines the search bracket:

$$\lambda_{\min} := \max_{i:z_i^*>0} (c_i/N - 1 - s)/z_i^*$$

$$\lambda_{\max} := \min_{i:z_i^* < 0} (c_i/N - 1 - s)/z_i^*$$

$$\lambda_{\min} < \lambda < \lambda_{\max}$$

(This derivation contains s, which is the extra shift that extends the function to allow mixed conditional and unconditional estimation; Owen's textbook formula corresponds to s = 0.)

The actual tolerance of the lambda search in brentZero is $2|\lambda_{\max}|\epsilon_m + \text{tol}/2$, where tol is .Machine\$double.eps and ϵ_m is .Machine\$double.eps.

The sum of log-weights is maximised without Taylor expansion, forcing mu to be inside the convex hull of z. If a violation is happening, consider using log.control(order = 4) or switching to Euclidean likelihood via [EuL()].

Value

A list with the following elements:

logelr Logarithm of the empirical likelihood ratio.

lam The Lagrange multiplier.

wts Observation weights/probabilities (of the same length as z).

converged TRUE if the algorithm converged, FALSE otherwise (usually means that mu is not within the range of z, i.e. the one-dimensional convex hull of z).

iter The number of iterations used (from brentZero).

bracket The admissible interval for lambda (that is, yielding weights between 0 and 1).

estim.prec The approximate estimated precision of lambda (from brentZero).

f.root The value of the derivative of the objective function w.r.t. lambda at the root (from brentZero). Values > sqrt(.Machine\$double.eps) indicate convergence problems.

deriv If requested, the first two derivatives of log-ELR w.r.t. mu

exitcode An integer indicating the reason of termination.

message Character string describing the optimisation termination status.

EL0 19

References

Cosma A, Kostyrka AV, Tripathi G (2019). "Inference in conditional moment restriction models when there is selection due to stratification." In Huynh KP, Jacho-Chavez DT, Tripathi G (eds.), *The Econometrics of Complex Survey Data: Theory and Applications*, 137–171. Emerald Publishing Limited. ISBN 978-1-78756-726-9.

Owen AB (2001). Empirical Likelihood. Chapman and Hall/CRC, New York, USA.

Owen AB (2017). A weighted self-concordant optimization for empirical likelihood. https://artowen.su.domains/empirical/countnotes.pdf.

See Also

[EL1()] for multi-variate EL based on minimisation w.r.t. lambda.

Examples

```
# Figure 2.4 from Owen (2001) -- with a slightly different data point
earth <- c(
  5.5, 5.61, 4.88, 5.07, 5.26, 5.55, 5.36, 5.29, 5.58, 5.65, 5.57, 5.53, 5.62, 5.29,
  5.44, 5.34, 5.79, 5.1, 5.27, 5.39, 5.42, 5.47, 5.63, 5.34, 5.46, 5.3, 5.75, 5.68, 5.85
# Root searching (EL0) is faster than minimisation w.r.t. lambda (EL1)
set.seed(1)
system.time(r0 <- replicate(40, EL0(sample(earth, replace = TRUE), mu = 5.517)))
set.seed(1)
system.time(r1 <- replicate(40, EL1(sample(earth, replace = TRUE), mu = 5.517)))
plot(apply(r0, 2, "[[", "logelr"), apply(r1, 2, "[[", "logelr") - apply(r0, 2, "[[", "logelr"),
     bty = "n", xlab = "log(ELR) computed via dampened Newthon method",
     main = "Discrepancy between EL1 and EL0", ylab = "")
abline(h = 0, lty = 2)
# Handling the convex hull violation differently
EL0(1:9)
EL0(1:9, log.control = list(order = 2)) # Warning + huge lambda
EL0(1:9, log.control = list(order = 4)) # Warning + huge lambda
# Warning: depending on the compiler, the discrepancy between EL and EL0
# can be one million (1) times larger than the machine epsilon despite both of them
# being written in pure R
# The results from Apple clang-1400.0.29.202 and Fortran GCC 12.2.0 are different from
# those obtained under Ubuntu 22.04.4 + GCC 11.4.0-1ubuntu1~22.04,
# Arch Linux 6.6.21 + GCC 14.1.1, and Windows Server 2022 + GCC 13.2.0
out0 <- EL0(earth, mu = 5.517, return.weights = TRUE)[1:4]
out1 <- EL1(earth, mu = 5.517, return.weights = TRUE)[1:4]
print(c(out0$lam, out1$lam), 16)
# Value of lambda
                                                 EL0
                                                                     EL1
# aarch64-apple-darwin20
                                  -1.5631313957????? -1.5631313955?????
# Windows, Ubuntu, Arch
                                  -1.563131395492627 -1.563131395492627
```

Self-concordant multi-variate empirical likelihood with counts

Description

EL1

Implements the empirical-likelihood-ratio test for the mean of the coordinates of z (with the hypothesised value mu). The counts need not be integer; in the context of local likelihoods, they can be kernel observation weights.

Usage

```
EL1(
  z,
 mu = NULL,
  ct = NULL,
  shift = NULL,
  lambda.init = NULL,
  renormalise = FALSE,
  return.weights = FALSE,
  lower = NULL,
  upper = NULL,
  order = NA,
  weight.tolerance = NULL,
  deriv = FALSE,
  thresh = 1e-30,
  itermax = 100L,
  verbose = FALSE,
  alpha = 0.3,
  beta = 0.8,
  backeps = 0,
  gradtol = 1e-12,
  steptol = 1e-12,
  ftol = 1e-14,
  stallmax = 5
)
```

Arguments

Z	A numeric vector or a matrix with one data vector per column.
mu	Hypothesised mean, default (0 0) in $R^{\operatorname{ncol}(z)}$.
ct	Numeric count variable with non-negative values that indicates the multiplicity of observations.
shift	The value to add in the denominator (useful in case there are extra Lagrange multipliers): $1+\lambda'Z+shift$.
lambda.init	Starting lambda, default (00) . Improves speed and accuracy in sequential problems if supplied from the previous iteration.

EL1 21

renormalise If FALSE, then uses the total sum of counts as the number of observations, like

in vanilla empirical likelihood, due to formula (2.9) in (Owen 2001), otherwise re-normalises the counts to 1 according to (Cosma et al. 2019) (p. 170, the

topmost formula).

return.weights Logical: if TRUE, returns the empirical probabilities. Default is memory-saving

(FALSE).

lower Lower cut-off for [logTaylor()], default 1/NROW(z).

upper Upper cut-off for [logTaylor()], default Inf.

order Positive even integer such that the Taylor approximation of this order to $\log x$ is

self-concordant; usually 4 or 2. Passed to [logTaylor()].

weight.tolerance

Weight tolerance for counts to improve numerical stability (defaults to sqrt(.Machine\$double.eps)

times the maximum weight).

deriv Logical: if TRUE, computes and returns the first two directional derivatives of

log-ELR w.r.t. mu in the direction of the hypothesised value.

thresh Target tolerance on the squared Newton decrement: loop stops when decr^2 <=

thresh. (If verbose is TRUE, decrement itself is printed.)

itermax Maximum number of outer iterations of the damped Newton method (seems

ample).

verbose Logical: print output diagnostics?

alpha Backtracking line search Armijo parameter: acceptance of a decrease in function

value by αf of the prediction based on the linear extrapolation. Smaller makes

acceptance easier.

beta Backtracking step shrinkage factor in [0, 1]. 0.1 corresponds to a very crude

search, 0.8 corresponds to a less crude search.

backeps Backtrack threshold, a small slack added to Armijo RHS: the search can miss

by this much. Accept if $f(x+tp) \leq f(x) + \alpha t g' p + \text{backeps}$. Consider setting

it to 1e-10 if backtracking seems to be failing due to round-off.

gradtol Gradient tolerance: stop if ||g|| <= gradtol.

steptol Step tolerance: stop if the relative size is tiny: $||x^2-x^1||/\max(1, ||x^2||) < \infty$

ftol.

ftol Function change tolerance: stop if the relative function-value change is less than

ftol.

stallmax Stop if both rel_step <= steptol and rel_f <= ftol hold for this many con-

secutive iterations.

Details

Negative weights are not allowed. They could be useful in some applications, but they can destroy convexity or even boundedness. They also make the Newton step fail to be of least squares type.

This function relies on the improved computational strategy for the empirical likelihood. The search of the lambda multipliers is carried out via a dampened Newton method with guaranteed convergence owing to the fact that the log-likelihood is replaced by its Taylor approximation of any desired order (default: 4, the minimum value that ensures self-concordance).

Implementation note: the EL solver also guarantees a descent direction; if the Newton step is nondescent or non-finite, it falls back to steepest descent (negative gradient), which keeps the line search well-behaved.

Tweak alpha and beta with extreme caution. See (Boyd and Vandenberghe 2004), pp. 464–466 for details. It is necessary that 0 < alpha < 1/2 and 0 < beta < 1. alpha = 0.3 seems better than 0.01 on some 2-dimensional test data (sometimes fewer iterations).

The argument names, except for lambda.init, are matching the original names in Art B. Owen's implementation. The highly optimised one-dimensional counterpart, [EL0()], is designed to return a faster and a more accurate solution in the one-dimensional case.

Value

A list with the following values:

logelr Log of empirical likelihood ratio (equal to 0 if the hypothesised mean is equal to the sample mean)

lam Vector of Lagrange multipliers

wts Observation weights/probabilities (vector of length n)

deriv Length-2 vector: directional first and second derivatives along the ray toward mu (if deriv = TRUE)

converged TRUE if algorithm converged. FALSE usually means that mu is not in the convex hull of the data. Then, a very small likelihood is returned (instead of zero).

iter Number of iterations taken.

ndec Newton decrement (see Boyd & Vandenberghe).

gradnorm Norm of the gradient of log empirical likelihood.

Source

This original code was written for (Owen 2013) and [published online](https://artowen.su.domains/empirical/) by Art B. Owen (March 2015, February 2017). The present version was rewritten in Rcpp and slightly reworked to contain fewer inner functions and loops.

References

Boyd S, Vandenberghe L (2004). Convex Optimization. Cambridge University Press.

Cosma A, Kostyrka AV, Tripathi G (2019). "Inference in conditional moment restriction models when there is selection due to stratification." In Huynh KP, Jacho-Chavez DT, Tripathi G (eds.), *The Econometrics of Complex Survey Data: Theory and Applications*, 137–171. Emerald Publishing Limited. ISBN 978-1-78756-726-9.

Owen AB (2001). Empirical Likelihood. Chapman and Hall/CRC, New York, USA.

Owen AB (2013). "Self-concordance for empirical likelihood." *Canadian Journal of Statistics*, **41**(3), 387–397.

EuL 23

See Also

```
[logTaylor()], [EL0()]
```

Examples

```
earth <- c(
  5.5, 5.61, 4.88, 5.07, 5.26, 5.55, 5.36, 5.29, 5.58, 5.65, 5.57, 5.53, 5.62, 5.29,
  5.44, 5.34, 5.79, 5.1, 5.27, 5.39, 5.42, 5.47, 5.63, 5.34, 5.46, 5.3, 5.75, 5.68, 5.85
EL1(earth, mu = 5.517, verbose = TRUE) # 5.517 is the modern accepted value
# Linear regression through empirical likelihood
coef.lm <- coef(lm(mpg ~ hp + am, data = mtcars))</pre>
xmat <- cbind(1, as.matrix(mtcars[, c("hp", "am")]))</pre>
vvec <- mtcars$mpg</pre>
foc.lm <- function(par, x, y) { # The sample average of this
  resid <- y - drop(x \%*% par) # must be 0
  resid * x
minusEL <- function(par) -EL1(foc.lm(par, xmat, yvec), itermax = 10)$logelr
coef.el \leftarrow optim(c(26, -0.06, 5.3), minusEL, control = list(maxit = 100))par
abs(coef.el - coef.lm) / coef.lm # Relative difference
# Likelihood ratio testing without any variance estimation
# Define the profile empirical likelihood for the coefficient on am
minusPEL <- function(par.free, par.am)</pre>
  -EL1(foc.lm(c(par.free, par.am), xmat, yvec), itermax = 20)$logelr
# Constrained maximisation assuming that the coef on par.am is 3.14
coef.el.constr <- optim(coef.el[1:2], minusPEL, par.am = 3.14)$par</pre>
print(-2 * EL1(foc.lm(c(coef.el.constr, 3.14), xmat, yvec))$logelr)
# Exceeds the critical value qchisq(0.95, df = 1)
```

EuL

Multi-variate Euclidean likelihood with analytical solution

Description

Multi-variate Euclidean likelihood with analytical solution

```
EuL(
   z,
   mu = NULL,
   ct = NULL,
   vt = NULL,
   shift = NULL,
   weight.tolerance = NULL,
   trunc.to = 0,
```

24 EuL

```
renormalise = TRUE,
return.weights = FALSE,
verbose = FALSE
)
```

Arguments

Z	Numeric data vector.
mu	Hypothesised mean of z in the moment condition.
ct	Numeric count variable with non-negative values that indicates the multiplicity of observations. Can be fractional. Very small counts below the threshold weight.tolerance are zeroed.
vt	Numeric vector: non-negative variance weights for estimating the conditional variance of z. Probabilities are returned only for the observations where $vt > 0$.
shift	The value to add in the denominator (useful in case there are extra Lagrange multipliers): $1+\lambda'Z+shift.$

weight.tolerance

Weight tolerance for counts to improve numerical stability (defaults to sqrt(.Machine\$double.eps) times the maximum weight).

times the maximum weigh

trunc.to Counts under weight.tolerance will be set to this value. In most cases, setting this to 0 (default) or weight.tolerance is a viable solution for the zero-

denominator problem.

renormalise If FALSE, then uses the total sum of counts as the number of observations, like

in vanilla empirical likelihood, due to formula (2.9) in (Owen 2001), otherwise re-normalises the counts to 1 according to (Cosma et al. 2019) (see p. 170, the

topmost formula).

return.weights Logical: if TRUE, returns the empirical probabilities. Default is memory-saving

(FALSE).

verbose Logical: if TRUE, prints warnings.

Details

The arguments ct and vt are responsible for smoothing of the moment function and conditional variance, respectively. The objective function is

$$\min_{p_{ij}} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{I}_{ij} \frac{(p_{ij} - c_{ij})^2}{2v_{ij}}$$

, where \mathbb{I}_{ij} is 1 if $v_{ij} \neq 0$.

This estimator is numerically equivalent to the Sieve Minimum Distance estimator of (Ai and Chen 2003) with kernel sieves, but this interface provides more flexibility through the two sets of weights. If ct and vt are not provided, their default value is set to 1, and the resulting estimator is the CUE-GMM estimator: a quadratic form in which the unconditional mean vector is weighted by the inverse of the unconditional variance.

ExEL1 25

Value

A list with the same structure as that in [EL1()].

References

Ai C, Chen X (2003). "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions." *Econometrica*, **71**(6), 1795–1843. ISSN 1468-0262, doi:10.1111/14680262.00470.

Cosma A, Kostyrka AV, Tripathi G (2019). "Inference in conditional moment restriction models when there is selection due to stratification." In Huynh KP, Jacho-Chavez DT, Tripathi G (eds.), *The Econometrics of Complex Survey Data: Theory and Applications*, 137–171. Emerald Publishing Limited. ISBN 978-1-78756-726-9.

Owen AB (2001). Empirical Likelihood. Chapman and Hall/CRC, New York, USA.

See Also

[EL1()]

Examples

```
set.seed(1)
z <- cbind(rnorm(10), runif(10))
colMeans(z)
a <- EuL(z, return.weights = TRUE)
a$wts
sum(a$wts) # Unity
colSums(a$wts * z) # Zero</pre>
```

ExEL1

Extrapolated EL of the first kind (Taylor expansion)

Description

Extrapolated EL of the first kind (Taylor expansion)

```
ExEL1(
    z,
    mu,
    type = c("auto", "EL0", "EL1"),
    exel.control = list(xlim = "auto", fmax = NA, p = 0.999, df = NA),
    ...
)
ExEL2(
```

26 ExEL1

```
z,
mu,
type = c("auto", "EL0", "EL1"),
exel.control = list(xlim = "auto", fmax = NA, p = 0.999, df = NA),
...
)
```

Arguments

z Passed to EL0/EL1.

mu Passed to EL0/EL1.

type If "EL0", uses uni-variate [EL0()] for calculations; same for "EL1".

exel.control A list with the following elements: xlim – if "auto", uses a quick boundary detection, otherwise should be a length-two numeric vector; fmax – maximum allowed chi-squared statistic value for a thorough root search with probability p and degrees of freedom df.

... Also passed to EL0/EL1.

Value

A numeric vector of log-ELR statistic of the same length as mu.

Examples

```
z < -c(1, 4, 5, 5, 6, 6)
ExEL1(z, 0.5, ct = 1:6)
xseq < - seq(0, 7, 0.2)
plot(xseq, -2*ExEL1(z, mu = xseq, ct = 1:6))
abline(v = c(1.2, 5.8), h = qchisq(0.99, 1), lty = 3)
# User-defined 'good' interval
ctrl0 \leftarrow list(xlim = c(-1, 8)); ctrl1 \leftarrow list(xlim = c(2.5, 5.5))
plot(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl0), bty = "n")
lines(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl1), col = 3)
abline(v = ctrl1$xlim, lty = 3)
# Root searching
ctrl2 \leftarrow list(fmax = qchisq(0.99, 1))
plot(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl0), bty = "n")
lines(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl2), col = 3)
abline(h = qchisq(0.99, 1), lty = 3)
# With EL1 vs. EL0 -- very little discrepancy
xseq <- seq(0.8, 1.4, length.out = 101)
plot(xseq, -2*ExEL1(z, xseq, ct = 1:6, exel.control = ctrl0), bty = "n")
lines(xseq, -2*ExEL1(z, xseq, ct = 1:6, type = "EL0"), col = 3)
lines(xseq, -2*ExEL1(z, xseq, ct = 1:6, type = "EL1"), col = 2, lty = 2, lwd = 2)
# Comparing ExEL2 vs ExEL1 with bridges containing exp(x)
```

getSELWeights 27

```
z <- -4:4
ct <- 9:1
xseq \leftarrow seq(-7, 10.5, 0.1)
x1 <- range(xseq)</pre>
a0 \leftarrow ExEL1(z, mu = xseq, ct = ct, exel.control = list(xlim = c(-11, 11)))
a1 <- ExEL1(z, mu = xseq, ct = ct)
a2 \leftarrow ExEL2(z, mu = xseq, ct = ct)
v1 <- attr(a1, "xlim")</pre>
v2 <- c(attr(a2, "bridge.left")[c("x1", "x2")], attr(a2, "bridge.right")[c("x1", "x2")])
plot(xseq, a0, ylim = c(-300, 0), xlim = xl, main = "ExEL splices",
  bty = "n", xlab = "mu", ylab = "logELR(mu)")
lines(xseq, a1, col = 2, lwd = 2)
lines(xseq, a2, col = 4, lwd = 2)
abline(v = v2, lty = 3)
lines(xseq, attr(a2, "parabola.coef") * (xseq - attr(a2, "parabola.centre"))^2, lty = 2)
legend("topright", c("Taylor", "Wald", "ax^2"),
       col = c(2, 4, 1), lwd = c(2, 2, 1), lty = c(1, 1, 2))
dx \leftarrow diff(xseq[1:2])
plot(xseq[-1], diff(a1)/dx, col = 2, type = "l", lwd = 2,
  main = "Derivatives of ExEL splice", bty = "n", ylim = c(-100, 100),
  xlab = "mu", ylab = "d/dmu logELR(mu)")
lines(xseq[-1], diff(a2)/dx, col = 4, lwd = 2)
abline(v = c(v1, v2), lty = 3, col = "#00000055")
legend("topright", c("Taylor", "Wald"), col = c(2, 4), lwd = 2)
# Multivariate extension
set.seed(1)
X <- cbind(rchisq(30, 3), rchisq(30, 3))</pre>
ct <- runif(30)
-2*ExEL1(X, mu = c(-1, -1), ct = ct) # Outside the hull
-2*ExEL2(X, mu = c(-1, -1), ct = ct)
```

getSELWeights

Construct memory-efficient weights for estimation

Description

This function constructs SEL weights with appropriate trimming for numerical stability and optional renormalisation so that the sum of the weights be unity

Usage

```
getSELWeights(x, bw = NULL, ..., trim = NULL, renormalise = TRUE)
```

Arguments

x A numeric vector (with many close-to-zero elements).

bw A numeric scalar or a vector passed to 'kernelWeights'.

28 kernelDensity

... Other arguments pased to kernelWeights.

trim A trimming function that returns a threshold value below which the weights are

ignored. In common applications, this function should tend to 0 as the length of

x increases.

renormalise Logical; passed to 'sparseVectorToList'.

Value

A list with indices of large enough elements.

Examples

```
getSELWeights(1:5, bw = 2, kernel = "triangular")
```

kernelDensity

Kernel density estimation

Description

Kernel density estimation

Usage

```
kernelDensity(
    x,
    xout = NULL,
    weights = NULL,
    bw = NULL,
    kernel = c("gaussian", "uniform", "triangular", "epanechnikov", "quartic"),
    order = 2,
    convolution = FALSE,
    chunks = 0,
    PIT = FALSE,
    deduplicate.x = TRUE,
    deduplicate.xout = TRUE,
    no.dedup = FALSE,
    return.grid = FALSE
)
```

Arguments

Х

A numeric vector, matrix, or data frame containing observations. For density, the points used to compute the density. For kernel regression, the points corresponding to explanatory variables.

xout

A vector or a matrix of data points with ncol(xout) = ncol(x) at which the user desires to compute the weights, density, or predictions. In other words, this is the requested evaluation grid. If NULL, then x itself is used as the grid.

kernelDensity 29

weights A numeric vector of observation weights (typically counts) to perform weighted

operations. If null, $\operatorname{rep}(1, \operatorname{NROW}(x))$ is used. In all calculations, the total num-

ber of observations is assumed to be the sum of weights.

bw Bandwidth for the kernel: a scalar or a vector of the same length as ncol(x).

Since it is the crucial parameter in many applications, a warning is thrown if the bandwidth is not supplied, and then, Silverman's rule of thumb (via bw.row())

is applied to *every dimension* of x.

kernel Character describing the desired kernel type. NB: due to limited machine preci-

sion, even Gaussian has finite support.

order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive

everywhere. Orders 4 and 6 produce some negative values, which reduces bias

but may hamper density estimation.

convolution Logical: if FALSE, returns the usual kernel. If TRUE, returns the convolution

kernel that is used in density cross-validation.

chunks Integer: the number of chunks to split the task into (limits RAM usage but in-

creases overhead). 0 = auto-select (making sure that no matrix has more than

2^27 elements).

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of

x via ecdf in order to map all values into the [0, 1] range. May be an integer

vector of indices of columns to which the PIT should be applied.

deduplicate.x Logical: if TRUE, full duplicates in the input x and y are counted and trans-

formed into weights; subsetting indices to reconstruct the duplicated data set

from the unique one are also returned.

deduplicate.xout

Logical: if TRUE, full duplicates in the input xout are counted; subsetting in-

dices to reconstruct the duplicated data set from the unique one are returned.

no.dedup Logical: if TRUE, sets deduplicate.x and deduplicate.xout to FALSE (short-

hand).

return.grid Logical: if TRUE, returns xout and appends the estimated density as the last

column.

The number of chunks for kernel density and regression estimation is chosen in such a manner that the number of elements in the internal weight matrix should not exceed $2^{27}=1.3\cdot 10^8$, which caps RAM use (64 bits = 8 bytes per element) at 1 GB. Larger matrices are processed in parallel in chunks of size at most $2^{26}=6.7\cdot 10^7$ elements. The number of threads is 4 by default, which can be changed by RcppParallel::setThreadOptions(numThreads = 8) or

something similar.

Value

A vector of density estimates evaluated at the grid points or, if return.grid, a matrix with the density in the last column.

Examples

set.seed(1)

```
x \leftarrow sort(rt(10000, df = 5)) # Observed values
g \leftarrow seq(-6, 6, 0.05) \# Grid for evaluation
d2 <- kernelDensity(x, g, bw = 0.3, kernel = "epanechnikov", no.dedup = TRUE)
d4 <- kernelDensity(x, g, bw = 0.4, kernel = "quartic", order = 4, no.dedup = TRUE)
plot(g, d2, ylim = range(0, d2, d4), type = "1"); lines(g, d4, col = 2)
# De-duplication facilities for faster operations
set.seed(1) # Creating a data set with many duplicates
n.uniq <- 1000
n <- 4000
inds <- ceiling(runif(n, 0, n.uniq))</pre>
x.uniq <- matrix(rnorm(n.uniq*10), ncol = 10)</pre>
x <- x.uniq[inds, ]</pre>
xout <- x.uniq[ceiling(runif(n.uniq*3, 0, n.uniq)), ]</pre>
w <- runif(n)</pre>
data.table::setDTthreads(1) # For measuring the pure gains and overhead
RcppParallel::setThreadOptions(numThreads = 1)
kd1 \leftarrow kernelDensity(x, xout, w, bw = 0.5)
kd2 <- kernelDensity(x, xout, w, bw = 0.5, no.dedup = TRUE)
stat1 <- attr(kd1, "duplicate.stats")</pre>
stat2 <- attr(kd2, "duplicate.stats")</pre>
print(stat1[3:5]) # De-duplication time -- worth it
print(stat2[3:5]) # Without de-duplication, slower
unname(prod((1 - stat1[1:2])) / (stat1[5] / stat2[5])) # > 1 = better time
\# savings than expected, < 1 = worse time savings than expected
all.equal(as.numeric(kd1), as.numeric(kd2))
max(abs(kd1 - kd2)) # Should be around machine epsilon or less
```

kernelDiscreteDensitySmooth

Density and/or kernel regression estimator with conditioning on discrete variables

Description

Density and/or kernel regression estimator with conditioning on discrete variables

Usage

```
kernelDiscreteDensitySmooth(x, y = NULL, compact = FALSE, fun = mean)
```

Arguments

X	A vector or a matrix/data frame of discrete explanatory variables (exogenous).
	Non-integer values are fine because the data are split into bins defined by inter-
	actions of these variables.
У	Optional: a vector of dependent variable values.
compact	Logical: return unique values instead of full data with repeated observations?
fun	A function that computes a statistic of y inside every category defined by x.

kernelFun 31

Value

A list with x, density estimator (fhat) and, if y was provided, regression estimate.

Examples

```
set.seed(1)
x <- sort(rnorm(1000))
p <- 0.5*pnorm(x) + 0.25 # Propensity score
d <- as.numeric(runif(1000) < p)
# g = discrete version of x for binning
g <- as.numeric(as.character(cut(x, -4:4, labels = -4:3+0.5)))
dhat.x <- kernelSmooth(x = x, y = d, bw = 0.4, no.dedup = TRUE)
dhat.g <- kernelDiscreteDensitySmooth(x = g, y = d)
dhat.comp <- kernelDiscreteDensitySmooth(g, d, compact = TRUE)
plot(x, p, ylim = c(0, 1), bty = "n", type = "1", lty = 2)
points(x, dhat.x, col = "#00000044")
points(dhat.comp, col = 2, pch = 16, cex = 2)
lines(dhat.comp$x, dhat.comp$fhat, col = 4, pch = 16, lty = 3)</pre>
```

kernelFun

Basic univatiate kernel functions

Description

Computes 5 most popular kernel functions of orders 2 and 4 with the potential of returning an analytical convolution kernel for density cross-validation. These kernels appear in (Silverman 1986).

Usage

```
kernelFun(
    x,
    kernel = c("gaussian", "uniform", "triangular", "epanechnikov", "quartic"),
    order = c(2, 4),
    convolution = FALSE
)
```

Arguments

A numeric vector of values at which to compute the kernel function. Kernel Kernel type: uniform, Epanechnikov, triangular, quartic, or Gaussian. Kernel order. 2nd-order kernels are always non-negative. *k*-th-order kernels have all moments from 1 to (k-1) equal to zero, which is achieved by having some negative values. $\int_{-\infty}^{+\infty} x^2 k(x) = \sigma_k^2 = 1$ This is useful because in this case, the constant k_2 in formulæ 3.12 and 3.21 from Silverman (1986) is equal to 1.

convolution Logical: return the convolution kernel? (Useful for density cross-validation.)

32 kernelFun

Details

The kernel functions take non-zero values on [-1,1], except for the Gaussian one, which is supposed to have full support, but due to the rapid decay, is indistinguishable from machine epsilon outside [-8.2924, 8.2924].

Value

A numeric vector of the same length as input.

References

Silverman BW (1986). Density estimation for statistics and data analysis. New York: Chapman and Hall.

Examples

```
ks <- c("uniform", "triangular", "epanechnikov", "quartic", "gaussian"); names(ks) <- ks
os \leftarrow c(2, 4); names(os) \leftarrow paste0("o", os)
cols <- c("#000000CC", "#0000CCCC", "#CC0000CC", "#00AA00CC", "#BB8800CC")
put.legend <- function() legend("topright", legend = ks, lty = 1, col = cols, bty = "n")</pre>
xout <- seq(-4, 4, length.out = 301)
plot(NULL, NULL, xlim = range(xout), ylim = c(0, 1.1),
  xlab = "", ylab = "", main = "Unscaled kernels", bty = "n"); put.legend()
for (i in 1:5) lines(xout, kernelFun(xout, kernel = ks[i]), col = cols[i])
oldpar \leftarrow par(mfrow = c(1, 2))
plot(NULL, NULL, xlim = range(xout), ylim = c(-0.1, 0.8), xlab = "", ylab = "",
  main = "4th-order kernels", bty = "n"); put.legend()
for (i in 1:5) lines(xout, kernelFun(xout, kernel = ks[i], order = 4), col = cols[i])
par(mfrow = c(1, 1))
plot(NULL, NULL, xlim = range(xout), ylim = c(-0.25, 1.4), xlab = "", ylab = "",
  main = "Convolution kernels", bty = "n"); put.legend()
for (i in 1:5) {
  for (j in 1:2) lines(xout, kernelFun(xout, kernel = ks[i], order = os[j],
  convolution = TRUE), col = cols[i], lty = j)
}; legend("topleft", c("2nd order", "4th order"), lty = 1:2, bty = "n")
par(oldpar)
# All kernels integrate to correct values; we compute the moments
mom <- Vectorize(function(k, o, m, c) integrate(function(x) x^m * kernelFun(x, k, o,</pre>
  convolution = c), lower = -Inf, upper = Inf)$value)
for (m in 0:4) {
  cat("\nComputing integrals of x^n, m, " * f(x). \nSimple unscaled kernel:\n", sep = "")
  print(round(outer(os, ks, function(o, k) mom(k, o, m = m, c = FALSE)), 4))
  cat("Convolution kernel:\n")
  print(round(outer(os, ks, function(o, k) mom(k, o, m = m, c = TRUE)), 4))
}
```

kernelMixedDensity 33

kernel Mixed Density

Density with conditioning on discrete and continuous variables

Description

Density with conditioning on discrete and continuous variables

Usage

```
kernelMixedDensity(
    x,
    by,
    xout = NULL,
    byout = NULL,
    weights = NULL,
    parallel = FALSE,
    cores = 1,
    preschedule = TRUE,
    ...
)
```

Arguments

Х	A numeric vector, matrix, or data frame containing observations. For density, the points used to compute the density. For kernel regression, the points corresponding to explanatory variables.
by	A variable containing unique identifiers of discrete categories.
xout	A vector or a matrix of data points with $ncol(xout) = ncol(x)$ at which the user desires to compute the weights, density, or predictions. In other words, this is the requested evaluation grid. If NULL, then x itself is used as the grid.
byout	A variable containing unique identifiers of discrete categories for the output grid (same points as xout)
weights	A numeric vector of observation weights (typically counts) to perform weighted operations. If null, $rep(1, NROW(x))$ is used. In all calculations, the total number of observations is assumed to be the sum of weights.
parallel	Logical: if TRUE, parallelises the calculation over the unique values of by. At this moment, supports only parallel::mclapply (therefore, will not work on Windows).
cores	Integer: the number of CPU cores to use. High core count = high RAM usage. If the number of unique values of 'by' is less than the number of cores requested, then, only length(unique(by)) cores are used.
preschedule	Logical: passed as mc.preschedule to mclapply.
	Passed to kernelDensity.

34 kernelMixedSmooth

Value

A numeric vector of the density estimate of the same length as nrow(xout).

Examples

```
# Estimating 3 densities on something like a panel
set.seed(1)
n <- 200
x \leftarrow c(rnorm(n), rchisq(n, 4)/4, rexp(n, 1))
by <- rep(1:3, each = n)
xgrid <- seq(-3, 6, 0.1)
out <- expand.grid(x = xgrid, by = 1:3)
fhat <- kernelMixedDensity(x = x, xout = out$x, by = by, byout = out$by)
plot(xgrid, dnorm(xgrid)/3, type = "1", bty = "n", lty = 2, ylim = c(0, 0.35),
     xlab = "", ylab = "Density")
lines(xgrid, dchisq(xgrid*4, 4)*4/3, lty = 2, col = 2)
lines(xgrid, dexp(xgrid, 1)/3, lty = 2, col = 3)
for (i in 1:3) {
  lines(xgrid, fhat[out$by == i], col = i, lwd = 2)
  rug(x[by == i], col = i)
legend("top", c("00", "10", "01", "11"), col = 2:5, lwd = 2)
```

kernelMixedSmooth

Smoothing with conditioning on discrete and continuous variables

Description

Smoothing with conditioning on discrete and continuous variables

```
kernelMixedSmooth(
    x,
    y,
    by,
    xout = NULL,
    byout = NULL,
    weights = NULL,
    parallel = FALSE,
    cores = 1,
    preschedule = TRUE,
    ...
)
```

kernelMixedSmooth 35

Arguments

X	A numeric vector, matrix, or data frame containing observations. For density, the points used to compute the density. For kernel regression, the points corresponding to explanatory variables.
у	A numeric vector of dependent variable values.
by	A variable containing unique identifiers of discrete categories.
xout	A vector or a matrix of data points with $ncol(xout) = ncol(x)$ at which the user desires to compute the weights, density, or predictions. In other words, this is the requested evaluation grid. If NULL, then x itself is used as the grid.
byout	A variable containing unique identifiers of discrete categories for the output grid (same points as xout)
weights	A numeric vector of observation weights (typically counts) to perform weighted operations. If null, rep(1, NROW(x)) is used. In all calculations, the total number of observations is assumed to be the sum of weights.
parallel	Logical: if TRUE, parallelises the calculation over the unique values of by. At this moment, supports only parallel::mclapply (therefore, will not work on Windows).
cores	Integer: the number of CPU cores to use. High core count = high RAM usage. If the number of unique values of 'by' is less than the number of cores requested, then, only length(unique(by)) cores are used.
preschedule	Logical: passed as mc.preschedule to mclapply.
•••	Passed to kernelSmooth (usually bw, gaussian for both; degree and robust.iterations for "smooth"),

Value

A numeric vector of the kernel estimate of the same length as nrow(xout).

Examples

```
set.seed(1)
n <- 1000
z1 <- rbinom(n, 1, 0.5)
z2 < - rbinom(n, 1, 0.5)
x <- rnorm(n)
u <- rnorm(n)</pre>
y < -1 + x^2 + z1 + 2*z2 + z1*z2 + u
by <- as.integer(interaction(list(z1, z2)))</pre>
out <- expand.grid(x = seq(-4, 4, 0.25), by = 1:4)
yhat <- kernelMixedSmooth(x = x, y = y, by = by, bw = 1, degree = 1,
                          xout = out$x, byout = out$by)
plot(x, y)
for (i in 1:4) lines(outx[out$by == i], yhat[outby == i], col = i+1, lwd = 2)
legend("top", c("00", "10", "01", "11"), col = 2:5, lwd = 2)
# The function works faster if there are duplicated values of the
# conditioning variables in the prediction grid and there are many
```

36 kernelSmooth

```
# observations; this is illustrated by the following example
# without a custom grid
# In this example, ignore the fact that the conditioning variable is rounded
# and therefore contains measurement error (ruining consistency)
x < - rnorm(10000)
xout <- rnorm(5000)</pre>
xr <- round(x)
xrout <- round(xout)</pre>
w <- runif(10000, 1, 3)
y < -1 + x^2 + rnorm(10000)
by <- rep(1:4, each = 2500)
byout <- rep(1:4, each = 1250)
system.time(kernelMixedSmooth(x = x, y = y, by = by, weights = w,
                             xout = xout, byout = byout, bw = 1))
# user system elapsed
# 0.144 0.000 0.144
system.time(km1 <- kernelMixedSmooth(x = xr, y = y, by = by, weights = w,
                                    xout = xrout, byout = byout, bw = 1))
# user system elapsed
# 0.021 0.000 0.022
system.time(km2 <- kernelMixedSmooth(x = xr, y = y, by = by, weights = w,
                    xout = xrout, byout = byout, bw = 1, no.dedup = TRUE))
# user system elapsed
# 0.138 0.001 0.137
all.equal(km1, km2)
# Parallel capabilities shine in large data sets
if (.Platform$OS.type != "windows") {
# A function to carry out the same estimation in multiple cores
pFun <- function(n) kernelMixedSmooth(x = rep(x, 2), y = rep(y, 2),
        weights = rep(w, 2), by = rep(by, 2),
        bw = 1, degree = 0, parallel = TRUE, cores = n)
system.time(pFun(1)) \# 0.6--0.7 s
system.time(pFun(2)) \# 0.4--0.5 s
```

kernelSmooth

Local kernel smoother

Description

Local kernel smoother

```
kernelSmooth(
   x,
   y,
   xout = NULL,
   weights = NULL,
```

kernelSmooth 37

```
bw = NULL,
  kernel = c("gaussian", "uniform", "triangular", "epanechnikov", "quartic"),
  order = 2,
  convolution = FALSE,
  chunks = 0,
 PIT = FALSE,
 L00 = FALSE,
  degree = 0,
  trim = function(x) 0.01/length(x),
  robust.iterations = 0,
 robust = c("bisquare", "huber"),
  deduplicate.x = TRUE,
  deduplicate.xout = TRUE,
  no.dedup = FALSE,
  return.grid = FALSE
)
```

Arguments

A numeric vector, matrix, or data frame containing observations. For density, Х the points used to compute the density. For kernel regression, the points corresponding to explanatory variables.

A numeric vector of dependent variable values. y

xout A vector or a matrix of data points with ncol(xout) = ncol(x) at which the

user desires to compute the weights, density, or predictions. In other words, this is the requested evaluation grid. If NULL, then x itself is used as the grid.

weights A numeric vector of observation weights (typically counts) to perform weighted

operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-

ber of observations is assumed to be the sum of weights.

Bandwidth for the kernel: a scalar or a vector of the same length as ncol(x). bw

> Since it is the crucial parameter in many applications, a warning is thrown if the bandwidth is not supplied, and then, Silverman's rule of thumb (via bw.row())

is applied to *every dimension* of x.

kernel Character describing the desired kernel type. NB: due to limited machine preci-

sion, even Gaussian has finite support.

order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive

everywhere. Orders 4 and 6 produce some negative values, which reduces bias

but may hamper density estimation.

convolution Logical: if FALSE, returns the usual kernel. If TRUE, returns the convolution

kernel that is used in density cross-validation.

chunks Integer: the number of chunks to split the task into (limits RAM usage but in-

creases overhead). 0 = auto-select (making sure that no matrix has more than

2²⁷ elements).

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of

x via ecdf in order to map all values into the [0, 1] range. May be an integer

vector of indices of columns to which the PIT should be applied.

38 kernelSmooth

Logical: If TRUE, the leave-one-out estimator is returned.

degree Integer: 0 for locally constant estimator (Nadaraya–Watson), 1 for locally linear

(Cleveland's LOESS), 2 for locally quadratic (use with care, less stable, requires

larger bandwidths)

trim Trimming function for small weights to speed up locally weighted regression (if

degree is 1 or 2).

robust.iterations

The number of robustifying iterations (due to Cleveland, 1979). If greater than

0, xout is ignored.

robust Character: "huber" for Huber's local regression weights, "bisquare" for more

robust bi-square ones

deduplicate.x Logical: if TRUE, full duplicates in the input x and y are counted and trans-

formed into weights; subsetting indices to reconstruct the duplicated data set

from the unique one are also returned.

deduplicate.xout

Logical: if TRUE, full duplicates in the input xout are counted; subsetting indices to reconstruct the duplicated data set from the unique one are returned.

no.dedup Logical: if TRUE, sets deduplicate.x and deduplicate.xout to FALSE (short-

hand).

return.grid If TRUE, prepends xout to the return results.

Standardisation is recommended for the purposes of numerical stability (sometimes lm() might choke when the dependent variable takes very large absolute

values and its square is used).

The robust iterations are carried out, if requested, according to @cleveland1979robust. Huber weights are never zero; bisquare weights create a more robust re-descending estimator.

Note: if x and xout are different but robust iterations were requested, the robustification can take longer. TODO: do not estimate on (x, grid), do the calculation with K.full straight away.

Note: if L00 is used, it makes sense to de-duplicate observations first. By default, this behaviour is not enforced in this function, but when it is called in cross-validation routines, the de-duplication is forced. It makes no sense to zero out once observation out of many repeated.

Value

A vector of predicted values or, if return.grid is TRUE, a matrix with the predicted values in the last column.

```
set.seed(1)  n \leftarrow 300   x \leftarrow sort(rt(n, df = 6)) \# Observed values   g \leftarrow seq(-4, 5, 0.1) \# Grid for evaluation   f \leftarrow function(x) 1 + x + sin(x) \# True E(Y | X) = f(X)   y \leftarrow f(x) + rt(n, df = 4)
```

kernelWeights 39

```
# 3 estimators: locally constant + 2nd-order kernel,
# locally constant + 4th-order kernel, locally linear robust
b2lc <- suppressWarnings(bw.CV(x, y = y, kernel = "quartic")
                          + 0.8)
b4lc <- suppressWarnings(bw.CV(x, y = y, kernel = "quartic", order = 4,
               try.grid = FALSE, start.bw = 3) + 1)
b2ll <- bw.CV(x, y = y, kernel = "quartic", degree = 1, robust.iterations = 1,
               try.grid = FALSE, start.bw = 3, verbose = TRUE)
m2lc <- kernelSmooth(x, y, g, bw = b2lc, kernel = "quartic", no.dedup = TRUE)</pre>
m4lc <- kernelSmooth(x, y, g, bw = b4lc, kernel = "quartic", order = 4, no.dedup = TRUE)
m2ll <- kernelSmooth(x, y, g, bw = b2ll, kernel = "quartic";</pre>
                      degree = 1, robust.iterations = 1, no.dedup = TRUE)
plot(x, y, xlim = c(-6, 7), col = "#00000088", bty = "n")
lines(g, f(g), col = "white", lwd = 5); lines(g, f(g))
lines(g, m2lc, col = 2); lines(g, m4lc, col = 3); lines(g, m2ll, col = 4)
# De-duplication facilities for faster operations
set.seed(1) # Creating a data set with many duplicates
n.uniq <- 1000
n <- 4000
inds <- sort(ceiling(runif(n, 0, n.uniq)))</pre>
x.uniq <- sort(rnorm(n.uniq))</pre>
y.uniq <- 1 + x.uniq + sin(x.uniq*2) + rnorm(n.uniq)</pre>
x <- x.uniq[inds]</pre>
y <- y.uniq[inds]</pre>
xout <- x.uniq[sort(ceiling(runif(n.uniq*3, 0, n.uniq)))]</pre>
w <- runif(n)</pre>
data.table::setDTthreads(1) # For measuring the pure gains and overhead
RcppParallel::setThreadOptions(numThreads = 1)
kr1 \leftarrow kernelSmooth(x, y, xout, w, bw = 0.2)
kr2 \leftarrow kernelSmooth(x, y, xout, w, bw = 0.5, no.dedup = TRUE)
stat1 <- attr(kr1, "duplicate.stats")</pre>
stat2 <- attr(kr2, "duplicate.stats")</pre>
print(stat1[3:5]) # De-duplication time -- worth it
print(stat2[3:5]) # Without de-duplication, slower
unname(prod((1 - stat1[1:2])) / (stat1[5] / stat2[5])) # > 1 = better time
# savings than expected, < 1 = worse time savings than expected
all.equal(as.numeric(kr1), as.numeric(kr2))
max(abs(kr1 - kr2)) # Should be around machine epsilon or less
# Example in 2 dimensions
# TODO
```

kernelWeights

Kernel-based weights

Description

Kernel-based weights

40 kernelWeights

Usage

```
kernelWeights(
  Х,
  xout = NULL,
  bw = NULL,
  kernel = c("gaussian", "uniform", "triangular", "epanechnikov", "quartic"),
  order = 2,
  convolution = FALSE,
  sparse = FALSE,
  PIT = FALSE,
  deduplicate.x = FALSE,
  deduplicate.xout = FALSE,
  no.dedup = FALSE
)
```

Arguments

A numeric vector, matrix, or data frame containing observations. For density, the points used to compute the density. For kernel regression, the points corresponding to explanatory variables.

xout

A vector or a matrix of data points with ncol(xout) = ncol(x) at which the user desires to compute the weights, density, or predictions. In other words, this is the requested evaluation grid. If NULL, then x itself is used as the grid.

bw

Bandwidth for the kernel: a scalar or a vector of the same length as ncol(x). Since it is the crucial parameter in many applications, a warning is thrown if the bandwidth is not supplied, and then, Silverman's rule of thumb (via bw.row()) is applied to *every dimension* of x.

kernel

Character describing the desired kernel type. NB: due to limited machine precision, even Gaussian has finite support.

order

An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive everywhere. Orders 4 and 6 produce some negative values, which reduces bias but may hamper density estimation.

convolution

Logical: if FALSE, returns the usual kernel. If TRUE, returns the convolution kernel that is used in density cross-validation.

sparse

Logical: TODO (should be ignored?)

Note that if pit = TRUE, then the kernel-based weights become nearest-neighbour weights (i.e. not much different from the ones used internally in the built-in loess function) since the distances now depend on the ordering of data, not the values per se.

Technical remark: if the kernel is Gaussian, then, the ratio of the tail density to the maximum value (at 0) is less than mach.eps/2 when abs(x) > 2*sqrt(106*log(2))~ 8.572. This has implications the relative error of the calculation: even the kernel with full support (theoretically) may fail to produce numerically distinct values if the argument values are more than ~8.5 standard deviations away from the mean.

Χ

logTaylor 41

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of x via ecdf in order to map all values into the [0, 1] range. May be an integer

vector of indices of columns to which the PIT should be applied.

deduplicate.x Logical: if TRUE, full duplicates in the input x and y are counted and trans-

formed into weights; subsetting indices to reconstruct the duplicated data set

from the unique one are also returned.

deduplicate.xout

Logical: if TRUE, full duplicates in the input xout are counted; subsetting indices to reconstruct the duplicated data set from the unique one are returned.

 $\label{logical:problem} \textbf{Logical: if TRUE, sets deduplicate.x} \ \textbf{and deduplicate.xout to FALSE} \ (\textbf{short-no.dedup}) \ \\$

hand).

Value

A matrix of weights of dimensions $nrow(xout) \times nrow(x)$.

Examples

```
set.seed(1)
   <- sort(rnorm(1000)) # Observed values
   <- seq(-10, 10, 0.1) # Grid for evaluation
   <- kernelWeights(x, g, bw = 2, kernel = "triangular")
wsp <- kernelWeights(x, g, bw = 2, kernel = "triangular", sparse = TRUE)</pre>
print(c(object.size(w), object.size(wsp)) / 1024) # Kilobytes used
image(g, x, w)
all.equal(w[, 1], # Internal calculation for one column
            kernelFun((g - x[1])/2, "triangular", 2, FALSE))
# Bare-bones interface to the C++ functions
# Example: 4th-order convolution kernels
x < - seq(-3, 5, length.out = 301)
ks <- c("uniform", "triangular", "epanechnikov", "quartic", "gaussian")</pre>
kmat <- sapply(ks, function(k) kernelFun(x, k, 4, TRUE))</pre>
matplot(x, kmat, type = "l", lty = 1, bty = "n", lwd = 2)
legend("topright", ks, col = 1:5, lwd = 2)
```

logTaylor

Modified logarithm with derivatives

Description

Modified logarithm with derivatives

Usage

```
logTaylor(x, lower = NULL, upper = NULL, der = 0, order = 4)
```

42 LSCV

Arguments

X	Numeric vector for which approximated logarithm is to be computed.
lower	Lower threshold below which approximation starts; can be a scalar of a vector of the same length as \boldsymbol{x} .
upper	Upper threshold above which approximation starts; can be a scalar of a vector of the same length as x.
der	Non-negative integer: 0 yields the function, 1 and higher yields derivatives
order	Positive integer: Taylor approximation order. If NA, returns log(x) or its derivative.

Details

Provides a family of alternatives to $-\log()$ and derivative thereof in order to attain self-concordance and computes the modified negative logarithm and its first derivatives. For lower <= x <= upper, returns just the logarithm. For x < lower and x > upper, returns the Taylor approximation of the given order. 4th order is the lowest that gives self concordance.

Value

A numeric matrix with (order+1) columns containing the values of the modified log and its deriva-

Examples

```
x <- seq(0.01^0.25, 2^0.25, length.out = 51)^4 - 0.11 # Denser where |f'| is higher
plot(x, log(x)); abline(v = 0, lty = 2) # Observe the warning
lines(x, logTaylor(x, lower = 0.2), col = 2)
lines(x, logTaylor(x, lower = 0.5), col = 3)
lines(x, logTaylor(x, lower = 1, upper = 1.2, order = 6), col = 4)

# Substitute log with its Taylor approx. around 1
x <- seq(0.1, 2, 0.05)
ae <- abs(sapply(2:6, function(o) log(x) - logTaylor(x, lower=1, upper=1, order=o)))
matplot(x[x!=1], ae[x!=1,], type = "1", log = "y", lwd = 2,
    main = "Abs. trunc. err. of Taylor expansion at 1", ylab = "")

# Vanilla logarithm
identical(logTaylor(2, order = NA), log(2))</pre>
```

LSCV Least-squares cross-validation function for the Nadaraya-Watson estimator

Description

Least-squares cross-validation function for the Nadaraya-Watson estimator

LSCV 43

Usage

```
LSCV(
   x,
   y,
   bw,
   weights = NULL,
   same = FALSE,
   degree = 0,
   kernel = "gaussian",
   order = 2,
   PIT = FALSE,
   chunks = 0,
   robust.iterations = 0,
   cores = 1
)
```

Arguments

x A numeric vector, matrix, or data frame containing observations. For density, the points used to compute the density. For kernel regression, the points corresponding to explanatory variables.

y A numeric vector of dependent variable values.

bw Candidate bandwidth values: scalar, vector, or a matrix (with columns corre-

sponding to columns of x).

weights A numeric vector of observation weights (typically counts) to perform weighted

operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-

ber of observations is assumed to be the sum of weights.

same Logical: use the same bandwidth for all columns of x?

degree Integer: 0 for locally constant estimator (Nadaraya–Watson), 1 for locally linear

(Cleveland's LOESS), 2 for locally quadratic (use with care, less stable, requires

larger bandwidths)

kernel Character describing the desired kernel type. NB: due to limited machine preci-

sion, even Gaussian has finite support.

order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive

everywhere. Orders 4 and 6 produce some negative values, which reduces bias

but may hamper density estimation.

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of

x via ecdf in order to map all values into the [0, 1] range. May be an integer

vector of indices of columns to which the PIT should be applied.

chunks Integer: the number of chunks to split the task into (limits RAM usage but in-

creases overhead). \emptyset = auto-select (making sure that no matrix has more than

2^27 elements).

robust.iterations

The number of robustifying iterations (due to Cleveland, 1979). If greater than 0, xout is ignored.

44 pit

cores

Integer: the number of CPU cores to use. High core count = high RAM usage. Note: since LSCV requires zeroing out the diagonals of the weight matrix, repeated observations are combined first; the de-duplication is therefore forced in cross-validation. The only situation where de-duplication can be skipped is passing de-duplicated data sets from outside (e.g. inside optimisers).

Value

A numeric vector of the same length as bw or nrow(bw).

Examples

```
set.seed(1) # Creating a data set with many duplicates
n.uniq <- 1000
n <- 4000
inds <- sort(ceiling(runif(n, 0, n.uniq)))</pre>
x.uniq <- sort(rnorm(n.uniq))</pre>
y.uniq <-1 + 0.2*x.uniq + 0.3*sin(x.uniq) + rnorm(n.uniq)
x <- x.uniq[inds]</pre>
y <- y.uniq[inds]</pre>
w \leftarrow 1 + runif(n, 0, 2) \# Relative importance
data.table::setDTthreads(1) # For measuring pure gains and overhead
RcppParallel::setThreadOptions(numThreads = 1)
bw.grid \leftarrow seq(0.1, 1.2, 0.05)
ncores <- if (.Platform$OS.type == "windows") 1 else 2</pre>
CV \leftarrow LSCV(x, y, bw.grid, weights = w, cores = ncores) # Parallel capabilities
bw.opt <- bw.grid[which.min(CV)]</pre>
g <- seq(-3.5, 3.5, 0.05)
yhat <- kernelSmooth(x, y, xout = g, weights = w,</pre>
                      bw = bw.opt, deduplicate.xout = FALSE)
oldpar <- par(mfrow = c(2, 1), mar = c(2, 2, 2, 0)+.1)
plot(bw.grid, CV, bty = "n", xlab = "", ylab = "", main = "Cross-validation")
plot(x.uniq, y.uniq, bty = "n", xlab = "", ylab = "", main = "Optimal fit")
points(g, yhat, pch = 16, col = 2, cex = 0.5)
par(oldpar)
```

pit

Probability integral transform

Description

Probability integral transform

Usage

```
pit(x, xout = NULL)
```

prepareKernel 45

Arguments

x A numeric vector of data points.

xout

A numeric vector. If supplied, then the transformed function at the grid points different from x takes values equidistant between themselves and the ends of the interval to which they belong.

Value

A numeric vector of values strictly between 0 and 1 of the same length as xout (or x, if xout is NULL).

Examples

```
set.seed(2)
x1 \leftarrow c(4, 3, 7, 10, 2, 2, 7, 2, 5, 6)
x2 \leftarrow sample(c(0, 0.5, 1, 2, 2.5, 3, 3.5, 10, 100), 25, replace = TRUE)
1 \leftarrow length(x1)
pit(x1)
plot(pit(x1), ecdf(x1)(x1), xlim = c(0, 1), ylim = c(0, 1), asp = 1)
abline(v = seq(0.5 / 1, 1 - 0.5 / 1, length.out = 1), col = "#00000044", lty = 2)
abline(v = c(0, 1))
points(pit(x1, x2), ecdf(x1)(x2), pch = 16, col = "#CC000088", cex = 0.9)
abline(v = pit(x1, x2), col = "#CC000044", lty = 2)
x1 \leftarrow c(1, 1, 3, 4, 6)
x2 \leftarrow c(0, 2, 2, 5.9, 7, 8)
pit(x1)
pit(x1, x2)
set.seed(1)
1 <- 10
x1 <- rlnorm(1)
x2 <- sample(c(x1, rlnorm(10)))
plot(pit(x1), ecdf(x1)(x1), xlim = c(0, 1), ylim = c(0, 1), asp = 1)
abline(v = seq(0.5 / 1, 1 - 0.5 / 1, length.out = 1), col = "#00000044", lty = 2)
abline(v = c(0, 1))
points(pit(x1, x2), ecdf(x1)(x2), pch = 16, col = "#CC000088", cex = 0.9)
```

prepareKernel

Check the data for kernel estimation

Description

Checks if the order is 2, 4, or 6, transforms the objects into matrices, checks the dimensions, provides the bandwidth, creates default arguments to pass to the C++ functions, carries out deduplication for speed-up etc.

46 prepareKernel

Usage

```
prepareKernel(
    x,
    y = NULL,
    xout = NULL,
    weights = NULL,
    bw = NULL,
    kernel = c("gaussian", "uniform", "triangular", "epanechnikov", "quartic"),
    order = 2,
    convolution = FALSE,
    sparse = FALSE,
    deduplicate.x = TRUE,
    deduplicate.xout = TRUE,
    no.dedup = FALSE,
    PIT = FALSE
)
```

Arguments

x A numeric vector, matrix, or data frame containing observations. For density,

the points used to compute the density. For kernel regression, the points corre-

sponding to explanatory variables.

y Optional: a vector of dependent variable values.

xout A vector or a matrix of data points with ncol(xout) = ncol(x) at which the

user desires to compute the weights, density, or predictions. In other words, this is the requested evaluation grid. If NULL, then x itself is used as the grid.

weights A numeric vector of observation weights (typically counts) to perform weighted

operations. If null, rep(1, NROW(x)) is used. In all calculations, the total num-

ber of observations is assumed to be the sum of weights.

bw Bandwidth for the kernel: a scalar or a vector of the same length as ncol(x).

Since it is the crucial parameter in many applications, a warning is thrown if the bandwidth is not supplied, and then, Silverman's rule of thumb (via bw.row())

is applied to *every dimension* of x.

kernel Character describing the desired kernel type. NB: due to limited machine preci-

sion, even Gaussian has finite support.

order An integer: 2, 4, or 6. Order-2 kernels are the standard kernels that are positive

everywhere. Orders 4 and 6 produce some negative values, which reduces bias

but may hamper density estimation.

convolution Logical: if FALSE, returns the usual kernel. If TRUE, returns the convolution

kernel that is used in density cross-validation.

sparse Logical: TODO (ignored)

deduplicate.x Logical: if TRUE, full duplicates in the input x and y are counted and trans-

formed into weights; subsetting indices to reconstruct the duplicated data set

from the unique one are also returned.

deduplicate.xout

Logical: if TRUE, full duplicates in the input xout are counted; subsetting indices to reconstruct the duplicated data set from the unique one are returned.

no.dedup Logical: if TRUE, sets deduplicate.x and deduplicate.xout to FALSE (short-

hand).

PIT If TRUE, the Probability Integral Transform (PIT) is applied to all columns of

x via ecdf in order to map all values into the [0, 1] range. May be an integer

vector of indices of columns to which the PIT should be applied.

Value

A list of arguments that are taken by [kernelDensity()] and [kernelSmooth()].

Examples

```
# De-duplication facilities
set.seed(1) # Creating a data set with many duplicates
n.uniq <- 10000
n <- 60000
inds <- ceiling(runif(n, 0, n.uniq))</pre>
x.uniq <- matrix(rnorm(n.uniq*10), ncol = 10)</pre>
x <- x.uniq[inds, ]</pre>
y <- runif(n.uniq)[inds]</pre>
xout <- x.uniq[ceiling(runif(n.uniq*3, 0, n.uniq)), ]</pre>
w <- runif(n)</pre>
print(system.time(a1 <- prepareKernel(x, y, xout, w, bw = 0.5)))
print(system.time(a2 <- prepareKernel(x, y, xout, w, bw = 0.5,
                  deduplicate.x = FALSE, deduplicate.xout = FALSE)))
print(c(object.size(a1), object.size(a2)) / 1024) # Kilobytes used
# Speed-memory trade-off: 4 times smaller, takes 0.2 s, but reduces the
# number of matrix operations by a factor of
1 - prod(1 - a1$duplicate.stats[1:2])
                                           # 95% fewer operations
sum(a1$weights) - sum(a2$weights) # Should be 0 or near machine epsilon
```

 ${\sf smoothEmplik}$

Smoothed Empirical Likelihood function value

Description

Evaluates SEL function for a given moment function at a certain parameter value.

Usage

```
smoothEmplik(
  rho,
  theta,
  data,
  sel.weights = NULL,
```

```
weight.tolerance = 0,
type = c("auto", "EL0", "EL1", "EuL"),
chull.fail = c("none", "taylor", "wald", "adjusted", "adjusted2", "balanced"),
kernel.args = list(bw = NULL, kernel = "epanechnikov", order = 2, PIT = TRUE, sparse =
    TRUE),
minus = FALSE,
cores = 1,
chunks = NULL,
sparse = FALSE,
verbose = FALSE,
bad.value = -Inf,
attach.attributes = c("none", "all", "ELRs", "residuals", "lam", "nabla", "converged",
    "exitcode", "probabilities"),
...
)
```

Arguments

rho The moment function depending on parameters and data (and potentially other

parameters). Must return a numeric vector.

theta A parameter at which the moment function is evaluated.

data A data object on which the moment function is computed.

sel.weights Either a matrix with valid kernel smoothing weights with rows adding up to 1, or

a function that computes the kernel weights based on the data argument passed

to

weight.tolerance

Passed to [EL()].

type Character: "auto" for empirical likelihood, "EuL" for Euclidean likelihood,

"EL0" for one-dimensional empirical likelihood. "EL0" is *strongly* recommended for 1-dimensional moment functions because it is faster and more robust: it searches for the Lagrange multiplier directly and has nice fail-safe op-

tions for convex hull failure.

chull.fail Passed to [EL()].

kernel.args A list of arguments passed to kernelWeights() if sel.weights is a function.

minus If TRUE, returns SEL times -1 (for optimisation via minimisation).

cores The number of cores used by parallel::mclapply to speed up the computa-

tion.

chunks The number of chunks into which the weight matrix is split for memory saving.

One chunk is good for sample sizes 2000 and below. If equal to the number of observations, then, the smoothed likelihoods are computed in series, which saves memory but computes kernel weights at every step of a loop, increasing CPU time. If cores is greater than 1, parallelisation occurs within each chunk.

sparse Logical: convert the weight matrix to a sparse one?

verbose If TRUE, a progress bar is made to display the evaluation progress in case partial

or full memory saving is in place.

bad.value

Replace non-finite individual SEL values with this value. May be useful if the optimiser does not allow specific non-finite values (like L-BFGS-B).

attach.attributes

If "none", returns just the sum of expected likelihoods; otherwise, attaches certain attributes for diagnostics: "ELRs" for expected likelihoods, "residuals" for the residuals (moment function values), "lam" for the Lagrange multipliers lambda in the EL problems, "nabla" for d/d(lambda)EL (should be close to zero because this must be true for any theta), "converged" for the convergence of #' individual EL problems, "exitcode" for the EL exit codes (0 for success), "probabilities" for the matrix of weights (very large, not recommended for sample sizes larger than 2000).

.. Passed to rho.

Value

A scalar with the SEL value and, if requested, attributes containing the diagnostic information attached to it.

```
set.seed(1)
x <- sort(rlnorm(50))
# Heteroskedastic DGP
y \leftarrow abs(1 + 1*x + rnorm(50) * (1 + x + sin(x)))
mod.OLS <- lm(y \sim x)
rho <- function(theta, ...) y - theta[1] - theta[2]*x # Moment fn</pre>
w <- kernelWeights(x, PIT = TRUE, bw = 0.25, kernel = "epanechnikov")</pre>
w <- w / rowSums(w)</pre>
image(x, x, w, log = "xy")
theta.vals <- list(c(1, 1), coef(mod.OLS))
SEL <- function(b, ...) smoothEmplik(rho = rho, theta = b, sel.weights = w, ...)
sapply(theta.vals, SEL) # Smoothed empirical likelihood
# SEL maximisation
ctl <- list(fnscale = -1, reltol = 1e-6, ndeps = rep(1e-5, 2),
            trace = 1, REPORT = 5)
b.init <- coef(mod.OLS)</pre>
b.init <- c(1.790207, 1.007491) \# Only to speed up estimation
b.SEL <- optim(b.init, SEL, method = "BFGS", control = ctl)</pre>
print(b.SEL$par) # Closer to the true value (1, 1) than OLS
plot(x, y)
abline(1, 1, lty = 2)
abline(mod.OLS, col = 2)
abline(b.SEL$par, col = 4)
# Euclidean likelihood
SEuL <- function(b, ...) smoothEmplik(rho = rho, theta = b,</pre>
                                        type = "EuL", sel.weights = w, ...)
b.SEuL <- optim(coef(mod.OLS), SEuL, method = "BFGS", control = ctl)</pre>
abline(b.SEuL$par, col = 3)
cbind(SEL = b.SEL$par, SEuL = b.SEuL$par)
```

```
# Now we start from (0, 0), for which an extension is necessary
# because all residuals at this starting value are positive and the
# unmodified EL ratio for the test of equality to 0 is -Inf
if (FALSE) {
SEL(c(0, 0))
SEL(c(0, 0), chull.fail = "taylor")
SEL(c(0, 0), chull.fail = "wald")
SEL(c(0, 0), chull.fail = "adjusted")
SEL(c(0, 0), chull.fail = "adjusted2")
SEL(c(0, 0), chull.fail = "balanced")
# The next example is very slow; approx. 1 minute
# Experiment: a small bandwidth so that the spanning condition should fail often
# It yields an appalling estimator
w <- kernelWeights(x, PIT = TRUE, bw = 0.15, kernel = "epanechnikov")</pre>
w <- w / rowSums(w)
# The first option is faster but it may sometimes fails
b.SELt <- optim(c(0, 0), SEL, chull.fail = "taylor",
                method = "BFGS", control = ctl)
b.SELw <- optim(c(0, 0), SEL, chull.fail = "wald",
                method = "BFGS", control = ctl)
w <- kernelWeights(x, PIT = TRUE, bw = 0.15, kernel = "epanechnikov")</pre>
w <- w / rowSums(w)</pre>
# In this sense, Euclidean likelihood is robust to convex hull violations
b.SELu <- optim(c(0, 0), SEuL, method = "BFGS", control = ctl)
b0grid \leftarrow seq(-1.5, 7, length.out = 51)
b1grid \leftarrow seq(-1.5, 4.5, length.out = 51)
bgrid <- as.matrix(expand.grid(b0grid, b1grid))</pre>
fi <- function(i) smoothEmplik(rho, bgrid[i, ], sel.weights = w, type = "ELO",
                  EL.args = list(chull.fail = "taylor"))
ncores <- max(floor(parallel::detectCores()/2 - 1), 1)</pre>
chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "") # Limit to 2 cores for CRAN checks
if (nzchar(chk) && chk == "TRUE") ncores <- min(ncores, 2L)</pre>
selgrid <- unlist(parallel::mclapply(1:nrow(bgrid), fi, mc.cores = ncores))</pre>
selgrid <- matrix(selgrid, nrow = length(b0grid))</pre>
probs <- c(0.25, 0.5, 0.75, 0.8, 0.9, 0.95, 0.99, 1-10^seq(-4, -16, -2))
levs <- qchisq(probs, df = 2)</pre>
# levs <- c(1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000)
labs <- round(levs, 1)</pre>
cols <- rainbow(length(levs), end = 0.7, v = 0.7)
oldpar <- par(mar = c(4, 4, 2, 0) + .1)
selgrid2 <- -2*(selgrid - max(selgrid, na.rm = TRUE))</pre>
contour(b0grid, b1grid, selgrid2, levels = levs,
        labels = labs, col = cols, lwd = 1.5, bty = "n",
        main = "'Safe' likelihood contours", asp = 1)
image(b0grid, b1grid, log1p(selgrid2))
# The narrow lines are caused by the fact that if two observations are close together
# at the edge, the curvature at that point is extreme
# The same with Euclidean likelihood
seulgrid <- unlist(parallel::mclapply(1:nrow(bgrid), function(i)</pre>
```

sparseVectorToList 51

sparseVectorToList

Convert a weight vector to list

Description

This function saves memory (which is crucial in large samples) and allows one to speed up the code by minimising the number of time-consuming subsetting operations and memory-consuming matrix multiplications. We do not want to rely on extra packages for sparse matrix manipulation since the EL smoothing weights are usually fixed at the beginning, and need not be recomputed dynamically, so we recommend applying this function to the rows of a matrix. In order to avoid numerical instability, the weights are trimmed at 0.01 / length(x). Using too much trimming may cause the spanning condition to fail (the moment function values can have the same sign in some neighbourhoods).

Usage

```
sparseVectorToList(x, trim = NULL, renormalise = FALSE)
sparseMatrixToList(x, trim = NULL, renormalise = FALSE)
```

Arguments

x A numeric vector or matrix (with many close-to-zero elements).

trim A trimming function that returns a threshold value below which the weights are

ignored. In common applications, this function should tend to 0 as the length of

x increases.

renormalise Logical: renormalise the sum of weights to one after trimming?

Value

A list with indices and values of non-zero elements.

52 svdlm

Examples

```
set.seed(1)
m <- round(matrix(rnorm(100), 10, 10), 2)
m[as.logical(rbinom(100, 1, 0.7))] <- 0
sparseVectorToList(m[, 3])
sparseMatrixToList(m)</pre>
```

svdlm

Least-squares regression via SVD

Description

Least-squares regression via SVD

Usage

```
svdlm(x, y, rel.tol = 1e-09, abs.tol = 1e-100)
```

Arguments

x Model matrix.

y Response vector.

rel.tol Relative zero tolerance for generalised inverse via SVD.

abs.tol Absolute zero tolerance for generalised inverse via SVD.

Newton steps for many empirical likelihoods are of least-squares type. Denote x^+ to be the generalised inverse of x. If SVD algorithm failures are encountered, it sometimes helps to try svd(t(x)) and translate back. First check to ensure that x does not contain NaN, or Inf, or -Inf.

The tolerances are used to check the closeness of singular values to zero. The values of the singular-value vector d that are less than max(rel.tol*max(d), abs.tol) are set to zero.

Value

A vector of coefficients.

```
b.svd <- svdlm(x = cbind(1, as.matrix(mtcars[, -1])), y = mtcars[, 1])
b.lm <- coef(lm(mpg ~ ., data = mtcars))
b.lm - b.svd # Negligible differences</pre>
```

tlog 53

tlog

d-th derivative of the k-th-order Taylor expansion of log(x)

Description

d-th derivative of the k-th-order Taylor expansion of log(x)

Usage

```
tlog(x, a = as.numeric(c(1)), k = 4L, d = 0L)
```

Arguments

x	Numeric: a vector of points for which the logarithm is to be evaluated
а	Scalar: the point at which the polynomial approximation is computed
k	Non-negative integer: maximum polynomial order in the Taylor expansion of the original function. $k = \emptyset$ returns a constant.
d	Non-negative integer: derivative order
	Note that this function returns the d-th derivative of the k-th-order Taylor expansion, not the k-th-order approximation of the d-th derivative. Therefore, the degree of the resulting polynomial is $d-k$.

Value

The approximating Taylor polynomial around a of the order d-k evaluated at x.

trimmed.weighted.mean Weighted trimmed mean

Description

Compute a weighted trimmed mean, i.e. a mean that assigns non-negative weights to the observations and (2) discards an equal share of total weight from each tail of the distribution before averaging.

Usage

```
trimmed.weighted.mean(x, trim = 0, w = NULL, na.rm = FALSE, ...)
```

Arguments

x	Numeric vector of data values.
trim	Single number in $[0,0.5]$. Fraction of the total weight to cut from each tail.
W	Numeric vector of non-negative weights of the same length as 'x'. If 'NULL' (default), equal weights are used.
na.rm	Logical: should 'NA' values in 'x' or 'w' be removed?
	Further arguments passed to ['weighted.mean()'] (for compatibility).

Details

For example, 'trim = 0.10' removes 10 from the right (20 Setting 'trim = 0.5' returns the weighted median.

The algorithm follows these steps:

- 1. Sort the data by 'x' and accumulate the corresponding weights.
- 2. Identify the lower and upper cut-points that mark the central share of the total weight.
- 3. Drop observations whose cumulative weight lies entirely outside the cut-points and proportionally down-weight the two (at most) remaining outermost observations.
- 4. Return the weighted mean of the retained mass. If 'trim == 0.5', only the 50

Value

A single numeric value: the trimmed weighted mean of 'x'. Returns 'NA_real_' if no non-'NA' observations remain after optional 'na.rm' handling.

See Also

['mean()'] for the unweighted trimmed mean, ['weighted.mean()'] for the untrimmed weighted mean.

```
set.seed(1)
z <- rt(100, df = 3)
w <- pmin(1, 1 / abs(z)^2)  # Far-away observations tails get lower weight

mean(z, trim = 0.20)  # Ordinary trimmed mean
trimmed.weighted.mean(z, trim = 0.20)  # Same

weighted.mean(z, w)  # Ordinary weighted mean (no trimming)
trimmed.weighted.mean(z, w = w)  # Same

trimmed.weighted.mean(z, trim = 0.20, w = w)  # Weighted trimmed mean
trimmed.weighted.mean(z, trim = 0.5, w = w)  # Weighted median</pre>
```

Index

```
bartlettFactor, 2
brentMin, 4
brentZero, 5
bw.CV, 7
bw.rot,9
ctracelr, 11
{\tt dampedNewton},\, {\color{red} 12}
DCV, 13
EL, 14
EL0, 16
EL1, 20
EuL, 23
ExEL1, 25
ExEL2 (ExEL1), 25
{\tt getSELWeights}, {\tt 27}
kernelDensity, 28
kernelDiscreteDensitySmooth, 30
kernelFun, 31
kernelMixedDensity, 33
kernelMixedSmooth, 34
kernelSmooth, 36
kernelWeights, 39
logTaylor, 41
LSCV, 42
pit, 44
prepareKernel, 45
smoothEmplik, 47
{\tt sparse Matrix To List}
         (sparseVectorToList), 51
sparseVectorToList, 51
svdlm, 52
tlog, 53
trimmed.weighted.mean, 54
```