
Package ‘soundgen’
January 22, 2025

Type Package

Title Sound Synthesis and Acoustic Analysis

Version 2.7.2

Date 2025-01-22

Maintainer Andrey Anikin <andrey.anikin@cogsci.se>

URL http://cogsci.se/soundgen.html

Description Performs parametric synthesis of sounds with harmonic and noise
components such as animal vocalizations or human voice. Also offers tools
for audio manipulation and acoustic analysis, including pitch tracking,
spectral analysis, audio segmentation, pitch and formant shifting, etc.
Includes four interactive web apps for synthesizing and annotating audio,
manually correcting pitch contours, and measuring formant frequencies.
Reference: Anikin (2019) <doi:10.3758/s13428-018-1095-7>.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Imports stats (>= 4.0.0), graphics, utils, tuneR, seewave (>= 2.1.6),
zoo, mvtnorm, dtw, phonTools, signal, shiny, shinyjs, foreach,
doParallel, nonlinearTseries, data.table

Depends R (>= 4.0), shinyBS

RoxygenNote 7.3.2

NeedsCompilation no

Author Andrey Anikin [aut, cre]

Repository CRAN

Date/Publication 2025-01-22 17:30:02 UTC

Contents
addAM . 4
addFormants . 6

1

http://cogsci.se/soundgen.html
https://doi.org/10.3758/s13428-018-1095-7

2 Contents

addPitchJumps . 10
addVectors . 11
analyze . 12
annotation_app . 22
audSpectrogram . 23
bandpass . 27
beat . 30
compareSounds . 31
crossFade . 34
defaults . 36
defaults_analyze . 37
defaults_analyze_pitchCand . 37
detectNLP . 38
detectNLP_training_nonv . 41
detectNLP_training_synth . 41
ERBToHz . 42
estimateVTL . 43
fade . 45
fart . 47
filterMS . 48
filterSoundByMS . 50
findInflections . 54
findJumps . 55
findPeaks . 56
flatEnv . 57
flatSpectrum . 60
formant_app . 62
gaussianSmooth2D . 63
generateNoise . 64
getDuration . 67
getEntropy . 69
getEnv . 70
getHNR . 71
getIntegerRandomWalk . 72
getLoudness . 73
getPitchZc . 76
getPrior . 78
getRandomWalk . 80
getRMS . 81
getRolloff . 84
getSmoothContour . 86
getSpectralEnvelope . 89
getSurprisal . 93
hillenbrand . 96
HzToERB . 97
HzToNotes . 98
HzToSemitones . 99
invertSpectrogram . 99

Contents 3

matchPars . 102
modulationSpectrum . 103
morph . 110
msToSpec . 113
naiveBayes . 114
naiveBayes_train . 116
noiseRemoval . 117
nonlinPred . 119
normalizeFolder . 121
notesDict . 122
notesToHz . 123
optimizePars . 123
osc . 126
permittedValues . 128
phasegram . 129
pitchContour . 132
pitchDescriptives . 133
pitchManual . 135
pitchSmoothPraat . 135
pitch_app . 136
playme . 138
plotMS . 139
presets . 141
prosody . 141
reportTime . 143
resample . 145
reverb . 147
schwa . 149
segment . 152
segmentManual . 156
semitonesToHz . 157
shiftFormants . 157
shiftPitch . 160
soundgen . 162
soundgen_app . 170
specToMS . 170
specToMS_1D . 171
spectrogram . 172
ssm . 178
timeStretch . 181
transplantEnv . 182
transplantFormants . 184

Index 187

4 addAM

addAM Add amplitude modulation

Description

Adds sinusoidal or logistic amplitude modulation to a sound. This produces additional harmonics in
the spectrum at ±am_freq around each original harmonic and makes the sound rough. The optimal
frequency for creating a perception of roughness is ~70 Hz (Fastl & Zwicker "Psychoacoustics").
Sinusoidal AM creates a single pair of new harmonics, while non-sinusoidal AM creates more extra
harmonics (see examples).

Usage

addAM(
x,
samplingRate = NULL,
amDep = 25,
amFreq = 30,
amType = c("logistic", "sine")[1],
amShape = 0,
invalidArgAction = c("adjust", "abort", "ignore")[1],
plot = FALSE,
play = FALSE,
saveAudio = NULL,
reportEvery = NULL,
cores = 1

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

amDep amplitude modulation (AM) depth, %. 0: no change; 100: AM with amplitude
range equal to the dynamic range of the sound (anchor format)

amFreq AM frequency, Hz (anchor format)

amType "sine" = sinusoidal, "logistic" = logistic (default)

amShape ignore if amType = "sine", otherwise determines the shape of non-sinusoidal
AM: 0 = ~sine, -1 = notches, +1 = clicks (anchor format)

invalidArgAction

what to do if an argument is invalid or outside the range in permittedValues:
’adjust’ = reset to default value, ’abort’ = stop execution, ’ignore’ = throw a
warning and continue (may crash)

plot if TRUE, plots the amplitude modulation

play if TRUE, plays the processed audio

addAM 5

saveAudio full (!) path to folder for saving the processed audio; NULL = don’t save, ” =
same as input folder (NB: overwrites the originals!)

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

Examples

sound1 = soundgen(pitch = c(200, 300), addSilence = 0)
s1 = addAM(sound1, 16000, amDep = c(0, 50, 0), amFreq = 75, plot = TRUE)
playme(s1)
Not run:
Parameters can be specified as in the soundgen() function, eg:
s2 = addAM(sound1, 16000,

amDep = list(time = c(0, 50, 52, 200, 201, 300),
value = c(0, 0, 35, 25, 0, 0)),

plot = TRUE, play = TRUE)

Sinusoidal AM produces exactly 2 extra harmonics at ±am_freq
around each f0 harmonic:
s3 = addAM(sound1, 16000, amDep = 30, amFreq = c(50, 80),

amType = 'sine', plot = TRUE, play = TRUE)
spectrogram(s3, 16000, windowLength = 150, ylim = c(0, 2))

Non-sinusoidal AM produces multiple new harmonics,
which can resemble subharmonics...
s4 = addAM(sound1, 16000, amDep = 70, amFreq = 50, amShape = -1,

plot = TRUE, play = TRUE)
spectrogram(s4, 16000, windowLength = 150, ylim = c(0, 2))

...but more often look like sidebands
sound3 = soundgen(sylLen = 600, pitch = c(800, 1300, 1100), addSilence = 0)
s5 = addAM(sound3, 16000, amDep = c(0, 30, 100, 40, 0),

amFreq = 105, amShape = -.3,
plot = TRUE, play = TRUE)

spectrogram(s5, 16000, ylim = c(0, 5))

Feel free to add AM stochastically:
s6 = addAM(sound1, 16000,

amDep = rnorm(10, 40, 20), amFreq = rnorm(20, 70, 20),
plot = TRUE, play = TRUE)

spectrogram(s6, 16000, windowLength = 150, ylim = c(0, 2))

If am_freq is locked to an integer ratio of f0, we can get subharmonics
For ex., here is with pitch 400-600-400 Hz (soundgen interpolates pitch
on a log scale and am_freq on a linear scale, so we align them by extracting
a long contour on a log scale for both)
con = getSmoothContour(anchors = c(400, 600, 400),

len = 20, thisIsPitch = TRUE)
s = soundgen(sylLen = 1500, pitch = con, amFreq = con/3, amDep = 30,

plot = TRUE, play = TRUE, ylim = c(0, 3))

6 addFormants

Process all files in a folder and save the modified audio
addAM('~/Downloads/temp', saveAudio = '~/Downloads/temp/AM',

amFreq = 70, amDep = c(0, 50))

End(Not run)

addFormants Add formants

Description

A spectral filter that either adds or removes formants from a sound - that is, amplifies or damp-
ens certain frequency bands, as in human vowels. See soundgen and getSpectralEnvelope
for more information. With action = 'remove' this function can perform inverse filtering to re-
move formants and obtain raw glottal output, provided that you can specify the correct formant
structure. Instead of formants, any arbitrary spectral filtering function can be applied using the
spectralEnvelope argument (eg for a low/high/bandpass filter).

Usage

addFormants(
x,
samplingRate = NULL,
formants = NULL,
spectralEnvelope = NULL,
action = c("add", "remove")[1],
dB = NULL,
specificity = 1,
zFun = NULL,
vocalTract = NA,
formantDep = 1,
formantDepStoch = 1,
formantWidth = 1,
formantCeiling = 2,
lipRad = 6,
noseRad = 4,
mouthOpenThres = 0,
mouth = NA,
temperature = 0.025,
formDrift = 0.3,
formDisp = 0.2,
smoothing = list(),
windowLength_points = 800,
overlap = 75,
normalize = c("max", "orig", "none")[1],
play = FALSE,
saveAudio = NULL,

addFormants 7

reportEvery = NULL,
cores = 1,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling frequency, Hz

formants either a character string referring to default presets for speaker "M1" (imple-
mented: "aoieu0") or a list of formant times, frequencies, amplitudes, and band-
widths (see examples). NA or NULL means no formants, only lip radiation.
Time stamps for formants and mouthOpening can be specified in ms relative to
sylLen or on a scale of [0, 1]. See getSpectralEnvelope for more details

spectralEnvelope

(optional): as an alternative to specifying formant frequencies, we can pro-
vide the exact filter - a vector of non-negative numbers specifying the power
in each frequency bin on a linear scale (interpolated to length equal to win-
dowLength_points/2). A matrix specifying the filter for each STFT step is also
accepted. The easiest way to create this matrix is to call soundgen:::getSpectralEnvelope
or to use the spectrum of a recorded sound

action ’add’ = add formants to the sound, ’remove’ = remove formants (inverse filter-
ing)

dB if NULL (default), the spectral envelope is applied on the original scale; other-
wise, it is set to range from 1 to 10 ^ (dB / 20)

specificity a way to sharpen or blur the spectral envelope (spectrum ^ specificity) : 1 = no
change, >1 = sharper, <1 = blurred

zFun (optional) an arbitrary function to apply to the spectrogram prior to iSTFT,
where "z" is the spectrogram - a matrix of complex values (see examples)

vocalTract the length of vocal tract, cm. Used for calculating formant dispersion (for adding
extra formants) and formant transitions as the mouth opens and closes. If NULL
or NA, the length is estimated based on specified formant frequencies, if any
(anchor format)

formantDep scale factor of formant amplitude (1 = no change relative to amplitudes in formants)
formantDepStoch

the amplitude of additional stochastic formants added above the highest speci-
fied formant, dB (only if temperature > 0)

formantWidth scale factor of formant bandwidth (1 = no change)

formantCeiling frequency to which stochastic formants are calculated, in multiples of the Nyquist
frequency; increase up to ~10 for long vocal tracts to avoid losing energy in the
upper part of the spectrum

lipRad the effect of lip radiation on source spectrum, dB/oct (the default of +6 dB/oct
produces a high-frequency boost when the mouth is open)

8 addFormants

noseRad the effect of radiation through the nose on source spectrum, dB/oct (the alterna-
tive to lipRad when the mouth is closed)

mouthOpenThres open the lips (switch from nose radiation to lip radiation) when the mouth is
open >mouthOpenThres, 0 to 1

mouth mouth opening (0 to 1, 0.5 = neutral, i.e. no modification) (anchor format)

temperature hyperparameter for regulating the amount of stochasticity in sound generation
formDrift, formDisp

scaling factors for the effect of temperature on formant drift and dispersal, re-
spectively

smoothing a list of parameters passed to getSmoothContour to control the interpolation
and smoothing of contours: interpol (approx / spline / loess), loessSpan, discon-
tThres, jumpThres

windowLength_points

length of FFT window, points

overlap FFT window overlap, %. For allowed values, see istft

normalize "orig" = same as input (default), "max" = maximum possible peak amplitude,
"none" = no normalization

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

saveAudio path + filename for saving the output, e.g. ’~/Downloads/temp.wav’. If NULL
= doesn’t save

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

... other plotting parameters passed to spectrogram

Details

Algorithm: converts input from a time series (time domain) to a spectrogram (frequency domain)
through short-time Fourier transform (STFT), multiples by the spectral filter containing the specified
formants, and transforms back to a time series via inverse STFT. This is a subroutine for voice
synthesis in soundgen, but it can also be applied to a recording.

See Also

getSpectralEnvelope transplantFormants soundgen

Examples

sound = c(rep(0, 1000), runif(8000) * 2 - 1, rep(0, 1000)) # white noise
NB: pad with silence to avoid artefacts if removing formants
playme(sound)
spectrogram(sound, samplingRate = 16000)

add F1 = 900, F2 = 1300 Hz

addFormants 9

sound_filtered = addFormants(sound, samplingRate = 16000,
formants = c(900, 1300))

playme(sound_filtered)
spectrogram(sound_filtered, samplingRate = 16000)

...and remove them again (assuming we know what the formants are)
sound_inverse_filt = addFormants(sound_filtered,

samplingRate = 16000,
formants = c(900, 1300),
action = 'remove')

playme(sound_inverse_filt)
spectrogram(sound_inverse_filt, samplingRate = 16000)

Not run:
Perform some user-defined manipulation of the spectrogram with zFun
Ex.: noise removal - silence all bins under threshold,
say -0 dB below the max value
s_noisy = soundgen(sylLen = 200, addSilence = 0,

noise = list(time = c(-100, 300), value = -20))
spectrogram(s_noisy, 16000)
playme(s_noisy)
zFun = function(z, cutoff = -50) {

az = abs(z)
thres = max(az) * 10 ^ (cutoff / 20)
z[which(az < thres)] = 0
return(z)

}
s_denoised = addFormants(s_noisy, samplingRate = 16000,

formants = NA, zFun = zFun, cutoff = -40)
spectrogram(s_denoised, 16000)
playme(s_denoised)

If neither formants nor spectralEnvelope are defined, only lipRad has an effect
For ex., we can boost low frequencies by 6 dB/oct
noise = runif(8000)
noise1 = addFormants(noise, 16000, lipRad = -6)
seewave::meanspec(noise1, f = 16000, dB = 'max0')

Arbitrary spectra can be defined with spectralEnvelope. For ex., we can
have a flat spectrum up to 2 kHz (Nyquist / 4) and -3 dB/kHz above:
freqs = seq(0, 16000 / 2, length.out = 100)
n = length(freqs)
idx = (n / 4):n
sp_dB = c(rep(0, n / 4 - 1), (freqs[idx] - freqs[idx[1]]) / 1000 * (-3))
plot(freqs, sp_dB, type = 'b')
noise2 = addFormants(noise, 16000, lipRad = 0, spectralEnvelope = 10 ^ (sp_dB / 20))
seewave::meanspec(noise2, f = 16000, dB = 'max0')

Use the spectral envelope of an existing recording (bleating of a sheep)
(see also the same example with noise as source in ?generateNoise)
(NB: this can also be achieved with a single call to transplantFormants)
data(sheep, package = 'seewave') # import a recording from seewave
sound_orig = as.numeric(scale(sheep@left))

10 addPitchJumps

samplingRate = sheep@samp.rate
sound_orig = sound_orig / max(abs(sound_orig)) # range -1 to +1
playme(sound_orig, samplingRate)

get a few pitch anchors to reproduce the original intonation
pitch = analyze(sound_orig, samplingRate = samplingRate,

pitchMethod = c('autocor', 'dom'))$detailed$pitch
pitch = pitch[!is.na(pitch)]

extract a frequency-smoothed version of the original spectrogram
to use as filter
specEnv_bleating = spectrogram(sound_orig, windowLength = 5,
samplingRate = samplingRate, output = 'original', plot = FALSE)

image(t(log(specEnv_bleating)))

Synthesize source only, with flat spectrum
sound_unfilt = soundgen(sylLen = 2500, pitch = pitch,

rolloff = 0, rolloffOct = 0, rolloffKHz = 0,
temperature = 0, jitterDep = 0, subDep = 0,
formants = NULL, lipRad = 0, samplingRate = samplingRate,
invalidArgAction = 'ignore') # prevent soundgen from increasing samplingRate

playme(sound_unfilt, samplingRate)
seewave::meanspec(sound_unfilt, f = samplingRate, dB = 'max0') # ~flat

Force spectral envelope to the shape of target
sound_filt = addFormants(sound_unfilt, formants = NULL,

spectralEnvelope = specEnv_bleating, samplingRate = samplingRate)
playme(sound_filt, samplingRate) # playme(sound_orig, samplingRate)
spectrogram(sound_filt, samplingRate) # spectrogram(sound_orig, samplingRate)

The spectral envelope is now similar to the original recording. Compare:
par(mfrow = c(1, 2))
seewave::meanspec(sound_orig, f = samplingRate, dB = 'max0', alim = c(-50, 20))
seewave::meanspec(sound_filt, f = samplingRate, dB = 'max0', alim = c(-50, 20))
par(mfrow = c(1, 1))
NB: but the source of excitation in the original is actually a mix of
harmonics and noise, while the new sound is purely tonal

End(Not run)

addPitchJumps Add pitch jumps

Description

Internal soundgen function

Usage

addPitchJumps(pitch, magn, nj = 1, prop = 0.1, plot = FALSE)

addVectors 11

Arguments

pitch numeric vector of f0 values over time (any step is OK)

magn magnitude of jump(s) in semitones, a numeric vector of length 1 or nj

nj number of jump pairs = affected segments (e.g., a single fragment is transposed
if nj = 1)

prop duration of transposed episode(s) a a proportion of the total voiced duration
(length of pitch)

plot if TRUE, plots the original and modified contours

Details

Adds random discontinuities (jumps) to a pitch contour in a manner that shifts a segment of pitch
contour up or down. Careful when adding several jumps: one can land on top of another, and it gets
rather weird rather quickly.

Examples

pitch = getSmoothContour(c(100, 350, 320, 110), len = 100, interpol = 'loess')
addPitchJumps(pitch, magn = runif(1, 3, 12), plot = TRUE)
addPitchJumps(pitch, magn = c(6, 1), nj = 2, plot = TRUE)
addPitchJumps(pitch, magn = 3, nj = 5, plot = TRUE)

pitch2 = c(rep(NA, 10), pitch[1:50], rep(NA, 25), pitch[51:100], rep(NA, 17))
addPitchJumps(pitch2, magn = c(6, 1), nj = 2, plot = TRUE)

addVectors Add overlapping vectors

Description

Adds two partly overlapping vectors, such as two waveforms, to produce a longer vector. The
location at which vector 2 is pasted is defined by insertionPoint. Algorithm: both vectors are
padded with zeros to match in length and then added. All NA’s are converted to 0.

Usage

addVectors(v1, v2, insertionPoint = 1L, normalize = TRUE)

Arguments

v1, v2 numeric vectors

insertionPoint the index of element in vector 1 at which vector 2 will be inserted (any integer,
can also be negative)

normalize if TRUE, the output is normalized to range from -1 to +1

12 analyze

See Also

soundgen

Examples

v1 = 1:6
v2 = rep(100, 3)
addVectors(v1, v2, insertionPoint = 5, normalize = FALSE)
addVectors(v1, v2, insertionPoint = -4, normalize = FALSE)
addVectors(v1, rep(100, 15), insertionPoint = -4, normalize = FALSE)
note the asymmetry: insertionPoint refers to the first arg
addVectors(v2, v1, insertionPoint = -4, normalize = FALSE)

v3 = rep(100, 15)
addVectors(v1, v3, insertionPoint = -4, normalize = FALSE)
addVectors(v2, v3, insertionPoint = 7, normalize = FALSE)
addVectors(1:6, 3:6, insertionPoint = 3, normalize = FALSE)

analyze Acoustic analysis

Description

Acoustic analysis of one or more sounds: pitch tracking, basic spectral characteristics, formants,
estimated loudness (see getLoudness), roughness (see modulationSpectrum), novelty (see ssm),
etc. The default values of arguments are optimized for human non-linguistic vocalizations. See vi-
gnette(’acoustic_analysis’, package = ’soundgen’) for details. The defaults and reasonable ranges of
all arguments can be found in defaults_analyze. For high-precision work, first extract and manu-
ally correct pitch contours with pitch_app, PRAAT, or whatever, and then run analyze(pitchManual
= ...) with these manual contours.

Usage

analyze(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
dynamicRange = 80,
silence = 0.04,
windowLength = 50,
step = windowLength/2,
overlap = 50,
specType = c("spectrum", "reassign", "spectralDerivative")[1],
wn = "gaussian",
zp = 0,
cutFreq = NULL,

analyze 13

nFormants = 3,
formants = list(),
loudness = list(SPL_measured = 70),
roughness = list(msType = "1D", windowLength = 25, step = 2, amRes = 5),
novelty = list(input = "melspec", kernelLen = 100),
pitchMethods = c("dom", "autocor"),
pitchManual = NULL,
entropyThres = 0.6,
pitchFloor = 75,
pitchCeiling = 3500,
priorMean = 300,
priorSD = 6,
priorAdapt = TRUE,
nCands = 1,
minVoicedCands = NULL,
pitchDom = list(domThres = 0.1, domSmooth = 220),
pitchAutocor = list(autocorThres = 0.7, autocorSmooth = 7, autocorUpsample = 25,

autocorBestPeak = 0.975, interpol = "sinc"),
pitchCep = list(cepThres = 0.75, cepZp = 0),
pitchSpec = list(specThres = 0.05, specPeak = 0.25, specHNRslope = 0.8, specSmooth =

150, specMerge = 0.1, specSinglePeakCert = 0.4, specRatios = 3),
pitchHps = list(hpsNum = 5, hpsThres = 0.1, hpsNorm = 2, hpsPenalty = 2),
pitchZc = list(zcThres = 0.1, zcWin = 5),
harmHeight = list(harmThres = 3, harmTol = 0.25, harmPerSel = 5),
subh = list(method = c("cep", "pitchCands", "harm")[1], nSubh = 5, tol = 0.05, nHarm =

5, harmThres = 12, harmTol = 0.25, amRange = c(10, 200)),
flux = list(thres = 0.15, smoothWin = 100),
amRange = c(10, 200),
fmRange = c(5, 1000/step/2),
shortestSyl = 20,
shortestPause = 60,
interpol = list(win = 75, tol = 0.3, cert = 0.3),
pathfinding = c("none", "fast", "slow")[2],
annealPars = list(maxit = 5000, temp = 1000),
certWeight = 0.5,
snakeStep = 0,
snakePlot = FALSE,
smooth = 1,
smoothVars = c("pitch", "dom"),
summaryFun = c("mean", "median", "sd"),
invalidArgAction = c("adjust", "abort", "ignore")[1],
reportEvery = NULL,
cores = 1,
plot = FALSE,
osc = "linear",
showLegend = TRUE,
savePlots = NULL,
pitchPlot = list(col = rgb(0, 0, 1, 0.75), lwd = 3, showPrior = TRUE),

14 analyze

extraContour = NULL,
ylim = NULL,
xlab = "Time",
ylab = NULL,
main = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

silence (0 to 1 as proportion of max amplitude) frames with RMS amplitude below
silence * max_ampl adjusted by scale are not analyzed at all.

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

specType plot the original FFT (’spectrum’), reassigned spectrogram (’reassigned’), or
spectral derivative (’spectralDerivative’)

wn window type accepted by ftwindow, currently gaussian, hanning, hamming,
bartlett, blackman, flattop, rectangle

zp window length after zero padding, points

cutFreq if specified, spectral descriptives (peakFreq, specCentroid, specSlope, and quar-
tiles) are calculated only between cutFreq[1] and cutFreq[2], Hz. If a single
number is given, analyzes frequencies from 0 to cutFreq. For ex., when analyz-
ing recordings with varying sampling rates, set to half the lowest sampling rate
to make the spectra more comparable. Note that "entropyThres" applies only to
this frequency range, which also affects which frames will not be analyzed with
pitchAutocor.

nFormants the number of formants to extract per STFT frame (0 = no formant analysis,
NULL = as many as possible)

analyze 15

formants a list of arguments passed to findformants - an external function called to
perform LPC analysis

loudness a list of parameters passed to getLoudness for measuring subjective loudness,
namely SPL_measured, Pref,spreadSpectrum. NULL = skip loudness analy-
sis

roughness a list of parameters passed to modulationSpectrum for measuring roughness.
NULL = skip roughness analysis

novelty a list of parameters passed to ssm for measuring spectral novelty. NULL = skip
novelty analysis

pitchMethods methods of pitch estimation to consider for determining pitch contour: ’autocor’
= autocorrelation (~PRAAT), ’cep’ = cepstral, ’spec’ = spectral (~BaNa), ’dom’
= lowest dominant frequency band, ’hps’ = harmonic product spectrum, NULL
= no pitch analysis

pitchManual manually corrected pitch contour. For a single sound, provide a numeric vector
of any length. For multiple sounds, provide a dataframe with columns "file" and
"pitch" (or path to a csv file) as returned by pitch_app, ideally with the same
windowLength and step as in current call to analyze. A named list with pitch
vectors per file is also OK (eg as returned by pitch_app)

entropyThres pitch tracking is only performed for frames with Weiner entropy below entropyThres,
but other spectral descriptives are still calculated (NULL = analyze everything)

pitchFloor, pitchCeiling
absolute bounds for pitch candidates (Hz)

priorMean, priorSD
specifies the mean (Hz) and standard deviation (semitones) of gamma distribu-
tion describing our prior knowledge about the most likely pitch values for this
file. For ex., priorMean = 300,priorSD = 6 gives a prior with mean = 300 Hz
and SD = 6 semitones (half an octave). To avoid using any priors, set priorMean
= NA, priorAdapt = FALSE

priorAdapt adaptive second-pass prior: if TRUE, optimal pitch contours are estimated first
with a prior determined by priorMean,priorSD, and then with a new prior ad-
justed according to this first-pass pitch contour

nCands maximum number of pitch candidates per method, normally 1...4 (except for
dom, which returns at most one candidate per frame)

minVoicedCands minimum number of pitch candidates that have to be defined to consider a frame
voiced (if NULL, defaults to 2 if dom is among other candidates and 1 otherwise)

pitchDom a list of control parameters for pitch tracking using the lowest dominant fre-
quency band or "dom" method; see details and ?soundgen:::getDom

pitchAutocor a list of control parameters for pitch tracking using the autocorrelation or "auto-
cor" method; see details and ?soundgen:::getPitchAutocor

pitchCep a list of control parameters for pitch tracking using the cepstrum or "cep" method;
see details and ?soundgen:::getPitchCep

pitchSpec a list of control parameters for pitch tracking using the BaNa or "spec" method;
see details and ?soundgen:::getPitchSpec

16 analyze

pitchHps a list of control parameters for pitch tracking using the harmonic product spec-
trum or "hps" method; see details and ?soundgen:::getPitchHps

pitchZc a list of control parameters for pitch tracking based on zero crossings in bandpass-
filtered audio or "zc" method; see getPitchZc

harmHeight a list of control parameters for estimating how high harmonics reach in the spec-
trum; see details and ?soundgen:::harmHeight

subh a list of control parameters for estimating the strength of subharmonics per frame
- that is, spectral energy at integer ratios of f0: see ?soundgen:::getSHR

flux a list of control parameters for calculating feature-based flux (not spectral flux)
passed to getFeatureFlux

amRange target range of frequencies for amplitude modulation, Hz: a vector of length 2
(affects both amMsFreq and amEnvFreq)

fmRange target range of frequencies for analyzing frequency modulation, Hz (fmFreq): a
vector of length 2

shortestSyl the smallest length of a voiced segment (ms) that constitutes a voiced syllable
(shorter segments will be replaced by NA, as if unvoiced)

shortestPause the smallest gap between voiced syllables (ms): large value = interpolate and
merge, small value = treat as separate syllables separated by an unvoiced gap

interpol a list of parameters (currently win, tol, cert) passed to soundgen:::pathfinder
for interpolating missing pitch candidates (NULL = no interpolation)

pathfinding method of finding the optimal path through pitch candidates: ’none’ = best can-
didate per frame, ’fast’ = simple heuristic, ’slow’ = annealing. See soundgen:::pathfinder

annealPars a list of control parameters for postprocessing of pitch contour with SANN al-
gorithm of optim. This is only relevant if pathfinding = 'slow'

certWeight (0 to 1) in pitch postprocessing, specifies how much we prioritize the certainty
of pitch candidates vs. pitch jumps / the internal tension of the resulting pitch
curve

snakeStep optimized path through pitch candidates is further processed to minimize the
elastic force acting on pitch contour. To disable, set snakeStep = 0

snakePlot if TRUE, plots the snake
smooth, smoothVars

if smooth is a positive number, outliers of the variables in smoothVars are ad-
justed with median smoothing. smooth of 1 corresponds to a window of ~100
ms and tolerated deviation of ~4 semitones. To disable, set smooth = 0

summaryFun functions used to summarize each acoustic characteristic, eg "c(’mean’, ’sd’)";
user-defined functions are fine (see examples); NAs are omitted automatically
for mean/median/sd/min/max/range/sum, otherwise take care of NAs yourself

invalidArgAction

what to do if an argument is invalid or outside the range in defaults_analyze:
’adjust’ = reset to default value, ’abort’ = stop execution, ’ignore’ = throw a
warning and continue (may crash)

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

analyze 17

cores number of cores for parallel processing

plot if TRUE, produces a spectrogram with pitch contour overlaid

osc "none" = no oscillogram; "linear" = on the original scale; "dB" = in decibels

showLegend if TRUE, adds a legend with pitch tracking methods

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

pitchPlot a list of graphical parameters for displaying the final pitch contour. Set to
list(type = 'n') to suppress

extraContour name of an output variable to overlap on the pitch contour plot, eg ’peakFreq’ or
’loudness’; can also be a list with extra graphical parameters, eg extraContour
= list(x = 'harmHeight', col = 'red')

ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency). NB: still in
kHz, even if yScale = bark, mel, or ERB

xlab, ylab, main plotting parameters
width, height, units, res

parameters passed to png if the plot is saved

... other graphical parameters passed to spectrogram

Details

Each pitch tracker is controlled by its own list of settings, as follows:

pitchDom (lowest dominant frequency band) • domThres (0 to 1) to find the lowest dominant
frequency band, we do short-term FFT and take the lowest frequency with amplitude at
least domThres

• domSmooth the width of smoothing interval (Hz) for finding dom

pitchAutocor (autocorrelation) • autocorThres voicing threshold (unitless, ~0 to 1)
• autocorSmooth the width of smoothing interval (in bins) for finding peaks in the auto-

correlation function. Defaults to 7 for sampling rate 44100 and smaller odd numbers for
lower values of sampling rate

• autocorUpsample upsamples acf to this resolution (Hz) to improve accuracy in high
frequencies

• autocorBestPeak amplitude of the lowest best candidate relative to the absolute max of
the acf

pitchCep (cepstrum) • cepThres voicing threshold (unitless, ~0 to 1)
• cepZp zero-padding of the spectrum used for cepstral pitch detection (final length of

spectrum after zero-padding in points, e.g. 2 ^ 13)

pitchSpec (ratio of harmonics - BaNa algorithm) • specThres voicing threshold (unitless,
~0 to 1)

• specPeak,specHNRslope when looking for putative harmonics in the spectrum, the thresh-
old for peak detection is calculated as specPeak * (1 - HNR * specHNRslope)

• specSmooth the width of window for detecting peaks in the spectrum, Hz
• specMerge pitch candidates within specMerge semitones are merged with boosted cer-

tainty

18 analyze

• specSinglePeakCert (0 to 1) if F0 is calculated based on a single harmonic ratio (as
opposed to several ratios converging on the same candidate), its certainty is taken to be
specSinglePeakCert

pitchHps (harmonic product spectrum) • hpsNum the number of times to downsample the
spectrum

• hpsThres voicing threshold (unitless, ~0 to 1)
• hpsNorm the amount of inflation of hps pitch certainty (0 = none)
• hpsPenalty the amount of penalizing hps candidates in low frequencies (0 = none)

Each of these lists also accepts graphical parameters that affect how pitch candidates are plotted, eg
pitchDom = list(domThres = .5, col = 'yellow'). Other arguments that are lists of subroutine-
specific settings include:

harmonicHeight (finding how high harmonics reach in the spectrum) • harmThres minimum
height of spectral peak, dB

• harmPerSel the number of harmonics per sliding selection
• harmTol maximum tolerated deviation of peak frequency from multiples of f0, proportion

of f0

Value

Returns a list with $detailed frame-by-frame descriptives and a $summary with one row per file,
as determined by summaryFun (e.g., mean / median / SD of each acoustic variable across all STFT
frames). Output measures include:

duration total duration, s

duration_noSilence duration from the beginning of the first non-silent STFT frame to the end
of the last non-silent STFT frame, s (NB: depends strongly on windowLength and silence
settings)

time time of the middle of each frame (ms)

amEnvFreq,amEnvDep frequency (Hz) and depth (0 to 1) of amplitude modulation estimated
from a smoothed amplitude envelope

amMsFreq,amMsPurity frequency and purity of amplitude modulation estimated via modulationSpectrum

ampl root mean square of amplitude per frame, calculated as sqrt(mean(frame ^ 2))

ampl_noSilence same as ampl, but ignoring silent frames

CPP Cepstral Peak Prominence, dB (a measure of pitch quality, the ratio of the highest peak in the
cepstrum to the regression line drawn through it)

dom lowest dominant frequency band (Hz) (see "Pitch tracking methods / Dominant frequency" in
the vignette)

entropy Weiner entropy of the spectrum of the current frame. Close to 0: pure tone or tonal sound
with nearly all energy in harmonics; close to 1: white noise

entropySh Normalized Shannon entropy of the spectrum of the current frame: 0 = pure tone, 1 =
white noise

f1_freq, f1_width, ... the frequency and bandwidth of the first nFormants formants per STFT frame,
as calculated by phonTools::findformants

analyze 19

flux feature-based flux, the rate of change in acoustic features such as pitch, HNR, etc. (0 = none,
1 = max); "epoch" is an audio segment between two peaks of flux that exceed a threshold of
flux = list(thres = ...) (listed in output$detailed only)

fmFreq frequency of frequency modulation (FM) such as vibrato or jitter, Hz

fmDep depth of FM, semitones

fmPurity purity or dominance of the main FM frequency (fmFreq), 0 to 1

harmEnergy the amount of energy in upper harmonics, namely the ratio of total spectral mass
above 1.25 x F0 to the total spectral mass below 1.25 x F0 (dB)

harmHeight how high harmonics reach in the spectrum, based on the best guess at pitch (or the
manually provided pitch values)

HNR harmonics-to-noise ratio (dB), a measure of harmonicity returned by soundgen:::getPitchAutocor
(see "Pitch tracking methods / Autocorrelation"). If HNR = 0 dB, there is as much energy in
harmonics as in noise

loudness subjective loudness, in sone, corresponding to the chosen SPL_measured - see getLoudness

novelty spectral novelty - a measure of how variable the spectrum is on a particular time scale, as
estimated by ssm

peakFreq the frequency with maximum spectral power (Hz)

pitch post-processed pitch contour based on all F0 estimates

quartile25, quartile50, quartile75 the 25th, 50th, and 75th quantiles of the spectrum of voiced
frames (Hz)

roughness the amount of amplitude modulation, see modulationSpectrum

specCentroid the center of gravity of the frame’s spectrum, first spectral moment (Hz)

specSlope the slope of linear regression fit to the spectrum below cutFreq (dB/kHz)

subDep estimated depth of subharmonics per frame: 0 = none, 1 = as strong as f0. NB: this depends
critically on accurate pitch tracking

subRatio the ratio of f0 to subharmonics frequency with strength subDep: 2 = period doubling, 3
= f0 / 3, etc.

voiced is the current STFT frame voiced? TRUE / FALSE

See Also

pitch_app getLoudness segment getRMS

Examples

sound = soundgen(sylLen = 300, pitch = c(500, 400, 600),
noise = list(time = c(0, 300), value = c(-40, 0)),
temperature = 0.001,
addSilence = 50) # NB: always have some silence before and after!!!

playme(sound, 16000)
a = analyze(sound, samplingRate = 16000, plot = TRUE)
str(a$detailed) # frame-by-frame
a$summary # summary per sound

20 analyze

Not run:
For maximum processing speed (just basic spectral descriptives):
a = analyze(sound, samplingRate = 16000,

plot = FALSE, # no plotting
pitchMethods = NULL, # no pitch tracking
loudness = NULL, # no loudness analysis
novelty = NULL, # no novelty analysis
roughness = NULL, # no roughness analysis
nFormants = 0 # no formant analysis

)

Take a sound hard to analyze b/c of subharmonics and jitter
sound2 = soundgen(sylLen = 900, pitch = list(

time = c(0, .3, .8, 1), value = c(300, 900, 400, 2300)),
noise = list(time = c(0, 900), value = c(-40, -20)),
subDep = 10, jitterDep = 0.5,
temperature = 0.001, samplingRate = 44100, pitchSamplingRate = 44100)

playme(sound2, 44100)
a2 = analyze(sound2, samplingRate = 44100, priorSD = 24,

plot = TRUE, ylim = c(0, 5))

Compare the available pitch trackers
analyze(sound2, 44100,

pitchMethods = c('dom', 'autocor', 'spec', 'cep', 'hps', 'zc'),
don't use priors to see weird pitch candidates better
priorMean = NA, priorAdapt = FALSE,
plot = TRUE, yScale = 'bark')

Fancy plotting options:
a = analyze(sound2, samplingRate = 44100, plot = TRUE,

xlab = 'Time, ms', colorTheme = 'seewave',
contrast = .5, ylim = c(0, 4), main = 'My plot',
pitchMethods = c('dom', 'autocor', 'spec', 'hps', 'cep'),
priorMean = NA, # no prior info at all
pitchDom = list(col = 'red', domThres = .25),
pitchPlot = list(col = 'black', pch = 9, lty = 3, lwd = 3),
extraContour = list(x = 'peakFreq', type = 'b', pch = 4, col = 'brown'),
osc = 'dB', heights = c(2, 1))

Analyze an entire folder in one go, saving spectrograms with pitch contours
plus an html file for easy access
s2 = analyze('~/Downloads/temp',

savePlots = '', # save in the same folder as audio
showLegend = TRUE, yScale = 'bark',
width = 20, height = 12,
units = 'cm', res = 300, ylim = c(0, 5),
cores = 4) # use multiple cores to speed up processing

s2$summary[, 1:5]

Different options for summarizing the output
a = analyze(sound2, 44100,

summaryFun = c('mean', 'range'))
a$summary # one row per sound

analyze 21

...with custom summaryFun, eg time of peak relative to duration (0 to 1)
timePeak = function(x) which.max(x) / length(x) # without omitting NAs
timeTrough = function(x) which.min(x) / length(x)
a = analyze(sound2, samplingRate = 16000,

summaryFun = c('mean', 'timePeak', 'timeTrough'))
colnames(a$summary)

Analyze a selection rather than the whole sound
a = analyze(sound, samplingRate = 16000, from = .1, to = .3, plot = TRUE)

Use only a range of frequencies when calculating spectral descriptives
(ignore everything below 100 Hz and above 8000 Hz as irrelevant noise)
a = analyze(sound, samplingRate = 16000, cutFreq = c(100, 8000))

Amplitude and loudness: analyze() should give the same results as
dedicated functions getRMS() / getLoudness()
Create 1 kHz tone
samplingRate = 16000; dur_ms = 50
sound3 = sin(2*pi*1000/samplingRate*(1:(dur_ms/1000*samplingRate)))
a1 = analyze(sound3, samplingRate = samplingRate, scale = 1,

windowLength = 25, overlap = 50,
loudness = list(SPL_measured = 40),
pitchMethods = NULL, plot = FALSE)

a1$detailed$loudness # loudness per STFT frame (1 sone by definition)
getLoudness(sound3, samplingRate = samplingRate, windowLength = 25,

overlap = 50, SPL_measured = 40, scale = 1)$loudness
a1$detailed$ampl # RMS amplitude per STFT frame
getRMS(sound3, samplingRate = samplingRate, windowLength = 25,

overlap = 50, scale = 1)$detailed
or even simply: sqrt(mean(sound3 ^ 2))

The same sound as above, but with half the amplitude
a_half = analyze(sound3 / 2, samplingRate = samplingRate, scale = 1,

windowLength = 25, overlap = 50,
loudness = list(SPL_measured = 40),
pitchMethods = NULL, plot = FALSE)

a1$detailed$ampl / a_half$detailed$ampl # rms amplitude halved
a1$detailed$loudness/ a_half$detailed$loudness
loudness is not a linear function of amplitude

Analyzing ultrasounds (slow but possible, just adjust pitchCeiling)
s = soundgen(sylLen = 100, addSilence = 10,

pitch = c(25000, 35000, 30000),
formants = NA, rolloff = -12, rolloffKHz = 0,
pitchSamplingRate = 350000, samplingRate = 350000, windowLength = 5,
pitchCeiling = 45000, invalidArgAction = 'ignore',
plot = TRUE)

s is a bat-like ultrasound inaudible to humans
a = analyze(

s, 350000, plot = TRUE,
pitchFloor = 10000, pitchCeiling = 90000, priorMean = NA,
pitchMethods = c('autocor', 'spec'),
probably shouldn't use pitchMethod = "dom" b/c of likely low-freq noise

22 annotation_app

windowLength = 5, step = 2.5,
shortestSyl = 10, shortestPause = 10, # again, very short sounds
interpol = list(win = 10), # again, very short sounds
smooth = 0.1, # might need less smoothing if very rapid f0 changes
nFormants = 0, loudness = NULL, roughness = NULL, novelty = NULL)

NB: ignore formants and loudness estimates for such non-human sounds

download 260 sounds from Anikin & Persson (2017)
http://cogsci.se/publications/anikin-persson_2017_nonlinguistic-vocs/260sounds_wav.zip
unzip them into a folder, say '~/Downloads/temp'
myfolder = '~/Downloads/temp' # 260 .wav files live here
s = analyze(myfolder) # ~ 10-20 minutes!
s = write.csv(s, paste0(myfolder, '/temp.csv')) # save a backup

Check accuracy: import manually verified pitch values (our "key")
pitchManual # "ground truth" of mean pitch per sound
pitchContour # "ground truth" of complete pitch contours per sound
files_manual = paste0(names(pitchManual), '.wav')
idx = match(s$file, files_manual) # in case the order is wrong
s$key = pitchManual[idx]

Compare manually verified mean pitch with the output of analyze:
cor(skey, ssummary$pitch_median, use = 'pairwise.complete.obs')
plot(skey, ssummary$pitch_median, log = 'xy')
abline(a=0, b=1, col='red')

Re-running analyze with manually corrected contours gives correct
pitch-related descriptives like amplVoiced and harmonics (NB: you get it "for
free" when running pitch_app)
s1 = analyze(myfolder, pitchManual = pitchContour)
plot(s$summary$harmonics_median, s1$summary$harmonics_median)
abline(a=0, b=1, col='red')

End(Not run)

annotation_app Annotation app

Description

Starts a shiny app for annotating audio. This is a simplified and faster version of formant_app
intended only for making annotations.

Usage

annotation_app()

audSpectrogram 23

Value

Every time a new annotation is added, the app creates a backup csv file and creates or updates a
global object called "my_annot", which contains all the annotations. When the app is terminated, it
also returns the results as a dataframe.

Examples

Not run:
ann = annotation_app() # runs in default browser such as Firefox or Chrome

To change system default browser, run something like:
options('browser' = '/usr/bin/firefox') # path to the executable on Linux

End(Not run)

audSpectrogram Auditory spectrogram

Description

Produces an auditory spectrogram by convolving the sound with a bank of bandpass filters. The
main difference from STFT is that we don’t window the signal and de facto get variable tempo-
ral resolution in different frequency channels, as with a wavelet transform. The key settings are
filterType, nFilters, and yScale, which determine the type, number, and spacing of the filters,
respectively. Gammatone filters were designed as a simple approximation of human perception -
see gammatone and Slaney 1993 "An Efficient Implementation of the Patterson–Holdsworth Audi-
tory Filter Bank". Butterworth or Chebyshev filters are not meant to model perception, but can be
useful for quickly plotting a sound.

Usage

audSpectrogram(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
step = 1,
dynamicRange = 80,
filterType = c("butterworth", "chebyshev", "gammatone")[1],
nFilters = 128,
nFilters_oct = NULL,
filterOrder = if (filterType == "gammatone") 4 else 3,
bandwidth = NULL,
bandwidthMult = 1,
minFreq = 20,
maxFreq = samplingRate/2,

24 audSpectrogram

minBandwidth = 10,
output = c("audSpec", "audSpec_processed", "filterbank", "filterbank_env", "roughness"),
reportEvery = NULL,
cores = 1,
plot = TRUE,
savePlots = NULL,
plotFilters = FALSE,
osc = c("none", "linear", "dB")[2],
heights = c(3, 1),
ylim = NULL,
yScale = c("bark", "mel", "ERB", "log")[1],
contrast = 0.2,
brightness = 0,
maxPoints = c(1e+05, 5e+05),
padWithSilence = TRUE,
colorTheme = c("bw", "seewave", "heat.colors", "...")[1],
col = NULL,
extraContour = NULL,
xlab = NULL,
ylab = NULL,
xaxp = NULL,
mar = c(5.1, 4.1, 4.1, 2),
main = NULL,
grid = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

step step, ms (determines time resolution of the plot, but not of the returned envelopes
per channel). step = NULL means no downsampling at all (ncol of output =
length of input audio)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

filterType "butterworth" = Butterworth filter butter, "chebyshev" = Chebyshev filter butter,
"gammatone" = gammatone

audSpectrogram 25

nFilters the number of filters between minFreq and maxFreq (determines frequency res-
olution, while yScale determines the location of center frequencies)

nFilters_oct an alternative way to specify frequency resolution: the number of filters per
octave

filterOrder filter order (defaults to 4 for gammatones, 3 otherwise)

bandwidth filter bandwidth, octaves. If NULL, defaults to ERB bandwidths as in gammatone

bandwidthMult a scaling factor for all bandwidths (1 = no effect)
minFreq, maxFreq

the range of frequencies to analyze. If the spectrogram looks empty, try increas-
ing minFreq - the lowest filters are prone to returning very large values

minBandwidth minimum filter bandwidth, Hz (otherwise filters may become too narrow when
nFilters is high; has no effect if filterType = ’gammatone’)

output a list of measures to return. Defaults to everything, but this takes a lot of RAM,
so shorten to what’s needed if analyzing many files at once

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot should a spectrogram be plotted? TRUE / FALSE

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

plotFilters if TRUE, plots the filters as central frequencies ± bandwidth/2

osc "none" = no oscillogram; "linear" = on the original scale; "dB" = in decibels

heights a vector of length two specifying the relative height of the spectrogram and the
oscillogram (including time axes labels)

ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency). NB: still in
kHz, even if yScale = bark, mel, or ERB

yScale determines the location of center frequencies of the filters

contrast a number, recommended range -1 to +1. The spectrogram is raised to the power
of exp(3 * contrast). Contrast >0 increases sharpness, <0 decreases sharpness

brightness how much to "lighten" the image (>0 = lighter, <0 = darker)

maxPoints the maximum number of "pixels" in the oscillogram (if any) and spectrogram;
good for quickly plotting long audio files; defaults to c(1e5, 5e5)

padWithSilence if TRUE, pads the sound with just enough silence to resolve the edges properly
(only the original region is plotted, so the apparent duration doesn’t change)

colorTheme black and white (’bw’), as in seewave package (’seewave’), matlab-type palette
(’matlab’), or any palette from palette such as ’heat.colors’, ’cm.colors’, etc

col actual colors, eg rev(rainbow(100)) - see ?hcl.colors for colors in base R (over-
rides colorTheme)

extraContour a vector of arbitrary length scaled in Hz (regardless of yScale!) that will be
plotted over the spectrogram (eg pitch contour); can also be a list with extra
graphical parameters such as lwd, col, etc. (see examples)

26 audSpectrogram

xlab, ylab, main, mar, xaxp
graphical parameters for plotting

grid if numeric, adds n = grid dotted lines per kHz
width, height, units, res

graphical parameters for saving plots passed to png

... other graphical parameters

Value

Returns a list for each analyzed file, including:

audSpec auditory spectrogram with frequencies in rows and time in columns

audSpec_processed same but rescaled for plotting

filterbank raw output of the filters

roughness roughness per channel (as many as nFilters)

Examples

synthesize a sound with gradually increasing hissing noise
sound = soundgen(sylLen = 200, temperature = 0.001,

noise = list(time = c(0, 350), value = c(-40, 0)),
formantsNoise = list(f1 = list(freq = 5000, width = 10000)),
addSilence = 25)

playme(sound, samplingRate = 16000)

auditory spectrogram
as = audSpectrogram(sound, samplingRate = 16000, nFilters = 48)
dim(as$audSpec)

compare to FFT-based spectrogram with similar time and frequency resolution
fs = spectrogram(sound, samplingRate = 16000, yScale = 'bark',

windowLength = 5, step = 1)
dim(fs)

Not run:
add bells and whistles
audSpectrogram(sound, samplingRate = 16000,

filterType = 'butterworth',
nFilters = 128,
yScale = 'ERB',
bandwidth = 1/6,
dynamicRange = 150,
osc = 'dB', # plot oscillogram in dB
heights = c(2, 1), # spectro/osc height ratio
contrast = .4, # increase contrast
brightness = -.2, # reduce brightness
colorTheme = 'heat.colors', # pick color theme...
col = hcl.colors(100, palette = 'Plasma'), # ...or specify the colors
cex.lab = .75, cex.axis = .75, # text size and other base graphics pars
grid = 5, # to customize, add manually with graphics::grid()
ylim = c(0.05, 8), # always in kHz

bandpass 27

main = 'My auditory spectrogram' # title
+ axis labels, etc

)

NB: frequency resolution is controlled by both nFilters and bandwidth
audSpectrogram(sound, 16000, nFilters = 15, bandwidth = 1/2)
audSpectrogram(sound, 16000, nFilters = 15, bandwidth = 1/10)
audSpectrogram(sound, 16000, nFilters = 100, bandwidth = 1/2)
audSpectrogram(sound, 16000, nFilters = 100, bandwidth = 1/10)
audSpectrogram(sound, 16000, nFilters_oct = 5, bandwidth = 1/10)

remove the oscillogram
audSpectrogram(sound, samplingRate = 16000, osc = 'none')

save auditory spectrograms of all audio files in a folder
audSpectrogram('~/Downloads/temp',

savePlots = '~/Downloads/temp/audSpec', cores = 4)

End(Not run)

bandpass Bandpass/stop filters

Description

Filtering in the frequency domain with FFT-iFFT: low-pass, high-pass, bandpass, and bandstop
filters. Similar to ffilter, but here we use FFT instead of STFT - that is, the entire sound is
processed at once. This works best for relatively short sounds (seconds), but gives us maximum
precision (e.g., for precise notch filtering) and doesn’t affect the attack and decay. NAs are accepted
and can be interpolated or preserved in the output. Because we don’t do STFT, arbitrarily short
vectors are also fine as input - for example, we can apply a low-pass filter prior to decimation when
changing the sampling rate without aliasing. Note that, unlike pitchSmoothPraat, bandpass by
default applies an abrupt cutoff instead of a smooth gaussian filter, but this behavior can be adjusted
with the bw argument.

Usage

bandpass(
x,
samplingRate = NULL,
lwr = NULL,
upr = NULL,
action = c("pass", "stop")[1],
dB = Inf,
bw = 0,
na.rm = TRUE,
from = NULL,
to = NULL,

28 bandpass

normalize = FALSE,
reportEvery = NULL,
cores = 1,
saveAudio = NULL,
plot = FALSE,
savePlots = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

lwr, upr cutoff frequencies, Hz. Specifying just lwr gives a high-pass filter, just upr low-
pass filter with action = ’pass’ (or vice versa with action = ’stop’). Specifying
both lwr and upr a bandpass/bandstop filter, depending on ’action’

action "pass" = preserve the selected frequency range (bandpass), "stop" = remove the
selected frequency range (bandstop)

dB a positive number giving the strength of effect in dB (defaults to Inf - complete
removal of selected frequencies)

bw bandwidth of the filter cutoffs, Hz. Defaults to 0 (abrupt, step function), a posi-
tive number corresponds to the standard deviation of a Gaussian curve, and two
numbers set different bandwidths for the lower and upper cutoff points

na.rm if TRUE, NAs are interpolated, otherwise they are preserved in the output

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

normalize if TRUE, resets the output to the original scale (otherwise filtering often reduces
the amplitude)

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

saveAudio full path to the folder in which to save the processed audio

plot should a spectrogram be plotted? TRUE / FALSE

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

width, height, units, res
graphical parameters for saving plots passed to png

... other graphical parameters passed to plot() as well as to meanspec

bandpass 29

Details

Algorithm: fill in NAs with constant interpolation at the edges and linear interpolation in the middle;
perform FFT; set the frequency ranges to be filtered out to 0; perform inverse FFT; set to the original
scale; put the NAs back in.

Examples

Filter white noise
s1 = fade(c(rnorm(2000, 0, 1)), samplingRate = 16000)

low-pass
bandpass(s1, 16000, upr = 2000, plot = TRUE)

high-pass by 40 dB
bandpass(s1, 16000, lwr = 2000, dB = 40, plot = TRUE, wl = 1024)
wl is passed to seewave::meanspec for plotting

bandstop
bandpass(s1, 16000, lwr = 1000, upr = 1800, action = 'stop', plot = TRUE)

bandpass
s2 = bandpass(s1, 16000, lwr = 2000, upr = 2100, plot = TRUE)
playme(rep(s2, 5))
spectrogram(s2, 16000)

low-pass and interpolate a short vector with some NAs
x = rnorm(150, 10) + 3 * sin((1:50) / 5)
x[sample(seq_along(x), 50)] = NA
plot(x, type = 'l')
x_bandp = bandpass(x, samplingRate = 100, upr = 10)
points(x_bandp, type = 'l', col = 'blue')

Not run:
add 20 dB with a Gaussian-shaped filter instead of step function
s3 = bandpass(s1, 16000, lwr = 1700, upr = 2100, bw = 200,

dB = 20, plot = TRUE)
spectrogram(s3, 16000)
s4 = bandpass(s1, 16000, lwr = 2000, upr = 4300, bw = c(100, 500),

dB = 60, action = 'stop', plot = TRUE)
spectrogram(s4, 16000)

precise notch filtering is possible, even in low frequencies
whiteNoise = runif(16000, -1, 1)
s3 = bandpass(whiteNoise, 16000, lwr = 30, upr = 40, normalize = TRUE,

plot = TRUE, xlim = c(0, 500))
playme(rep(s3, 5))
spectrogram(s3, 16000, windowLength = 150, yScale = 'log')

compare the same with STFT
s4 = seewave::ffilter(whiteNoise, f = 16000, from = 30, to = 40)
spectrogram(s4, 16000, windowLength = 150, yScale = 'log')
(note: works better as wl approaches length(s4))

30 beat

high-pass all audio files in a folder
bandpass('~/Downloads/temp', saveAudio = '~/Downloads/temp/hp2000/',

lwr = 2000, savePlots = '~/Downloads/temp/hp2000/')

End(Not run)

beat Generate beat

Description

Generates percussive sounds from clicks through drum-like beats to sliding tones. The principle is
to create a sine wave with rapid frequency modulation and to add a fade-out. No extra harmonics
or formants are added. For this specific purpose, this is vastly faster and easier than to tinker with
soundgen settings, especially since percussive syllables tend to be very short.

Usage

beat(
nSyl = 10,
sylLen = 200,
pauseLen = 50,
pitch = c(200, 10),
samplingRate = 16000,
fadeOut = TRUE,
play = FALSE

)

Arguments

nSyl the number of syllables to generate

sylLen average duration of each syllable, ms

pauseLen average duration of pauses between syllables, ms

pitch fundamental frequency, Hz - a vector or data.frame(time = ..., value = ...)

samplingRate sampling frequency, Hz

fadeOut if TRUE, a linear fade-out is applied to the entire syllable

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

Value

Returns a non-normalized waveform centered at zero.

compareSounds 31

See Also

soundgen generateNoise fart

Examples

playback = c(TRUE, FALSE)[2]
a drum-like sound
s = beat(nSyl = 1, sylLen = 200,

pitch = c(200, 100), play = playback)
plot(s, type = 'l')

a dry, muted drum
s = beat(nSyl = 1, sylLen = 200,

pitch = c(200, 10), play = playback)

sci-fi laser guns
s = beat(nSyl = 3, sylLen = 300,

pitch = c(1000, 50), play = playback)

machine guns
s = beat(nSyl = 10, sylLen = 10, pauseLen = 50,

pitch = c(2300, 300), play = playback)

compareSounds Compare two sounds

Description

Computes similarity between two sounds based on comparing their spectrogram-like representa-
tions. If the input is audio, two methods of producing spectrograms are available: specType =
'linear' calls powspec for an power spectrogram with frequencies in Hz, and specType = 'mel'
calls melfcc for an auditory spectrogram with frequencies in Mel. For more customized options,
just produce your spectrograms or feature matrices (time in column, features like pitch, peak fre-
quency etc in rows) with your favorite function before calling compareSounds because it also ac-
cepts matrices as input. To be directly comparable, the two matrices are made into matrices of the
same size. In case of differences in sampling rates, only frequencies below the lower Nyquist fre-
quency or below maxFreq are kept. In case of differences in duration, the shorter sound is padded
with 0 (silence) or NA, as controlled by arguments padWith, padDir. Then the matrices are com-
pared using methods like cross-correlation or Dynamic Time Warp.

Usage

compareSounds(
x,
y,
samplingRate = NULL,
windowLength = 40,
overlap = 50,

32 compareSounds

step = NULL,
dynamicRange = 80,
method = c("cor", "cosine", "diff", "dtw"),
specType = c("linear", "mel")[2],
specPars = list(),
dtwPars = list(),
padWith = NA,
padDir = c("central", "left", "right")[1],
maxFreq = NULL

)

Arguments

x, y either two matrices (spectrograms or feature matrices) or two sounds to be com-
pared (numeric vectors, Wave objects, or paths to wav/mp3 files)

samplingRate if one or both inputs are numeric vectors, specify sampling rate, Hz. A vector
of length 2 means the two inputs have different sampling rates, in which case
spectrograms are compared only up to the lower Nyquist frequency

windowLength length of FFT window, ms

overlap overlap between successive FFT frames, %

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

dynamicRange parts of the spectra quieter than -dynamicRange dB are not compared

method method of comparing mel-transformed spectra of two sounds: "cor" = Pearson’s
correlation; "cosine" = cosine similarity; "diff" = absolute difference between
each bin in the two spectrograms; "dtw" = multivariate Dynamic Time Warp
with dtw

specType "linear" = power spectrogram with powspec, "mel" = mel-frequency spectro-
gram with melfcc

specPars a list of parameters passed to melfcc

dtwPars a list of parameters passed to dtw

padWith if the duration of x and y is not identical, the compared spectrograms are padded
with either silence (padWith = 0) or with NA’s (padWith = NA) to have the same
number of columns. Padding with NA implies that only the overlapping part is
of relevance, whereas padding with 0 means that the added silent part is also
compared with the longer sound, usually resulting in lower similarity (see ex-
amples)

padDir if padding, specify where to add zeros or NAs: before the sound (’left’), after
the sound (’right’), or on both sides (’central’)

maxFreq parts of the spectra above maxFreq Hz are not compared

compareSounds 33

Value

Returns a dataframe with two columns: "method" for the method(s) used, and "sim" for the simi-
larity between the two sounds calculated with that method. The range of similarity measures is [-1,
1] for "cor", [0, 1] for "cosine" and "diff", and (-Inf, Inf) for "dtw".

Examples

data(orni, peewit, package = 'seewave')
compareSounds(orni, peewit)
spectrogram(orni); playme(orni)
spectrogram(peewit); playme(peewit)

Not run:
s1 = soundgen(formants = 'a', play = TRUE)
s2 = soundgen(formants = 'ae', play = TRUE)
s3 = soundgen(formants = 'eae', sylLen = 700, play = TRUE)
s4 = runif(8000, -1, 1) # white noise
compareSounds(s1, s2, samplingRate = 16000)
compareSounds(s1, s4, samplingRate = 16000)

the central section of s3 is more similar to s1 than is the beg/eng of s3
compareSounds(s1, s3, samplingRate = 16000, padDir = 'left')
compareSounds(s1, s3, samplingRate = 16000, padDir = 'central')

padding with 0 penalizes differences in duration, whereas padding with NA
is like saying we only care about the overlapping part
compareSounds(s1, s3, samplingRate = 16000, padWith = 0)
compareSounds(s1, s3, samplingRate = 16000, padWith = NA)

comparing linear (Hz) vs mel-spectrograms produces quite different results
compareSounds(s1, s3, samplingRate = 16000, specType = 'linear')
compareSounds(s1, s3, samplingRate = 16000, specType = 'mel')

pass additional control parameters to dtw and melfcc
compareSounds(s1, s3, samplingRate = 16000,

specPars = list(nbands = 128),
dtwPars = list(dist.method = "Manhattan"))

use feature matrices instead of spectrograms (time in columns, features in rows)
a1 = t(as.matrix(analyze(s1, samplingRate = 16000)$detailed))
a1 = a1[4:nrow(a1),]; a1[is.na(a1)] = 0
a2 = t(as.matrix(analyze(s2, samplingRate = 16000)$detailed))
a2 = a2[4:nrow(a2),]; a2[is.na(a2)] = 0
a4 = t(as.matrix(analyze(s4, samplingRate = 16000)$detailed))
a4 = a4[4:nrow(a4),]; a4[is.na(a4)] = 0
compareSounds(a1, a2, method = c('cosine', 'dtw'))
compareSounds(a1, a4, method = c('cosine', 'dtw'))

a demo for comparing different similarity metrics
target = soundgen(sylLen = 500, formants = 'a',

pitch = data.frame(time = c(0, 0.1, 0.9, 1),
value = c(100, 150, 135, 100)),

34 crossFade

temperature = 0.001)
spec1 = soundgen:::getMelSpec(target, samplingRate = 16000)

parsToTry = list(
list(formants = 'i', # wrong

pitch = data.frame(time = c(0, 1), # wrong
value = c(200, 300))),

list(formants = 'i', # wrong
pitch = data.frame(time = c(0, 0.1, 0.9, 1), # right

value = c(100, 150, 135, 100))),
list(formants = 'a', # right

pitch = data.frame(time = c(0,1), # wrong
value = c(200, 300))),

list(formants = 'a',
pitch = data.frame(time = c(0, 0.1, 0.9, 1), # right

value = c(100, 150, 135, 100))) # right
)

sounds = list()
for (s in seq_along(parsToTry)) {

sounds[[length(sounds) + 1]] = do.call(soundgen,
c(parsToTry[[s]], list(temperature = 0.001, sylLen = 500)))

}
lapply(sounds, playme)

method = c('cor', 'cosine', 'diff', 'dtw')
df = matrix(NA, nrow = length(parsToTry), ncol = length(method))
colnames(df) = method
df = as.data.frame(df)
for (i in 1:nrow(df)) {

df[i,] = compareSounds(
x = spec1, # faster to calculate spec1 once
y = sounds[[i]],
samplingRate = 16000,
method = method

)[, 2]
}
df$av = rowMeans(df, na.rm = TRUE)
row 1 = wrong pitch & formants, ..., row 4 = right pitch & formants
df$formants = c('wrong', 'wrong', 'right', 'right')
df$pitch = c('wrong', 'right', 'wrong', 'right')
df

End(Not run)

crossFade Join two waveforms by cross-fading

crossFade 35

Description

crossFade joins two input vectors (waveforms) by cross-fading. First it truncates both input vec-
tors, so that ampl1 ends with a zero crossing and ampl2 starts with a zero crossing, both on an
upward portion of the soundwave. Then it cross-fades both vectors linearly with an overlap of
crossLen or crossLenPoints. If the input vectors are too short for the specified length of cross-faded
region, the two vectors are concatenated at zero crossings instead of cross-fading. Soundgen uses
crossFade for gluing together epochs with different regimes of pitch effects (see the vignette on
sound generation), but it can also be useful for joining two separately generated sounds without
audible artifacts.

Usage

crossFade(
ampl1,
ampl2,
crossLenPoints = 240,
crossLen = NULL,
samplingRate = NULL,
shape = c("lin", "exp", "log", "cos", "logistic", "gaussian")[1],
steepness = 1

)

Arguments

ampl1, ampl2 two numeric vectors (waveforms) to be joined

crossLenPoints (optional) the length of overlap in points

crossLen the length of overlap in ms (overrides crossLenPoints)

samplingRate the sampling rate of input vectors, Hz (needed only if crossLen is given in ms
rather than points)

shape controls the type of fade function: ’lin’ = linear, ’exp’ = exponential, ’log’ =
logarithmic, ’cos’ = cosine, ’logistic’ = logistic S-curve

steepness scaling factor regulating the steepness of fading curves (except for shapes ’lin’
and ’cos’): 0 = linear, >1 = steeper than default

Value

Returns a numeric vector.

See Also

fade

Examples

sound1 = sin(1:100 / 9)
sound2 = sin(7:107 / 3)
plot(c(sound1, sound2), type = 'b')
an ugly discontinuity at 100 that will make an audible click

36 defaults

sound = crossFade(sound1, sound2, crossLenPoints = 5)
plot(sound, type = 'b') # a nice, smooth transition
length(sound) # but note that cross-fading costs us ~60 points
because of trimming to zero crossings and then overlapping

Not run:
Actual sounds, alternative shapes of fade-in/out
sound3 = soundgen(formants = 'a', pitch = 200,

addSilence = 0, attackLen = c(50, 0))
sound4 = soundgen(formants = 'u', pitch = 200,

addSilence = 0, attackLen = c(0, 50))

simple concatenation (with a click)
playme(c(sound3, sound4), 16000)

concatentation from zc to zc (no click, but a rough transition)
playme(crossFade(sound3, sound4, crossLen = 0), 16000)

linear crossFade over 35 ms - brief, but smooth
playme(crossFade(sound3, sound4, crossLen = 35, samplingRate = 16000), 16000)

s-shaped cross-fade over 300 ms (shortens the sound by ~300 ms)
playme(crossFade(sound3, sound4, samplingRate = 16000,

crossLen = 300, shape = 'cos'), 16000)

End(Not run)

defaults Shiny app defaults

Description

A list of default values for Shiny app soundgen_app() - mostly the same as the defaults for sound-
gen(). NB: if defaults change, this has to be updated!!!

Usage

defaults

Format

An object of class list of length 69.

defaults_analyze 37

defaults_analyze Defaults and ranges for analyze()

Description

A dataset containing defaults and ranges of key variables for analyze() and pitch_app(). Adjust as
needed.

Usage

defaults_analyze

Format

A matrix with 58 rows and 4 columns:

default default value

low lowest permitted value

high highest permitted value

step increment for adjustment ...

defaults_analyze_pitchCand

Defaults for plotting with analyze()

Description

Default plotting settings for each pitch tracker in analyze() and pitch_app(). Adjust as needed.

Usage

defaults_analyze_pitchCand

Format

A dataframe with 8 rows and 5 columns:

method pitch tracking method

col color

pch point character

lwd line width

lty line type ...

38 detectNLP

detectNLP Detect NLP

Description

(Experimental) A function for automatically detecting and annotating nonlinear vocal phenomena
(NLP). Algorithm: analyze the audio using analyze and phasegram, then use the extracted frame-
by-frame descriptives to classify each frame as having no NLP ("none"), subharmonics ("sh"),
sibebands / amplitude modulation ("sb"), or deterministic chaos ("chaos"). The classification is
performed by a naiveBayes algorithm adapted to autocorrelated time series and pretrained on a
manually annotated corpus of vocalizations. Whenever possible, check and correct pitch tracks
prior to running the algorithm. See naiveBayes for tips on using adaptive priors and "clumpering"
to account for the fact that NLP typically occur in continuous segments spanning multiple frames.

Usage

detectNLP(
x,
samplingRate = NULL,
predictors = c("d2", "subDep", "amEnvDep", "amMsPurity", "entropy", "HNR", "CPP",

"roughness"),
thresProb = 0.4,
unvoicedToNone = FALSE,
train = soundgen::detectNLP_training_nonv,
scale = NULL,
from = NULL,
to = NULL,
pitchManual = NULL,
pars_analyze = list(windowLength = 50, roughness = list(windowLength = 15, step = 3)),
pars_phasegram = list(nonlinStats = "d2"),
pars_naiveBayes = list(prior = "static", wlClumper = 3),
jumpThres = 14,
jumpWindow = 100,
reportEvery = NULL,
cores = 1,
plot = FALSE,
savePlots = NULL,
main = NULL,
xlab = NULL,
ylab = NULL,
ylim = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

detectNLP 39

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

predictors variables to include in NLP classification. The default is to include all 7 vari-
ables in the training corpus. NA values are fine (they do not cause the entire
frame to be dropped as long as at least one variable is measured).

thresProb minimum probability of NLP for the frame to be classified as non-"none", which
is good for reducing false alarms (<1/nClasses means just go for the highest
probability)

unvoicedToNone if TRUE, frames treated as unvoiced are set to "none" (mostly makes sense with
manual pitch tracking)

train training corpus, namely the result of running naiveBayes_train on audio with
known NLP episodes. Currently implemented: soundgen::detectNLP_training_nonv
= manually annotated human nonverbal vocalizations, soundgen::detectNLP_training_synth
= synthetic, soundgen()-generated sounds with various NLP. To train your own,
run detectNLP on a collection of recordings, provide ground truth classification
of NLP per frame (normally this would be converted from NLP annotations),
and run naiveBayes_train.

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

pitchManual manually corrected pitch contour. For a single sound, provide a numeric vector
of any length. For multiple sounds, provide a dataframe with columns "file" and
"pitch" (or path to a csv file) as returned by pitch_app, ideally with the same
windowLength and step as in current call to analyze. A named list with pitch
vectors per file is also OK (eg as returned by pitch_app)

pars_analyze arguments passed to analyze. NB: drop everything unnecessary to speed up the
process, e.g. nFormants = 0, loudness = NULL, etc. If you have manual pitch
contours, pass them as pitchManual = Make sure the "silence" threshold
is appropriate, and ideally normalize the audio (silent frames are automatically
assigned to "none")

pars_phasegram arguments passed to phasegram. NB: only d2 and nPeaks are used for NLP
detection because they proved effective in the training corpus; other nonlinear
statistics are not calculated to save time.

pars_naiveBayes

arguments passed to naiveBayes. It is strongly recommended to use some
clumpering, with wlClumper given as frames (multiple by step to get the corre-
sponding minumum duration of an NLP segment in ms), and/or dynamic priors.

jumpThres frames in which pitch changes by jumpThres octaves/s more than in the sur-
rounding frames are classified as containing "pitch jumps". Note that this is the
rate of frequency change PER SECOND, not from one frame to the next

jumpWindow the window for calculating the median pitch slope around the analyzed frame,
ms

40 detectNLP

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot if TRUE, produces a spectrogram with annotated NLP regimes

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

main, xlab, ylab, ...
graphical parameters passed to spectrogram

ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency). NB: still in
kHz, even if yScale = bark, mel, or ERB

width, height, units, res
parameters passed to png if the plot is saved

Value

Returns a dataframe with frame-by-frame descriptives, posterior probabilities of each NLP type per
frame, and the tentative classification (the NLP type with the highest posterior probability, possibly
corrected by clumpering). The time step is equal to the larger of the steps passed to analyze() and
phasegram().

Returns a list of datasets, one per input file, with acoustic descriptives per frame (returned by
analyze and phasegram), probabilities of each NLP type per frame, and the putative classifica-
tion of NLP per frame.

Examples

Not run:
target = soundgen(sylLen = 2000, addSilence = 0, temperature = 1e-2,

pitch = c(380, 550, 500, 220), subDep = c(0, 0, 40, 0, 0, 0, 0, 0),
amDep = c(0, 0, 0, 0, 80, 0, 0, 0), amFreq = 80,
noise = c(-10, rep(-40, 5)),
jitterDep = c(0, 0, 0, 0, 0, 3),
plot = TRUE, play = TRUE)

classifier trained on manually annotated recordings of human nonverbal
vocalizations
nlp = detectNLP(target, 16000,

predictors = c('subDep', 'amEnvDep', 'amMsPurity', 'HNR', 'CPP'),
plot = TRUE, ylim = c(0, 4))

classifier trained on synthetic, soundgen()-generated sounds
nlp = detectNLP(target, 16000,

train = soundgen::detectNLP_training_synth,
predictors = c('subDep', 'amEnvDep', 'amMsPurity', 'HNR', 'CPP'),
plot = TRUE, ylim = c(0, 4))

head(nlp[, c('time', 'pr')])
table(nlp$pr)
plot(nlp$amEnvDep, type = 'l')
plot(nlp$subDep, type = 'l')
plot(nlp$entropy, type = 'l')

detectNLP_training_nonv 41

plot(nlp$none, type = 'l')
points(nlp$sb, type = 'l', col = 'blue')
points(nlp$sh, type = 'l', col = 'green')
points(nlp$chaos, type = 'l', col = 'red')

detection of pitch jumps
s1 = soundgen(sylLen = 1200, temperature = .001, pitch = list(

time = c(0, 350, 351, 890, 891, 1200),
value = c(140, 230, 460, 330, 220, 200)))

playme(s1, 16000)
nlp1 = detectNLP(s1, 16000, plot = TRUE, ylim = c(0, 3),

predictors = c('subDep', 'amEnvDep', 'amMsPurity', 'HNR', 'CPP'),
train = soundgen::detectNLP_training_synth)

process all files in a folder
nlp = detectNLP('/home/allgoodguys/Downloads/temp260/',

pitchManual = soundgen::pitchContour, cores = 4, plot = TRUE,
savePlots = '', ylim = c(0, 3))

End(Not run)

detectNLP_training_nonv

Nonlinear phenomena: Naive Bayes classifier trained on human non-
verbal vocalizations

Description

The results of running naiveBayes_train on acoustically analyzed 969 human nonverbal vocal-
izations (>83K frames). It is used by detectNLP.

Usage

detectNLP_training_nonv

Format

An object of class list of length 9.

detectNLP_training_synth

Nonlinear phenomena: Naive Bayes classifier trained on synthetic
sounds

Description

The results of running naiveBayes_train on 5000 synthetic sounds with or without NLP created
with soundgen(). It is used by detectNLP.

42 ERBToHz

Usage

detectNLP_training_synth

Format

An object of class list of length 9.

ERBToHz Convert Hz to ERB rate

Description

Converts from Hz to the number of Equivalent Rectangular Bandwidths (ERBs) below input fre-
quency. See https://www2.ling.su.se/staff/hartmut/bark.htm and https://en.wikipedia.org/wiki/Equivalent_rectangular_bandwidth

Usage

ERBToHz(e, method = c("linear", "quadratic")[1])

Arguments

e vector or matrix of frequencies in ERB rate

method approximation to use

See Also

HzToERB HzToSemitones HzToNotes

Examples

freqs_Hz = c(-20, 20, 100, 440, 1000, 20000, NA)
e_lin = HzToERB(freqs_Hz, 'linear')
ERBToHz(e_lin, 'linear')

e_quad = HzToERB(freqs_Hz, 'quadratic')
ERBToHz(e_quad, 'quadratic')

estimateVTL 43

estimateVTL Estimate vocal tract length

Description

Estimates the length of vocal tract based on formant frequencies. If method = 'meanFormant', vo-
cal tract length (VTL) is calculated separately for each formant, and then the resulting VTLs are
averaged. The equation used is (2∗formantnumber−1)∗speedSound/(4∗formantfrequency)
for a closed-open tube (mouth open) and formantnumber∗speedSound/(2∗formantfrequency)
for an open-open or closed-closed tube (eg closed mouth in mmm or open mouth and open glottis
in whispering). If method = 'meanDispersion', formant dispersion is calculated as the mean dis-
tance between formants, and then VTL is calculated as speedofsound/2/formantdispersion. If
method = 'regression', formant dispersion is estimated using the regression method described in
Reby et al. (2005) "Red deer stags use formants as assessment cues during intrasexual agonistic in-
teractions". For a review of these and other VTL-related summary measures of formant frequencies,
refer to Pisanski et al. (2014) "Vocal indicators of body size in men and women: a meta-analysis".
See also schwa for VTL estimation with additional information on formant frequencies.

Usage

estimateVTL(
formants,
method = c("regression", "meanDispersion", "meanFormant")[1],
interceptZero = TRUE,
tube = c("closed-open", "open-open")[1],
speedSound = 35400,
checkFormat = TRUE,
output = c("simple", "detailed")[1],
plot = FALSE

)

Arguments

formants formant frequencies in any format recognized by soundgen: a vector of formant
frequencies like c(550,1600, 3200); a list with multiple values per formant like
list(f1 = c(500, 550), f2 = 1200)); or a character string like aaui referring
to default presets for speaker "M1" in soundgen presets

method the method of estimating vocal tract length (see details)

interceptZero if TRUE, forces the regression curve to pass through the origin. This reduces the
influence of highly variable lower formants, but we have to commit to a partic-
ular model of the vocal tract: closed-open or open-open/closed-closed (method
= "regression" only)

tube the vocal tract is assumed to be a cylindrical tube that is either "closed-open" or
"open-open" (same as closed-closed)

speedSound speed of sound in warm air, by default 35400 cm/s. Stevens (2000) "Acoustic
phonetics", p. 138

44 estimateVTL

checkFormat if FALSE, only a list of properly formatted formant frequencies is accepted

output "simple" (default) = just the VTL; "detailed" = a list of additional stats (see
Value below)

plot if TRUE, plots the regression line whose slope gives formant dispersion (method
= "regression" only). Label sizes show the influence of each formant, and the
blue line corresponds to each formant being an integer multiple of F1 (as when
harmonics are misidentified as formants); the second plot shows how VTL varies
depending on the number of formants used

Value

If output = 'simple' (default), returns the estimated vocal tract length in cm. If output = 'detailed'
and method = 'regression', returns a list with extra stats used for plotting. Namely, $regressionInfo$infl
gives the influence of each observation calculated as the absolute change in VTL with vs without
the observation * 10 + 1 (the size of labels on the first plot). $vtlPerFormant$vtl gives the VTL
as it would be estimated if only the first nFormants were used.

See Also

schwa

Examples

estimateVTL(NA)
estimateVTL(500)
estimateVTL(c(600, 1850, 2800, 3600, 5000), plot = TRUE)
estimateVTL(c(600, 1850, 2800, 3600, 5000), plot = TRUE, output = 'detailed')
estimateVTL(c(1200, 2000, 2800, 3800, 5400, 6400),

tube = 'open-open', interceptZero = FALSE, plot = TRUE)
estimateVTL(c(1200, 2000, 2800, 3800, 5400, 6400),

tube = 'open-open', interceptZero = TRUE, plot = TRUE)

Multiple measurements are OK
estimateVTL(

formants = list(f1 = c(540, 600, 550),
f2 = 1650, f3 = c(2400, 2550)),
plot = TRUE, output = 'detailed')

NB: this is better than averaging formant values. Cf.:
estimateVTL(

formants = list(f1 = mean(c(540, 600, 550)),
f2 = 1650, f3 = mean(c(2400, 2550))),
plot = TRUE)

Missing values are OK
estimateVTL(c(600, 1850, 3100, NA, 5000), plot = TRUE)
estimateVTL(list(f1 = 500, f2 = c(1650, NA, 1400), f3 = 2700), plot = TRUE)

Note that VTL estimates based on the commonly reported 'meanDispersion'
depend only on the first and last formants
estimateVTL(c(500, 1400, 2800, 4100), method = 'meanDispersion')
estimateVTL(c(500, 1100, 2300, 4100), method = 'meanDispersion') # identical

fade 45

...but this is not the case for 'meanFormant' and 'regression' methods
estimateVTL(c(500, 1400, 2800, 4100), method = 'meanFormant')
estimateVTL(c(500, 1100, 2300, 4100), method = 'meanFormant') # much longer

Not run:
Compare the results produced by the three methods
nIter = 1000
out = data.frame(meanFormant = rep(NA, nIter), meanDispersion = NA, regression = NA)
for (i in 1:nIter) {

generate a random formant configuration
f = runif(1, 300, 900) + (1:6) * rnorm(6, 1000, 200)
out$meanFormant[i] = estimateVTL(f, method = 'meanFormant')
out$meanDispersion[i] = estimateVTL(f, method = 'meanDispersion')
out$regression[i] = estimateVTL(f, method = 'regression')

}
pairs(out)
cor(out)
'meanDispersion' is pretty different, while 'meanFormant' and 'regression'
give broadly comparable results

End(Not run)

fade Fade

Description

Applies fade-in and/or fade-out of variable length, shape, and steepness. The resulting effect softens
the attack and release of a waveform.

Usage

fade(
x,
fadeIn = 50,
fadeOut = 50,
fadeIn_points = NULL,
fadeOut_points = NULL,
samplingRate = NULL,
scale = NULL,
shape = c("lin", "exp", "log", "cos", "logistic", "gaussian")[1],
steepness = 1,
reportEvery = NULL,
cores = 1,
saveAudio = NULL,
plot = FALSE,
savePlots = NULL,
width = 900,
height = 500,

46 fade

units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

fadeIn, fadeOut length of segments for fading in and out, ms (0 = no fade)
fadeIn_points, fadeOut_points

length of segments for fading in and out, points (if specified, override fadeIn/fadeOut)

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

shape controls the type of fade function: ’lin’ = linear, ’exp’ = exponential, ’log’ =
logarithmic, ’cos’ = cosine, ’logistic’ = logistic S-curve

steepness scaling factor regulating the steepness of fading curves (except for shapes ’lin’
and ’cos’): 0 = linear, >1 = steeper than default

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

saveAudio full path to the folder in which to save audio files (one per detected syllable)

plot if TRUE, produces an oscillogram of the waveform after fading

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

width, height, units, res
graphical parameters for saving plots passed to png

... other graphical parameters

Value

Returns a numeric vector of the same length as input

See Also

crossFade

Examples

#' # Fading a real sound: say we want fast attack and slow release
s = soundgen(attack = 0, windowLength = 10,

sylLen = 500, addSilence = 0)
playme(s)
s1 = fade(s, fadeIn = 40, fadeOut = 350,

samplingRate = 16000, shape = 'cos', plot = TRUE)

fart 47

playme(s1)

Illustration of fade shapes
x = runif(5000, min = -1, max = 1) # make sure to zero-center input!!!
plot(x, type = 'l')
y = fade(x, fadeIn_points = 1000, fadeOut_points = 0, plot = TRUE)
y = fade(x, fadeIn_points = 1000, fadeOut_points = 1500,

shape = 'exp', steepness = 1, plot = TRUE)
y = fade(x, fadeIn_points = 1500, fadeOut_points = 500,

shape = 'log', steepness = 1, plot = TRUE)
y = fade(x, fadeIn_points = 1500, fadeOut_points = 500,

shape = 'log', steepness = 3, plot = TRUE)
y = fade(x, fadeIn_points = 1500, fadeOut_points = 1500,

shape = 'cos', plot = TRUE)
y = fade(x, fadeIn_points = 1500, fadeOut_points = 1500,

shape = 'logistic', steepness = 1, plot = TRUE)
y = fade(x, fadeIn_points = 1500, fadeOut_points = 1500,

shape = 'logistic', steepness = 3, plot = TRUE)
y = fade(x, fadeIn_points = 1500, fadeOut_points = 1500,

shape = 'gaussian', steepness = 1.5, plot = TRUE)

Not run:
fade('~/Downloads/temp', fadeIn = 500, fadeOut = 500, savePlots = '')

End(Not run)

fart Fart

Description

While the same sounds can be created with soundgen(), this facetious function produces the same
effect more efficiently and with very few control parameters. With default settings, execution time
is ~ 10 ms per second of audio sampled at 16000 Hz. Principle: creates separate glottal cycles with
harmonics, but no formants. See soundgen for more details.

Usage

fart(
glottis = c(50, 200),
pitch = 65,
temperature = 0.25,
sylLen = 600,
rolloff = -10,
samplingRate = 16000,
play = FALSE,
plot = FALSE

)

48 filterMS

Arguments

glottis anchors for specifying the proportion of a glottal cycle with closed glottis, % (0
= no modification, 100 = closed phase as long as open phase); numeric vector
or dataframe specifying time and value (anchor format)

pitch a numeric vector of f0 values in Hz or a dataframe specifying the time (ms or 0
to 1) and value (Hz) of each anchor, hereafter "anchor format". These anchors
are used to create a smooth contour of fundamental frequency f0 (pitch) within
one syllable

temperature hyperparameter for regulating the amount of stochasticity in sound generation
sylLen syllable length, ms (not vectorized)
rolloff rolloff of harmonics in source spectrum, dB/octave (not vectorized)
samplingRate sampling frequency, Hz
play if TRUE, plays the synthesized sound using the default player on your system.

If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

plot if TRUE, plots the waveform

Value

Returns a normalized waveform.

See Also

soundgen generateNoise beat

Examples

f = fart()
playme(f)

Not run:
while (TRUE) {

fart(sylLen = 300, temperature = .5, play = TRUE)
Sys.sleep(rexp(1, rate = 1))

}

End(Not run)

filterMS Filter modulation spectrum

Description

Filters a modulation spectrum by removing a certain range of amplitude modulation (AM) and
frequency modulation (FM) frequencies. Conditions can be specified either separately for AM and
FM with amCond = ..., fmCond = ..., implying an OR combination of conditions, or jointly on
AM and FM with jointCond. jointCond is more general, but using amCond/fmCond is ~100 times
faster.

filterMS 49

Usage

filterMS(
ms,
amCond = NULL,
fmCond = NULL,
jointCond = NULL,
action = c("remove", "preserve")[1],
plot = TRUE

)

Arguments

ms a modulation spectrum as returned by modulationSpectrum - a matrix of real
or complex values, AM in columns, FM in rows

amCond, fmCond character strings with valid conditions on amplitude and frequency modulation
(see examples)

jointCond character string with a valid joint condition amplitude and frequency modulation

action should the defined AM-FM region be removed (’remove’) or preserved, while
everything else is removed (’preserve’)?

plot if TRUE, plots the filtered modulation spectrum

Value

Returns the filtered modulation spectrum - a matrix of the original dimensions, real or complex.

Examples

ms = modulationSpectrum(soundgen(), samplingRate = 16000,
returnComplex = TRUE)$complex

Remove all AM over 25 Hz
ms_filt = filterMS(ms, amCond = 'abs(am) > 25')

amCond and fmCond are OR-conditions
filterMS(ms, amCond = 'abs(am) > 15', fmCond = 'abs(fm) > 5', action = 'remove')
filterMS(ms, amCond = 'abs(am) > 15', fmCond = 'abs(fm) > 5', action = 'preserve')
filterMS(ms, amCond = 'abs(am) > 10 & abs(am) < 25', action = 'remove')

jointCond is an AND-condition
filterMS(ms, jointCond = 'am * fm < 5', action = 'remove')
filterMS(ms, jointCond = 'am^2 + (fm*3)^2 < 200', action = 'preserve')

So:
filterMS(ms, jointCond = 'abs(am) > 5 | abs(fm) < 5') # slow but general
...is the same as:
filterMS(ms, amCond = 'abs(am) > 5', fmCond = 'abs(fm) < 5') # fast

50 filterSoundByMS

filterSoundByMS Filter sound by modulation spectrum

Description

Manipulates the modulation spectrum (MS) of a sound so as to remove certain frequencies of am-
plitude modulation (AM) and frequency modulation (FM). Algorithm: produces a modulation spec-
trum with modulationSpectrum, modifies it with filterMS, converts the modified MS to a spectro-
gram with msToSpec, and finally inverts the spectrogram with invertSpectrogram, thus producing
a sound with (approximately) the desired characteristics of the MS. Note that the last step of invert-
ing the spectrogram introduces some noise, so the resulting MS is not precisely the same as the
intermediate filtered version. In practice this means that some residual energy will still be present
in the filtered-out frequency range (see examples).

Usage

filterSoundByMS(
x,
samplingRate = NULL,
from = NULL,
to = NULL,
logSpec = FALSE,
windowLength = 25,
step = NULL,
overlap = 80,
wn = "hamming",
zp = 0,
amCond = NULL,
fmCond = NULL,
jointCond = NULL,
action = c("remove", "preserve")[1],
initialPhase = c("zero", "random", "spsi")[3],
nIter = 50,
reportEvery = NULL,
cores = 1,
play = FALSE,
saveAudio = NULL,
plot = TRUE,
savePlots = NULL,
width = 900,
height = 500,
units = "px",
res = NA

)

filterSoundByMS 51

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

logSpec if TRUE, the spectrogram is log-transformed prior to taking 2D FFT
windowLength, step, wn, zp

parameters for extracting a spectrogram if specType = 'STFT'. Window length
and step are specified in ms (see spectrogram). If specType = 'audSpec',
these settings have no effect

overlap overlap between successive FFT frames, %

amCond, fmCond character strings with valid conditions on amplitude and frequency modulation
(see examples)

jointCond character string with a valid joint condition amplitude and frequency modulation

action should the defined AM-FM region be removed (’remove’) or preserved, while
everything else is removed (’preserve’)?

initialPhase initial phase estimate: "zero" = set all phases to zero; "random" = Gaussian
noise; "spsi" (default) = single-pass spectrogram inversion (Beauregard et al.,
2015)

nIter the number of iterations of the GL algorithm (Griffin & Lim, 1984), 0 = don’t
run

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

play if TRUE, plays back the reconstructed audio

saveAudio full (!) path to folder for saving the processed audio; NULL = don’t save, ” =
same as input folder (NB: overwrites the originals!)

plot if TRUE, produces a triple plot: original MS, filtered MS, and the MS of the
output sound

savePlots if a valid path is specified, a plot is saved in this folder (defaults to NA)
width, height, units, res

parameters passed to png if the plot is saved

Value

Returns the filtered audio as a numeric vector normalized to [-1, 1] with the same sampling rate as
input.

See Also

invertSpectrogram filterMS

52 filterSoundByMS

Examples

Create a sound to be filtered
s = soundgen(pitch = rnorm(n = 20, mean = 200, sd = 25),

amFreq = 25, amDep = 50, samplingRate = 16000,
addSilence = 50, plot = TRUE, osc = TRUE)

playme(s, 16000)

Filter
s_filt = filterSoundByMS(s, samplingRate = 16000,

amCond = 'abs(am) > 15', fmCond = 'abs(fm) > 5',
nIter = 10, # increase nIter for best results!
action = 'remove', plot = TRUE)

playme(s_filt, samplingRate = 16000)

Not run:
Process all files in a folder, save filtered audio and plots
s_filt = filterSoundByMS('~/Downloads/temp2',

saveAudio = '~/Downloads/temp2/ms', savePlots = '',
amCond = 'abs(am) > 15', fmCond = 'abs(fm) > 5',
action = 'remove', nIter = 10)

Download an example - a bit of speech (sampled at 16000 Hz)
download.file('http://cogsci.se/soundgen/audio/speechEx.wav',

destfile = '~/Downloads/speechEx.wav') # modify as needed
target = '~/Downloads/speechEx.wav'
samplingRate = tuneR::readWave(target)@samp.rate
playme(target)
spectrogram(target, osc = TRUE)

Remove AM above 3 Hz from a bit of speech (remove most temporal details)
s_filt1 = filterSoundByMS(target, amCond = 'abs(am) > 3',

action = 'remove', nIter = 15)
playme(s_filt1, samplingRate)
spectrogram(s_filt1, samplingRate = samplingRate, osc = TRUE)

Intelligigble when AM in 5-25 Hz is preserved:
s_filt2 = filterSoundByMS(target, amCond = 'abs(am) > 5 & abs(am) < 25',

action = 'preserve', nIter = 15)
playme(s_filt2, samplingRate)
spectrogram(s_filt2, samplingRate = samplingRate, osc = TRUE)

Remove slow AM/FM (prosody) to achieve a "robotic" voice
s_filt3 = filterSoundByMS(target, jointCond = 'am^2 + (fm*3)^2 < 300',

nIter = 15)
playme(s_filt3, samplingRate)
spectrogram(s_filt3, samplingRate = samplingRate, osc = TRUE)

An alternative manual workflow w/o calling filterSoundByMS()
This way you can modify the MS directly and more flexibly
than with the filterMS() function called by filterSoundByMS()

filterSoundByMS 53

(optional) Check that the target spectrogram can be successfully inverted
spec = spectrogram(s, 16000, windowLength = 50, step = NULL, overlap = 80,

wn = 'hanning', osc = TRUE, padWithSilence = FALSE)
s_rev = invertSpectrogram(spec, samplingRate = 16000,

windowLength = 50, overlap = 80, wn = 'hamming', play = FALSE)
playme(s_rev, 16000) # should be close to the original
spectrogram(s_rev, 16000, osc = TRUE)

Get modulation spectrum starting from the sound...
ms = modulationSpectrum(s, samplingRate = 16000, windowLength = 25,

overlap = 80, wn = 'hanning', amRes = NULL, maxDur = Inf, logSpec = FALSE,
power = NA, returnComplex = TRUE, plot = FALSE)$complex

... or starting from the spectrogram:
ms = specToMS(spec)
plotMS(abs(ms)) # this is the original MS

Filter as needed - for ex., remove AM > 10 Hz and FM > 3 cycles/kHz
(removes f0, preserves formants)
am = as.numeric(colnames(ms))
fm = as.numeric(rownames(ms))
idx_row = which(abs(fm) > 3)
idx_col = which(abs(am) > 10)
ms_filt = ms
ms_filt[idx_row,] = 0
ms_filt[, idx_col] = 0
plotMS(abs(ms_filt)) # this is the filtered MS

Convert back to a spectrogram
spec_filt = msToSpec(ms_filt)
image(t(log(abs(spec_filt))))

Invert the spectrogram
s_filt = invertSpectrogram(abs(spec_filt), samplingRate = 16000,

windowLength = 25, overlap = 80, wn = 'hanning')
NB: use the same settings as in "spec = spectrogram(s, ...)" above

Compare with the original
playme(s, 16000)
spectrogram(s, 16000, osc = TRUE)
playme(s_filt, 16000)
spectrogram(s_filt, 16000, osc = TRUE)

ms_new = modulationSpectrum(s_filt, samplingRate = 16000,
windowLength = 25, overlap = 80, wn = 'hanning', maxDur = Inf,
plot = TRUE, returnComplex = TRUE)$complex

image(x = as.numeric(colnames(ms_new)), y = as.numeric(rownames(ms_new)),
z = t(log(abs(ms_new))))

plot(as.numeric(colnames(ms)), log(abs(ms[nrow(ms) / 2,])), type = 'l')
points(as.numeric(colnames(ms_new)), log(ms_new[nrow(ms_new) / 2,]), type = 'l',

col = 'red', lty = 3)
AM peaks at 25 Hz are removed, but inverting the spectrogram adds a lot of noise

End(Not run)

54 findInflections

findInflections Find inflections

Description

Finds inflections in discrete time series such as pitch contours. When there are no missing values
and no thresholds, this can be accomplished with a fast one-liner like which(diff(diff(x) > 0)
!= 0) + 1. Missing values are interpolated by repeating the first and last non-missing values at the
head and tail, respectively, and by linear interpolation in the middle. Setting a threshold means
that small "wiggling" no longer counts. To use an analogy with ocean waves, smoothing (low-pass
filtering) removes the ripples and only leaves the slow roll, while thresholding preserves only waves
that are sufficiently high, whatever their period.

Usage

findInflections(x, thres = NULL, step = NULL, plot = FALSE, main = "")

Arguments

x numeric vector with or without NAs

thres minimum vertical distance between two extrema for them to count as two inde-
pendent inflections

step distance between values in s (only needed for plotting)

plot if TRUE, produces a simple plot

main plot title

Value

Returns a vector of indices giving the location of inflections.

See Also

findPeaks

Examples

x = sin(2 * pi * (1:100) / 15) * seq(1, 5, length.out = 100)
idx_na = c(1:4, 6, 7, 14, 25, 30:36, 39, 40, 42, 45:50,

57, 59, 62, 66, 71:79, 98)
x[idx_na] = NA
soundgen:::findInflections(x, plot = TRUE)
soundgen:::findInflections(x, thres = 5, plot = TRUE)

for (i in 1:10) {
temp = soundgen:::getRandomWalk(len = runif(1, 10, 100), rw_range = 10,

rw_smoothing = runif(1, 0, 1))
soundgen:::findInflections(temp, thres = 1, plot = TRUE)

findJumps 55

invisible(readline(prompt="Press [enter] to continue"))
}

findJumps Find frequency jumps

Description

This function flags frames with apparent pith jumps (frequency jumps, voice breaks), defined as
relatively large and sudden changes in voice pitch or some other frequency measure (peak frequency,
a formant frequency, etc). It is called by detectNLP. Algorithm: a frame is considered to contain
a frequency jump if the absolute slope at this frame exceeds the average slope over ±jumpWindow
around it by more than jumpThres. Note that the slope is considered per second rather than per time
step - that is, taking into account the sampling rate of the frequency track. Thus, it’s not just the
change from frame to frame that defines what is considered a jump, but a change that differs from
the trend in the surrounding frames (see examples). If several consecutive frames contain apparent
jumps, only the greatest of them is preserved.

Usage

findJumps(
pitch,
step,
jumpThres = 8,
jumpWindow = 80,
plot = FALSE,
xlab = "Time, ms",
ylab = "f0, Hz",
...

)

Arguments

pitch vector of frequencies per frame, Hz

step time step between frames, ms

jumpThres frames in which pitch changes by jumpThres octaves/s more than in the sur-
rounding frames are classified as containing "pitch jumps". Note that this is the
rate of frequency change PER SECOND, not from one frame to the next

jumpWindow the window for calculating the median pitch slope around the analyzed frame,
ms

plot if TRUE, plots the pitch contour with putative frequency jumps marked by ar-
rows

xlab, ylab, ... graphical parameters passed to plot

56 findPeaks

Value

Returns a boolean vector of the same length as pitch, where TRUE values correspond to frames
with detected pitch jumps.

Examples

pitch = getSmoothContour(anchors = list(
time = c(0, 350, 351, 890, 891, 1200),
value = c(140, 230, 460, 330, 220, 200)), len = 40)

step = 25
pj = findJumps(pitch, step, plot = TRUE)

convert frame indices to time in ms
step = 25
which(pj) * step
or consider pj's to occur midway between the two frames
which(pj) * step - step / 2

even very rapid changes are not considered jumps if they match
the surrounding trend
pitch = getSmoothContour(anchors = list(

time = c(0, 350, 351, 700),
value = c(340, 710, 850, 1200)), len = 20)

findJumps(pitch, step, plot = TRUE)
diff(HzToSemitones(pitch)) * (1000 / step) / 12
the slope at frame 10 (10.4 oct/s) exceeds the jumpThres (8 oct/s), but not
10.4 minus the average slope around frame 10 (~3 oct/s, so 10 - 3 < 8)

findPeaks Find peaks

Description

A bare-bones, very fast function to find local maxima (peaks) in a numeric vector.

Usage

findPeaks(x, wl = 3, thres = NULL)

Arguments

x numeric vector

wl rolling window over which we look for maxima: central value ± floor(wl/2), eg
±1 if wl=3

thres required absolute value of each peak

Value

Returns a vector with indices of local maxima

flatEnv 57

See Also

findInflections

Examples

x = rnorm(100)
findPeaks(x, wl = 3)
findPeaks(x, wl = 3, thres = 1)
findPeaks(x, wl = 5)
idx = findPeaks(x, wl = 5, thres = 1)
plot(x, type = 'b'); abline(h = 1, lty = 3)
points(idx, x[idx], col = 'blue', pch = 8)

flatEnv Flat envelope / compressor

Description

Applies a compressor - that is, flattens the amplitude envelope of a waveform, reducing the differ-
ence in amplitude between loud and quiet sections. This is achieved by dividing the waveform by
some function of its smoothed amplitude envelope (Hilbert, peak or root mean square).

Usage

flatEnv(
x,
samplingRate = NULL,
scale = NULL,
compression = 1,
method = c("hil", "rms", "peak")[1],
windowLength = 50,
windowLength_points = NULL,
killDC = FALSE,
dynamicRange = 40,
reportEvery = NULL,
cores = 1,
saveAudio = NULL,
plot = FALSE,
savePlots = NULL,
col = "blue",
width = 900,
height = 500,
units = "px",
res = NA,
...

)

58 flatEnv

compressor(
x,
samplingRate = NULL,
scale = NULL,
compression = 1,
method = c("hil", "rms", "peak")[1],
windowLength = 50,
windowLength_points = NULL,
killDC = FALSE,
dynamicRange = 40,
reportEvery = NULL,
cores = 1,
saveAudio = NULL,
plot = FALSE,
savePlots = NULL,
col = "blue",
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

compression the amount of compression to apply: 0 = none, 1 = maximum

method hil = Hilbert envelope, rms = root mean square amplitude, peak = peak amplitude
per window

windowLength the length of smoothing window, ms
windowLength_points

the length of smoothing window, points. If specified, overrides windowLength

killDC if TRUE, dynamically removes DC offset or similar deviations of average wave-
form from zero (see examples)

dynamicRange parts of sound quieter than -dynamicRange dB will not be amplified

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

saveAudio full path to the folder in which to save the compressed sound(s)

plot if TRUE, plots the original sound, the smoothed envelope, and the compressed
sound

flatEnv 59

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

col the color of amplitude contours

width, height, units, res
graphical parameters for saving plots passed to png

... other graphical parameters passed to points() that control the appearance of
amplitude contours, eg lwd, lty, etc.

Value

If the input is a single audio (file, Wave, or numeric vector), returns the compressed waveform as a
numeric vector with the original sampling rate and scale. If the input is a folder with several audio
files, returns a list of compressed waveforms, one for each file.

Examples

a = rnorm(500) * seq(1, 0, length.out = 500)
b = flatEnv(a, 1000, plot = TRUE, windowLength_points = 5) # too short
c = flatEnv(a, 1000, plot = TRUE, windowLength_points = 450) # too long
d = flatEnv(a, 1000, plot = TRUE, windowLength_points = 100) # about right

Not run:
s = soundgen(sylLen = 1000, ampl = c(0, -40, 0), plot = TRUE)
playme(s)
s_flat1 = flatEnv(s, 16000, dynamicRange = 60, plot = TRUE,

windowLength = 50, method = 'hil')
s_flat2 = flatEnv(s, 16000, dynamicRange = 60, plot = TRUE,

windowLength = 10, method = 'rms')
s_flat3 = flatEnv(s, 16000, dynamicRange = 60, plot = TRUE,

windowLength = 10, method = 'peak')
playme(s_flat2)

Remove DC offset
s1 = c(rep(0, 50), runif(1000, -1, 1), rep(0, 50)) +

seq(.3, 1, length.out = 1100)
s2 = flatEnv(s1, 16000, plot = TRUE, windowLength_points = 50, killDC = FALSE)
s3 = flatEnv(s1, 16000, plot = TRUE, windowLength_points = 50, killDC = TRUE)

Compress and save all audio files in a folder
s4 = flatEnv('~/Downloads/temp',

method = 'peak', compression = .5,
saveAudio = '~/Downloads/temp/compressed',
savePlots = '~/Downloads/temp/compressed',
col = 'green', lwd = 5)

osc(s4[[1]])

End(Not run)

60 flatSpectrum

flatSpectrum Flat spectrum

Description

Flattens the spectrum of a sound by smoothing in the frequency domain. Can be used for removing
formants without modifying pitch contour or voice quality (the balance of harmonic and noise
components), followed by the addition of a new spectral envelope (cf. transplantFormants).
Algorithm: makes a spectrogram, flattens the real part of the smoothed spectrum of each STFT
frame, and transforms back into time domain with inverse STFT (see also addFormants).

Usage

flatSpectrum(
x,
samplingRate = NULL,
freqWindow = NULL,
dynamicRange = 80,
windowLength = 50,
step = NULL,
overlap = 90,
wn = "gaussian",
zp = 0,
play = FALSE,
saveAudio = NULL,
reportEvery = NULL,
cores = 1

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

freqWindow the width of smoothing window, Hz. Defaults to median pitch estimated by
analyze

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

flatSpectrum 61

wn window type accepted by ftwindow, currently gaussian, hanning, hamming,
bartlett, blackman, flattop, rectangle

zp window length after zero padding, points

play if TRUE, plays the processed audio

saveAudio full (!) path to folder for saving the processed audio; NULL = don’t save, ” =
same as input folder (NB: overwrites the originals!)

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

Value

Returns a numeric vector with the same sampling rate as the input.

See Also

addFormants transplantFormants

Examples

sound_aii = soundgen(formants = 'aii')
playme(sound_aii, 16000)
seewave::meanspec(sound_aii, f = 16000, dB = 'max0')

sound_flat = flatSpectrum(sound_aii, freqWindow = 150, samplingRate = 16000)
playme(sound_flat, 16000)
seewave::meanspec(sound_flat, f = 16000, dB = 'max0')
harmonics are still there, but formants are gone and can be replaced

Not run:
Now let's make a sheep say "aii"
data(sheep, package = 'seewave') # import a recording from seewave
playme(sheep)
sheep_flat = flatSpectrum(sheep)
playme(sheep_flat, sheep@samp.rate)
seewave::spec(sheep_flat, f = sheep@samp.rate, dB = 'max0')

So far we have a sheep bleating with a flat spectrum;
now let's add new formants
sheep_aii = addFormants(sheep_flat,

samplingRate = sheep@samp.rate,
formants = 'aii',
lipRad = -3) # negative lipRad to counter unnatural flat source

playme(sheep_aii, sheep@samp.rate)
spectrogram(sheep_aii, sheep@samp.rate)
seewave::spec(sheep_aii, f = sheep@samp.rate, dB = 'max0')

End(Not run)

62 formant_app

formant_app Interactive formant tracker

Description

Starts a shiny app for manually correcting formant measurements. For more tips, see pitch_app
and http://cogsci.se/soundgen.html.

Usage

formant_app()

Details

Suggested workflow: load one or several audio files (wav/mp3), preferably not longer than a minute
or so. Select a region of interest in the spectrogram - for example, a sustained vowel with clear and
relatively steady formants. Double-click within the selection to create a new annotation (you may
add a text label if needed). If you are satisfied with the automatically calculated formant frequencies,
proceed to the next region of interest. If not, there are 4 ways to adjust them: (1) type in the correct
number in one of the formant boxes in the top right corner; (2) click a spectrogram within selection
(pick the formant number to adjust by clicking the formant boxes); (3) single-click the spectrum to
use the cursor’s position, or (4) double-click the spectrum to use the nearest spectral peak. When
done with a file, move on to the next one in the queue. Use the orange button to download the
results. To continue work, upload the output file from the previous session together with the audio
files (you can rename it, but keep the .csv extension). Use hotkeys (eg spacebar to play/stop) and
avoid working with very large files.

Value

Every time a new annotation is added, the app creates a backup csv file and creates or updates a
global object called "my_formants", which contains all the annotations. When the app is terminated,
it also returns the results as a dataframe.

See Also

pitch_app

Examples

Not run:
f = formant_app() # runs in default browser such as Firefox or Chrome

To change system default browser, run something like:
options('browser' = '/usr/bin/firefox') # path to the executable on Linux

End(Not run)

gaussianSmooth2D 63

gaussianSmooth2D Gaussian smoothing in 2D

Description

Takes a matrix of numeric values and smoothes it by convolution with a symmetric Gaussian win-
dow function.

Usage

gaussianSmooth2D(
m,
kernelSize = 5,
kernelSD = 0.5,
action = c("blur", "unblur")[1],
plotKernel = FALSE

)

Arguments

m input matrix (numeric, on any scale, doesn’t have to be square)

kernelSize the size of the Gaussian kernel, in points

kernelSD the SD of the Gaussian kernel relative to its size (.5 = the edge is two SD’s away)

action ’blur’ = kernel-weighted average, ’unblur’ = subtract kernel-weighted average

plotKernel if TRUE, plots the kernel

Value

Returns a numeric matrix of the same dimensions as input.

See Also

modulationSpectrum

Examples

s = spectrogram(soundgen(), samplingRate = 16000, windowLength = 10,
output = 'original', plot = FALSE)

s = log(s + .001)
image(s)
s1 = gaussianSmooth2D(s, kernelSize = 5, plotKernel = TRUE)
image(s1)

Not run:
more smoothing in time than in frequency
s2 = gaussianSmooth2D(s, kernelSize = c(5, 15))
image(s2)

64 generateNoise

vice versa - more smoothing in frequency
s3 = gaussianSmooth2D(s, kernelSize = c(25, 3))
image(s3)

sharpen the image by deconvolution with the kernel
s4 = gaussianSmooth2D(s1, kernelSize = 5, action = 'unblur')
image(s4)

s5 = gaussianSmooth2D(s, kernelSize = c(15, 1), action = 'unblur')
image(s5)

End(Not run)

generateNoise Generate noise

Description

Generates noise of length len and with spectrum defined by rolloff parameters OR by a specified
filter spectralEnvelope. This function is called internally by soundgen, but it may be more
convenient to call it directly when synthesizing non-biological noises defined by specific spectral
and amplitude envelopes rather than formants: the wind, whistles, impact noises, etc. See fart and
beat for similarly simplified functions for tonal non-biological sounds.

Usage

generateNoise(
len,
rolloffNoise = 0,
noiseFlatSpec = 1200,
rolloffNoiseExp = 0,
spectralEnvelope = NULL,
noise = NULL,
temperature = 0.1,
attackLen = 10,
windowLength_points = 1024,
samplingRate = 16000,
overlap = 75,
dynamicRange = 80,
smoothing = list(),
invalidArgAction = c("adjust", "abort", "ignore")[1],
play = FALSE

)

Arguments

len length of output

generateNoise 65

rolloffNoise, noiseFlatSpec
linear rolloff of the excitation source for the unvoiced component, rolloffNoise
dB/kHz (anchor format) applied above noiseFlatSpec Hz

rolloffNoiseExp

exponential rolloff of the excitation source for the unvoiced component, dB/oct
(anchor format) applied above 0 Hz

spectralEnvelope

(optional): as an alternative to using rolloffNoise, we can provide the exact
filter - a vector of non-negative numbers specifying the desired spectrum on a
linear scale up to Nyquist frequency (samplingRate / 2). The length doesn’t
matter as it can be interpolated internally to windowLength_points/2. A matrix
specifying the filter for each STFT step is also accepted. The easiest way to
obtain spectralEnvelope is to call soundgen:::getSpectralEnvelope or to use the
spectrum / spectrogram of a recorded sound

noise loudness of turbulent noise (0 dB = as loud as voiced component, negative values
= quieter) such as aspiration, hissing, etc (anchor format)

temperature hyperparameter for regulating the amount of stochasticity in sound generation

attackLen duration of fade-in / fade-out at each end of syllables and noise (ms): a vector
of length 1 (symmetric) or 2 (separately for fade-in and fade-out)

windowLength_points

the length of fft window, points

samplingRate sampling frequency, Hz

overlap FFT window overlap, %. For allowed values, see istft

dynamicRange dynamic range, dB. Harmonics and noise more than dynamicRange under max-
imum amplitude are discarded to save computational resources

smoothing a list of parameters passed to getSmoothContour to control the interpolation
and smoothing of contours: interpol (approx / spline / loess), loessSpan, discon-
tThres, jumpThres

invalidArgAction

what to do if an argument is invalid or outside the range in permittedValues:
’adjust’ = reset to default value, ’abort’ = stop execution, ’ignore’ = throw a
warning and continue (may crash)

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

Details

Algorithm: paints a spectrogram with desired characteristics, sets phase to zero, and generates a
time sequence via inverse FFT.

See Also

soundgen fart beat

66 generateNoise

Examples

.5 s of white noise
samplingRate = 16000
noise1 = generateNoise(len = samplingRate * .5,

samplingRate = samplingRate)
playme(noise1, samplingRate)
seewave::meanspec(noise1, f = samplingRate)

Percussion (run a few times to notice stochasticity due to temperature = .25)
noise2 = generateNoise(len = samplingRate * .15, noise = c(0, -80),

rolloffNoise = c(4, -6), attackLen = 5, temperature = .25)
noise3 = generateNoise(len = samplingRate * .25, noise = c(0, -40),

rolloffNoise = c(4, -20), attackLen = 5, temperature = .25)
playme(c(noise2, noise3), samplingRate)

Not run:
playback = list(TRUE, FALSE, 'aplay', 'vlc')[[1]]
1.2 s of noise with rolloff changing from 0 to -12 dB above 2 kHz
noise = generateNoise(len = samplingRate * 1.2,

rolloffNoise = c(0, -12), noiseFlatSpec = 2000,
samplingRate = samplingRate, play = playback)

spectrogram(noise, samplingRate, osc = TRUE)

Similar, but using the dataframe format to specify a more complicated
contour for rolloffNoise:
noise = generateNoise(len = samplingRate * 1.2,

rolloffNoise = data.frame(time = c(0, .3, 1), value = c(-12, 0, -12)),
noiseFlatSpec = 2000, samplingRate = samplingRate, play = playback)

spectrogram(noise, samplingRate, osc = TRUE)

To create a sibilant [s], specify a single strong, broad formant at ~7 kHz:
windowLength_points = 1024
spectralEnvelope = soundgen:::getSpectralEnvelope(

nr = windowLength_points / 2, nc = 1, samplingRate = samplingRate,
formants = list('f1' = data.frame(time = 0, freq = 7000,

amp = 50, width = 2000)))
noise = generateNoise(len = samplingRate,

samplingRate = samplingRate, spectralEnvelope = as.numeric(spectralEnvelope),
play = playback)

plot(spectralEnvelope, type = 'l')

Low-frequency, wind-like noise
spectralEnvelope = soundgen:::getSpectralEnvelope(

nr = windowLength_points / 2, nc = 1, lipRad = 0,
samplingRate = samplingRate, formants = list('f1' = data.frame(

time = 0, freq = 150, amp = 30, width = 90)))
noise = generateNoise(len = samplingRate,

samplingRate = samplingRate, spectralEnvelope = as.numeric(spectralEnvelope),
play = playback)

Manual filter, e.g. for a kettle-like whistle (narrow-band noise)
spectralEnvelope = c(rep(0, 100), 120, rep(0, 100)) # any length is fine

getDuration 67

plot(spectralEnvelope, type = 'b') # notch filter at Nyquist / 2, here 4 kHz
noise = generateNoise(len = samplingRate, spectralEnvelope = spectralEnvelope,

samplingRate = samplingRate, play = playback)

Compare to a similar sound created with soundgen()
(unvoiced only, a single formant at 4 kHz)
noise_s = soundgen(pitch = NULL,

noise = data.frame(time = c(0, 1000), value = c(0, 0)),
formants = list(f1 = data.frame(freq = 4000, amp = 80, width = 20)),
play = playback)

Use the spectral envelope of an existing recording (bleating of a sheep)
(see also the same example with tonal source in ?addFormants)
data(sheep, package = 'seewave') # import a recording from seewave
sound_orig = as.numeric(sheep@left)
samplingRate = sheep@samp.rate
playme(sound_orig, samplingRate)

extract the original spectrogram
windowLength = c(5, 10, 50, 100)[1] # try both narrow-band (eg 100 ms)
to get "harmonics" and wide-band (5 ms) to get only formants
spectralEnvelope = spectrogram(sound_orig, windowLength = windowLength,

samplingRate = samplingRate, output = 'original', padWithSilence = FALSE)
sound_noise = generateNoise(len = length(sound_orig),

spectralEnvelope = spectralEnvelope, rolloffNoise = 0,
samplingRate = samplingRate, play = playback)

playme(sound_noise, samplingRate)

The spectral envelope is similar to the original recording. Compare:
par(mfrow = c(1, 2))
seewave::meanspec(sound_orig, f = samplingRate, dB = 'max0')
seewave::meanspec(sound_noise, f = samplingRate, dB = 'max0')
par(mfrow = c(1, 1))
However, the excitation source is now white noise
(which sounds like noise if windowLength is ~5-10 ms,
but becomes more and more like the original at longer window lengths)

End(Not run)

getDuration Get duration

Description

Returns the duration of one or more audio files (mostly useful for running on an entire folder). If
threshold is set, it also removes the leading and trailing silences or near-silences, thus returning
the duration of relatively loud central fragments of each sound. Silences are located based on the
amplitude of root mean square (RMS) amplitude with getRMS. Note that the threshold is set relative
to the observed maximum RMS, just as in analyze. This means that even very quiet sounds are not
treated as nothing but silence.

68 getDuration

Usage

getDuration(
x,
samplingRate = NULL,
silence = 0.01,
rms = list(windowLength = 20, step = 5),
reportEvery = NULL,
cores = 1

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

silence leading and trailing sections quieter than this proportion of maximum RMS am-
plitude are removed when calculating duration_noSilence (NULL = don’t
calculate duration_noSilence to save time)

rms a list of control parameters passed to getRMS

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

Value

Returns duration (s) and duration_noSilence (duration without leading and trailing silences).

See Also

analyze getLoudness

Examples

s = c(rep(0, 550), runif(400, -1, 1), rep(0, 50))
osc(s, samplingRate = 1000)
true duration_noSilence is 400 ms
getDuration(s, samplingRate = 1000, silence = .01)
getDuration(s, samplingRate = 1000, silence = .1,

rms = list(windowLength = 5, step = 1))

Not run:
d = getDuration('~/Downloads/temp')
hist(d$duration - d$duration_noSilence)

End(Not run)

getEntropy 69

getEntropy Entropy

Description

Returns Weiner or Shannon entropy of an input vector such as the spectrum of a sound. Non-
positive input values are converted to a small positive number (convertNonPositive). If all elements
are zero, returns NA.

Usage

getEntropy(
x,
type = c("weiner", "shannon")[1],
normalize = FALSE,
convertNonPositive = 1e-10

)

Arguments

x vector of positive floats

type ’shannon’ for Shannon (information) entropy, ’weiner’ for Weiner entropy

normalize if TRUE, Shannon entropy is normalized by the length of input vector to range
from 0 to 1. It has no affect on Weiner entropy

convertNonPositive

all non-positive values are converted to convertNonPositive

Examples

Here are four simplified power spectra, each with 9 frequency bins:
s = list(

c(rep(0, 4), 1, rep(0, 4)), # a single peak in spectrum
c(0, 0, 1, 0, 0, .75, 0, 0, .5), # perfectly periodic, with 3 harmonics
rep(0, 9), # a silent frame
rep(1, 9) # white noise

)

Weiner entropy is ~0 for periodic, NA for silent, 1 for white noise
sapply(s, function(x) round(getEntropy(x), 2))

Shannon entropy is ~0 for periodic with a single harmonic, moderate for
periodic with multiple harmonics, NA for silent, highest for white noise
sapply(s, function(x) round(getEntropy(x, type = 'shannon'), 2))

Normalized Shannon entropy - same but forced to be 0 to 1
sapply(s, function(x) round(getEntropy(x,

type = 'shannon', normalize = TRUE), 2))

70 getEnv

getEnv Get amplitude envelope

Description

Returns the smoothed amplitude envelope of a waveform on the original scale. Unlike seewave::env,
this function always returns an envelope of the same length as the original sound, regardless of the
amount of smoothing.

Usage

getEnv(
sound,
windowLength_points,
method = c("rms", "hil", "peak", "raw", "mean")[1]

)

Arguments

sound numeric vector
windowLength_points

the length of smoothing window, in points

method ’peak’ for peak amplitude per window, ’rms’ for root mean square amplitude,
’mean’ for mean (for DC offset removal), ’hil’ for Hilbert, ’raw’ for low-pass
filtering the actual sound

Examples

a = rnorm(500) * seq(1, 0, length.out = 500)
windowLength_points = 50
scale = max(abs(a))
plot(a, type = 'l', ylim = c(-scale, scale))
points(soundgen:::getEnv(a, windowLength_points, 'rms'),

type = 'l', col = 'red')
points(soundgen:::getEnv(a, windowLength_points, 'peak'),

type = 'l', col = 'green')
points(soundgen:::getEnv(a, windowLength_points, 'hil'),

type = 'l', col = 'blue')
points(soundgen:::getEnv(a, windowLength_points, 'mean'),

type = 'l', lty = 3, lwd = 3)

getHNR 71

getHNR Get HNR

Description

Calculates the harmonics-to-noise ratio (HNR) - that is, the ratio between the intensity (root mean
square amplitude) of the harmonic component and the intensity of the noise component. Normally
called by analyze.

Usage

getHNR(
x = NULL,
samplingRate = NA,
acf_x = NULL,
lag.min = 2,
lag.max = length(x),
interpol = c("none", "parab", "spline", "sinc")[4],
wn = "hanning",
idx_max = NULL

)

Arguments

x time series (a numeric vector)

samplingRate sampling rate

acf_x pre-computed autocorrelation function of input x, if already available
lag.min, lag.max

minimum and maximum lag to consider when looking for peaks in the ACF;
lag.min = samplingRate/pitchCeiling, lag.max = samplingRate/pitchFloor

interpol method of improving the frequency resolution by interpolating the ACF: "none"
= don’t interpolate; "parab" = parabolic interpolation on three points (local peak
and its neighbors); "spline" = spline interpolation; "sinc" = sin(x)/x interpola-
tion to a continuous function followed by a search for local peaks using Brent’s
method

wn window applied to x (unless acf_x is provided instead of x) as well as to the sinc
interpolation

idx_max (internal) the index of the peak to investigate, if already estimated

Value

A list of three components: f0 = frequency corresponding to the peak of the autocorrelation func-
tion; max_acf = amplitude of the peak of the autocorrelation function on a scale of (0, 1); HNR =
10 * log10(x / (1 - max_acf)).

72 getIntegerRandomWalk

References

Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the harmonics-
to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences (Vol. 17, No.
1193, pp. 97-110).

Examples

signal = sin(2 * pi * 150 * (1:16000)/16000)
signal = signal / sqrt(mean(signal^2))
noise = rnorm(16000)
noise = noise / sqrt(mean(noise^2))
SNR = 40
s = signal + noise * 10^(-SNR/20)
soundgen:::getHNR(s, 16000, lag.min = 16000/1000,
lag.max = 16000/75, interpol = 'none')
soundgen:::getHNR(s, 16000, lag.min = 16000/1000,
lag.max = 16000/75, interpol = 'parab')
soundgen:::getHNR(s, 16000, lag.min = 16000/1000,
lag.max = 16000/75, interpol = 'spline')
soundgen:::getHNR(s, 16000, lag.min = 16000/1000,
lag.max = 16000/75, interpol = 'sinc')

getIntegerRandomWalk Discrete random walk

Description

Takes a continuous random walk and converts it to continuous epochs of repeated values 0/1/2,
each at least minLength points long. 0/1/2 correspond to different noise regimes: 0 = no noise, 1 =
subharmonics, 2 = subharmonics and jitter/shimmer.

Usage

getIntegerRandomWalk(
rw,
nonlinBalance = 50,
minLength = 50,
q1 = NULL,
q2 = NULL,
plot = FALSE

)

Arguments

rw a random walk generated by getRandomWalk (expected range 0 to 100)

nonlinBalance a number between 0 to 100: 0 = returns all zeros; 100 = returns all twos

minLength the mimimum length of each epoch

getLoudness 73

q1, q2 cutoff points for transitioning from regime 0 to 1 (q1) or from regime 1 to 2 (q2).
See noiseThresholdsDict for defaults

plot if TRUE, plots the random walk underlying nonlinear regimes

Value

Returns a vector of integers (0/1/2) of the same length as rw.

Examples

rw = getRandomWalk(len = 100, rw_range = 100, rw_smoothing = .2)
r = getIntegerRandomWalk(rw, nonlinBalance = 75,

minLength = 10, plot = TRUE)
r = getIntegerRandomWalk(rw, nonlinBalance = 15,

q1 = 30, q2 = 70,
minLength = 10, plot = TRUE)

getLoudness Get loudness

Description

Estimates subjective loudness per frame, in sone. Based on EMBSD speech quality measure, par-
ticularly the matlab code in Yang (1999) and Timoney et al. (2004). Note that there are many ways
to estimate loudness and many other factors, ignored by this model, that could influence subjec-
tively experienced loudness. Please treat the output with a healthy dose of skepticism! Also note
that the absolute value of calculated loudness critically depends on the chosen "measured" sound
pressure level (SPL). getLoudness estimates how loud a sound will be experienced if it is played
back at an SPL of SPL_measured dB. The most meaningful way to use the output is to compare the
loudness of several sounds analyzed with identical settings or of different segments within the same
recording.

Usage

getLoudness(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
windowLength = 50,
step = NULL,
overlap = 50,
SPL_measured = 70,
Pref = 2e-05,
spreadSpectrum = TRUE,
summaryFun = c("mean", "median", "sd"),
reportEvery = NULL,

74 getLoudness

cores = 1,
plot = TRUE,
savePlots = NULL,
main = NULL,
ylim = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
mar = c(5.1, 4.1, 4.1, 4.1),
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)
scale maximum possible amplitude of input used for normalization of input vector

(only needed if x is a numeric vector)
from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)
windowLength length of FFT window, ms
step you can override overlap by specifying FFT step, ms (NB: because digital au-

dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %
SPL_measured sound pressure level at which the sound is presented, dB
Pref reference pressure, Pa (currently has no effect on the estimate)
spreadSpectrum if TRUE, applies a spreading function to account for frequency masking
summaryFun functions used to summarize each acoustic characteristic, eg "c(’mean’, ’sd’)";

user-defined functions are fine (see examples); NAs are omitted automatically
for mean/median/sd/min/max/range/sum, otherwise take care of NAs yourself

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing
plot should a spectrogram be plotted? TRUE / FALSE
savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same

folder as audio)
main plot title
ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency). NB: still in

kHz, even if yScale = bark, mel, or ERB
width, height, units, res

graphical parameters for saving plots passed to png

mar margins of the spectrogram
... other plotting parameters passed to spectrogram

getLoudness 75

Details

Algorithm: calibrates the sound to the desired SPL (Timoney et al., 2004), extracts a spectrogram
with powspec, converts to bark scale with (audspec), spreads the spectrum to account for frequency
masking across the critical bands (Yang, 1999), converts dB to phon by using standard equal loud-
ness curves (ISO 226), converts phon to sone (Timoney et al., 2004), sums across all critical bands,
and applies a correction coefficient to standardize output. Calibrated so as to return a loudness of 1
sone for a 1 kHz pure tone with SPL of 40 dB.

Value

Returns a list:

specSone spectrum in bark-sone (one per file): a matrix of loudness values in sone, with frequency
on the bark scale in rows and time (STFT frames) in columns

loudness a vector of loudness in sone per STFT frame (one per file)

summary a dataframe of summary loudness measures (one row per file)

References

• ISO 226 as implemented by Jeff Tackett (2005) on https://www.mathworks.com/matlabcentral/fileexchange/
7028-iso-226-equal-loudness-level-contour-signal

• Timoney, J., Lysaght, T., Schoenwiesner, M., & MacManus, L. (2004). Implementing loud-
ness models in matlab.

• Yang, W. (1999). Enhanced Modified Bark Spectral Distortion (EMBSD): An Objective
Speech Quality Measure Based on Audible Distortion and Cognitive Model. Temple Uni-
versity.

See Also

getRMS analyze

Examples

sounds = list(
white_noise = runif(8000, -1, 1),
white_noise2 = runif(8000, -1, 1) / 2, # ~6 dB quieter
pure_tone_1KHz = sin(2*pi*1000/16000*(1:8000)) # pure tone at 1 kHz

)
l = getLoudness(

x = sounds, samplingRate = 16000, scale = 1,
windowLength = 20, step = NULL,
overlap = 50, SPL_measured = 40,
Pref = 2e-5, plot = FALSE)

l$summary
white noise (sound 1) is twice as loud as pure tone at 1 KHz (sound 3),
and note that the same white noise with lower amplitude has lower loudness
(provided that "scale" is specified)
compare: lapply(sounds, range)

76 getPitchZc

Not run:
s = soundgen()
playme(s)
l1 = getLoudness(s, samplingRate = 16000, SPL_measured = 70)
l1$summary
The estimated loudness in sone depends on target SPL
l2 = getLoudness(s, samplingRate = 16000, SPL_measured = 40)
l2$summary

...but not (much) on windowLength and samplingRate
l3 = getLoudness(s, samplingRate = 16000, SPL_measured = 40, windowLength = 50)
l3$summary

input can be an audio file...
getLoudness('~/Downloads/temp/032_ut_anger_30-m-roar-curse.wav')

...or a folder with multiple audio files
getLoudness('~/Downloads/temp2', plot = FALSE)$summary
Compare:
analyze('~/Downloads/temp2', pitchMethods = NULL,

plot = FALSE, silence = 0)$summary$loudness_mean
(per STFT frame; should be similar if silence = 0, because
otherwise analyze() discards frames considered silent)

custom summaryFun
ran = function(x) diff(range(x))
getLoudness('~/Downloads/temp2', plot = FALSE,

summaryFun = c('mean', 'ran'))$summary

End(Not run)

getPitchZc Zero-crossing rate

Description

A less precise, but very quick method of pitch tracking based on measuring zero-crossing rate in
low-pass-filtered audio. Recommended for processing long recordings with typical pitch values
well below the first formant frequency, such as speech. Calling this function is considerably faster
than using the same pitch-tracking method in analyze. Note that, unlike analyze(), it returns the
times of individual zero crossings (hopefully corresponding to glottal cycles) instead of pitch values
at fixed time intervals.

Usage

getPitchZc(
x,
samplingRate = NULL,
scale = NULL,

getPitchZc 77

from = NULL,
to = NULL,
pitchFloor = 50,
pitchCeiling = 400,
zcThres = 0.1,
zcWin = 5,
silence = 0.04,
envWin = 5,
summaryFun = c("mean", "sd"),
reportEvery = NULL

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)
pitchFloor, pitchCeiling

absolute bounds for pitch candidates (Hz)

zcThres pitch candidates with certainty below this value are treated as noise and set to
NA (0 = anything goes, 1 = pitch must be perfectly stable over zcWin)

zcWin certainty in pitch candidates depends on how stable pitch is over zcWin glottal
cycles (odd integer > 3)

silence minimum root mean square (RMS) amplitude, below which pitch candidates are
set to NA (NULL = don’t consider RMS amplitude)

envWin window length for calculating RMS envelope, ms

summaryFun functions used to summarize each acoustic characteristic; see analyze

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

Details

Algorithm: the audio is bandpass-filtered from pitchFloor to pitchCeiling, and the timing of
all zero crossings is saved. This is not enough, however, because unvoiced sounds like white noise
also have plenty of zero crossings. Accordingly, an attempt is made to detect voiced segments (or
steady musical tones, etc.) by looking for stable regions, with several zero-crossings at relatively
regular intervals (see parameters zcThres and zcWin). Very quiet parts of audio are also treated as
not having a pitch.

Value

Returns a dataframe containing

time time stamps of all zero crossings except the last one, after bandpass-filtering

78 getPrior

pitch pitch calculated from the time between consecutive zero crossings

cert certainty in each pitch candidate calculated from local pitch stability, 0 to 1

See Also

analyze

Examples

data(sheep, package = 'seewave')
spectrogram(sheep)
zc = getPitchZc(sheep, pitchCeiling = 250)
plot(zc$detailed[, c('time', 'pitch')], type = 'b')

Convert to a standard pitch contour sampled at regular time intervals:
pitch = getSmoothContour(

anchors = data.frame(time = zc$detailed$time, value = zc$detailed$pitch),
len = 1000, NA_to_zero = FALSE, discontThres = 0)

spectrogram(sheep, extraContour = pitch, ylim = c(0, 2))

Not run:
process all files in a folder
zc = getPitchZc('~/Downloads/temp')
zc$summary

End(Not run)

getPrior Get prior for pitch candidates

Description

Prior for adjusting the estimated pitch certainties in analyze. For ex., if primarily working with
speech, we could prioritize pitch candidates in the expected pitch range (100-1000 Hz) and decrease
our confidence in candidates with very high or very low frequency as unlikely but still remotely
possible. You can think of this as a "soft" alternative to setting absolute pitch floor and ceiling.
Algorithm: the multiplier for each pitch candidate is the density of prior distribution with mean =
priorMean (Hz) and sd = priorSD (semitones) normalized so max = 1 over [pitchFloor, pitchCeil-
ing]. Useful for previewing the prior given to analyze.

Usage

getPrior(
priorMean,
priorSD,
distribution = c("normal", "gamma")[1],
pitchFloor = 75,
pitchCeiling = 3000,

getPrior 79

len = 100,
plot = TRUE,
pitchCands = NULL,
...

)

Arguments

priorMean, priorSD
specifies the mean (Hz) and standard deviation (semitones) of gamma distribu-
tion describing our prior knowledge about the most likely pitch values for this
file. For ex., priorMean = 300,priorSD = 6 gives a prior with mean = 300 Hz
and SD = 6 semitones (half an octave). To avoid using any priors, set priorMean
= NA, priorAdapt = FALSE

distribution the shape of prior distribution on the musical scale: ’normal’ (mode = pri-
orMean) or ’gamma’ (skewed to lower frequencies)

pitchFloor, pitchCeiling
absolute bounds for pitch candidates (Hz)

len the required length of output vector (resolution)

plot if TRUE, plots the prior

pitchCands a matrix of pitch candidate frequencies (for internal soundgen use)

... additional graphical parameters passed on to plot()

Value

Returns a numeric vector of certainties of length len if pitchCands is NULL and a numeric matrix
of the same dimensions as pitchCands otherwise.

See Also

analyze pitch_app

Examples

soundgen:::getPrior(priorMean = 150, # Hz
priorSD = 2) # semitones

soundgen:::getPrior(150, 6)
s = soundgen:::getPrior(450, 24, pitchCeiling = 6000)
plot(s, type = 'l')

80 getRandomWalk

getRandomWalk Random walk

Description

Generates a random walk with flexible control over its range, trend, and smoothness. It works by
calling stats::rnorm at each step and taking a cumulative sum of the generated values. Smoothness
is controlled by initially generating a shorter random walk and upsampling.

Usage

getRandomWalk(
len,
rw_range = 1,
rw_smoothing = 0.2,
method = c("linear", "spline")[2],
trend = 0

)

Arguments

len an integer specifying the required length of random walk. If len is 1, returns a
single draw from a gamma distribution with mean=1 and sd=rw_range

rw_range the upper bound of the generated random walk (the lower bound is set to 0)

rw_smoothing specifies the amount of smoothing, basically the number of points used to con-
struct the rw as a proportion of len, from 0 (no smoothing) to 1 (maximum
smoothing to a straight line)

method specifies the method of smoothing: either linear interpolation (’linear’, see stats::approx)
or cubic splines (’spline’, see stats::spline)

trend mean of generated normal distribution (vectors are also acceptable, as long as
their length is an integer multiple of len). If positive, the random walk has an
overall upwards trend (good values are between 0 and 0.5 or -0.5). Trend =
c(1,-1) gives a roughly bell-shaped rw with an upward and a downward curve.
Larger absolute values of trend produce less and less random behavior

Value

Returns a numeric vector of length len and range from 0 to rw_range.

Examples

plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = 0))
plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = .2))
plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = .95))
plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = .99))
plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = 1))
plot(getRandomWalk(len = 1000, rw_range = 15,

getRMS 81

rw_smoothing = .2, trend = c(.1, -.1)))
plot(getRandomWalk(len = 1000, rw_range = 15,

rw_smoothing = .2, trend = c(15, -1)))

getRMS RMS amplitude

Description

Calculates root mean square (RMS) amplitude in overlapping windows, providing an envelope of
RMS amplitude - a measure of sound intensity. Longer windows provide smoother, more robust
estimates; shorter windows and more overlap improve temporal resolution, but they also increase
processing time and make the contour less smooth.

Usage

getRMS(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
windowLength = 50,
step = NULL,
overlap = 70,
stereo = c("left", "right", "average", "both")[1],
killDC = FALSE,
normalize = TRUE,
windowDC = 200,
summaryFun = "mean",
reportEvery = NULL,
cores = 1,
plot = FALSE,
savePlots = NULL,
main = NULL,
xlab = "",
ylab = "",
type = "b",
col = "green",
lwd = 2,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

82 getRMS

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

stereo ’left’ = only left channel, ’right’ = only right channel, ’average’ = take the mean
of the two channels, ’both’ = return RMS for both channels separately

killDC if TRUE, removed DC offset (see also flatEnv)

normalize if TRUE, the RMS amplitude is returned as proportion of the maximum possible
amplitude as given by scale

windowDC the window for calculating DC offset, ms

summaryFun functions used to summarize each acoustic characteristic; see analyze

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot if TRUE, plot a contour of RMS amplitude

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

xlab, ylab, main general graphical parameters

type, col, lwd graphical parameters pertaining to the RMS envelope

width, height, units, res
graphical parameters for saving plots passed to png

... other graphical parameters

Details

Note that you can also get similar estimates per frame from analyze on a normalized scale of
0 to 1, but getRMS is much faster, operates on the original scale, and plots the amplitude con-
tour. If you need RMS for the entire sound instead of per frame, you can simply calculate it as
sqrt(mean(x^2)), where x is your waveform. Having RMS estimates per frame gives more flexi-
bility: RMS per sound can be calculated as the mean / median / max of RMS values per frame.

getRMS 83

Value

Returns a list containing:

$detailed: a list of RMS amplitudes per frame for each sound, on the scale of input; names give
time stamps for the center of each frame, in ms.

$summary: a dataframe with summary measures, one row per sound

See Also

analyze getLoudness

Examples

s = soundgen() + .25 # with added DC offset
osc(s)
r = getRMS(s, samplingRate = 16000, from = .05,

windowLength = 40, overlap = 50, killDC = TRUE,
plot = TRUE, type = 'l', lty = 2, main = 'RMS envelope')

r
short window = jagged envelope
r = getRMS(s, samplingRate = 16000,

windowLength = 5, overlap = 0, killDC = TRUE,
plot = TRUE, col = 'blue', pch = 13, main = 'RMS envelope')

stereo
wave_stereo = tuneR::Wave(

left = runif(1000, -1, 1) * 16000,
right = runif(1000, -1, 1) / 3 * 16000,
bit = 16, samp.rate = 4000)

getRMS(wave_stereo)$summary
getRMS(wave_stereo, stereo = 'right')$summary
getRMS(wave_stereo, stereo = 'average')$summary
getRMS(wave_stereo, from = .05,

stereo = 'both', plot = TRUE)$summary

Not run:
r = getRMS('~/Downloads/temp', savePlots = '~/Downloads/temp/plots')
r$summary

Compare:
analyze('~/Downloads/temp', pitchMethods = NULL,

plot = FALSE)$ampl_mean
(per STFT frame, but should be very similar)

User-defined summary functions:
ran = function(x) diff(range(x))
meanSD = function(x) {

paste0('mean = ', round(mean(x), 2), '; sd = ', round(sd(x), 2))
}
getRMS('~/Downloads/temp', summaryFun = c('mean', 'ran', 'meanSD'))$summary

End(Not run)

84 getRolloff

getRolloff Control rolloff of harmonics

Description

Harmonics are generated as separate sine waves. But we don’t want each harmonic to be equally
strong, so we normally specify some rolloff function that describes the loss of energy in upper
harmonics relative to the fundamental frequency (f0). getRolloff provides flexible control over
this rolloff function, going beyond simple exponential decay (rolloff). Use quadratic terms to
modify the behavior of a few lower harmonics, rolloffOct to adjust the rate of decay per octave,
and rolloffKHz for rolloff correction depending on f0. Plot the output with different parameter
values and see examples below and the vignette to get a feel for how to use getRolloff effectively.

Usage

getRolloff(
pitch_per_gc = c(440),
nHarmonics = NULL,
rolloff = -6,
rolloffOct = 0,
rolloffParab = 0,
rolloffParabHarm = 3,
rolloffParabCeiling = NULL,
rolloffKHz = 0,
baseline = 200,
dynamicRange = 80,
samplingRate = 16000,
plot = FALSE

)

Arguments

pitch_per_gc a vector of f0 per glottal cycle, Hz

nHarmonics maximum number of harmonics to generate (very weak harmonics with ampli-
tude < -dynamicRange will be discarded)

rolloff basic rolloff from lower to upper harmonics, db/octave (exponential decay). All
rolloff parameters are in anchor format. See getRolloff for more details

rolloffOct basic rolloff changes from lower to upper harmonics (regardless of f0) by rolloffOct
dB/oct. For example, we can get steeper rolloff in the upper part of the spectrum

rolloffParab an optional quadratic term affecting only the first rolloffParabHarm harmon-
ics. The middle harmonic of the first rolloffParabHarm harmonics is amplified
or dampened by rolloffParab dB relative to the basic exponential decay

rolloffParabHarm

the number of harmonics affected by rolloffParab

getRolloff 85

rolloffParabCeiling

quadratic adjustment is applied only up to rolloffParabCeiling, Hz. If not
NULL, it overrides rolloffParabHarm

rolloffKHz rolloff changes linearly with f0 by rolloffKHz dB/kHz. For ex., -6 dB/kHz
gives a 6 dB steeper basic rolloff as f0 goes up by 1000 Hz

baseline The "neutral" f0, at which no adjustment of rolloff takes place regardless of
rolloffKHz

dynamicRange dynamic range, dB. Harmonics and noise more than dynamicRange under max-
imum amplitude are discarded to save computational resources

samplingRate sampling rate (needed to stop at Nyquist frequency and for plotting purposes)

plot if TRUE, produces a plot

Value

Returns a matrix of amplitude multiplication factors for adjusting the amplitude of harmonics rel-
ative to f0 (1 = no adjustment, 0 = silent). Each row of output contains one harmonic, and each
column contains one glottal cycle.

See Also

soundgen

Examples

steady exponential rolloff of -12 dB per octave
rolloff = getRolloff(pitch_per_gc = 150, rolloff = -12,

rolloffOct = 0, rolloffKHz = 0, plot = TRUE)
the rate of rolloff slows down by 1 dB each octave
rolloff = getRolloff(pitch_per_gc = 150, rolloff = -12,

rolloffOct = 1, rolloffKHz = 0, plot = TRUE)

rolloff can be made to depend on f0 using rolloffKHz
rolloff = getRolloff(pitch_per_gc = c(150, 400, 800),

rolloffOct = 0, rolloffKHz = -3, plot = TRUE)
without the correction for f0 (rolloffKHz),

high-pitched sounds have the same rolloff as low-pitched sounds,
producing unnaturally strong high-frequency harmonics

rolloff = getRolloff(pitch_per_gc = c(150, 400, 800),
rolloffOct = 0, rolloffKHz = 0, plot = TRUE)

parabolic adjustment of lower harmonics
rolloff = getRolloff(pitch_per_gc = 350, rolloffParab = 0,

rolloffParabHarm = 2, plot = TRUE)
rolloffParabHarm = 1 affects only f0
rolloff = getRolloff(pitch_per_gc = 150, rolloffParab = 30,

rolloffParabHarm = 1, plot = TRUE)
rolloffParabHarm=2 or 3 affects only h1
rolloff = getRolloff(pitch_per_gc = 150, rolloffParab = 30,

rolloffParabHarm = 2, plot = TRUE)
rolloffParabHarm = 4 affects h1 and h2, etc

86 getSmoothContour

rolloff = getRolloff(pitch_per_gc = 150, rolloffParab = 30,
rolloffParabHarm = 4, plot = TRUE)

negative rolloffParab weakens lower harmonics
rolloff = getRolloff(pitch_per_gc = 150, rolloffParab = -20,

rolloffParabHarm = 7, plot = TRUE)
only harmonics below 2000 Hz are affected
rolloff = getRolloff(pitch_per_gc = c(150, 600),

rolloffParab = -20, rolloffParabCeiling = 2000,
plot = TRUE)

dynamic rolloff (varies over time)
rolloff = getRolloff(pitch_per_gc = c(150, 250),

rolloff = c(-12, -18, -24), plot = TRUE)
rolloff = getRolloff(pitch_per_gc = c(150, 250), rolloffParab = 40,

rolloffParabHarm = 1:5, plot = TRUE)

Not run:
Note: getRolloff() is called internally by soundgen()
using the data.frame format for all vectorized parameters
Compare:
s1 = soundgen(sylLen = 1000, pitch = 250,

rolloff = c(-24, -2, -18), plot = TRUE)
s2 = soundgen(sylLen = 1000, pitch = 250,

rolloff = data.frame(time = c(0, .2, 1),
value = c(-24, -2, -18)),

plot = TRUE)

Also works for rolloffOct, rolloffParab, etc:
s3 = soundgen(sylLen = 1000, pitch = 250,

rolloffParab = 20, rolloffParabHarm = 1:15, plot = TRUE)

End(Not run)

getSmoothContour Smooth contour from anchors

Description

Returns a smooth contour based on an arbitrary number of anchors. Used by soundgen for gener-
ating intonation contour, mouth opening, etc. This function is mostly intended to be used internally
by soundgen, more precisely to construct (upsample) smooth curves from a number of anchors. For
general upsampling or downsampling of audio, use resample. Note that pitch contours are treated
as a special case: values are log-transformed prior to smoothing, so that with 2 anchors we get a
linear transition on a log scale (as if we were operating with musical notes rather than frequencies
in Hz). Pitch plots have two Y axes: one showing Hz and the other showing musical notation.

Usage

getSmoothContour(
anchors = data.frame(time = c(0, 1), value = c(0, 1)),

getSmoothContour 87

len = NULL,
thisIsPitch = FALSE,
normalizeTime = TRUE,
interpol = c("approx", "spline", "loess")[3],
loessSpan = NULL,
discontThres = 0.05,
jumpThres = 0.01,
valueFloor = NULL,
valueCeiling = NULL,
plot = FALSE,
xlim = NULL,
ylim = NULL,
xlab = "Time, ms",
ylab = ifelse(thisIsPitch, "Frequency, Hz", "Amplitude"),
main = ifelse(thisIsPitch, "Pitch contour", ""),
samplingRate = 16000,
voiced = NULL,
contourLabel = NULL,
NA_to_zero = TRUE,
...

)

Arguments

anchors a numeric vector of values or a list/dataframe with one column (value) or two
columns (time and value). achors$time can be in ms (with len=NULL) or in
arbitrary units, eg 0 to 1 (with duration determined by len, which must then be
provided in ms). So anchors$time is assumed to be in ms if len=NULL and
relative if len is specified. anchors$value can be on any scale.

len the required length of the output contour. If NULL, it will be calculated based
on the maximum time value (in ms) and samplingRate

thisIsPitch (boolean) is this a pitch contour? If true, log-transforms before smoothing and
plots in both Hz and musical notation

normalizeTime if TRUE, normalizes anchors$time values to range from 0 to 1

interpol method of interpolation between anchors: "approx" = linear with approx, "spline"
= cubic splines with spline, "loess" = local polynomial regression with loess

loessSpan controls the amount of smoothing when interpolating between anchors with
loess, so only has an effect if interpol = ’loess’ (1 = strong, 0.5 = weak smooth-
ing)

discontThres if two anchors are closer in time than discontThres (on a 0-1 scale, ie specified
as proportion of total length), the contour is broken into segments with a linear
transition between these segments

jumpThres if anchors are closer than jumpThres, a new section starts with no transition at
all (e.g. for adding pitch jumps)

valueFloor, valueCeiling
lowser/upper bounds for the contour

88 getSmoothContour

plot (boolean) produce a plot?
xlim, ylim, xlab, ylab, main

plotting options

samplingRate sampling rate used to convert time values to points (Hz)
voiced, contourLabel

graphical pars for plotting breathing contours (see examples below)

NA_to_zero if TRUE, all NAs are replaced with zero

... other plotting options passed to plot()

Value

Returns a numeric vector of length len.

Examples

long format: anchors are a dataframe
a = getSmoothContour(anchors = data.frame(

time = c(50, 137, 300), value = c(0.03, 0.78, 0.5)),
normalizeTime = FALSE,
voiced = 200, valueFloor = 0, plot = TRUE, main = '',
samplingRate = 16000) # breathing

short format: anchors are a vector (equal time steps assumed)
a = getSmoothContour(anchors = c(350, 800, 600),

len = 5500, thisIsPitch = TRUE, plot = TRUE,
samplingRate = 3500) # pitch

a single anchor gives constant value
a = getSmoothContour(anchors = 800,

len = 500, thisIsPitch = TRUE, plot = TRUE, samplingRate = 500)

two pitch anchors give loglinear F0 change
a = getSmoothContour(anchors = c(220, 440),

len = 500, thisIsPitch = TRUE, plot = TRUE, samplingRate = 500)

Two closely spaced anchors produce a pitch jump
one loess for the entire contour
a1 = getSmoothContour(anchors = list(time = c(0, .15, .2, .7, 1),

value = c(360, 116, 550, 700, 610)), len = 500, thisIsPitch = TRUE,
plot = TRUE, samplingRate = 500)

two segments with a linear transition
a2 = getSmoothContour(anchors = list(time = c(0, .15, .17, .7, 1),

value = c(360, 116, 550, 700, 610)), len = 500, thisIsPitch = TRUE,
plot = TRUE, samplingRate = 500)

two segments with an abrupt jump
a3 = getSmoothContour(anchors = list(time = c(0, .15, .155, .7, 1),

value = c(360, 116, 550, 700, 610)), len = 500, thisIsPitch = TRUE,
plot = TRUE, samplingRate = 500)

compare:
plot(a2)
plot(a3) # NB: the segment before the jump is upsampled to compensate

getSpectralEnvelope 89

Control the amount of smoothing
getSmoothContour(c(1, 3, 9, 10, 9, 9, 2), len = 100, plot = TRUE,

loessSpan = NULL) # default amount of smoothing (depends on dur)
getSmoothContour(c(1, 3, 9, 10, 9, 9, 2), len = 100, plot = TRUE,

loessSpan = .85) # more smoothing than default
getSmoothContour(c(1, 3, 9, 10, 9, 9, 2), len = 100, plot = TRUE,

loessSpan = .5) # less smoothing
getSmoothContour(c(1, 3, 9, 10, 9, 9, 2), len = 100, plot = TRUE,

interpol = 'approx') # linear interpolation (no smoothing)

Upsample preserving leading and trailing NAs
anchors = data.frame(time = c(1, 4, 5, 7, 10, 20, 23, 25, 30),

value = c(NA, NA, 10, 15, 12, NA, 17, 15, NA))
plot(anchors, type = 'b')
anchors_ups = getSmoothContour(

anchors, len = 200,
interpol = 'approx', # only approx can propagate NAs
NA_to_zero = FALSE, # preserve NAs
discontThres = 0) # don't break into sub-contours

plot(anchors_ups, type = 'b')

getSpectralEnvelope Spectral envelope

Description

Prepares a spectral envelope for filtering a sound to add formants, lip radiation, and some stochastic
component regulated by temperature. Formants are specified as a list containing time, frequency,
amplitude, and width values for each formant (see examples). See vignette(’sound_generation’,
package = ’soundgen’) for more information.

Usage

getSpectralEnvelope(
nr,
nc,
formants = NA,
formantDep = 1,
formantWidth = 1,
lipRad = 6,
noseRad = 4,
mouth = NA,
mouthOpenThres = 0.2,
openMouthBoost = 0,
vocalTract = NULL,
temperature = 0.05,
formDrift = 0.3,
formDisp = 0.2,

90 getSpectralEnvelope

formantDepStoch = 1,
smoothLinearFactor = 1,
formantCeiling = 2,
samplingRate = 16000,
speedSound = 35400,
smoothing = list(),
output = c("simple", "detailed")[1],
plot = FALSE,
duration = NULL,
colorTheme = c("bw", "seewave", "...")[1],
col = NULL,
xlab = "Time",
ylab = "Frequency, kHz",
...

)

Arguments

nr the number of frequency bins = windowLength_points/2, where windowLength_points
is the size of window for Fourier transform

nc the number of time steps for Fourier transform

formants a character string like "aaui" referring to default presets for speaker "M1"; a
vector of formant frequencies; or a list of formant times, frequencies, ampli-
tudes, and bandwidths, with a single value of each for static or multiple values
of each for moving formants. formants = NA defaults to schwa. Time stamps
for formants and mouthOpening can be specified in ms or an any other arbitrary
scale.

formantDep scale factor of formant amplitude (1 = no change relative to amplitudes in formants)

formantWidth scale factor of formant bandwidth (1 = no change)

lipRad the effect of lip radiation on source spectrum, dB/oct (the default of +6 dB/oct
produces a high-frequency boost when the mouth is open)

noseRad the effect of radiation through the nose on source spectrum, dB/oct (the alterna-
tive to lipRad when the mouth is closed)

mouth mouth opening (0 to 1, 0.5 = neutral, i.e. no modification) (anchor format)

mouthOpenThres open the lips (switch from nose radiation to lip radiation) when the mouth is
open >mouthOpenThres, 0 to 1

openMouthBoost amplify the voice when the mouth is open by openMouthBoost dB

vocalTract the length of vocal tract, cm. Used for calculating formant dispersion (for adding
extra formants) and formant transitions as the mouth opens and closes. If NULL
or NA, the length is estimated based on specified formant frequencies, if any
(anchor format)

temperature hyperparameter for regulating the amount of stochasticity in sound generation

formDrift scale factor regulating the effect of temperature on the depth of random drift of
all formants (user-defined and stochastic): the higher, the more formants drift at
a given temperature

getSpectralEnvelope 91

formDisp scale factor regulating the effect of temperature on the irregularity of the disper-
sion of stochastic formants: the higher, the more unevenly stochastic formants
are spaced at a given temperature

formantDepStoch

multiplication factor for the amplitude of additional formants added above the
highest specified formant (0 = none, 1 = default)

smoothLinearFactor

regulates smoothing of formant anchors (0 to +Inf) as they are upsampled to the
number of fft steps nc. This is necessary because the input formants normally
contains fewer sets of formant values than the number of fft steps. smoothLinearFactor
= 0: close to default spline; >3: approaches linear extrapolation

formantCeiling frequency to which stochastic formants are calculated, in multiples of the Nyquist
frequency; increase up to ~10 for long vocal tracts to avoid losing energy in the
upper part of the spectrum

samplingRate sampling frequency, Hz

speedSound speed of sound in warm air, cm/s. Stevens (2000) "Acoustic phonetics", p. 138

smoothing a list of parameters passed to getSmoothContour to control the interpolation
and smoothing of contours: interpol (approx / spline / loess), loessSpan, discon-
tThres, jumpThres

output "simple" returns just the spectral filter, while "detailed" also returns a data.frame
of formant frequencies over time (needed for internal purposes such as formant
locking)

plot if TRUE, produces a plot of the spectral envelope

duration duration of the sound, ms (for plotting purposes only)

colorTheme black and white (’bw’), as in seewave package (’seewave’), or another color
theme (e.g. ’heat.colors’)

col actual colors, eg rev(rainbow(100)) - see ?hcl.colors for colors in base R (over-
rides colorTheme)

xlab, ylab labels of axes

... other graphical parameters passed on to image()

Value

Returns a spectral filter: a matrix with frequency bins in rows and time steps in columns. Accord-
ingly, rownames of the output give central frequency of each bin (in kHz), while colnames give time
stamps (in ms if duration is specified, otherwise 0 to 1).

Examples

[a] with only F1-F3 visible, with no stochasticity
e = getSpectralEnvelope(nr = 512, nc = 50, duration = 300,

formants = soundgen:::convertStringToFormants('a'),
temperature = 0, plot = TRUE, col = heat.colors(150))

image(t(e)) # to plot the output on a linear scale instead of dB

some "wiggling" of specified formants plus extra formants on top

92 getSpectralEnvelope

e = getSpectralEnvelope(nr = 512, nc = 50,
formants = c(860, 1430, 2900),
temperature = 0.1, formantDepStoch = 1, plot = TRUE)

a schwa based on variable length of vocal tract
e = getSpectralEnvelope(nr = 512, nc = 100, formants = NA,

vocalTract = list(time = c(0, .4, 1), value = c(13, 18, 17)),
temperature = .1, plot = TRUE)

no formants at all, only lip radiation
e = getSpectralEnvelope(nr = 512, nc = 50, lipRad = 6,

formants = NA, temperature = 0, plot = FALSE)
plot(e[, 1], type = 'l') # linear scale
plot(20 * log10(e[, 1]), type = 'l') # dB scale - 6 dB/oct

mouth opening
e = getSpectralEnvelope(nr = 512, nc = 50,

vocalTract = 16, plot = TRUE, lipRad = 6, noseRad = 4,
mouth = data.frame(time = c(0, .5, 1), value = c(0, 0, .5)))

scale formant amplitude and/or bandwidth
e1 = getSpectralEnvelope(nr = 512, nc = 50,

formants = soundgen:::convertStringToFormants('a'),
formantWidth = 1, formantDep = 1) # defaults

e2 = getSpectralEnvelope(nr = 512, nc = 50,
formants = soundgen:::convertStringToFormants('a'),
formantWidth = 1.5, formantDep = 1.5)

plot(as.numeric(rownames(e2)), 20 * log10(e2[, 1]),
type = 'l', xlab = 'KHz', ylab = 'dB', col = 'red', lty = 2)

points(as.numeric(rownames(e1)), 20 * log10(e1[, 1]), type = 'l')

manual specification of formants
e3 = getSpectralEnvelope(

nr = 512, nc = 50, samplingRate = 16000, plot = TRUE,
formants = list(
f1 = list(freq = c(900, 500), amp = c(30, 35), width = c(80, 50)),
f2 = list(freq = c(1900, 2500), amp = c(25, 30), width = 100),
f3 = list(freq = 3400, amp = 30, width = 120)

))

extra zero-pole pair (doesn't affect estimated VTL and thus the extra
formants added on top)
e4 = getSpectralEnvelope(

nr = 512, nc = 50, samplingRate = 16000, plot = TRUE,
formants = list(
f1 = list(freq = c(900, 500), amp = c(30, 35), width = c(80, 50)),
f1.5 = list(freq = 1300, amp = -15),
f1.7 = list(freq = 1500, amp = 15),
f2 = list(freq = c(1900, 2500), amp = c(25, 30), width = 100),
f3 = list(freq = 3400, amp = 30, width = 120)

))
plot(as.numeric(rownames(e4)), 20 * log10(e3[, ncol(e3)]),

type = 'l', xlab = 'KHz', ylab = 'dB')

getSurprisal 93

points(as.numeric(rownames(e4)), 20 * log10(e4[, ncol(e4)]),
type = 'l', col = 'red', lty = 2)

getSurprisal Get surprisal

Description

Tracks the (un)predictability of spectral changes in a sound over time, returning a continuous con-
tour of "surprisal". This is an attempt to track auditory salience over time - that is, to identify parts of
a sound that are likely to involuntarily attract the listeners’ attention. The functions returns surprisal
proper (‘$surprisal‘) and its product with increases in loudness (‘$surprisalLoudness‘). Because
getSurprisal() is slow and experimental, it is not called by analyze().

Usage

getSurprisal(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
winSurp = 2000,
audSpec_pars = list(filterType = "butterworth", nFilters = 64, step = 20, yScale =

"bark"),
method = c("acf", "np")[1],
summaryFun = "mean",
reportEvery = NULL,
cores = 1,
plot = TRUE,
savePlots = NULL,
osc = c("none", "linear", "dB")[2],
heights = c(3, 1),
ylim = NULL,
contrast = 0.2,
brightness = 0,
maxPoints = c(1e+05, 5e+05),
padWithSilence = TRUE,
colorTheme = c("bw", "seewave", "heat.colors", "...")[1],
col = NULL,
extraContour = NULL,
xlab = NULL,
ylab = NULL,
xaxp = NULL,
mar = c(5.1, 4.1, 4.1, 2),
main = NULL,
grid = NULL,

94 getSurprisal

width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

winSurp surprisal analysis window, ms (Inf = from sound onset to each point)

audSpec_pars a list of parameters passed to audSpectrogram

method acf = change in maximum autocorrelation after adding the final point, np = non-
linear prediction (see nonlinPred)

summaryFun functions used to summarize each acoustic characteristic, eg "c(’mean’, ’sd’)";
user-defined functions are fine (see examples); NAs are omitted automatically
for mean/median/sd/min/max/range/sum, otherwise take care of NAs yourself

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot if TRUE, plots the auditory spectrogram and the suprisalLoudness contour

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

osc "none" = no oscillogram; "linear" = on the original scale; "dB" = in decibels

heights a vector of length two specifying the relative height of the spectrogram and the
oscillogram (including time axes labels)

ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency). NB: still in
kHz, even if yScale = bark, mel, or ERB

contrast a number, recommended range -1 to +1. The spectrogram is raised to the power
of exp(3 * contrast). Contrast >0 increases sharpness, <0 decreases sharpness

brightness how much to "lighten" the image (>0 = lighter, <0 = darker)

maxPoints the maximum number of "pixels" in the oscillogram (if any) and spectrogram;
good for quickly plotting long audio files; defaults to c(1e5, 5e5)

padWithSilence if TRUE, pads the sound with just enough silence to resolve the edges properly
(only the original region is plotted, so the apparent duration doesn’t change)

colorTheme black and white (’bw’), as in seewave package (’seewave’), matlab-type palette
(’matlab’), or any palette from palette such as ’heat.colors’, ’cm.colors’, etc

getSurprisal 95

col actual colors, eg rev(rainbow(100)) - see ?hcl.colors for colors in base R (over-
rides colorTheme)

extraContour a vector of arbitrary length scaled in Hz (regardless of yScale!) that will be
plotted over the spectrogram (eg pitch contour); can also be a list with extra
graphical parameters such as lwd, col, etc. (see examples)

xlab, ylab, main, mar, xaxp
graphical parameters for plotting

grid if numeric, adds n = grid dotted lines per kHz
width, height, units, res

graphical parameters for saving plots passed to png

... other graphical parameters

Details

Algorithm: we start with an auditory spectrogram produced by applying a bank of bandpass filters to
the signal, by default with central frequencies equally spaced on the bark scale (see audSpectrogram).
For each frequency channel, a sliding window is analyzed to compare the actually observed final
value with its expected value. There are many ways to extrapolate / predict time series and thus
perform this comparison such as autocorrelation (method = ’acf’) or nonlinear prediction (method
= ’np’). The resulting per-channel surprisal contours are aggregated by taking their mean weighted
by the average amplitude of each frequency channel across the analysis window. Because increases
in loudness are known to be important predictors of auditory salience, loudness per frame is also
returned, as well as the square root of the product of its derivative and surprisal.

Value

Returns a list with $detailed per-frame and $summary per-file results (see analyze for more infor-
mation). Three measures are reported: loudness (in sone, as per getLoudness), the first derivative
of loudness with respect to time (dLoudness), surprisal (non-negative), and suprisalLoudness
(geometric mean of surprisal and dLoudness, treating negative values of dLoudness as zero).

Examples

A quick example
s = soundgen(nSyl = 2, sylLen = 50, pauseLen = 25, addSilence = 15)
surp = getSurprisal(s, samplingRate = 16000)
surp

Not run:
A more meaningful example
sound = soundgen(nSyl = 5, sylLen = 150,

pauseLen = c(50, 50, 50, 130), pitch = c(200, 150),
noise = list(time = c(-300, 200), value = -20), plot = TRUE)

playme(sound)
surp = getSurprisal(sound, samplingRate = 16000,

yScale = 'bark', method = 'acf')
surp = getSurprisal(sound, samplingRate = 16000,

yScale = 'bark', method = 'np') # very slow
surp = getSurprisal(sound, samplingRate = 16000,

96 hillenbrand

yScale = 'bark', method = 'acf', audSpec_pars = list(
nFilters = 128, yScale = 'ERB', bandwidth = 1/12))

short window = amnesia (every event is equally surprising)
getSurprisal(sound, samplingRate = 16000, winSurp = 250)
long window - remembers further into the past, Inf = from the beginning
surp = getSurprisal(sound, samplingRate = 16000, winSurp = Inf)

plot "pure" surprisal, without weighting by loudness
spectrogram(sound, 16000, extraContour = surp$detailed$surprisal /

max(surp$detailed$surprisal, na.rm = TRUE) * 8000)

NB: surprisalLoudness contour is also log-transformed if yScale = 'log',
so zeros become NAs
surp = getSurprisal(sound, samplingRate = 16000, yScale = 'log')

add bells and whistles
surp = getSurprisal(sound, samplingRate = 16000,

yScale = 'mel',
osc = 'dB', # plot oscillogram in dB
heights = c(2, 1), # spectro/osc height ratio
brightness = -.1, # reduce brightness
colorTheme = 'heat.colors', # pick color theme...
col = rev(hcl.colors(30, palette = 'Viridis')), # ...or specify the colors
cex.lab = .75, cex.axis = .75, # text size and other base graphics pars
ylim = c(0, 5), # always in kHz
main = 'Audiogram with surprisal contour', # title
extraContour = list(col = 'blue', lty = 2, lwd = 2)
+ axis labels, etc

)

surp = getSurprisal('~/Downloads/temp/', savePlots = '~/Downloads/temp/surp')
surp$summary

End(Not run)

hillenbrand Formants in American vowels

Description

Typical relative frequencies of the first four formants measured in dF units (average spacing between
formants, or formant dispersion) above or below schwa based on estimated VTL in American En-
glish, from Hillenbrand (1995), who measured F1-F4 in ~1.5K recordings (139 speakers, 12 vowels
from each). Audio and formant measurements are freely available online: https://homepages.wmich.edu/~hillenbr/voweldata.html.
The dataset below is the result of modeling Hillenbrand’s data with brms: mvbind(F1rel, F2rel) ~
vowel + (vowel|speaker). It shows the most credible location of each vowel centroid in the F1Rel-
F2Rel space.

HzToERB 97

Usage

hillenbrand

Format

An object of class data.frame with 12 rows and 5 columns.

Details

A dataframe of 12 observations and 5 columns: "vowel" = vowel (American English), "F1Rel" to
"F4Rel" = formant frequencies in dF relative to their neutral, equidistant positions in a perfectly
cylindrical vocal tract. See schwa - this is what schwa() returns as $ff_relative_dF

References

Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of Amer-
ican English vowels. The Journal of the Acoustical society of America, 97(5), 3099-3111.

Examples

plot(hillenbrand$F1Rel, hillenbrand$F2Rel, type = 'n')
text(hillenbrand$F1Rel, hillenbrand$F2Rel, labels = hillenbrand$vowel)

HzToERB Convert Hz to ERB rate

Description

Converts from Hz to the number of Equivalent Rectangular Bandwidths (ERBs) below input fre-
quency. See https://www2.ling.su.se/staff/hartmut/bark.htm and https://en.wikipedia.org/wiki/Equivalent_rectangular_bandwidth

Usage

HzToERB(h, method = c("linear", "quadratic")[1])

Arguments

h vector or matrix of frequencies (Hz)

method approximation to use

See Also

ERBToHz HzToSemitones HzToNotes

98 HzToNotes

Examples

HzToERB(c(-20, 20, 100, 440, 1000, NA))

f = 20:20000
erb_lin = HzToERB(f, 'linear')
erb_quadratic = HzToERB(f, 'quadratic')
plot(f, erb_lin, log = 'x', type = 'l')
points(f, erb_quadratic, col = 'blue', type = 'l')

compare with the bark scale:
barks = tuneR::hz2bark(f)
points(f, barks / max(barks) * max(erb_lin),

col = 'red', type = 'l', lty = 2)

HzToNotes Convert Hz to notes

Description

Converts from Hz to musical notation like A4 - note A of the fourth octave above C0 (16.35 Hz).

Usage

HzToNotes(h, showCents = FALSE, A4 = 440)

Arguments

h vector or matrix of frequencies (Hz)

showCents if TRUE, show cents to the nearest notes (cent = 1/100 of a semitone)

A4 frequency of note A in the fourth octave (modern standard ISO 16 or concert
pitch = 440 Hz)

See Also

notesToHz HzToSemitones

Examples

HzToNotes(c(440, 293, 115, 16.35, 4))

HzToNotes(c(440, 415, 80, 81), showCents = TRUE)
80 Hz is almost exactly midway (+49 cents) between D#2 and E2

Baroque tuning A415, half a semitone flat relative to concert pitch A440
HzToNotes(c(440, 415, 16.35), A4 = 415)

HzToSemitones 99

HzToSemitones Convert Hz to semitones

Description

Converts from Hz to semitones above C-5 (~0.5109875 Hz) or another reference frequency. This
may not seem very useful, but note that this gives us a nice logarithmic scale for generating natural
pitch transitions.

Usage

HzToSemitones(h, ref = 0.5109875)

Arguments

h vector or matrix of frequencies (Hz)

ref frequency of the reference value (defaults to C-5, 0.51 Hz)

See Also

semitonesToHz HzToNotes

Examples

s = HzToSemitones(c(440, 293, 115))
to convert to musical notation
notesDict$note[1 + round(s)]
note the "1 +": semitones ABOVE C-5, i.e. notesDict[1,] is C-5

Any reference tone can be specified. For ex., for semitones above C0, use:
HzToSemitones(440, ref = 16.35)
TIP: see notesDict for a table of Hz frequencies to musical notation

invertSpectrogram Invert spectrogram

Description

Transforms a spectrogram into a time series with inverse STFT. The problem is that an ordinary
spectrogram preserves only the magnitude (modulus) of the complex STFT, while the phase is lost,
and without phase it is impossible to reconstruct the original audio accurately. So there are a number
of algorithms for "guessing" the phase that would produce an audio whose magnitude spectrogram
is very similar to the target spectrogram. Useful for certain filtering operations that modify the mag-
nitude spectrogram followed by inverse STFT, such as filtering in the spectrotemporal modulation
domain.

100 invertSpectrogram

Usage

invertSpectrogram(
spec,
samplingRate,
windowLength,
overlap,
step = NULL,
wn = "hanning",
specType = c("abs", "log", "dB")[1],
initialPhase = c("zero", "random", "spsi")[3],
nIter = 50,
normalize = TRUE,
play = TRUE,
verbose = FALSE,
plotError = TRUE

)

Arguments

spec the spectrogram that is to be transform to a time series: numeric matrix with
frequency bins in rows and time frames in columns

samplingRate sampling rate of x (only needed if x is a numeric vector)

windowLength length of FFT window, ms

overlap overlap between successive FFT frames, %

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

wn window type accepted by ftwindow, currently gaussian, hanning, hamming,
bartlett, blackman, flattop, rectangle

specType the scale of target spectroram: ’abs’ = absolute, ’log’ = log-transformed, ’dB’ =
in decibels

initialPhase initial phase estimate: "zero" = set all phases to zero; "random" = Gaussian
noise; "spsi" (default) = single-pass spectrogram inversion (Beauregard et al.,
2015)

nIter the number of iterations of the GL algorithm (Griffin & Lim, 1984), 0 = don’t
run

normalize if TRUE, normalizes the output to range from -1 to +1

play if TRUE, plays back the reconstructed audio

verbose if TRUE, prints estimated time left every 10% of GL iterations

plotError if TRUE, produces a scree plot of squared error over GL iterations (useful for
choosing ‘nIter‘)

invertSpectrogram 101

Details

Algorithm: takes the spectrogram, makes an initial guess at the phase (zero, noise, or a more in-
telligent estimate by the SPSI algorithm), fine-tunes over ‘nIter‘ iterations with the GL algorithm,
reconstructs the complex spectrogram using the best phase estimate, and performs inverse STFT.
The single-pass spectrogram inversion (SPSI) algorithm is implemented as described in Beauregard
et al. (2015) following the python code at https://github.com/lonce/SPSI_Python. The Griffin-Lim
(GL) algorithm is based on Griffin & Lim (1984).

Value

Returns the reconstructed audio as a numeric vector.

References

• Griffin, D., & Lim, J. (1984). Signal estimation from modified short-time Fourier transform.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2), 236-243.

• Beauregard, G. T., Harish, M., & Wyse, L. (2015, July). Single pass spectrogram inversion.
In 2015 IEEE International Conference on Digital Signal Processing (DSP) (pp. 427-431).
IEEE.

See Also

spectrogram filterSoundByMS

Examples

Create a spectrogram
samplingRate = 16000
windowLength = 40
overlap = 75
wn = 'gaussian'

s = soundgen(samplingRate = samplingRate, addSilence = 100)
spec = spectrogram(s, samplingRate = samplingRate,

wn = wn, windowLength = windowLength, step = NULL, overlap = overlap,
padWithSilence = FALSE, output = 'original')

Invert the spectrogram, attempting to guess the phase
Note that samplingRate, wn, windowLength, and overlap must be the same as
in the original (ie you have to know how the spectrogram was created)
s_new = invertSpectrogram(spec, samplingRate = samplingRate,

windowLength = windowLength, overlap = overlap, wn = wn,
initialPhase = 'spsi', nIter = 100, specType = 'abs', play = FALSE)

Verify the quality of audio reconstruction
playme(s, samplingRate); playme(s_new, samplingRate)

102 matchPars

matchPars Match soundgen pars (experimental)

Description

Attempts to find settings for soundgen that will reproduce an existing sound. The principle is to
mutate control parameters, trying to improve fit to target. The currently implemented optimization
algorithm is simple hill climbing. Disclaimer: this function is experimental and may or may not
work for particular tasks. It is intended as a supplement to - not replacement of - manual optimiza-
tion. See vignette(’sound_generation’, package = ’soundgen’) for more information.

Usage

matchPars(
target,
samplingRate = NULL,
pars = NULL,
init = NULL,
probMutation = 0.25,
stepVariance = 0.1,
maxIter = 50,
minExpectedDelta = 0.001,
compareSoundsPars = list(),
verbose = TRUE

)

Arguments

target the sound we want to reproduce using soundgen: path to a .wav file or numeric
vector

samplingRate sampling rate of target (only needed if target is a numeric vector, rather than a
.wav file)

pars arguments to soundgen that we are attempting to optimize
init a list of initial values for the optimized parameters pars and the values of other

arguments to soundgen that are fixed at non-default values (if any)
probMutation the probability of a parameter mutating per iteration
stepVariance scale factor for calculating the size of mutations
maxIter maximum number of mutated sounds produced without improving the fit to tar-

get
minExpectedDelta

minimum improvement in fit to target required to accept the new sound candi-
date

compareSoundsPars

a list of control parameters passed to compareSounds

verbose if TRUE, plays back the accepted candidate at each iteration and reports the
outcome

modulationSpectrum 103

Value

Returns a list of length 2: $history contains the tried parameter values together with their fit
to target ($history$sim), and $pars contains a list of the final - hopefully the best - parameter
settings.

Examples

Not run:
target = soundgen(sylLen = 600, pitch = c(300, 200),

rolloff = -15, play = TRUE, plot = TRUE)
we hope to reproduce this sound

Match pars based on acoustic analysis alone, without any optimization.
This *MAY* match temporal structure, pitch, and stationary formants
m1 = matchPars(target = target,

samplingRate = 16000,
maxIter = 0, # no optimization, only acoustic analysis
verbose = TRUE)

cand1 = do.call(soundgen, c(m1$pars, list(
temperature = 0.001, play = TRUE, plot = TRUE)))

Try to improve the match by optimizing rolloff
(this may take a few minutes to run, and the results may vary)
m2 = matchPars(target = target,

samplingRate = 16000,
pars = 'rolloff',
maxIter = 100,
verbose = TRUE)

rolloff should be moving from default (-9) to target (-15):
sapply(m2$history, function(x) x$pars$rolloff)
cand2 = do.call(soundgen, c(m2$pars, list(play = TRUE, plot = TRUE)))

End(Not run)

modulationSpectrum Modulation spectrum

Description

Produces a modulation spectrum of waveform(s) or audio file(s). It begins with some spectrogram-
like time-frequency representation and analyzes the modulation of the envelope in each frequency
band. if specSource = 'audSpec', the sound is passed through a bank of bandpass filters with
audSpectrogram. If specSource = 'STFT', we begin with an ordinary spectrogram produced with
a Short-Time Fourier Transform. If msType = '2D', the modulation spectrum is a 2D Fourier trans-
form of the spectrogram-like representation, with temporal modulation along the X axis and spectral
modulation along the Y axis. A good visual analogy is decomposing the spectrogram into a sum
of ripples of various frequencies and directions. If msType = '1D', the modulation spectrum is a
matrix containing 1D Fourier transforms of each frequency band in the spectrogram, so the result
again has modulation frequencies along the X axis, but the Y axis now shows the frequency of

104 modulationSpectrum

each analyzed band. Roughness is calculated as the proportion of the modulation spectrum within
roughRange of temporal modulation frequencies or some weighted version thereof. The frequency
of amplitude modulation (amMsFreq, Hz) is calculated as the highest peak in the smoothed AM
function, and its purity (amMsPurity, dB) as the ratio of this peak to the median AM over amRange.
For relatively short and steady sounds, set amRes = NULL and analyze the entire sound. For longer
sounds and when roughness or AM vary over time, set amRes to get multiple measurements over
time (see examples). For multiple inputs, such as a list of waveforms or path to a folder with au-
dio files, the ensemble of modulation spectra can be interpolated to the same spectral and temporal
resolution and averaged (if averageMS = TRUE).

Usage

modulationSpectrum(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
msType = c("1D", "2D")[2],
specSource = c("STFT", "audSpec")[1],
windowLength = 15,
step = 1,
wn = "hanning",
zp = 0,
audSpec_pars = list(filterType = "butterworth", nFilters = 32, bandwidth = 1/24, yScale

= "bark", dynamicRange = 120),
amRes = 5,
maxDur = 5,
specMethod = c("spec", "meanspec")[2],
logSpec = FALSE,
logMPS = FALSE,
power = 1,
normalize = TRUE,
roughRange = c(30, 150),
roughMean = NULL,
roughSD = NULL,
roughMinFreq = 1,
amRange = c(10, 200),
returnMS = TRUE,
returnComplex = FALSE,
summaryFun = c("mean", "median", "sd"),
averageMS = FALSE,
reportEvery = NULL,
cores = 1,
plot = TRUE,
savePlots = NULL,
logWarpX = NULL,
logWarpY = NULL,
quantiles = c(0.5, 0.8, 0.9),

modulationSpectrum 105

kernelSize = 5,
kernelSD = 0.5,
colorTheme = c("bw", "seewave", "heat.colors", "...")[1],
col = NULL,
main = NULL,
xlab = "Hz",
ylab = NULL,
xlim = NULL,
ylim = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

msType ’2D’ = two-dimensional Fourier transform of a spectrogram; ’1D’ = separately
calculated spectrum of each frequency band

specSource ’STFT’ = Short-Time Fourier Transform; ’audSpec’ = a bank of bandpass filters
(see audSpectrogram)

windowLength, step, wn, zp
parameters for extracting a spectrogram if specType = 'STFT'. Window length
and step are specified in ms (see spectrogram). If specType = 'audSpec',
these settings have no effect

audSpec_pars parameters for extracting an auditory spectrogram if specType = 'audSpec'. If
specType = 'STFT', these settings have no effect

amRes target resolution of amplitude modulation, Hz. If NULL, the entire sound is an-
alyzed at once, resulting in a single roughness value (unless it is longer than
maxDur, in which case it is analyzed in chunks maxDur s long). If amRes is
set, roughness is calculated for windows ~1000/amRes ms long (but at least 3
STFT frames). amRes also affects the amount of smoothing when calculating
amMsFreq and amMsPurity

maxDur sounds longer than maxDur s are split into fragments, and the modulation spectra
of all fragments are averaged

specMethod the function to call when calculating the spectrum of each frequency band (only
used when msType = '1D'); ’meanspec’ is faster and less noisy, whereas ’spec’
produces higher resolution

logSpec if TRUE, the spectrogram is log-transformed prior to taking 2D FFT

106 modulationSpectrum

logMPS if TRUE, the modulation spectrum is log-transformed prior to calculating rough-
ness

power raise modulation spectrum to this power (eg power = 2 for ^2, or "power spec-
trum")

normalize if TRUE, the modulation spectrum of each analyzed fragment maxDur in dura-
tion is separately normalized to have max = 1

roughRange the range of temporal modulation frequencies that constitute the "roughness"
zone, Hz

roughMean, roughSD
the mean (Hz) and standard deviation (semitones) of a lognormal distribution
used to weight roughness estimates. If either is null, roughness is calculated
simply as the proportion of spectrum within roughRange. If both roughMean
and roughRange are defined, weights outside roughRange are set to 0; a very
large SD (a flat weighting function) gives the same result as just roughRange
without any weighting (see examples)

roughMinFreq frequencies below roughMinFreq (Hz) are ignored when calculating roughness
(ie the estimated roughness increases if we disregard very low-frequency mod-
ulation, which is often strong)

amRange the range of temporal modulation frequencies that we are interested in as "am-
plitude modulation" (AM), Hz

returnMS if FALSE, only roughness is returned (much faster). Careful with exporting the
modulation spectra of a lot of sounds at once as this requires a lot of RAM

returnComplex if TRUE, returns a complex modulation spectrum (without normalization and
warping)

summaryFun functions used to summarize each acoustic characteristic, eg "c(’mean’, ’sd’)";
user-defined functions are fine (see examples); NAs are omitted automatically
for mean/median/sd/min/max/range/sum, otherwise take care of NAs yourself

averageMS if TRUE, the modulation spectra of all inputs are averaged into a single output;
if FALSE, a separate MS is returned for each input

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot if TRUE, plots the modulation spectrum of each sound (see plotMS)

savePlots if a valid path is specified, a plot is saved in this folder (defaults to NA)
logWarpX, logWarpY

numeric vector of length 2: c(sigma, base) of pseudolog-warping the modulation
spectrum, as in function pseudo_log_trans() from the "scales" package

quantiles labeled contour values, % (e.g., "50" marks regions that contain 50% of the sum
total of the entire modulation spectrum)

kernelSize the size of Gaussian kernel used for smoothing (1 = no smoothing)

kernelSD the SD of Gaussian kernel used for smoothing, relative to its size

colorTheme black and white (’bw’), as in seewave package (’seewave’), matlab-type palette
(’matlab’), or any palette from palette such as ’heat.colors’, ’cm.colors’, etc

modulationSpectrum 107

col actual colors, eg rev(rainbow(100)) - see ?hcl.colors for colors in base R (over-
rides colorTheme)

xlab, ylab, main, xlim, ylim
graphical parameters

width, height, units, res
parameters passed to png if the plot is saved

... other graphical parameters passed on to filled.contour.mod and contour
(see spectrogram)

Value

Returns a list with the following components:

• $original modulation spectrum prior to blurring and log-warping, but after squaring if power
= TRUE, a matrix of nonnegative values. Colnames are temporal modulation frequencies (Hz).
Rownames are spectral modulation frequencies (cycles/kHz) if msType = '2D' and frequen-
cies of filters or spectrograms bands (kHz) if msType = '1D'.

• $original_list a list of modulation spectra for each analyzed fragment (is amRes is not
NULL)

• $processed modulation spectrum after blurring and log-warping

• $complex untransformed complex modulation spectrum (returned only if returnComplex =
TRUE)

• $roughness proportion of the modulation spectrum within roughRange of temporal modula-
tion frequencies or a weighted average thereof if roughMean and roughSD are defined, % - a
vector if amRes is numeric and the sound is long enough, otherwise a single number

• $roughness_list a list containing frequencies, amplitudes, and roughness values for each
analyzed frequency band (1D) or frequency modulation band (2D)

• $amMsFreq frequency of the highest peak, within amRange, of the folded AM function (aver-
age AM across all FM bins for both negative and positive AM frequencies), where a peak is
a local maximum over amRes Hz. Like roughness, amMsFreq and amMsPurity can be single
numbers or vectors, depending on whether the sound is analyzed as a whole or in chunks

• $amMsPurity ratio of the peak at amMsFreq to the median AM over amRange, dB

• $summary dataframe with summaries of roughness, amMsFreq, and amMsPurity

References

• Singh, N. C., & Theunissen, F. E. (2003). Modulation spectra of natural sounds and ethologi-
cal theories of auditory processing. The Journal of the Acoustical Society of America, 114(6),
3394-3411.

See Also

plotMS spectrogram audSpectrogram analyze

108 modulationSpectrum

Examples

White noise
ms = modulationSpectrum(rnorm(16000), samplingRate = 16000,

logSpec = FALSE, power = TRUE,
amRes = NULL) # analyze the entire sound, giving a single roughness value

str(ms)

Harmonic sound
s = soundgen(pitch = 440, amFreq = 100, amDep = 50)
ms = modulationSpectrum(s, samplingRate = 16000, amRes = NULL)
ms[c('roughness', 'amMsFreq', 'amMsPurity')] # a single value for each
ms1 = modulationSpectrum(s, samplingRate = 16000, amRes = 5)
ms1[c('roughness', 'amMsFreq', 'amMsPurity')]
measured over time (low values of amRes mean more precision, so we analyze
longer segments and get fewer values per sound)

Embellish
ms = modulationSpectrum(s, samplingRate = 16000, logMPS = TRUE,

xlab = 'Temporal modulation, Hz', ylab = 'Spectral modulation, 1/kHz',
colorTheme = 'matlab', main = 'Modulation spectrum', lty = 3)

1D instead of 2D
modulationSpectrum(s, 16000, msType = '1D', quantiles = NULL,

colorTheme = 'matlab')

Not run:
A long sound with varying AM and a bit of chaos at the end
s_long = soundgen(sylLen = 3500, pitch = c(250, 320, 280),

amFreq = c(30, 55), amDep = c(20, 60, 40),
jitterDep = c(0, 0, 2))

playme(s_long)
ms = modulationSpectrum(s_long, 16000)
plot AM over time
plot(x = seq(1, 1500, length.out = length(ms$amMsFreq)), y = ms$amMsFreq,

cex = 10^(ms$amMsPurity/20) * 10, xlab = 'Time, ms', ylab = 'AM frequency, Hz')
plot roughness over time
spectrogram(s_long, 16000, ylim = c(0, 4),

extraContour = list(ms$roughness / max(ms$roughness) * 4000, col = 'blue'))

As with spectrograms, there is a tradeoff in time-frequency resolution
s = soundgen(pitch = 500, amFreq = 50, amDep = 100, sylLen = 500,

samplingRate = 44100, plot = TRUE)
playme(s, samplingRate = 44100)
ms = modulationSpectrum(s, samplingRate = 44100,

windowLength = 50, step = 50, amRes = NULL) # poor temporal resolution
ms = modulationSpectrum(s, samplingRate = 44100,

windowLength = 5, step = 1, amRes = NULL) # poor frequency resolution
ms = modulationSpectrum(s, samplingRate = 44100,

windowLength = 15, step = 3, amRes = NULL) # a reasonable compromise

Start with an auditory spectrogram instead of STFT
modulationSpectrum(s, 44100, specSource = 'audSpec', xlim = c(-100, 100))

modulationSpectrum 109

modulationSpectrum(s, 44100, specSource = 'audSpec',
logWarpX = c(10, 2), xlim = c(-500, 500),
audSpec_pars = list(nFilters = 32, filterType = 'gammatone', bandwidth = NULL))

customize the plot
ms = modulationSpectrum(s, samplingRate = 44100,

windowLength = 15, overlap = 80, amRes = NULL,
kernelSize = 17, # more smoothing
xlim = c(-70, 70), ylim = c(0, 4), # zoom in on the central region
quantiles = c(.25, .5, .8), # customize contour lines
col = rev(rainbow(100)), # alternative palette
logWarpX = c(10, 2), # pseudo-log transform
power = 2) # ^2

Note the peaks at FM = 2/kHz (from "pitch = 500") and AM = 50 Hz (from
"amFreq = 50")

Input can be a wav/mp3 file
ms = modulationSpectrum('~/Downloads/temp/16002_Faking_It_Large_clear.wav')

Input can be path to folder with audio files. Each file is processed
separately, and the output can contain an MS per file...
ms1 = modulationSpectrum('~/Downloads/temp', kernelSize = 11,

plot = FALSE, averageMS = FALSE)
ms1$summary
names(ms1$original) # a separate MS per file
...or a single MS can be calculated:
ms2 = modulationSpectrum('~/Downloads/temp', kernelSize = 11,

plot = FALSE, averageMS = TRUE)
plotMS(ms2$original)
ms2$summary

Input can also be a list of waveforms (numeric vectors)
ss = vector('list', 10)
for (i in seq_along(ss)) {

ss[[i]] = soundgen(sylLen = runif(1, 100, 1000), temperature = .4,
pitch = runif(3, 400, 600))

}
lapply(ss, playme)
MS of the first sound
ms1 = modulationSpectrum(ss[[1]], samplingRate = 16000, scale = 1)
average MS of all 10 sounds
ms2 = modulationSpectrum(ss, samplingRate = 16000, scale = 1, averageMS = TRUE, plot = FALSE)
plotMS(ms2$original)

A sound with ~3 syllables per second and only downsweeps in F0 contour
s = soundgen(nSyl = 8, sylLen = 200, pauseLen = 100, pitch = c(300, 200))
playme(s)
ms = modulationSpectrum(s, samplingRate = 16000, maxDur = .5,

xlim = c(-25, 25), colorTheme = 'seewave',
power = 2)

note the asymmetry b/c of downsweeps

"power = 2" returns squared modulation spectrum - note that this affects

110 morph

the roughness measure!
ms$roughness
compare:
modulationSpectrum(s, samplingRate = 16000, maxDur = .5,

xlim = c(-25, 25), colorTheme = 'seewave',
power = 1)$roughness # much higher roughness

Plotting with or without log-warping the modulation spectrum:
ms = modulationSpectrum(soundgen(), samplingRate = 16000, plot = TRUE)
ms = modulationSpectrum(soundgen(), samplingRate = 16000,

logWarpX = c(2, 2), plot = TRUE)

logWarp and kernelSize have no effect on roughness
because it is calculated before these transforms:
modulationSpectrum(s, samplingRate = 16000, logWarpX = c(1, 10))$roughness
modulationSpectrum(s, samplingRate = 16000, logWarpX = NA)$roughness
modulationSpectrum(s, samplingRate = 16000, kernelSize = 17)$roughness

Log-transform the spectrogram prior to 2D FFT (affects roughness):
modulationSpectrum(s, samplingRate = 16000, logSpec = FALSE)$roughness
modulationSpectrum(s, samplingRate = 16000, logSpec = TRUE)$roughness

Use a lognormal weighting function to calculate roughness
(instead of just % in roughRange)
modulationSpectrum(s, 16000, roughRange = NULL,

roughMean = 75, roughSD = 3)$roughness
modulationSpectrum(s, 16000, roughRange = NULL,

roughMean = 100, roughSD = 12)$roughness
truncate weights outside roughRange
modulationSpectrum(s, 16000, roughRange = c(30, 150),

roughMean = 100, roughSD = 1000)$roughness # very large SD
modulationSpectrum(s, 16000, roughRange = c(30, 150),

roughMean = NULL)$roughness # same as above b/c SD --> Inf

Complex modulation spectrum with phase preserved
ms = modulationSpectrum(soundgen(), samplingRate = 16000,

returnComplex = TRUE)
plotMS(abs(ms$complex)) # note the symmetry
compare:
plotMS(ms$original)

End(Not run)

morph Morph sounds

Description

Takes two formulas for synthesizing two target sounds with soundgen and produces a number of
intermediate forms (morphs), attempting to go from one target sound to the other in a specified

morph 111

number of equal steps. Normally you will want to set temperature very low; the tempEffects
argument is not supported.

Usage

morph(
formula1,
formula2,
nMorphs,
playMorphs = TRUE,
savePath = NA,
samplingRate = 16000

)

Arguments

formula1, formula2
lists of parameters for calling soundgen that produce the two target sounds be-
tween which morphing will occur. Character strings containing the full call to
soundgen are also accepted (see examples)

nMorphs the number of morphs to produce, including target sounds

playMorphs if TRUE, the morphs will be played

savePath if it is the path to an existing directory, morphs will be saved there as individual
.wav files (defaults to NA)

samplingRate sampling rate of output, Hz. NB: overrides the values in formula1 and formula2

Value

A list of two sublists ($formulas and $sounds), each of length nMorphs. For ex., the formula for
the second hybrid is m$formulas[[2]], and the waveform is m$sounds[[2]]

See Also

soundgen

Examples

Not run:
write two formulas or copy-paste them from soundgen_app() or presets:
playback = c(TRUE, FALSE)[1]
[a] to barking
m = morph(formula1 = list(repeatBout = 2),

equivalently: formula1 = 'soundgen(repeatBout = 2)',
formula2 = presets$Misc$Dog_bark,
nMorphs = 5, playMorphs = playback)

use $formulas to access formulas for each morph, $sounds for waveforms
m$formulas[[4]]
playme(m$sounds[[3]])

morph intonation and vowel quality

112 morph

m = morph(
'soundgen(pitch = c(300, 250, 400),

formants = c(350, 2900, 3600, 4700))',
'soundgen(pitch = c(300, 700, 500, 300),

formants = c(800, 1250, 3100, 4500))',
nMorphs = 5, playMorphs = playback

)

from a grunt of disgust to a moan of pleasure
m = morph(

formula1 = 'soundgen(sylLen = 180, pitch = c(160, 160, 120), rolloff = -12,
nonlinBalance = 70, subDep = 15, jitterDep = 2,
formants = c(550, 1200, 2100, 4300, 4700, 6500, 7300),
noise = data.frame(time = c(0, 180, 270), value = c(-25, -25, -40)),
rolloffNoise = 0)',

formula2 = 'soundgen(sylLen = 320, pitch = c(340, 330, 300),
rolloff = c(-18, -16, -30), ampl = c(0, -10), formants = c(950, 1700, 3700),
noise = data.frame(time = c(0, 300, 440), value = c(-35, -25, -65)),
mouth = c(.4, .5), rolloffNoise = -5, attackLen = 30)',

nMorphs = 8, playMorphs = playback
)

from scream_010 to moan_515b
(see online demos at http://cogsci.se/soundgen/humans/humans.html)
m = morph(

formula1 = "soundgen(
sylLen = 490,
pitch = list(time = c(0, 80, 250, 370, 490),
value = c(1000, 2900, 3200, 2900, 1000)),
rolloff = c(-5, 0, -25), rolloffKHz = 0,
temperature = 0.001,
jitterDep = c(.5, 1, 0), shimmerDep = c(5, 15, 0),
formants = c(1100, 2300, 3100, 4000, 5300, 6200),
mouth = c(.3, .5, .6, .5, .3))",

formula2 = "soundgen(sylLen = 520,
pitch = c(300, 310, 300),
ampl = c(0, -30),
temperature = 0.001, rolloff = c(-18, -25),
jitterDep = .05, shimmerDep = 2,
formants = list(f1 = c(700, 900),

f2 = c(1600, 1400),
f3 = c(3600, 3500), f4 = c(4300, 4200)),

mouth = c(.5, .3),
noise = data.frame(time = c(0, 400, 660),
value = c(-20, -10, -60)),
rolloffNoise = c(-5, -15))",

nMorphs = 5, playMorphs = playback
)

End(Not run)

msToSpec 113

msToSpec Modulation spectrum to spectrogram

Description

Takes a complex MS and transforms it to a complex spectrogram with proper row (frequency) and
column (time) labels.

Usage

msToSpec(ms, windowLength = NULL, step = NULL)

Arguments

ms target modulation spectrum (matrix of complex numbers)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

Value

Returns a spectrogram - a numeric matrix of complex numbers of the same dimensions as ms.

Examples

s = soundgen(sylLen = 250, amFreq = 25, amDep = 50,
pitch = 250, samplingRate = 16000)

spec = spectrogram(s, samplingRate = 16000, windowLength = 25, step = 5)
ms = specToMS(spec)
plotMS(log(Mod(ms)), quantiles = NULL, col = soundgen:::jet.col(100))
spec_new = msToSpec(ms)
spectrogram(s, specManual = Mod(spec_new))
Not run:
or plot manually
image(x = as.numeric(colnames(spec_new)), y = as.numeric(rownames(spec_new)),

z = t(log(abs(spec_new))), xlab = 'Time, ms',
ylab = 'Frequency, kHz')

End(Not run)

114 naiveBayes

naiveBayes Naive Bayes

Description

An implementation of a Naive Bayes classifier adapted to autocorrelated time series such as the type
of nonlinear vocal phenomena in consecutive audio frames. All predictors must be continuous, and
the outcome must be categorical. Cases with missing values are not deleted because the posterior
probabilities of each outcome class can be calculated from different combinations of predictors on a
case-by-case basis. Two optional modifications of a standard Naive Bayes algorithm can be made:
(1) classifications can be "clumped" at the final stage, ensuring that every run or "epoch" of a par-
ticular predicted class is at least minLength steps long, and (2) priors can be continuously adapted
based on the likelihood function of the preceding wlPrior observations if prior = 'dynamic'.

Usage

naiveBayes(
formula,
train,
test = train,
prior = c("flat", "static", "dynamic")[2],
wlPrior = 3,
wlClumper = NULL,
runBack = TRUE,
plot = FALSE

)

Arguments

formula model formula of the type outcome ~ predictor1 + predictor2 + ... (no interac-
tions)

train either the training dataframe or the output of naiveBayes_train. This data
is used to calculate class-specific distributions of the predictors and prior class
probabilities

test the test dataframe. This data is used to make predictions - that is, outcome class
probabilities given the values of predictors

prior "flat" = all classes are equally likely a prior, "static" = use class probabilities
in the training dataset, "dynamic" = update prior probabilities from weighted
likelihoods of wlPrior preceding observations

wlPrior the length of a Gaussian window used for updating dynamic priors

wlClumper the minimum expected number of observations of the same class before the class
can change

runBack if TRUE, the dynamic prior is calculated both forward and backward and aver-
aged (only has an effect f prior = 'dynamic')

plot if TRUE, produces diagnostic plots

naiveBayes 115

Value

Returns the test dataframe with new columns: "pr" = the predicted class membership, "[class]"
= posterior probabilities per class, "like_[class]" = log-likelihoods, "prior_[class]" = log-priors,
"priorF_[class]" / "priorB_[class]" = forward / backward log-priors per class.

Examples

set.seed(151)
create some fake data
df = data.frame(group = rep(c(

rep('A', 150), rep('B', 50), rep('A', 120),
rep('A', 100), rep('B', 30), rep('A', 90)

), 3))
df$group = as.factor(df$group)
df$x1 = rnorm(nrow(df), mean = ifelse(df$group == 'A', 3, 6), sd = 2)
df$x2 = rnorm(nrow(df), mean = ifelse(df$group == 'A', 2, -1), sd = 2)
boxplot(x1 ~ group, df)
boxplot(x2 ~ group, df)

train the classifier
mod_train = naiveBayes_train(group ~ x1 + x2, data = df)
mod_train

test on new data generated by the same process
test = data.frame(group = rep(c(

rep('A', 90), rep('B', 40), rep('A', 150),
rep('B', 40), rep('A', 130), rep('B', 30)

), 2))
test$group = as.factor(test$group)
test$x1 = rnorm(nrow(test), mean = ifelse(test$group == 'A', 3, 6), sd = 2)
test$x2 = rnorm(nrow(test), mean = ifelse(test$group == 'A', 2, -1), sd = 2)

flat priors (same prior probability for each class)
nb_flat = naiveBayes(group ~ x1 + x2, train = mod_train, test = test,

prior = 'flat', plot = TRUE)
same as passing 'train' directly to the model, w/o calling naiveBayes_train():
nb_flat = naiveBayes(group ~ x1 + x2, train = df, test = test, prior = 'flat')
table(nb_flat$group, nb_flat$pr)
mean(nb_flat$group == nb_flat$pr) # 84% correct

static priors (use original class proportions as prior class probabilities)
nb_static = naiveBayes(group ~ x1 + x2, train = mod_train, test = test,

prior = 'static', wlClumper = NULL, plot = TRUE)
table(nb_static$group, nb_static$pr)
mean(nb_static$group == nb_static$pr) # 87% correct

specify custom static priors
mod_train2 = mod_train
mod_train$table
mod_train2$table = list(A = .1, B = .9) # sum to 1
nb_static2 = naiveBayes(group ~ x1 + x2, train = mod_train2, test = test,

prior = 'static', wlClumper = NULL, plot = TRUE)

116 naiveBayes_train

mean(nb_static2$group == nb_static2$pr) # 61% correct

if we expect autocorrelation, ie class X is more likely a priori if the
last few observations were also likely to be class X, we can use dynamic
priors and/or clumper the predicted classes (the latter imposes strong
constraints on the predictions, but may be worth it if the data is known to
be strongly "clumpered", ie if we know classes occur in long'ish runs)
nb1 = naiveBayes(group ~ x1 + x2, train = mod_train, test = test,

prior = 'dynamic', wlPrior = 10, plot = TRUE)
table(nb1$group, nb1$pr)
mean(nb1$group == nb1$pr) # 94% correct

nb2 = naiveBayes(group ~ x1 + x2, train = mod_train, test = test,
prior = 'static', wlClumper = 10, plot = TRUE)

table(nb2$group, nb2$pr)
mean(nb2$group == nb2$pr) # 89% correct

nb3 = naiveBayes(group ~ x1 + x2, train = mod_train, test = test,
prior = 'dynamic', wlPrior = 10, wlClumper = 10, plot = TRUE)

table(nb3$group, nb3$pr)
mean(nb3$group == nb3$pr) # 98% correct

NAs in the data are not a problem
test1 = test
test1$x1[sample(1:nrow(test1), 100)] = NA
test1$x2[sample(1:nrow(test1), 10)] = NA
summary(test1)

nb4 = naiveBayes(group ~ x1 + x2, train = mod_train, test = test,
prior = 'dynamic', wlPrior = 10, plot = TRUE)

table(nb4$group, nb4$pr)
mean(nb4$group == nb4$pr) # still 94% correct

naiveBayes_train Train a naive Bayes classifier

Description

Returns conditional means and standard deviations per class as well as a table with the global
proportions of each class in the dataset. This is mostly useful because the output can be passed on
to naiveBayes to save time if naiveBayes() is called in a loop with the same training dataset.

Usage

naiveBayes_train(formula, data)

Arguments

formula outcome ~ predictor1 + predictor1 + ...
data training dataset

noiseRemoval 117

noiseRemoval Noise removal

Description

Removes noise by spectral substraction. If a recording is affected by a steady noise with a rela-
tively stable amplitude and spectrum (e.g., microphone hiss, crickets, MRI buzz, etc.), its spectrum
can be simply subtracted from the signal. Algorithm: STFT to produce a spectrogram, divide by
normalized noise spectrum, inverse STFT to reconstitute the signal. Most of the work is done by
addFormants.

Usage

noiseRemoval(
x,
samplingRate = NULL,
scale = NULL,
noise,
dB = 6,
specificity = 1,
windowLength = 50,
step = windowLength/2,
dynamicRange = 120,
normalize = c("max", "orig", "none")[2],
reportEvery = NULL,
cores = 1,
play = FALSE,
saveAudio = NULL,
plot = FALSE,
savePlots = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

noise a numeric vector of length two specifying the location of pure noise in input
audio (in s); a matrix representing pure noise as a spectrum with frequency bins

118 noiseRemoval

in rows; any input accepted by spectrogram if pure noise is found in a separate
recording (eg path to file, numeric vector, etc.)

dB if NULL (default), the spectral envelope is applied on the original scale; other-
wise, it is set to range from 1 to 10 ^ (dB / 20)

specificity a way to sharpen or blur the noise spectrum (we take noise spectrum ^ speci-
ficity) : 1 = no change, >1 = sharper (the loudest noise frequencies are preferen-
tially removed), <1 = blurred (even quiet noise frequencies are removed)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

normalize if TRUE, scales input prior to FFT

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

saveAudio path + filename for saving the output, e.g. ’~/Downloads/temp.wav’. If NULL
= doesn’t save

plot should a spectrogram be plotted? TRUE / FALSE

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

width, height, units, res
graphical parameters for saving plots passed to png

... other graphical parameters

Value

Returns the denoised audio

See Also

addFormants

Examples

s = soundgen(noise = list(time = c(-100, 400), value = -20),
formantsNoise = list(f1 = list(freq = 3000, width = 25)),
addSilence = 50, temperature = .001, plot = TRUE)

Option 1: use part of the recording as noise profile
s1 = noiseRemoval(s, samplingRate = 16000, noise = c(0.05, 0.15),

nonlinPred 119

dB = 40, plot = TRUE)

Option 2: use a separate recording as noise profile
noise = soundgen(pitch = NA, noise = 0,

formantsNoise = list(f1 = list(freq = 3000, width = 25)))
spectrogram(noise, 16000)
s2 = noiseRemoval(s, samplingRate = 16000, noise = noise,

dB = 40, plot = TRUE)

Option 3: provide noise spectrum as a matrix
spec_noise = spectrogram(

noise, samplingRate = 16000,
output = 'original', plot = FALSE)

s3 = noiseRemoval(s, samplingRate = 16000, noise = spec_noise,
dB = 40, plot = TRUE)

Not run:
play with gain and sensitivity
noiseRemoval(s, samplingRate = 16000, noise = c(0.05, 0.15),

dB = 60, specificity = 2, plot = TRUE)

remove noise only from a section of the audio
noiseRemoval(s, samplingRate = 16000, from = .3, to = .4,

noise = c(0.05, 0.15), dB = 60, plot = TRUE, play = TRUE)

End(Not run)

nonlinPred Nonlinear prediction

Description

Predicts new points in a time series. The functionality is provided by nonLinearPrediction. This
function is just a simple wrapper "for dummies" that reconstructs the phase space under the hood,
including the choice of time lag, embedding dimensions, etc. It can also predict not one but many
points in a single step.

Usage

nonlinPred(
x,
nPoints = 1,
time.lag = NULL,
embedding.dim = NULL,
max.embedding.dim = 15,
threshold = 0.95,
max.relative.change = 0.1,
radius = NULL,
radius.increment = NULL,

120 nonlinPred

plot = FALSE
)

Arguments

x numeric vector
nPoints number of points to predict, ideally not more than length(x) / 2 (the function is

called recursively to predict longer sequences, but don’t expect miracles)
time.lag time lag for constructing Takens vectors. Defaults to the time to the first expo-

nential decay of mutual information. See timeLag

embedding.dim the number of dimensions of the phase space. Defaults to an estimate based on
estimateEmbeddingDim

max.embedding.dim, threshold, max.relative.change
parameters used to estimate the optimal number of embedding dimensions - see
estimateEmbeddingDim

radius, radius.increment
the radius used for detecting neighbors in the phase space and its increment in
case no neighbors are found - see nonLinearPrediction

plot if TRUE, plots the original time series and the predictions

Value

Returns a numeric vector on the same scale as input x.

Examples

x = c(rep(1, 3), rep(0, 4), rep(1, 3), rep(0, 4), rep(1, 3), 0, 0)
nonlinPred(x, 5, plot = TRUE)

nonlinPred(sin(1:25), 22, plot = TRUE)

x = soundgen(sylLen = 50, addSilence = 0)[250:450]
nonlinPred(x, 100, plot = TRUE)

nonlinPred(c(rnorm(5), NA, rnorm(3)))
nonlinPred(1:4)
nonlinPred(1:6)

Not run:
s1 = soundgen(sylLen = 500, pitch = rnorm(5, 200, 20),

addSilence = 0, plot = TRUE)
playme(s1)
length(s1)
we can predict output that is longer than the original time series by
predicting a bit at a time and using the output as the new input
s2 = nonlinPred(s1, 16000)
spectrogram(c(s1, s2))
playme(c(s1, s2))

End(Not run)

normalizeFolder 121

normalizeFolder Normalize folder

Description

Normalizes the amplitude of all wav/mp3 files in a folder based on their peak or RMS amplitude or
subjective loudness. This is good for playback experiments, which require that all sounds should
have similar intensity or loudness.

Usage

normalizeFolder(
myfolder,
type = c("peak", "rms", "loudness")[1],
maxAmp = 0,
summaryFun = "mean",
windowLength = 50,
step = NULL,
overlap = 70,
killDC = FALSE,
windowDC = 200,
saveAudio = NULL,
reportEvery = NULL

)

Arguments

myfolder full path to folder containing input audio files
type normalize so the output files has the same peak amplitude (’peak’), root mean

square amplitude (’rms’), or subjective loudness in sone (’loudness’)
maxAmp maximum amplitude in dB (0 = max possible, -10 = 10 dB below max possible,

etc.)
summaryFun should the output files have the same mean / median / max etc rms amplitude or

loudness? (summaryFun has no effect if type = ’peak’)
windowLength length of FFT window, ms
step you can override overlap by specifying FFT step, ms (NB: because digital au-

dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %
killDC if TRUE, removed DC offset (see also flatEnv)
windowDC the window for calculating DC offset, ms
saveAudio full path to where the normalized files should be saved (defaults to ’myfolder/normalized’)
reportEvery when processing multiple inputs, report estimated time left every ... iterations

(NULL = default, NA = don’t report)

122 notesDict

Details

Algorithm: first all files are rescaled to have the same peak amplitude of maxAmp dB. If type =
'peak', the process ends here. If type = 'rms', there are two additional steps. First the origi-
nal RMS amplitude of all files is calculated per frame by getRMS. The "quietest" sound with the
lowest summary RMS value is not modified, so its peak amplitude remains maxAmp dB. All the
remaining sounds are rescaled linearly, so that their summary RMS values becomes the same as
that of the "quietest" sound, and their peak amplitudes become smaller, <maxAmp. Finally, if type =
'loudness', the subjective loudness of each sound is estimated by getLoudness, which assumes
frequency sensitivity typical of human hearing. The following normalization procedure is similar
to that for type = 'rms'.

See Also

getRMS analyze getLoudness

Examples

Not run:
put a few short audio files in a folder, eg '~/Downloads/temp'
getRMS('~/Downloads/temp', summaryFun = 'mean')$summary # different
normalizeFolder('~/Downloads/temp', type = 'rms', summaryFun = 'mean',

saveAudio = '~/Downloads/temp/normalized')
getRMS('~/Downloads/temp/normalized', summaryFun = 'mean')$summary # same
If the saved audio files are treated as stereo with one channel missing,
try reconverting with ffmpeg (saving is handled by tuneR::writeWave)

End(Not run)

notesDict Conversion table from Hz to musical notation

Description

A dataframe of 192 rows and 2 columns: "note" and "freq" (Hz). Range: C-5 (0.51 Hz) to B10
(31608.53 Hz)

Usage

notesDict

Format

An object of class data.frame with 192 rows and 2 columns.

notesToHz 123

notesToHz Convert notes to Hz

Description

Converts to Hz from musical notation like A4 - note A of the fourth octave above C0 (16.35 Hz).

Usage

notesToHz(n, A4 = 440)

Arguments

n vector or matrix of notes

A4 frequency of note A in the fourth octave (modern standard ISO 16 or concert
pitch = 440 Hz)

See Also

HzToNotes HzToSemitones

Examples

notesToHz(c("A4", "D4", "A#2", "C0", "C-2"))

Baroque tuning A415, half a semitone flat relative to concert pitch A440
notesToHz(c("A4", "D4", "A#2", "C0", "C-2"), A4 = 415)

optimizePars Optimize parameters for acoustic analysis

Description

This customized wrapper for optim attempts to optimize the parameters of segment or analyze by
comparing the results with a manually annotated "key". This optimization function uses a single
measurement per audio file (e.g., median pitch or the number of syllables). For other purposes, you
may want to adapt the optimization function so that the key specifies the exact timing of syllables,
their median length, frame-by-frame pitch values, or any other characteristic that you want to opti-
mize for. The general idea remains the same, however: we want to tune function parameters to fit
our type of audio and research priorities. The default settings of segment and analyze have been
optimized for human non-linguistic vocalizations.

124 optimizePars

Usage

optimizePars(
myfolder,
key,
myfun,
pars,
bounds = NULL,
fitnessPar,
fitnessFun = function(x) 1 - cor(x, key, use = "pairwise.complete.obs"),
nIter = 10,
init = NULL,
initSD = 0.2,
control = list(maxit = 50, reltol = 0.01, trace = 0),
otherPars = list(plot = FALSE),
mygrid = NULL,
verbose = TRUE

)

Arguments

myfolder path to where the .wav files live
key a vector containing the "correct" measurement that we are aiming to reproduce
myfun the function being optimized: either ’segment’ or ’analyze’ (in quotes)
pars names of arguments to myfun that should be optimized
bounds a list setting the lower and upper boundaries for possible values of optimized

parameters. For ex., if we optimize smooth and smoothOverlap, reasonable
bounds might be list(low = c(5, 0), high = c(500, 95))

fitnessPar the name of output variable that we are comparing with the key, e.g. ’nBursts’
or ’pitch_median’

fitnessFun the function used to evaluate how well the output of myfun fits the key. Defaults
to 1 - Pearson’s correlation (i.e. 0 is perfect fit, 1 is awful fit). For pitch, log scale
is more meaningful, so a good fitness criterion is "function(x) 1 - cor(log(x),
log(key), use = ’pairwise.complete.obs’)"

nIter repeat the optimization several times to check convergence
init initial values of optimized parameters (if NULL, the default values are taken

from the definition of myfun)
initSD each optimization begins with a random seed, and initSD specifies the SD of

normal distribution used to generate random deviation of initial values from the
defaults

control a list of control parameters passed on to optim. The method used is "Nelder-
Mead"

otherPars a list of additional arguments to myfun

mygrid a dataframe with one column per parameter to optimize, with each row spec-
ifying the values to try. If not NULL, optimizePars simply evaluates each
combination of parameter values, without calling optim (see examples)

verbose if TRUE, reports the values of parameters evaluated and fitness

optimizePars 125

Details

If your sounds are very different from human non-linguistic vocalizations, you may want to change
the default values of other arguments to speed up convergence. Adapt the code to enforce suitable
constraints, depending on your data.

Value

Returns a matrix with one row per iteration with fitness in the first column and the best values of
each of the optimized parameters in the remaining columns.

Examples

Not run:
Download 260 sounds from the supplements in Anikin & Persson (2017)
- see http://cogsci.se/publications.html
Unzip them into a folder, say '~/Downloads/temp'
myfolder = '~/Downloads/temp260' # 260 .wav files live here

Optimization of SEGMENTATION
Import manual counts of syllables in 260 sounds from
Anikin & Persson (2017) (our "key")
key = segmentManual # a vector of 260 integers

Run optimization loop several times with random initial values
to check convergence
NB: with 260 sounds and default settings, this might take ~20 min per iteration!
res = optimizePars(myfolder = myfolder, myfun = 'segment', key = key,

pars = c('shortestSyl', 'shortestPause'),
fitnessPar = 'nBursts', otherPars = list(method = 'env'),
nIter = 3, control = list(maxit = 50, reltol = .01, trace = 0))

Examine the results
print(res)
for (c in 2:ncol(res)) {

plot(res[, c], res[, 1], main = colnames(res)[c])
}
pars = as.list(res[1, 2:ncol(res)]) # top candidate (best pars)
s = do.call(segment, c(myfolder, pars)) # segment with best pars
cor(key, as.numeric(s[, fitnessPar]))
boxplot(as.numeric(s[, fitnessPar]) ~ as.integer(key), xlab='key')
abline(a=0, b=1, col='red')

Try a grid with particular parameter values instead of formal optimization
res = optimizePars(myfolder = myfolder, myfun = 'segment', key = segmentManual,

pars = c('shortestSyl', 'shortestPause'),
fitnessPar = 'nBursts', otherPars = list(method = 'env'),
mygrid = expand.grid(shortestSyl = c(30, 40),

shortestPause = c(30, 40, 50)))
1 - res$fit # correlations with key

Optimization of PITCH TRACKING (takes several hours!)
key = as.numeric(log(pitchManual))

126 osc

res = optimizePars(
myfolder = myfolder,
myfun = 'analyze',
key = key, # log-scale better for pitch
pars = c('windowLength', 'silence'),
bounds = list(low = c(5, 0), high = c(200, .2)),
fitnessPar = 'pitch_median',
nIter = 2,
otherPars = list(plot = FALSE, loudness = NULL, novelty = NULL,

roughness = NULL, nFormants = 0),
fitnessFun = function(x) {

1 - cor(log(x), key, use = 'pairwise.complete.obs') *
(1 - mean(is.na(x) & is.finite(key))) # penalize failing to detect f0

})

End(Not run)

osc Oscillogram

Description

Plots the oscillogram (waveform) of a sound on a linear or logarithmic scale (in dB). To get a dB
scale, centers and normalizes the sound, then takes a logarithm of the positive part and a flipped
negative part, which is analogous to "Waveform (dB)" view in Audacity. For more plotting options,
check oscillo.

Usage

osc(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
dynamicRange = 80,
dB = FALSE,
returnWave = FALSE,
reportEvery = NULL,
cores = 1,
plot = TRUE,
savePlots = NULL,
main = NULL,
xlab = NULL,
ylab = NULL,
ylim = NULL,
bty = "n",
midline = TRUE,

osc 127

maxPoints = 10000,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

dB if TRUE, plots on a dB instead of linear scale

returnWave if TRUE, returns a log-transformed waveform as a numeric vector

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot if TRUE, plots the oscillogram

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

main plot title

xlab, ylab axis labels

ylim override default amplitude scale for non-centered sounds

bty box type (see ‘?par‘)

midline if TRUE, draws a line at 0 dB

maxPoints the maximum number of points to plot (speeds up the plotting of long audio
files, but beware of antialiasing)

width, height, units, res
graphical parameters for saving plots passed to png

... Other graphical parameters passed on to ‘plot()‘

Value

If returnWave = TRUE, returns the input waveform on the original or dB scale: a vector with range
from ‘-dynamicRange‘ to ‘dynamicRange‘.

128 permittedValues

Examples

sound = sin(1:2000/10) *
getSmoothContour(anchors = c(1, .01, .5), len = 2000)

Oscillogram on a linear scale without bells and whistles, just base R
plot(sound, type = 'l')

Oscillogram options with soundgen
osc(sound) # linear
osc(sound, dB = TRUE) # dB

For numeric vectors, indicate samplingRate and scale (max amplitude)
osc(sound, samplingRate = 1000, scale = 100, dB = TRUE)

Embellish and customize the plot
o = osc(sound, samplingRate = 1000, dB = TRUE, midline = FALSE,

main = 'My waveform', col = 'blue', returnWave = TRUE)
abline(h = -80, col = 'orange', lty = 3)
o[1:10] # the waveform in dB

Not run:
Wave object
data(sheep, package = 'seewave')
osc(sheep, dB = TRUE)

Plot a section
osc(sheep, from = .5, to = 1.2)

for long files, reduce the resolution to plot quickly (careful: if the
resolution is too low, antialiasing may cause artifacts)
osc(sheep, dB = TRUE, maxPoints = 2500)
osc(sheep, samplingRate = 5000, maxPoints = 100)

files several minutes long can be plotted in under a second
osc('~/Downloads/speechEx.wav', maxPoints = 20000)

saves oscillograms of all audio files in a folder
osc('~/Downloads/temp2', savePlots = '')

End(Not run)

permittedValues Defaults and ranges for soundgen()

Description

A dataset containing defaults and ranges of key variables for soundgen() and soundgen_app(). Ad-
just as needed.

phasegram 129

Usage

permittedValues

Format

A matrix with 58 rows and 4 columns:

default default value

low lowest permitted value

high highest permitted value

step increment for adjustment ...

phasegram Phasegram

Description

Produces a phasegram of a sound or another time series, which is a collection of Poincare sections
cut through phase portraits of consecutive frames. The x axis is time, just as in a spectrogram, the
y axis is a slice through the phase portrait, and the color shows the density of trajectories at each
point of the phase portrait.

Usage

phasegram(
x,
samplingRate = NULL,
from = NULL,
to = NULL,
windowLength = 10,
step = windowLength/2,
timeLag = NULL,
theilerWindow = NULL,
nonlinStats = c("ed", "d2", "ml", "sur"),
pars_ed = list(max.embedding.dim = 15),
pars_d2 = list(min.embedding.dim = 2, min.radius = 0.001, n.points.radius = 20),
pars_ml = list(min.embedding.dim = 2, radius = 0.001),
pars_sur = list(FUN = nonlinearTseries::timeAsymmetry, K = 1),
bw = 0.01,
bins = 5/bw,
reportEvery = NULL,
cores = 1,
rasterize = FALSE,
plot = TRUE,
savePlots = NULL,
colorTheme = c("bw", "seewave", "heat.colors", "...")[1],

130 phasegram

col = NULL,
xlab = "Time",
ylab = "",
main = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

windowLength the length of each frame analyzed separately (ms)

step time step between consecutive frames (ms)

timeLag time lag between the original and time-shifted version of each frame that to-
gether represent the phase portrait (ms). Defaults to the number of steps beyond
which the mutual information function reaches its minimum or, if that fails,
the steps until mutual information experiences the first exponential decay - see
timeLag

theilerWindow time lag between two points that are considered locally independent and can
be treated as neighbors in the reconstructed phase space. defaults to the first
minimum or, if unavailable, the first zero of the autocorrelation function (or,
failing that, to timeLag * 2)

nonlinStats nonlinear statistics to report: "ed" = the optimal number of embedding dimen-
sions, "d2" = correlation dimension D2, "ml" = maximum Lyapunov exponent,
"sur" = the results of surrogate data testing for stochasticity. These are calcu-
lated using the functionality of the package nonlinearTseries, which is seriously
slow, so the default is just to get the phasegram itself

pars_ed a list of control parameters passed to estimateEmbeddingDim

pars_d2 a list of control parameters passed to corrDim

pars_ml a list of control parameters passed to maxLyapunov

pars_sur a list of control parameters passed to surrogateTest

bw standard deviation of the smoothing kernel, as in density

bins the number of bins along the Y axis after rasterizing (has no effect if rasterize
= FALSE)

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

phasegram 131

rasterize if FALSE, only plots and returns Poincare sections on the original scale (most
graphical parameters will then have no effect); if TRUE, rasterizes the phaseg-
ram matrix and plots it with more graphical parameters

plot should a spectrogram be plotted? TRUE / FALSE

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

colorTheme black and white (’bw’), as in seewave package (’seewave’), matlab-type palette
(’matlab’), or any palette from palette such as ’heat.colors’, ’cm.colors’, etc

col actual colors, eg rev(rainbow(100)) - see ?hcl.colors for colors in base R (over-
rides colorTheme)

xlab, ylab, main graphical parameters passed to soundgen:::filled.contour.mod (if rasterize =
TRUE) or plot (if rasterize = FALSE)

width, height, units, res
graphical parameters for saving plots passed to png

... other graphical parameters passed to soundgen:::filled.contour.mod (if rasterize
= TRUE) or plot (if rasterize = FALSE)

Details

Algorithm: the input sound is normalized to [-1, 1] and divided into consecutive frames windowLength
ms long without multiplying by any windowing function (unlike in STFT). For each frame, a phase
portrait is obtained by time-shifting the frame by timeLag ms. A Poincare section is taken through
the phase portrait (currently at a fixed angle, namely the default in poincareMap), giving the in-
tersection points of trajectories with this bisecting line. The density of intersections is estimated
with a smoothing kernel of bandwidth bw (as an alternative to using histogram bins). The density
distributions per frame are stacked together into a phasegram (output: "orig"). The ranges of phase
portraits depend on the amplitude of signal in each frame. The resulting phasegram can optionally
be rasterized to smooth it for plotting (output: "rasterized").

Value

Returns a list of three components: "orig" = the full phasegram; "rasterized" = a rasterized version.
For both, $time is the middle of each frame (ms), $x is the coordinate along a Poincare section (since
the audio is normalized, the scale is [-1, 1]), and $y is the density of intersections of system tra-
jectories with the Poincare section. The third component is $descriptives, which gives the result of
nonlinear analysis per frame. Currently implemented: shannon = Shannon entropy of Poincare sec-
tions, nPeaks = log-number of peaks in the density distribution of Poincare sections, ml = maximum
Lyapunov exponent (positive values suggest chaos), ed = optimal number of embedding dimensions
(shows the complexity of the reconstructed attractor), d2 = correlation dimension, sur = probability
of stochasticity according to surrogate data testing (0 = deterministic, 1 = stochastic).

References

• Herbst, C. T., Herzel, H., Švec, J. G., Wyman, M. T., & Fitch, W. T. (2013). Visualization of
system dynamics using phasegrams. Journal of the Royal Society Interface, 10(85), 20130288.

• Huffaker, R., Huffaker, R. G., Bittelli, M., & Rosa, R. (2017). Nonlinear time series analysis
with R. Oxford University Press.

132 pitchContour

Examples

target = soundgen(sylLen = 300, pitch = c(350, 420, 420, 410, 340) * 3,
subDep = c(0, 0, 60, 50, 0, 0) / 2, addSilence = 0, plot = TRUE)

Nonlinear statistics are also returned (slow - disable by setting
nonlinStats = NULL if these are not needed)
ph = phasegram(target, 16000, nonlinStats = NULL)

Not run:
ph = phasegram(target, 16000, windowLength = 20, step = 20,

rasterize = TRUE, bw = .01, bins = 150)
ph$descriptives

Unfortunately, phasegrams are greatly affected by noise. Compare:
target2 = soundgen(sylLen = 300, pitch = c(350, 420, 420, 410, 340) * 3,

subDep = c(0, 0, 60, 50, 0, 0)/2, noise = -10, addSilence = 0, plot = TRUE)
ph2 = phasegram(target2, 16000)

s2 = soundgen(sylLen = 3000, addSilence = 0, temperature = 1e-6,
pitch = c(380, 550, 500, 220), subDep = c(0, 0, 40, 0, 0, 0, 0, 0),
amDep = c(0, 0, 0, 0, 80, 0, 0, 0), amFreq = 80,
jitterDep = c(0, 0, 0, 0, 0, 3))

spectrogram(s2, 16000, yScale = 'bark')
phasegram(s2, 16000, windowLength = 10, nonlinStats = NULL, bw = .001)
phasegram(s2, 16000, windowLength = 10, nonlinStats = NULL, bw = .02)

End(Not run)

pitchContour Manually corrected pitch contours in 260 sounds

Description

A dataframe of 260 rows and two columns: "file" for filename in the corpus (Anikin & Persson,
2017) and "pitch" for pitch values per frame. The corpus can be downloaded from http://cogsci.se/publications.html

Usage

pitchContour

Format

An object of class data.frame with 260 rows and 2 columns.

pitchDescriptives 133

pitchDescriptives Pitch descriptives

Description

Provides common descriptives of time series such as pitch contours, including measures of average
/ range / variability / slope / inflections etc. Several degrees of smoothing can be applied consecu-
tively. The summaries are produced on the original and log-transformed scales, so this is meant to
be used on frequency-related variables in Hz.

Usage

pitchDescriptives(
x,
step = NULL,
timeUnit,
smoothBW = c(NA, 10, 1),
inflThres = 0.2,
extraSummaryFun = c(),
ref = 16.35,
plot = FALSE

)

Arguments

x input: numeric vector, a list of time stamps and values in rows, a dataframe
with one row per file and time/pitch values stored as characters (as exported by
pitch_app), or path to csv file containing the output of pitch_app or analyze

step distance between values in s (only needed if input is a vector)

timeUnit specify whether the time stamps (if any) are in ms or s

smoothBW a vector of bandwidths (Hz) for consecutive smoothing of input using pitchSmoothPraat;
NA = no smoothing

inflThres minimum difference (in semitones) between consecutive extrema to consider
them inflections; to apply a different threshold at each smoothing level, provide
inflThres as a vector of the same length as smoothBW; NA = no threshold

extraSummaryFun

additional summary function(s) that take a numeric vector with some NAs and
return a single number, eg c(’myFun1’, ’myFun2’)

ref reference value for transforming Hz to semitones, defaults to C0 (16.35 Hz)

plot if TRUE, plots the inflections for manual verification

Value

Returns a dataframe with columns containing summaries of one or multiple inputs (one input per
row). The descriptives are as follows:

134 pitchDescriptives

duration total duration, s

durDefined duration after omitting leading and trailing NAs

propDefined proportion of input with non-NA value, eg proportion of voiced frames if the input is
pitch

start, start_oct, end, end_oct the first and last values on the original scale and in octaves above
C0 (16.3516 Hz)

mean, median, max, min average and extreme values on the original scale

mean_oct, median_oct, min_oct, max_oct same in octaves above C0

time_max, time_min the location of minimum and maximum relative to durDefined, 0 to 1

range, range_sem, sd, sd_sem range and standard deviation on the original scale and in semitones

CV coefficient of variation = sd/mean (provided for historical reasons)

meanSlope, meanSlope_sem mean slope in Hz/s or semitones/s (NB: does not depend on duration
or missing values)

meanAbsSlope, meanAbsSlope_sem mean absolute slope (modulus, ie rising and falling sections
no longer cancel out)

maxAbsSlope, maxAbsSlope_sem the steepest slope

Examples

x = c(NA, NA, 405, 441, 459, 459, 460, 462, 462, 458, 458, 445, 458, 451,
444, 444, 430, 416, 409, 403, 403, 389, 375, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 183, 677, 677, 846, 883, 886, 924, 938, 883, 946, 846, 911, 826, 826,
788, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 307,
307, 368, 377, 383, 383, 383, 380, 377, 377, 377, 374, 374, 375, 375, 375,
375, 368, 371, 374, 375, 361, 375, 389, 375, 375, 375, 375, 375, 314, 169,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 238, 285, 361, 374, 375, 375,
375, 375, 375, 389, 403, 389, 389, 375, 375, 389, 375, 348, 361, 375, 348,
348, 361, 348, 342, 361, 361, 361, 365, 365, 361, 966, 966, 966, 959, 959,
946, 1021, 1021, 1026, 1086, 1131, 1131, 1146, 1130, 1172, 1240, 1172, 1117,
1103, 1026, 1026, 966, 919, 946, 882, 832, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA)
plot(x, type = 'b')
ci95 = function(x) diff(quantile(na.omit(x), probs = c(.025, .975)))
pd = pitchDescriptives(

x, step = .025, timeUnit = 's',
smoothBW = c(NA, 10, 1), # original + smoothed at 10 Hz and 1 Hz
inflThres = c(NA, .2, .2), # different for each level of smoothing
extraSummaryFun = 'ci95', # user-defined, here 95% coverage interval
plot = TRUE

)
pd

Not run:
a single file
data(sheep, package = 'seewave')
a = analyze(sheep)
pd1 = pitchDescriptives(a$detailed[, c('time', 'pitch')],

timeUnit = 'ms', inflThres = NA, plot = TRUE)

pitchManual 135

pd2 = pitchDescriptives(a$detailed[, c('time', 'pitch')],
timeUnit = 'ms', inflThres = c(0.1, 0.1, .5), plot = TRUE)

multiple files returned by analyze()
an = analyze('~/Downloads/temp')
pd = pitchDescriptives(an$detailed, timeUnit = 'ms')
pd

multiple files returned by pitch_app()
pd = pitchDescriptives(

'~/Downloads/pitch_manual_1708.csv',
timeUnit = 'ms', smoothBW = c(NA, 2), inflThres = .25)

a single file, exported from Praat
par(mfrow = c(3, 1))
pd = pitchDescriptives(

'~/Downloads/F-Hin-Om_jana.wav_F0contour.txt',
timeUnit = 's', smoothBW = c(NA, 25, 2), inflThres = .25, plot = TRUE)

par(mfrow = c(1, 1))

End(Not run)

pitchManual Manual pitch estimation in 260 sounds

Description

A vector of manually verified pitch values per sound in the corpus of 590 human non-linguistic
emotional vocalizations from Anikin & Persson (2017). The corpus can be downloaded from
http://cogsci.se/publications.html

Usage

pitchManual

Format

An object of class numeric of length 260.

pitchSmoothPraat Pitch smoothing as in Praat

Description

Smoothes an intonation (pitch) contour with a low-pass filter, as in Praat (http://www.fon.hum.uva.nl/praat/).
Algorithm: interpolates missing values (unvoiced frames), performs FFT to obtain the spectrum,
multiplies by a Gaussian filter, performs an inverse FFT, and fills the missing values back in. The
bandwidth parameter is about half the cutoff frequency (ie some frequencies will still be present
up to ~2 * bandwidth)

136 pitch_app

Usage

pitchSmoothPraat(pitch, bandwidth, samplingRate, plot = FALSE)

Arguments

pitch numeric vector of pitch values (NA = unvoiced)

bandwidth the bandwidth of low-pass filter, Hz (high = less smoothing, close to zero = more
smoothing)

samplingRate the number of pitch values per second

plot if TRUE, plots the original and smoothed pitch contours

See Also

analyze

Examples

pitch = c(NA, NA, 405, 441, 459, 459, 460, 462, 462, 458, 458, 445, 458, 451,
444, 444, 430, 416, 409, 403, 403, 389, 375, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 183, 677, 677, 846, 883, 886, 924, 938, 883, 946, 846, 911, 826, 826,
788, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 307,
307, 368, 377, 383, 383, 383, 380, 377, 377, 377, 374, 374, 375, 375, 375,
375, 368, 371, 374, 375, 361, 375, 389, 375, 375, 375, 375, 375, 314, 169,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 238, 285, 361, 374, 375, 375,
375, 375, 375, 389, 403, 389, 389, 375, 375, 389, 375, 348, 361, 375, 348,
348, 361, 348, 342, 361, 361, 361, 365, 365, 361, 966, 966, 966, 959, 959,
946, 1021, 1021, 1026, 1086, 1131, 1131, 1146, 1130, 1172, 1240, 1172, 1117,
1103, 1026, 1026, 966, 919, 946, 882, 832, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA)
pitchSmoothPraat(pitch, bandwidth = 10, samplingRate = 40, plot = TRUE)
pitchSmoothPraat(pitch, bandwidth = 2, samplingRate = 40, plot = TRUE)

pitch_app Interactive pitch tracker

Description

Starts a shiny app for manually editing pitch contours. The settings in the panels on the left cor-
respond to arguments to analyze - see ‘?analyze‘ and the vignette on acoustic analysis for help
and examples. You can verify the pitch contours first, and then feed them back into analyze (see
examples).

Usage

pitch_app()

pitch_app 137

Value

When proceeding to the next file in the cue, two types of backups are created. (1) A global object
called "my_pitch" is created or updated. This list becomes visible when the app is terminated,
and it contains the usual outputs of analyze() ($detailed and $summary) plus lists of manually
corrected voiced and unvoiced frames. (2) The app saves to disk a .csv file with one row per audio
file. Apart from the usual descriptives from analyze(), there are two additional columns: "time"
with time stamps (the midpoint of each STFT frame, ms) and "pitch" with the manually corrected
pitch values for each frame (Hz). When the orange "Download results" button is clicked, a context
menu pops up offering to terminate the app - if that happens, the results are also returned directly
into R. To process pitch contours further in R, work directly with my_pitch[[myfile]]$time and
my_pitch[[myfile]]$pitch or, if loading the csv file, do something like:

a = read.csv('~/Downloads/output.csv', stringsAsFactors = FALSE)
pitch = as.numeric(unlist(strsplit(a$pitch, ',')))
mean(pitch, na.rm = TRUE); sd(pitch, na.rm = TRUE)

Suggested workflow
Start by setting the basic analysis settings such as pitchFloor, pitchCeiling, silence, etc. Then click
"Load audio" to upload one or several audio files (wav/mp3). Long files will be very slow, so
please cut your audio into manageable chunks (ideally <10 s). If Shiny complains that maximum
upload size is exceeded, you can increase it, say to 30 MB, with ‘options(shiny.maxRequestSize =
30 * 1024^2)‘. Once the audio has been uploaded to the browser, fine-tune the analysis settings as
needed, edit the pitch contour in the first file to your satisfaction, then click "Next" to proceed to
the next file, etc. Remember that setting a reasonable prior is often faster than adjusting the contour
one anchor at a time. When done, click "Save results". If working with many files, you might want
to save the results occasionally in case the app crashes (although you should still be able to recover
your data if it does - see below).

How to edit pitch contours
Left-click to add a new anchor, double-click to remove it or unvoice the frame. Each time you make
a change, the entire pitch contour is re-fit, so making a change in one frame can affect the path
through candidates in adjacent frames. You can control this behavior by changing the settings in
Out/Path and Out/Smoothing. If correctly configured, the app corrects the contour with only a few
manual values - you shouldn’t need to manually edit every single frame. For longer files, you can
zoom in/out and navigate within the file. You can also select a region to voice/unvoice or shift it as
a whole or to set a prior based on selected frequency range.

Recovering lost data
Every time you click "next" or "last" to move in between files in the queue, the output you’ve
got so far is saved in a backup file called "temp.csv", and the "my_pitch" global object is up-
dated. If the app crashes or is closed without saving the results, this backup file preserves your
data. To recover it, access this file manually on disk or simply restart pitch_app() - a dialog box
will pop up and ask whether you wank to append the old data to the new one. Path to backup file:
"[R_installation_folder]/soundgen/shiny/pitch_app/www/temp.csv", for example, "/home/allgoodguys/R/x86_64-
pc-linux-gnu-library/3.6/soundgen/shiny/pitch_app/www/temp.csv"

See Also

formant_app

138 playme

Examples

Not run:
Recommended workflow for analyzing a lot of short audio files
path_to_audio = '~/Downloads/temp' # our audio lives here

STEP 1: extract manually corrected pitch contours
my_pitch = pitch_app() # runs in default browser such as Firefox or Chrome
To change system default browser, run something like:
options('browser' = '/usr/bin/firefox') # path to the executable on Linux

STEP 2: run analyze() with manually corrected pitch contours to obtain
accurate descriptives like the proportion of energy in harmonics above f0,
etc. This also gives you formants and loudness estimates (disabled in
pitch_app to speed things up)
df2 = analyze(path_to_audio,

pitchMethods = 'autocor', # only needed for HNR
nFormants = 5, # now we can measure formants as well
pitchManual = my_pitch
or, if loading the output of pitch_app() from the disk:
pitchManual = '~/Downloads/output.csv'
pitchManual = '~/path_to_some_folder/my_pitch_contours.rds
etc

)

STEP 3: add other acoustic descriptors, for ex.
df3 = segment(path_to_audio)

STEP 4: merge df2, df3, df4, ... in R or a spreadsheet editor to have all
acoustic descriptives together

To verify your pitch contours and/or edit them later, copy output.csv to
the folder with your audio, run pitch_app(), and load the audio + csv
together. The saved pitch contours are treated as manual anchors

End(Not run)

playme Play audio

Description

Plays one or more sounds: wav/mp3 file(s), Wave objects, or numeric vectors. This is a simple
wrapper for the functionality provided by play. Recommended players on Linux: "play" from the
"vox" library (default), "aplay".

Usage

playme(x, samplingRate = 16000, player = NULL, from = NULL, to = NULL)

plotMS 139

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

player the name of player to use, eg "aplay", "play", "vlc", etc. Defaults to "play" on
Linux, "afplay" on MacOS, and tuneR default on Windows. In case of errors,
try setting another default player for play

from, to play a selected time range (s)

Examples

Not run:
Play an audio file:
playme('pathToMyAudio/audio.wav')

Create and play a numeric vector:
f0_Hz = 440
sound = sin(2 * pi * f0_Hz * (1:16000) / 16000)
playme(sound, 16000)
playme(sound, 16000, from = .1, to = .5) # play from 100 to 500 ms

In case of errors, look into tuneR::play(). For ex., you might need to
specify which player to use:
playme(sound, 16000, player = 'aplay')

To avoid doing it all the time, set the default player:
tuneR::setWavPlayer('aplay')
playme(sound, 16000) # should now work without specifying the player

End(Not run)

plotMS Plot modulation spectrum

Description

Plots a single modulation spectrum returned by modulationSpectrum. The result is the same as
the plot produced by modulationSpectrum, but calling plotMS is handy for processed modulation
spectra - for instance, for plotting the difference between the modulation spectra of two sounds or
groups of sounds.

Usage

plotMS(
ms,
X = NULL,
Y = NULL,

140 plotMS

quantiles = c(0.5, 0.8, 0.9),
colorTheme = c("bw", "seewave", "heat.colors", "...")[1],
col = NULL,
logWarpX = NULL,
logWarpY = NULL,
main = NULL,
xlab = "Hz",
ylab = "1/kHz",
xlim = NULL,
ylim = NULL,
audio = NULL,
extraY = TRUE,
...

)

Arguments

ms modulation spectrum - a matrix with temporal modulation in columns and spec-
tral modulation in rows, as returned by modulationSpectrum

X, Y rownames and colnames of ms, respectively

quantiles labeled contour values, % (e.g., "50" marks regions that contain 50% of the sum
total of the entire modulation spectrum)

colorTheme black and white (’bw’), as in seewave package (’seewave’), matlab-type palette
(’matlab’), or any palette from palette such as ’heat.colors’, ’cm.colors’, etc

col actual colors, eg rev(rainbow(100)) - see ?hcl.colors for colors in base R (over-
rides colorTheme)

logWarpX, logWarpY
numeric vector of length 2: c(sigma, base) of pseudolog-warping the modulation
spectrum, as in function pseudo_log_trans() from the "scales" package

xlab, ylab, main, xlim, ylim
graphical parameters

audio (internal) a list of audio attributes

extraY if TRUE, another Y-axis is plotted on the right showing 1000/Y

... other graphical parameters passed on to filled.contour.mod and contour
(see spectrogram)

Examples

ms1 = modulationSpectrum(runif(4000), samplingRate = 16000, plot = TRUE)
plotMS(ms1$processed) # identical to above

compare two modulation spectra
ms2 = modulationSpectrum(soundgen(sylLen = 100, addSilence = 0),

samplingRate = 16000)
ensure the two matrices have the same dimensions
ms2_resized = soundgen:::interpolMatrix(ms2$original,

nr = nrow(ms1$original), nc = ncol(ms1$original))

presets 141

plot the difference
plotMS(log(ms1$original / ms2_resized), quantile = NULL,

col = colorRampPalette(c('blue', 'yellow')) (50))

presets Presets

Description

A library of presets for easy generation of a few nice sounds.

Usage

presets

Format

A list of length 4.

prosody Prosody

Description

Exaggerates or flattens the intonation by performing a dynamic pitch shift, changing pitch excursion
from its original median value without changing the formants. This is a particular case of pitch
shifting, which is performed with shiftPitch. The result is likely to be improved if manually
corrected pitch contours are provided. Depending on the nature of audio, the settings that control
pitch shifting may also need to be fine-tuned with the shiftPitch_pars argument.

Usage

prosody(
x,
samplingRate = NULL,
multProsody,
analyze_pars = list(),
shiftPitch_pars = list(),
pitchManual = NULL,
play = FALSE,
saveAudio = NULL,
reportEvery = NULL,
cores = 1,
plot = FALSE,
savePlots = NULL,
width = 900,

142 prosody

height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

multProsody multiplier of pitch excursion from median (on a logarithmic or musical scale):
>1 = exaggerate intonation, 1 = no change, <1 = flatten, 0 = completely flat at
the original median pitch

analyze_pars a list of parameters to pass to analyze (only needed if pitchManual is NULL -
that is, if we attempt to track pitch automatically)

shiftPitch_pars

a list of parameters to pass to shiftPitch to fine-tune the pitch-shifting algo-
rithm

pitchManual manually corrected pitch contour. For a single sound, provide a numeric vector
of any length. For multiple sounds, provide a dataframe with columns "file" and
"pitch" (or path to a csv file) as returned by pitch_app, ideally with the same
windowLength and step as in current call to analyze. A named list with pitch
vectors per file is also OK (eg as returned by pitch_app)

play if TRUE, plays the processed audio

saveAudio full (!) path to folder for saving the processed audio; NULL = don’t save, ” =
same as input folder (NB: overwrites the originals!)

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot should a spectrogram be plotted? TRUE / FALSE

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

width, height, units, res
graphical parameters for saving plots passed to png

... other graphical parameters

Value

If the input is a single audio (file, Wave, or numeric vector), returns the processed waveform as a
numeric vector with the original sampling rate and scale. If the input is a folder with several audio
files, returns a list of processed waveforms, one for each file.

See Also

shiftPitch

reportTime 143

Examples

s = soundgen(sylLen = 200, pitch = c(150, 220), addSilence = 50,
plot = TRUE, yScale = 'log')

playme(s)
s1 = prosody(s, 16000, multProsody = 2,

analyze_pars = list(windowLength = 30, step = 15),
shiftPitch_pars = list(windowLength = 20, step = 5, freqWindow = 300),
plot = TRUE)

playme(s1)
spectrogram(s1, 16000, yScale = 'log')

Not run:
Flat intonation - remove all frequency modulation
s2 = prosody(s, 16000, multProsody = 0,

analyze_pars = list(windowLength = 30, step = 15),
shiftPitch_pars = list(windowLength = 20, step = 1, freqWindow = 500),
plot = TRUE)

playme(s2)
spectrogram(s2, 16000, yScale = 'log')

Download an example - a bit of speech (sampled at 16000 Hz)
download.file('http://cogsci.se/soundgen/audio/speechEx.wav',

destfile = '~/Downloads/temp1/speechEx.wav')
target = '~/Downloads/temp1/speechEx.wav'
samplingRate = tuneR::readWave(target)@samp.rate
spectrogram(target, yScale = 'log')
playme(target)

s3 = prosody(target, multProsody = 1.5,
analyze_pars = list(windowLength = 30, step = 15),
shiftPitch_pars = list(freqWindow = 400, propagation = 'adaptive'))

spectrogram(s3, tuneR::readWave(target)@samp.rate, yScale = 'log')
playme(s3)

process all audio files in a folder
s4 = prosody('~/Downloads/temp', multProsody = 2, savePlots = '',

saveAudio = '~/Downloads/temp/prosody')
str(s4) # returns a list with audio (+ saves it to disk)

End(Not run)

reportTime Report time

Description

Provides a nicely formatted "estimated time left" in loops plus a summary upon completion.

144 reportTime

Usage

reportTime(
i,
time_start,
nIter = NULL,
reportEvery = NULL,
jobs = NULL,
prefix = ""

)

Arguments

i current iteration

time_start time when the loop started running

nIter total number of iterations

reportEvery report progress every n iterations

jobs vector of length nIter specifying the relative difficulty of each iteration. If not
NULL, estimated time left takes into account whether the jobs ahead will take
more or less time than the jobs already completed

prefix a string to print before "Done...", eg "Chain 1: "

Examples

time_start = proc.time()
nIter = 100
for (i in 1:nIter) {

Sys.sleep(i ^ 1.02 / 10000)
reportTime(i, time_start, nIter,

jobs = (1:100) ^ 1.02, prefix = 'Chain 1: ')
}
Not run:
Unknown number of iterations:
time_start = proc.time()
for (i in 1:20) {

Sys.sleep(i ^ 2 / 10000)
reportTime(i = i, time_start = time_start,
jobs = (1:20) ^ 2, reportEvery = 5)

}

when analyzing a bunch of audio files, their size is a good estimate
of how long each will take to process
time_start = proc.time()
filenames = list.files('~/Downloads/temp', pattern = "*.wav|.mp3",

full.names = TRUE)
filesizes = file.info(filenames)$size
for (i in seq_along(filenames)) {

...do what you have to do with each file...
reportTime(i = i, time_start = time_start, nIter = length(filenames),

jobs = filesizes)

resample 145

}

End(Not run)

resample Resample a vector

Description

Changes the sampling rate without introducing artefacts like aliasing. Best for relatively short
vectors that require special care (eg pitch contours that contain NAs, which need to be dropped or
preserved) as the algorithm is too slow for long sounds. Algorithm: to downsample, applies a low-
pass filter, then decimates with approx; to upsample, performs linear interpolation with approx,
then applies a low-pass filter. NAs can be interpolated or preserved in the output. The length
of output is determined, in order of precedence, by len / mult / samplingRate_new. For simple
vector operations, this is very similar to approx, but the leading and trailing NAs are also preserved
(see examples).

Usage

resample(
x,
samplingRate = NULL,
samplingRate_new = NULL,
mult = NULL,
len = NULL,
lowPass = TRUE,
na.rm = FALSE,
reportEvery = NULL,
cores = 1,
saveAudio = NULL,
plot = FALSE,
savePlots = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)
samplingRate_new

an alternative to mult provided that the old samplingRate is know (NB: mult
takes precedence)

146 resample

mult multiplier of sampling rate: new sampling rate = old sampling rate x mult, so 1
= no effect, >1 = upsample, <1 = downsample

len if specified, overrides mult and samplingRate_new and simply returns a vector
of length len

lowPass if TRUE, applies a low-pass filter before decimating or after upsampling to avoid
aliasing

na.rm if TRUE, NAs are interpolated, otherwise they are preserved in the output

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

saveAudio full path to the folder in which to save audio files (one per detected syllable)

plot should a spectrogram be plotted? TRUE / FALSE

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

width, height, units, res
graphical parameters for saving plots passed to png

... other graphical parameters

Examples

Example 1: a short vector with NAs
x = c(NA, 1, 2, 3, NA, NA, 6, 7, 8, NA)

upsample
resample(x, mult = 3.5, lowPass = FALSE, plot = TRUE) # just approx
resample(x, mult = 3.5, lowPass = TRUE, plot = TRUE) # low-pass + approx
resample(x, mult = 3.5, lowPass = FALSE, na.rm = TRUE, plot = TRUE)

downsample
resample(x, mult = 0.5, lowPass = TRUE, plot = TRUE)
resample(x, mult = 0.5, na.rm = TRUE, plot = TRUE)
resample(x, len = 5, na.rm = TRUE, plot = TRUE) # same

The most important TIP: use resample() for audio files and the internal
soundgen:::.resample(list(sound = ...)) for simple vector operations because
it's >1000 times faster. For example:
soundgen:::.resample(list(sound = x), mult = 3.5, lowPass = FALSE)

Example 2: a sound
silence = rep(0, 10)
samplingRate = 1000
fr = seq(100, 300, length.out = 400)
x = c(silence, sin(cumsum(fr) * 2 * pi / samplingRate), silence)
spectrogram(x, samplingRate)

downsample
x1 = resample(x, mult = 1 / 2.5)
spectrogram(x1, samplingRate / 2.5) # no aliasing

reverb 147

cf:
x1bad = resample(x, mult = 1 / 2.5, lowPass = FALSE)
spectrogram(x1bad, samplingRate / 2.5) # aliasing

upsample
x2 = resample(x, mult = 3)
spectrogram(x2, samplingRate * 3) # nothing above the old Nyquist
cf:
x2bad = resample(x, mult = 3, lowPass = FALSE)
spectrogram(x2bad, samplingRate * 3) # high-frequency artefacts

Not run:
Example 3: resample all audio files in a folder to 8000 Hz
resample('~/Downloads/temp', saveAudio = '~/Downloads/temp/sr8000/',

samplingRate_new = 8000, savePlots = '~/Downloads/temp/sr8000/')

End(Not run)

reverb Reverb & echo

Description

Adds reverberation and/or echo to a sound. Algorithm for reverb: adds time-shifted copies of the
signal weighted by a decay function, which is analogous to convoluting the input with a parametric
model of some hypothetical impulse response function. In simple terms: we specify how much and
when the sound rebounds back (as from a wall) and add these time-shifted copies to the original,
optionally with some spectral filtering.

Usage

reverb(
x,
samplingRate = NULL,
echoDelay = 200,
echoLevel = -20,
reverbDelay = 70,
reverbSpread = 130,
reverbLevel = -25,
reverbDensity = 50,
reverbType = "gaussian",
filter = list(),
dynamicRange = 80,
output = c("audio", "detailed")[1],
play = FALSE,
reportEvery = NULL,
cores = 1,
saveAudio = NULL

)

148 reverb

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

echoDelay the delay at which the echo appears, ms

echoLevel the rate at which the echo weakens at each repetition, dB

reverbDelay the time of maximum reverb density, ms

reverbSpread standard deviation of reverb spread around time reverbDelay, ms

reverbLevel the maximum amplitude of reverb, dB below input

reverbDensity the number of echos or "voices" added

reverbType so far only "gaussian" has been implemented

filter (optional) a spectral filter to apply to the created reverb and echo (see addFormants
for acceptable formats)

dynamicRange the precision with which the reverb and echo are calculated, dB

output "audio" = returns just the processed audio, "detailed" = returns a list with reverb
window, the added reverb/echo, etc.

play if TRUE, plays the processed audio

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

saveAudio full (!) path to folder for saving the processed audio; NULL = don’t save, ” =
same as input folder (NB: overwrites the originals!)

Examples

s = soundgen()
s_rev = reverb(s, 16000)
playme(s_rev)

Not run:
double echo, no reverb
s1 = reverb(s, samplingRate = 16000, reverbLevel = NULL,

echoDelay = c(250, 800), echoLevel = c(-15, -25))
playme(s1)
spectrogram(s1, 16000, osc = TRUE, ylim = c(0, 4))

only reverb (indoors)
s2 = reverb(s, samplingRate = 16000, echoDelay = NULL,

reverbDelay = 70, reverbSpread = 130,
reverbLevel = -20, reverbDensity = 20)

playme(s2)
spectrogram(s2, 16000, osc = TRUE, ylim = c(0, 4))

reverb (caves)
s3 = reverb(s, samplingRate = 16000, echoDelay = NULL,

schwa 149

reverbDelay = 600, reverbSpread = 1500,
reverbLevel = -10, reverbDensity = 100)

playme(s3)
spectrogram(s3, 16000, osc = TRUE, ylim = c(0, 4))

both echo and reverb with high frequencies emphasized
s4 = reverb(s, samplingRate = 16000,

echoDelay = 250, echoLevel = -20,
reverbDelay = 70, reverbSpread = 120,
reverbLevel = -25, reverbDensity = 50,
filter = list(formants = NULL, lipRad = 3))

playme(s4)
spectrogram(s4, 16000, osc = TRUE, ylim = c(0, 4))

add reverb to a recording
s5 = reverb('~/Downloads/temp260/ut_fear_57-m-tone.wav',

echoDelay = 850, echoLevel = -40)
playme(s5, 44100)

add reverb to all files in a folder, save the result
reverb('~/Downloads/temp2', saveAudio = '~/Downloads/temp2/rvb')

End(Not run)

schwa Schwa-related formant conversion

Description

This function performs several conceptually related types of conversion of formant frequencies in
relation to the neutral schwa sound based on the one-tube model of the vocal tract. This is useful
for speaker normalization because absolute formant frequencies measured in Hz depend strongly
on overall vocal tract length (VTL). For example, adult men vs. children or grizzly bears vs. dog
puppies have very different formant spaces in Hz, but it is possible to define a VTL-normalized
formant space that is applicable to all species and sizes. Case 1: if we know vocal tract length
(VTL) but not formant frequencies, schwa() estimates formants corresponding to a neutral schwa
sound in this vocal tract, assuming that it is perfectly cylindrical. Case 2: if we know the frequencies
of a few lower formants, schwa() estimates the deviation of observed formant frequencies from the
neutral values expected in a perfectly cylindrical vocal tract (based on the VTL as specified or as
estimated from formant dispersion). Case 3: if we want to generate a sound with particular relative
formant frequencies (e.g. high F1 and low F2 relative to the schwa for this vocal tract), schwa()
calculates the corresponding formant frequencies in Hz. See examples below for an illustration of
these three suggested uses.

Usage

schwa(
formants = NULL,
vocalTract = NULL,

150 schwa

formants_relative = NULL,
nForm = 8,
interceptZero = TRUE,
tube = c("closed-open", "open-open")[1],
speedSound = 35400,
plot = FALSE

)

Arguments

formants a numeric vector of observed (measured) formant frequencies, Hz

vocalTract the length of vocal tract, cm
formants_relative

a numeric vector of target relative formant frequencies, % deviation from schwa
(see examples)

nForm the number of formants to estimate (integer)

interceptZero if TRUE, forces the regression curve to pass through the origin. This reduces the
influence of highly variable lower formants, but we have to commit to a partic-
ular model of the vocal tract: closed-open or open-open/closed-closed (method
= "regression" only)

tube the vocal tract is assumed to be a cylindrical tube that is either "closed-open" or
"open-open" (same as closed-closed)

speedSound speed of sound in warm air, cm/s. Stevens (2000) "Acoustic phonetics", p. 138

plot if TRUE, plots vowel quality in speaker-normalized F1-F2 space

Details

Algorithm: the expected formant dispersion is given by (2∗formantnumber−1)∗speedSound/(4∗
formantfrequency) for a closed-open tube (mouth open) and formantnumber∗speedSound/(2∗
formantfrequency) for an open-open or closed-closed tube. F1 is schwa is expected at half the
value of formant dispersion. See e.g. Stevens (2000) "Acoustic phonetics", p. 139. Basically, we
estimate vocal tract length and see if each formant is higher or lower than expected for this vocal
tract. For this to work, we have to know either the frequencies of enough formants (not just the first
two) or the true length of the vocal tract. See also estimateVTL on the algorithm for estimating
formant dispersion if VTL is not known (note that schwa calls estimateVTL with the option method
= 'regression').

Value

Returns a list with the following components:

vtl_measured VTL as provided by the user, cm

vocalTract_apparent VTL estimated based on formants frequencies provided by the user, cm

formantDispersion average distance between formants, Hz

ff_measured formant frequencies as provided by the user, Hz

ff_schwa formant frequencies corresponding to a neutral schwa sound in this vocal tract, Hz

schwa 151

ff_theoretical formant frequencies corresponding to the user-provided relative formant frequen-
cies, Hz

ff_relative deviation of formant frequencies from those expected for a schwa, % (e.g. if the first
ff_relative is -25, it means that F1 is 25% lower than expected for a schwa in this vocal tract)

ff_relative_semitones deviation of formant frequencies from those expected for a schwa, semi-
tones. Like ff_relative, this metric is invariant to vocal tract length, but the variance tends
to be greater for lower vs. higher formants

ff_relative_dF deviation of formant frequencies from those expected for a schwa, proportion of
formant spacing (dF). Unlike ff_relative and ff_relative_semitones, this metric has
similar variance for lower and higher formants

See Also

estimateVTL

Examples

CASE 1: known VTL
If vocal tract length is known, we calculate expected formant frequencies
schwa(vocalTract = 17.5)
schwa(vocalTract = 13, nForm = 5)
schwa(vocalTract = 13, nForm = 5, tube = 'open-open')

CASE 2: known (observed) formant frequencies
Let's take formant frequencies in four vocalizations, namely
(/a/, /i/, /mmm/, /roar/) by the same male speaker:
formants_a = c(860, 1430, 2900, NA, 5200) # NAs are OK - here F4 is unknown
s_a = schwa(formants = formants_a, plot = TRUE)
s_a
We get an estimate of VTL (s_a$vtl_apparent),
same as with estimateVTL(formants_a)
We also get theoretical schwa formants: s_a$ff_schwa
And we get the difference (% and semitones) in observed vs expected
formant frequencies: s_a[c('ff_relative', 'ff_relative_semitones')]
[a]: F1 much higher than expected, F2 slightly lower (see plot)

formants_i = c(300, 2700, 3400, 4400, 5300, 6400)
s_i = schwa(formants = formants_i, plot = TRUE)
s_i
The apparent VTL is slightly smaller (14.5 cm)
[i]: very low F1, very high F2

formants_mmm = c(1200, 2000, 2800, 3800, 5400, 6400)
schwa(formants_mmm, tube = 'closed-closed', plot = TRUE)
~schwa, but with a closed mouth

formants_roar = c(550, 1000, 1460, 2280, 3350,
4300, 4900, 5800, 6900, 7900)

s_roar = schwa(formants = formants_roar, plot = TRUE)
s_roar
Note the enormous apparent VTL (22.5 cm!)

152 segment

(lowered larynx and rounded lips exaggerate the apparent size)
s_roar$ff_relative: high F1 and low F2-F4

schwa(formants = formants_roar[1:4], plot = TRUE)
based on F1-F4, apparent VTL is almost 28 cm!
Since the lowest formants are the most salient,
the apparent size is exaggerated even further

If you know VTL, a few lower formants are enough to get
a good estimate of the relative formant values:
schwa(formants = formants_roar[1:4], vocalTract = 19, plot = TRUE)
NB: in this case theoretical and relative formants are calculated
based on user-provided VTL (vtl_measured) rather than vtl_apparent

CASE 3: from relative to absolute formant frequencies
Say we want to generate a vowel sound with F1 20% below schwa
and F2 40% above schwa, with VTL = 15 cm
s = schwa(formants_relative = c(-20, 40), vocalTract = 15, plot = TRUE)
s$ff_schwa gives formant frequencies for a schwa, while
s$ff_theoretical gives formant frequencies for a sound with
target relative formant values (low F1, high F2)
schwa(formants = s$ff_theoretical)

segment Segment a sound

Description

Finds syllables and bursts separated by background noise in long recordings (up to 1-2 hours of
audio per file). Syllables are defined as continuous segments that seem to be different from noise
based on amplitude and/or spectral similarity thresholds. Bursts are defined as local maxima in
signal envelope that are high enough both in absolute terms (relative to the global maximum) and
with respect to the surrounding region (relative to local minima). See vignette(’acoustic_analysis’,
package = ’soundgen’) for details.

Usage

segment(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
shortestSyl = 40,
shortestPause = 40,
method = c("env", "spec", "mel")[3],
propNoise = NULL,
SNR = NULL,
noiseLevelStabWeight = c(1, 0.25),

segment 153

windowLength = 40,
step = NULL,
overlap = 80,
reverbPars = list(reverbDelay = 70, reverbSpread = 130, reverbLevel = -35,
reverbDensity = 50),

interburst = NULL,
peakToTrough = SNR + 3,
troughLocation = c("left", "right", "both", "either")[4],
summaryFun = c("median", "sd"),
maxDur = 30,
reportEvery = NULL,
cores = 1,
plot = FALSE,
savePlots = NULL,
saveAudio = NULL,
addSilence = 50,
main = NULL,
xlab = "",
ylab = "Signal, dB",
showLegend = FALSE,
width = 900,
height = 500,
units = "px",
res = NA,
maxPoints = c(1e+05, 5e+05),
specPlot = list(colorTheme = "bw"),
contourPlot = list(lty = 1, lwd = 2, col = "green"),
sylPlot = list(lty = 1, lwd = 2, col = "blue"),
burstPlot = list(pch = 8, cex = 3, col = "red"),
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

shortestSyl minimum acceptable length of syllables, ms

shortestPause minimum acceptable break between syllables, ms (syllables separated by shorter
pauses are merged)

method the signal used to search for syllables: ’env’ = Hilbert-transformed amplitude
envelope, ’spec’ = spectrogram, ’mel’ = mel-transformed spectrogram (see tuneR::melfcc)

propNoise the proportion of non-zero sound assumed to represent background noise, 0 to
1 (note that complete silence is not considered, so padding with silence won’t

154 segment

affect the algorithm)

SNR expected signal-to-noise ratio (dB above noise), which determines the thresh-
old for syllable detection. The meaning of "dB" here is approximate since the
"signal" may be different from sound intensity

noiseLevelStabWeight

a vector of length 2 specifying the relative weights of the overall signal level
vs. stability when attempting to automatically locate the regions that represent
noise. Increasing the weight of stability tends to accentuate the beginning and
end of each syllable.

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

reverbPars parameters passed on to reverb to attempt to cancel the effects of reverberation
or echo, which otherwise tend to merge short and loud segments like rapid barks

interburst minimum time between two consecutive bursts (ms). Defaults to the average
detected (syllable + pause) / 2

peakToTrough to qualify as a burst, a local maximum has to be at least peakToTrough dB
above the left and/or right local trough(s) (controlled by troughLocation) over
the analysis window (controlled by interburst). Defaults to SNR + 3 dB

troughLocation should local maxima be compared to the trough on the left and/or right of it?
Values: ’left’, ’right’, ’both’, ’either’

summaryFun functions used to summarize each acoustic characteristic; see analyze

maxDur long files are split into chunks maxDur s in duration to avoid running out of
RAM; the outputs for all fragments are glued together, but plotting is switched
off. Note that noise profile is estimated in each chunk separately, so set it low if
the background noise is highly variable

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot if TRUE, produces a segmentation plot

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

saveAudio full path to the folder in which to save audio files (one per detected syllable)

addSilence if syllables are saved as separate audio files, they can be padded with some
silence (ms)

xlab, ylab, main main plotting parameters

showLegend if TRUE, shows a legend for thresholds
width, height, units, res

parameters passed to png if the plot is saved

segment 155

maxPoints the maximum number of "pixels" in the oscillogram (if any) and spectrogram;
good for quickly plotting long audio files; defaults to c(1e5, 5e5)

specPlot a list of graphical parameters for displaying the spectrogram (if method = 'spec'
or 'mel'); set to NULL to hide the spectrogram

contourPlot a list of graphical parameters for displaying the signal contour used to detect
syllables (see details)

sylPlot a list of graphical parameters for displaying the syllables

burstPlot a list of graphical parameters for displaying the bursts

... other graphical parameters passed to graphics::plot

Details

Algorithm: for each chunk at most maxDur long, first the audio recording is partitioned into signal
and noise regions: the quietest and most stable regions are located, and noise threshold is defined
from a user-specified proportion of noise in the recording (propNoise) or, if propNoise = NULL,
from the lowest local maximum in the density function of a weighted product of amplitude and
stability (that is, we assume that quiet and stable regions are likely to represent noise). Once we
know what the noise looks like - in terms of its typical amplitude and/or spectrum - we derive signal
contour as its difference from noise at each time point. If method = 'env', this is Hilbert transform
minus noise, and if method = 'spec' or 'mel', this is the inverse of cosine similarity between the
spectrum of each frame and the estimated spectrum of noise weighted by amplitude. By default,
signal-to-noise ratio (SNR) is estimated as half-median of above-noise signal, but it is recommended
that this parameter is adjusted by hand to suit the purposes of segmentation, as it is the key setting
that controls the balance between false negatives (missing faint signals) and false positives (hallu-
cinating signals that are actually noise). Note also that effects of echo or reverberation can be taken
into account: syllable detection threshold may be raised following powerful acoustic bursts with
the help of the reverbPars argument. At the final stage, continuous "islands" SNR dB above noise
level are detected as syllables, and "peaks" on the islands are detected as bursts. The algorithm is
very flexible, but the parameters may be hard to optimize by hand. If you have an annotated sample
of the sort of audio you are planning to analyze, with syllables and/or bursts counted manually, you
can use it for automatic optimization of control parameters (see optimizePars).

Value

If summaryFun = NULL, returns returns a list containing full stats on each syllable and burst (one row
per syllable and per burst), otherwise returns only a dataframe with one row per file - a summary of
the number and spacing of syllables and vocal bursts.

See Also

analyze ssm

Examples

sound = soundgen(nSyl = 4, sylLen = 100, pauseLen = 70,
attackLen = 20, amplGlobal = c(0, -20),
pitch = c(368, 284), temperature = .001)

add noise so SNR decreases from 20 to 0 dB from syl1 to syl4

156 segmentManual

sound = sound + runif(length(sound), -10 ^ (-20 / 20), 10 ^ (-20 / 20))
osc(sound, samplingRate = 16000, dB = TRUE)
spectrogram(sound, samplingRate = 16000, osc = TRUE)
playme(sound, samplingRate = 16000)

s = segment(sound, samplingRate = 16000, plot = TRUE)
s

customizing the plot
segment(sound, samplingRate = 16000, plot = TRUE,

sylPlot = list(lty = 2, col = 'gray20'),
burstPlot = list(pch = 16, col = 'blue'),
specPlot = list(col = rev(heat.colors(50))),
xlab = 'Some custom label', cex.lab = 1.2,
showLegend = TRUE,
main = 'My awesome plot')

Not run:
set SNR manually to control detection threshold
s = segment(sound, samplingRate = 16000, SNR = 1, plot = TRUE)

Download 260 sounds from the supplements to Anikin & Persson (2017) at
http://cogsci.se/publications.html
unzip them into a folder, say '~/Downloads/temp'
myfolder = '~/Downloads/temp260' # 260 .wav files live here
s = segment(myfolder, propNoise = .05, SNR = 3)

Check accuracy: import a manual count of syllables (our "key")
key = segmentManual # a vector of 260 integers
trial = as.numeric(s$summary$nBursts)
cor(key, trial, use = 'pairwise.complete.obs')
boxplot(trial ~ as.integer(key), xlab='key')
abline(a=0, b=1, col='red')

or look at the detected syllables instead of bursts:
cor(key, s$summary$nSyl, use = 'pairwise.complete.obs')

End(Not run)

segmentManual Manual counts of syllables in 260 sounds

Description

A vector of the number of syllables in the corpus of 260 human non-linguistic emotional vocaliza-
tions from Anikin & Persson (2017). The corpus can be downloaded from http://cogsci.se/publications.html

Usage

segmentManual

semitonesToHz 157

Format

An object of class numeric of length 260.

semitonesToHz Convert semitones to Hz

Description

Converts from semitones above C-5 (~0.5109875 Hz) or another reference frequency to Hz. See
HzToSemitones

Usage

semitonesToHz(s, ref = 0.5109875)

Arguments

s vector or matrix of frequencies (semitones above C0)

ref frequency of the reference value (defaults to C-5, 0.51 Hz)

See Also

HzToSemitones

Examples

semitonesToHz(c(117, 105, 60))

shiftFormants Shift formants

Description

Raises or lowers formants (resonance frequencies), changing the voice quality or timbre of the
sound without changing its pitch, statically or dynamically. Note that this is only possible when
the fundamental frequency f0 is lower than the formant frequencies. For best results, freqWindow
should be no lower than f0 and no higher than formant bandwidths. Obviously, this is impossible
for many signals, so just try a few reasonable values, like ~200 Hz for speech. If freqWindow is not
specified, soundgen sets it to the average detected f0, which is slow.

158 shiftFormants

Usage

shiftFormants(
x,
multFormants,
samplingRate = NULL,
freqWindow = NULL,
dynamicRange = 80,
windowLength = 50,
step = NULL,
overlap = 75,
wn = "gaussian",
interpol = c("approx", "spline")[1],
normalize = c("max", "orig", "none")[2],
play = FALSE,
saveAudio = NULL,
reportEvery = NULL,
cores = 1,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

multFormants 1 = no change, >1 = raise formants (eg 1.1 = 10% up, 2 = one octave up), <1 =
lower formants. Anchor format accepted (see soundgen)

samplingRate sampling rate of x (only needed if x is a numeric vector)

freqWindow the width of spectral smoothing window, Hz. Defaults to detected f0

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

wn window type accepted by ftwindow, currently gaussian, hanning, hamming,
bartlett, blackman, flattop, rectangle

interpol the method for interpolating scaled spectra

normalize "orig" = same as input (default), "max" = maximum possible peak amplitude,
"none" = no normalization

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

saveAudio full path to the folder in which to save audio files (one per detected syllable)

shiftFormants 159

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

... other graphical parameters

Details

Algorithm: phase vocoder. In the frequency domain, we separate the complex spectrum of each
STFT frame into two parts. The "receiver" is the flattened or smoothed complex spectrum, where
smoothing is achieved by obtaining a smoothed magnitude envelope (the amount of smoothing is
controlled by freqWindow) and then dividing the complex spectrum by this envelope. This basically
removes the formants from the signal. The second component, "donor", is a scaled and interpolated
version of the same smoothed magnitude envelope as above - these are the formants shifted up or
down. Warping can be easily implemented instead of simple scaling if nonlinear spectral transfor-
mations are required. We then multiply the "receiver" and "donor" spectrograms and reconstruct
the audio with iSTFT.

See Also

shiftPitch transplantFormants

Examples

s = soundgen(sylLen = 200, ampl = c(0,-10),
pitch = c(250, 350), rolloff = c(-9, -15),
noise = -40,
formants = 'aii', addSilence = 50)

playme(s)
s1 = shiftFormants(s, samplingRate = 16000, multFormants = 1.25,

freqWindow = 200)
playme(s1)

Not run:
data(sheep, package = 'seewave') # import a recording from seewave
playme(sheep)
spectrogram(sheep)

Lower formants by 4 semitones or ~20% = 2 ^ (-4 / 12)
sheep1 = shiftFormants(sheep, multFormants = 2 ^ (-4 / 12), freqWindow = 150)
playme(sheep1, sheep@samp.rate)
spectrogram(sheep1, sheep@samp.rate)

orig = seewave::meanspec(sheep, wl = 128, plot = FALSE)
shifted = seewave::meanspec(sheep1, wl = 128, f = sheep@samp.rate, plot = FALSE)
plot(orig[, 1], log(orig[, 2]), type = 'l')
points(shifted[, 1], log(shifted[, 2]), type = 'l', col = 'blue')

dynamic change: raise formants at the beginning, lower at the end
sheep2 = shiftFormants(sheep, multFormants = c(1.3, .7), freqWindow = 150)
playme(sheep2, sheep@samp.rate)
spectrogram(sheep2, sheep@samp.rate)

160 shiftPitch

End(Not run)

shiftPitch Shift pitch

Description

Raises or lowers pitch with or without also shifting the formants (resonance frequencies) and per-
forming a time-stretch. The three operations (pitch shift, formant shift, and time stretch) are inde-
pendent and can be performed in any combination, statically or dynamically. shiftPitch can also
be used to shift formants without changing pitch or duration, but the dedicated shiftFormants is
faster for that task.

Usage

shiftPitch(
x,
multPitch = 1,
multFormants = multPitch,
timeStretch = 1,
samplingRate = NULL,
freqWindow = NULL,
dynamicRange = 80,
windowLength = 40,
step = 2,
overlap = NULL,
wn = "gaussian",
interpol = c("approx", "spline")[1],
propagation = c("time", "adaptive")[1],
preserveEnv = NULL,
transplantEnv_pars = list(windowLength = 10),
normalize = c("max", "orig", "none")[2],
play = FALSE,
saveAudio = NULL,
reportEvery = NULL,
cores = 1

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

multPitch 1 = no change, >1 = raise pitch (eg 1.1 = 10% up, 2 = one octave up), <1 = lower
pitch. Anchor format accepted for multPitch / multFormant / timeStretch (see
soundgen)

shiftPitch 161

multFormants 1 = no change, >1 = raise formants (eg 1.1 = 10% up, 2 = one octave up), <1 =
lower formants

timeStretch 1 = no change, >1 = longer, <1 = shorter

samplingRate sampling rate of x (only needed if x is a numeric vector)

freqWindow the width of spectral smoothing window, Hz. Defaults to detected f0 prior to
pitch shifting - see shiftFormants for discussion and examples

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

wn window type accepted by ftwindow, currently gaussian, hanning, hamming,
bartlett, blackman, flattop, rectangle

interpol the method for interpolating scaled spectra and anchors

propagation the method for propagating phase: "time" = horizontal propagation (default),
"adaptive" = an experimental implementation of "vocoder done right" (Prusa &
Holighaus 2017)

preserveEnv if TRUE, transplants the amplitude envelope from the original to the modified
sound with transplantEnv. Defaults to TRUE if no time stretching is per-
formed and FALSE otherwise

transplantEnv_pars

a list of parameters passed on to transplantEnv if preserveEnv = TRUE

normalize "orig" = same as input (default), "max" = maximum possible peak amplitude,
"none" = no normalization

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

saveAudio full path to the folder in which to save audio files (one per detected syllable)

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

Details

Algorithm: phase vocoder. Pitch shifting is accomplished by performing a time stretch (at present,
with horizontal or adaptive phase propagation) followed by resampling. This shifts both pitch and
formants; to preserve the original formant frequencies or modify them independently of pitch, a
variant of transplantFormants is performed to "transplant" the original or scaled formants onto
the time-stretched new sound. See Prusa 2017 "Phase vocoder done right", Royer 2019 "Pitch-
shifting algorithm design and applications in music".

162 soundgen

See Also

shiftFormants transplantFormants

Examples

s = soundgen(sylLen = 200, ampl = c(0,-10),
pitch = c(250, 350), rolloff = c(-9, -15),
noise = -40,
formants = 'aii', addSilence = 50)

playme(s)
s1 = shiftPitch(s, samplingRate = 16000, freqWindow = 400,

multPitch = 1.25, multFormants = .8)
playme(s1)

Not run:
Dynamic manipulations
Add a chevron-shaped pitch contour
s2 = shiftPitch(s, samplingRate = 16000, multPitch = c(1.1, 1.3, .8))
playme(s2)

Time-stretch only the middle
s3 = shiftPitch(s, samplingRate = 16000, timeStretch = list(

time = c(0, .25, .31, .5, .55, 1),
value = c(1, 1, 3, 3, 1, 1))

)
playme(s3)

Various combinations of 3 manipulations
data(sheep, package = 'seewave') # import a recording from seewave
playme(sheep)
spectrogram(sheep)

Raise pitch and formants by 3 semitones, shorten by half
sheep1 = shiftPitch(sheep, multPitch = 2 ^ (3 / 12), timeStretch = 0.5)
playme(sheep1, sheep@samp.rate)
spectrogram(sheep1, sheep@samp.rate)

Just shorten
shiftPitch(sheep, multPitch = 1, timeStretch = 0.25, play = TRUE)

Raise pitch preserving formants
sheep2 = shiftPitch(sheep, multPitch = 1.2, multFormants = 1, freqWindow = 150)
playme(sheep2, sheep@samp.rate)
spectrogram(sheep2, sheep@samp.rate)

End(Not run)

soundgen Generate a sound

soundgen 163

Description

Generates a bout of one or more syllables with pauses between them. Two basic components are
synthesized: the harmonic component (the sum of sine waves with frequencies that are multiples
of the fundamental frequency) and the noise component. Both components can be filtered with
independently specified formants. Intonation and amplitude contours can be applied both within
each syllable and across multiple syllables. Suggested application: synthesis of animal or human
non-linguistic vocalizations. For more information, see http://cogsci.se/soundgen.html and
vignette(’sound_generation’, package = ’soundgen’).

Usage

soundgen(
repeatBout = 1,
nSyl = 1,
sylLen = 300,
pauseLen = 200,
pitch = list(time = c(0, 0.1, 0.9, 1), value = c(100, 150, 135, 100)),
pitchGlobal = NA,
glottis = 0,
temperature = 0.025,
tempEffects = list(),
maleFemale = 0,
creakyBreathy = 0,
nonlinBalance = 100,
nonlinRandomWalk = NULL,
subRatio = 2,
subFreq = 0,
subDep = 0,
subWidth = 10000,
shortestEpoch = 300,
jitterLen = 1,
jitterDep = 0,
vibratoFreq = 5,
vibratoDep = 0,
shimmerDep = 0,
shimmerLen = 1,
attackLen = 50,
rolloff = -9,
rolloffOct = 0,
rolloffKHz = -3,
rolloffParab = 0,
rolloffParabHarm = 3,
rolloffExact = NULL,
lipRad = 6,
noseRad = 4,
mouthOpenThres = 0,
formants = c(860, 1430, 2900),
formantDep = 1,

http://cogsci.se/soundgen.html

164 soundgen

formantDepStoch = 1,
formantWidth = 1,
formantCeiling = 2,
formantLocking = 0,
vocalTract = NA,
amDep = 0,
amFreq = 30,
amType = c("logistic", "sine")[1],
amShape = 0,
noise = NULL,
formantsNoise = NA,
rolloffNoise = -4,
noiseFlatSpec = 1200,
rolloffNoiseExp = 0,
noiseAmpRef = c("f0", "source", "filtered")[3],
mouth = list(time = c(0, 1), value = c(0.5, 0.5)),
ampl = NA,
amplGlobal = NA,
smoothing = list(interpol = c("approx", "spline", "loess")[3], loessSpan = NULL,

discontThres = 0.05, jumpThres = 0.01),
samplingRate = 16000,
windowLength = 50,
overlap = 75,
addSilence = 100,
pitchFloor = 1,
pitchCeiling = 3500,
pitchSamplingRate = 16000,
dynamicRange = 80,
invalidArgAction = c("adjust", "abort", "ignore")[1],
plot = FALSE,
play = FALSE,
saveAudio = NA,
...

)

Arguments

repeatBout number of times the whole bout should be repeated

nSyl number of syllables in the bout. ‘pitchGlobal‘, ‘amplGlobal‘, and ‘formants‘
span multiple syllables, but not multiple bouts

sylLen average duration of each syllable, ms (vectorized)

pauseLen average duration of pauses between syllables, ms (can be negative between
bouts: force with invalidArgAction = ’ignore’) (vectorized)

pitch a numeric vector of f0 values in Hz or a dataframe specifying the time (ms or 0
to 1) and value (Hz) of each anchor, hereafter "anchor format". These anchors
are used to create a smooth contour of fundamental frequency f0 (pitch) within
one syllable

soundgen 165

pitchGlobal unlike pitch, these anchors are used to create a smooth contour of average f0
across multiple syllables. The values are in semitones relative to the existing
pitch, i.e. 0 = no change (anchor format)

glottis anchors for specifying the proportion of a glottal cycle with closed glottis, % (0
= no modification, 100 = closed phase as long as open phase); numeric vector
or dataframe specifying time and value (anchor format)

temperature hyperparameter for regulating the amount of stochasticity in sound generation

tempEffects a list of scaling coefficients regulating the effect of temperature on particular
parameters. To change, specify just those pars that you want to modify (1 =
default, 0 = no stochastic behavior). amplDep, pitchDep, noiseDep: random
fluctuations of user-specified amplitude / pitch / noise anchors; amplDriftDep:
drift of amplitude mirroring pitch drift; formDisp: dispersion of stochastic for-
mants; formDrift: formant frequencies; glottisDep: proportion of glottal cy-
cle with closed glottis; pitchDriftDep: amount of slow random drift of f0;
pitchDriftFreq: frequency of slow random drift of f0; rolloffDriftDep:
drift of rolloff mirroring pitch drift; specDep: rolloff, rolloffNoise, nonlinear
effects, attack; subDriftDep: drift of subharmonic frequency and bandwidth
mirroring pitch drift; sylLenDep: duration of syllables and pauses

maleFemale hyperparameter for shifting f0 contour, formants, and vocalTract to make the
speaker appear more male (-1...0) or more female (0...+1); 0 = no change

creakyBreathy hyperparameter for a rough adjustment of voice quality from creaky (-1) to
breathy (+1); 0 = no change

nonlinBalance hyperparameter for regulating the (approximate) proportion of sound with dif-
ferent regimes of pitch effects (none / subharmonics only / subharmonics and
jitter). 0% = no noise; 100% = the entire sound has jitter + subharmonics. Ig-
nored if temperature = 0

nonlinRandomWalk

a numeric vector specifying the timing of nonliner regimes: 0 = none, 1 = sub-
harmonics, 2 = subharmonics + jitter + shimmer

subRatio a positive integer giving the ratio of f0 (the main fundamental) to g0 (a lower fre-
quency): 1 = no subharmonics, 2 = period doubling regardless of pitch changes,
3 = period tripling, etc; subRatio overrides subFreq (anchor format)

subFreq instead of a specific number of subharmonics (subRatio), we can specify the ap-
proximate g0 frequency (Hz), which is used only if subRatio = 1 and is adjusted
to f0 so f0/g0 is always an integer (anchor format)

subDep the depth of subharmonics relative to the main frequency component (f0), %. 0:
no subharmonics; 100: g0 harmonics are as strong as the nearest f0 harmonic
(anchor format)

subWidth Width of subharmonic sidebands - regulates how rapidly g-harmonics weaken
away from f-harmonics: large values like the default 10000 means that all g0
harmonics are equally strong (anchor format)

shortestEpoch minimum duration of each epoch with unchanging subharmonics regime or for-
mant locking, in ms

jitterLen duration of stable periods between pitch jumps, ms. Use a low value for harsh
noise, a high value for irregular vibrato or shaky voice (anchor format)

166 soundgen

jitterDep cycle-to-cycle random pitch variation, semitones (anchor format)

vibratoFreq the rate of regular pitch modulation, or vibrato, Hz (anchor format)

vibratoDep the depth of vibrato, semitones (anchor format)

shimmerDep random variation in amplitude between individual glottal cycles (0 to 100% of
original amplitude of each cycle) (anchor format)

shimmerLen duration of stable periods between amplitude jumps, ms. Use a low value for
harsh noise, a high value for shaky voice (anchor format)

attackLen duration of fade-in / fade-out at each end of syllables and noise (ms): a vector
of length 1 (symmetric) or 2 (separately for fade-in and fade-out)

rolloff basic rolloff from lower to upper harmonics, db/octave (exponential decay). All
rolloff parameters are in anchor format. See getRolloff for more details

rolloffOct basic rolloff changes from lower to upper harmonics (regardless of f0) by rolloffOct
dB/oct. For example, we can get steeper rolloff in the upper part of the spectrum

rolloffKHz rolloff changes linearly with f0 by rolloffKHz dB/kHz. For ex., -6 dB/kHz
gives a 6 dB steeper basic rolloff as f0 goes up by 1000 Hz

rolloffParab an optional quadratic term affecting only the first rolloffParabHarm harmon-
ics. The middle harmonic of the first rolloffParabHarm harmonics is amplified
or dampened by rolloffParab dB relative to the basic exponential decay

rolloffParabHarm

the number of harmonics affected by rolloffParab

rolloffExact user-specified exact strength of harmonics: a vector or matrix with one row per
harmonic, scale 0 to 1 (overrides all other rolloff parameters)

lipRad the effect of lip radiation on source spectrum, dB/oct (the default of +6 dB/oct
produces a high-frequency boost when the mouth is open)

noseRad the effect of radiation through the nose on source spectrum, dB/oct (the alterna-
tive to lipRad when the mouth is closed)

mouthOpenThres open the lips (switch from nose radiation to lip radiation) when the mouth is
open >mouthOpenThres, 0 to 1

formants either a character string referring to default presets for speaker "M1" (imple-
mented: "aoieu0") or a list of formant times, frequencies, amplitudes, and band-
widths (see examples). NA or NULL means no formants, only lip radiation.
Time stamps for formants and mouthOpening can be specified in ms relative to
sylLen or on a scale of [0, 1]. See getSpectralEnvelope for more details

formantDep scale factor of formant amplitude (1 = no change relative to amplitudes in formants)
formantDepStoch

the amplitude of additional stochastic formants added above the highest speci-
fied formant, dB (only if temperature > 0)

formantWidth scale factor of formant bandwidth (1 = no change)

formantCeiling frequency to which stochastic formants are calculated, in multiples of the Nyquist
frequency; increase up to ~10 for long vocal tracts to avoid losing energy in the
upper part of the spectrum

formantLocking the approximate proportion of sound in which one of the harmonics is locked to
the nearest formant, 0 = none, 1 = the entire sound (anchor format)

soundgen 167

vocalTract the length of vocal tract, cm. Used for calculating formant dispersion (for adding
extra formants) and formant transitions as the mouth opens and closes. If NULL
or NA, the length is estimated based on specified formant frequencies, if any
(anchor format)

amDep amplitude modulation (AM) depth, %. 0: no change; 100: AM with amplitude
range equal to the dynamic range of the sound (anchor format)

amFreq AM frequency, Hz (anchor format)

amType "sine" = sinusoidal, "logistic" = logistic (default)

amShape ignore if amType = "sine", otherwise determines the shape of non-sinusoidal
AM: 0 = ~sine, -1 = notches, +1 = clicks (anchor format)

noise loudness of turbulent noise (0 dB = as loud as voiced component, negative values
= quieter) such as aspiration, hissing, etc (anchor format)

formantsNoise the same as formants, but for unvoiced instead of voiced component. If NA
(default), the unvoiced component will be filtered through the same formants as
the voiced component, approximating aspiration noise [h]

rolloffNoise, noiseFlatSpec
linear rolloff of the excitation source for the unvoiced component, rolloffNoise
dB/kHz (anchor format) applied above noiseFlatSpec Hz

rolloffNoiseExp

exponential rolloff of the excitation source for the unvoiced component, dB/oct
(anchor format) applied above 0 Hz

noiseAmpRef noise amplitude is defined relative to: "f0" = the amplitude of the first partial
(fundamental frequency), "source" = the amplitude of the harmonic component
prior to applying formants, "filtered" = the amplitude of the harmonic compo-
nent after applying formants

mouth mouth opening (0 to 1, 0.5 = neutral, i.e. no modification) (anchor format)

ampl amplitude envelope (dB, 0 = max amplitude) (anchor format)

amplGlobal global amplitude envelope spanning multiple syllables (dB, 0 = no change) (an-
chor format)

smoothing a list of parameters passed to getSmoothContour to control the interpolation
and smoothing of contours: interpol (approx / spline / loess), loessSpan, discon-
tThres, jumpThres

samplingRate sampling frequency, Hz

windowLength length of FFT window, ms

overlap FFT window overlap, %. For allowed values, see istft

addSilence silence before and after the bout, ms: a vector of length 1 (symmetric) or 2
(different duration of silence before/after the sound)

pitchFloor, pitchCeiling
lower & upper bounds of f0

pitchSamplingRate

sampling frequency of the pitch contour only, Hz. Low values reduce processing
time. Set to pitchCeiling for optimal speed or to samplingRate for optimal
quality

168 soundgen

dynamicRange dynamic range, dB. Harmonics and noise more than dynamicRange under max-
imum amplitude are discarded to save computational resources

invalidArgAction

what to do if an argument is invalid or outside the range in permittedValues:
’adjust’ = reset to default value, ’abort’ = stop execution, ’ignore’ = throw a
warning and continue (may crash)

plot if TRUE, plots a spectrogram

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

saveAudio path + filename for saving the output, e.g. ’~/Downloads/temp.wav’. If NULL
= doesn’t save

... other plotting parameters passed to spectrogram

Value

Returns the synthesized waveform as a numeric vector.

See Also

generateNoise beat fart

Examples

NB: GUI for soundgen is available as a Shiny app.
Type "soundgen_app()" to open it in default browser

Set "playback" to TRUE for default system player or the name of preferred
player (eg "aplay") to play back the audio from examples
playback = FALSE # or TRUE 'aplay', 'vlc', ...

sound = soundgen(play = playback)
spectrogram(sound, 16000, osc = TRUE)
playme(sound)

Control of intonation, amplitude envelope, formants
s0 = soundgen(

pitch = c(300, 390, 250),
ampl = data.frame(time = c(0, 50, 300), value = c(-5, -10, 0)),
attack = c(10, 50),
formants = c(600, 900, 2200),
play = playback

)

Use the in-built collection of presets:
names(presets) # speakers
names(presets$Chimpanzee) # calls per speaker
s1 = eval(parse(text = presets$Chimpanzee$Scream_conflict)) # screaming chimp
playme(s1)
s2 = eval(parse(text = presets$F1$Scream)) # screaming woman

soundgen 169

playme(s2, 18320)

presets of some vowels and consonants
names(presets$M1$Formants$vowels)
soundgen(sylLen = 500, formants = 'aoieu0', play = playback)

Not run:
unless temperature is 0, the sound is different every time
for (i in 1:3) sound = soundgen(play = playback, temperature = .2)

Bouts versus syllables. Compare:
sound = soundgen(formants = 'uai', repeatBout = 3, play = playback)
sound = soundgen(formants = 'uai', nSyl = 3, play = playback)

Intonation contours per syllable and globally:
sound = soundgen(nSyl = 5, sylLen = 200, pauseLen = 140,

pitch = list(
time = c(0, 0.65, 1),
value = c(977, 1540, 826)),

pitchGlobal = list(time = c(0, .5, 1), value = c(-6, 7, 0)),
play = playback, plot = TRUE)

Amplitude modulation
sound = soundgen(amFreq = 75, amDep = runif(10, 0, 60),

pitch = list(
time = c(0, .3, .9, 1), value = c(1200, 1547, 1487, 1154)),

sylLen = 800,
play = playback, plot = TRUE)

Jitter and mouth opening (bark, dog-like)
sound = soundgen(repeatBout = 2, sylLen = 160, pauseLen = 100,

jitterDep = 1,
pitch = c(559, 785, 557),
mouth = c(0, 0.5, 0),
vocalTract = 5, formants = NULL,
play = playback, plot = TRUE)

Ultrasound - need to adjust some defaults:
soundgen(

sylLen = 10, # just 10 ms
attackLen = 1, # should be very short for short vocalizations
addSilence = 2,
pitch = c(45000, 35000, 65000, 60000), # 35-60 kHz
rolloff = -12,
rolloffKHz = 0, # NB: the default is -3 dB/kHz, which we do NOT want here!
formants = NA, # no formants (or set vocal tract length)
samplingRate = 350000, # at least ~10 times the max f0
pitchSamplingRate = 350000, # the same as samplingRate
windowLength = .25, # need very short window lengths for USV
pitchCeiling = 90000, # max allowed pitch
invalidArgAction = 'ignore', # override the ranges allowed by default
temperature = 1e-4,
plot = TRUE

170 specToMS

)

See the vignette on sound generation for more examples and in-depth
explanation of the arguments to soundgen()
Examples of code for creating human and animal vocalizations are available
on project's homepage: http://cogsci.se/soundgen.html

End(Not run)

soundgen_app Interactive sound synthesizer

Description

Starts a shiny app that provides an interactive wrapper to soundgen. Supported browsers: Firefox /
Chrome. Note that the browser has to be able to playback WAV audio files, otherwise there will be
no sound.

Usage

soundgen_app()

specToMS Spectrogram to modulation spectrum

Description

Takes a spectrogram (either complex or magnitude) and returns a MS with proper row and column
labels.

Usage

specToMS(spec, windowLength = NULL, step = NULL)

Arguments

spec target spectrogram (numeric matrix, frequency in rows, time in columns)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

Value

Returns a MS - matrix of complex values of the same dimension as spec, with AM in rows and FM
in columns.

specToMS_1D 171

Examples

s = soundgen(sylLen = 500, amFreq = 25, amDep = 50,
pitch = 250, samplingRate = 16000)

spec = spectrogram(s, samplingRate = 16000, windowLength = 25,
step = 5, plot = FALSE)

ms = specToMS(spec)
plotMS(log(Mod(ms)), quantiles = NULL, col = soundgen:::jet.col(100))
Not run:
or plot manually
image(x = as.numeric(colnames(ms)), y = as.numeric(rownames(ms)),

z = t(log(abs(ms))), xlab = 'Amplitude modulation, Hz',
ylab = 'Frequency modulation, cycles/kHz')

abline(h = 0, lty = 3); abline(v = 0, lty = 3)

End(Not run)

specToMS_1D Spectrogram to modulation spectrum 1D

Description

Takes a spectrogram and returns the spectrum of each channel. The input can be an ordinary STFT
spectrogram or an auditory spectrogram (a signal convolved with a bank of bandpass filters). The
difference from specToMS is that, instead of taking a two-dimensional transform of the spectrogram,
here the spectra are calculated independently for each frequency bin.

Usage

specToMS_1D(
fb,
samplingRate,
windowLength = 250,
step = windowLength/2,
method = c("spec", "meanspec")[2]

)

Arguments

fb input spectrogram (numeric matrix with frequency in rows and time in columns)

samplingRate for auditory spectrogram, the sampling rate of input audio; for STFT spectro-
grams, the number of STFT frames per second

windowLength, step
determine the resolution of modulation spectra (both in ms)

method calls either meanspec or spec

172 spectrogram

Value

Returns a modulation spectrum - a matrix of real values, with center frequencies of original filters
in rows and modulation frequencies in columns.

Examples

data(sheep, package = 'seewave')

auditory spectrogram
as = audSpectrogram(sheep, filterType = 'butterworth',

nFilters = 24, plot = FALSE)
fb = t(do.call(cbind, as$filterbank_env))
rownames(fb) = names(as$filterbank_env)
ms = soundgen:::specToMS_1D(fb, sheep@samp.rate)
plotMS(log(ms+.01), logWarpX = c(10, 2), quantile = NULL, ylab = 'kHz')

ordinary STFT spectrogram
sp = spectrogram(sheep, windowLength = 15, step = 0.5,

output = 'original', plot = FALSE)
ms2 = soundgen:::specToMS_1D(sp, 1000 / 0.5) # 1000/0.5 frames per s
plotMS(log(ms2+.01), quantile = NULL, ylab = 'kHz')
Not run:
ms_spec = soundgen:::specToMS_1D(fb, sheep@samp.rate, method = 'spec')
plotMS(log(ms_spec+.01), logWarpX = c(10, 2), quantile = NULL, ylab = 'kHz')

End(Not run)

spectrogram Spectrogram

Description

Produces the spectrogram of a sound using short-time Fourier transform. Inspired by spectro, this
function offers added routines for reassignment, noise reduction, smoothing in time and frequency
domains, manual control of contrast and brightness, plotting the oscillogram on a dB scale, grid,
etc.

Usage

spectrogram(
x,
samplingRate = NULL,
scale = NULL,
from = NULL,
to = NULL,
dynamicRange = 80,
windowLength = 50,
step = windowLength/2,

spectrogram 173

overlap = NULL,
specType = c("spectrum", "reassigned", "spectralDerivative")[1],
logSpec = TRUE,
rasterize = FALSE,
wn = "gaussian",
zp = 0,
normalize = TRUE,
smoothFreq = 0,
smoothTime = 0,
qTime = 0,
percentNoise = 10,
noiseReduction = 0,
output = c("original", "processed", "complex", "all")[1],
specManual = NULL,
reportEvery = NULL,
cores = 1,
plot = TRUE,
savePlots = NULL,
osc = c("none", "linear", "dB")[2],
heights = c(3, 1),
ylim = NULL,
yScale = c("linear", "log", "bark", "mel", "ERB")[1],
contrast = 0.2,
brightness = 0,
blur = 0,
maxPoints = c(1e+05, 5e+05),
padWithSilence = TRUE,
colorTheme = c("bw", "seewave", "heat.colors", "...")[1],
col = NULL,
extraContour = NULL,
xlab = NULL,
ylab = NULL,
xaxp = NULL,
mar = c(5.1, 4.1, 4.1, 2),
main = NULL,
grid = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

174 spectrogram

scale maximum possible amplitude of input used for normalization of input vector
(only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

specType plot the original FFT (’spectrum’), reassigned spectrogram (’reassigned’), or
spectral derivative (’spectralDerivative’)

logSpec if TRUE, log-transforms the spectrogram

rasterize (only applies if specType = ’reassigned’) if TRUE, the reassigned spectrogram
is plotted after rasterizing it: that is, showing density per time-frequency bins
with the same resolution as an ordinary spectrogram

wn window type accepted by ftwindow, currently gaussian, hanning, hamming,
bartlett, blackman, flattop, rectangle

zp window length after zero padding, points

normalize if TRUE, scales input prior to FFT
smoothFreq, smoothTime

length of the window for median smoothing in frequency and time domains,
respectively, points

qTime the quantile to be subtracted for each frequency bin. For ex., if qTime = 0.5, the
median of each frequency bin (over the entire sound duration) will be calculated
and subtracted from each frame (see examples)

percentNoise percentage of frames (0 to 100%) used for calculating noise spectrum

noiseReduction how much noise to remove (non-negative number, recommended 0 to 2). 0 = no
noise reduction, 2 = strong noise reduction: spectrum − (noiseReduction ∗
noiseSpectrum), where noiseSpectrum is the average spectrum of frames with
entropy exceeding the quantile set by percentNoise

output specifies what to return: nothing (’none’), unmodified spectrogram (’original’),
denoised and/or smoothed spectrogram (’processed’), or unmodified spectro-
gram with the imaginary part giving phase (’complex’)

specManual manually calculated spectrogram-like representation in the same format as the
output of spectrogram(): rows = frequency in kHz, columns = time in ms

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot should a spectrogram be plotted? TRUE / FALSE

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

spectrogram 175

osc "none" = no oscillogram; "linear" = on the original scale; "dB" = in decibels
heights a vector of length two specifying the relative height of the spectrogram and the

oscillogram (including time axes labels)
ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency). NB: still in

kHz, even if yScale = bark, mel, or ERB
yScale scale of the frequency axis: ’linear’ = linear, ’log’ = logarithmic (musical),

’bark’ = bark with hz2bark, ’mel’ = mel with hz2mel, ’ERB’ = Equivalent
Rectangular Bandwidths with HzToERB

contrast a number, recommended range -1 to +1. The spectrogram is raised to the power
of exp(3 * contrast). Contrast >0 increases sharpness, <0 decreases sharpness

brightness how much to "lighten" the image (>0 = lighter, <0 = darker)
blur apply a Gaussian filter to blur or sharpen the image, two numbers: frequency

(Hz), time (ms). A single number is interpreted as frequency, and a square filter
is applied. NA / NULL / 0 means no blurring in that dimension. Negative num-
bers mean un-blurring (sharpening) the image by dividing instead of multiplying
by the filter during convolution

maxPoints the maximum number of "pixels" in the oscillogram (if any) and spectrogram;
good for quickly plotting long audio files; defaults to c(1e5, 5e5)

padWithSilence if TRUE, pads the sound with just enough silence to resolve the edges properly
(only the original region is plotted, so the apparent duration doesn’t change)

colorTheme black and white (’bw’), as in seewave package (’seewave’), matlab-type palette
(’matlab’), or any palette from palette such as ’heat.colors’, ’cm.colors’, etc

col actual colors, eg rev(rainbow(100)) - see ?hcl.colors for colors in base R (over-
rides colorTheme)

extraContour a vector of arbitrary length scaled in Hz (regardless of yScale!) that will be
plotted over the spectrogram (eg pitch contour); can also be a list with extra
graphical parameters such as lwd, col, etc. (see examples)

xlab, ylab, main, mar, xaxp
graphical parameters for plotting

grid if numeric, adds n = grid dotted lines per kHz
width, height, units, res

graphical parameters for saving plots passed to png

... other graphical parameters

Details

Many soundgen functions call spectrogram, and you can pass along most of its graphical param-
eters from functions like soundgen, analyze, etc. However, in some cases this will not work (eg
for "units") or may produce unexpected results. If in doubt, omit extra graphical parameters or save
your sound first, then call spectrogram() explicitly.

Value

Returns nothing if output = ’none’, spectral magnitudes - not power! - if output = ’original’, de-
noised and/or smoothed spectrum if output = ’processed’, or spectral derivatives if specType =
’spectralDerivative’. The output is a matrix of real numbers with time in columns (ms) and fre-
quency in rows (kHz).

176 spectrogram

See Also

osc modulationSpectrum ssm

Examples

synthesize a sound 500 ms long, with gradually increasing hissing noise
sound = soundgen(sylLen = 500, temperature = 0.001, noise = list(

time = c(0, 650), value = c(-40, 0)), formantsNoise = list(
f1 = list(freq = 5000, width = 10000)))

playme(sound, samplingRate = 16000)

basic spectrogram
spectrogram(sound, samplingRate = 16000, yScale = 'bark')

add bells and whistles
spectrogram(sound, samplingRate = 16000,

osc = 'dB', # plot oscillogram in dB
heights = c(2, 1), # spectro/osc height ratio
noiseReduction = 1.1, # subtract the spectrum of noisy parts
brightness = -1, # reduce brightness
pick color theme - see ?hcl.colors
colorTheme = 'heat.colors',
...or just specify the actual colors
col = colorRampPalette(c('white', 'yellow', 'red'))(50),
cex.lab = .75, cex.axis = .75, # text size and other base graphics pars
grid = 5, # lines per kHz; to customize, add manually with graphics::grid()
ylim = c(0, 5), # always in kHz
main = 'My spectrogram' # title
+ axis labels, etc

)
Not run:
save spectrograms of all sounds in a folder
spectrogram('~/Downloads/temp', savePlots = '', cores = 2)

change dynamic range
spectrogram(sound, samplingRate = 16000, dynamicRange = 40)
spectrogram(sound, samplingRate = 16000, dynamicRange = 120)

remove the oscillogram
spectrogram(sound, samplingRate = 16000, osc = 'none') # or NULL etc

frequencies on a logarithmic (musical) scale (mel/bark also available)
spectrogram(sound, samplingRate = 16000,

yScale = 'log', ylim = c(.05, 8))

broad-band instead of narrow-band
spectrogram(sound, samplingRate = 16000, windowLength = 5)

reassigned spectrograms can be plotted without rasterizing, as a
scatterplot instead of a contour plot
s = soundgen(sylLen = 500, pitch = c(100, 1100, 120, 1200, 90, 900, 110, 700),

samplingRate = 22050, formants = NULL, lipRad = 0, rolloff = -20)

spectrogram 177

spectrogram(s, 22050, windowLength = 5, step = 1, ylim = c(0, 2))
spectrogram(s, 22050, specType = 'reassigned', windowLength = 5,

step = 1, ylim = c(0, 2))
...or it can be rasterized, but that sacrifices frequency resolution:
sp = spectrogram(s, 22050, specType = 'reassigned', rasterize = TRUE,

windowLength = 5, step = 1, ylim = c(0, 2), output = 'all')
The raw reassigned version is saved if output = 'all' for custom plotting
df = sp$reassigned
df$z1 = soundgen:::zeroOne(log(df$magn))
plot(df$time, df$freq, col = rgb(df$z1, df$z1, 1 - df$z1, 1),

pch = 16, cex = 0.25, ylim = c(0, 2))

focus only on values in the upper 5% for each frequency bin
spectrogram(sound, samplingRate = 16000, qTime = 0.95)

detect 10% of the noisiest frames based on entropy and remove the pattern
found in those frames (in this cases, breathing)
spectrogram(sound, samplingRate = 16000, noiseReduction = 1.1,

brightness = -2) # white noise attenuated

increase contrast, reduce brightness
spectrogram(sound, samplingRate = 16000, contrast = .7, brightness = -.5)

apply median smoothing in both time and frequency domains
spectrogram(sound, samplingRate = 16000, smoothFreq = 5,

smoothTime = 5)

Gaussian filter to blur or sharpen ("unblur") the image in time and/or
frequency domains
spectrogram(sound, samplingRate = 16000, blur = c(100, 500))
TIP: when unblurring, set the first (frequency) parameter to the
frequency resolution of interest, eg ~500-1000 Hz for human formants
spectrogram(sound, samplingRate = 16000, windowLength = 10, blur = c(-500, 50))

specify location of tick marks etc - see ?par() for base graphics
spectrogram(sound, samplingRate = 16000,

ylim = c(0, 3), yaxp = c(0, 3, 5), xaxp = c(0, .8, 10))

Plot long audio files with reduced resolution
data(sheep, package = 'seewave')
sp = spectrogram(sheep, overlap = 0,

maxPoints = c(1e4, 5e3), # limit the number of pixels in osc/spec
output = 'original')

nrow(sp) * ncol(sp) / 5e3 # spec downsampled by a factor of ~2

Plot some arbitrary contour over the spectrogram (simply calling lines()
will not work if osc = TRUE b/c the plot layout is modified)
s = soundgen(sylLen = 1500, pitch = c(250, 350, 320, 220),

jitterDep = c(0, 0, 3, 2, 0, 0))
an = analyze(s, 16000, plot = FALSE)
spectrogram(s, 16000, extraContour = an$detailed$dom,

ylim = c(0, 2), yScale = 'bark')
For values that are not in Hz, normalize any way you like

178 ssm

spectrogram(s, 16000, ylim = c(0, 2), extraContour = list(
x = an$detailed$loudness / max(an$detailed$loudness, na.rm = TRUE) * 2000,
ylim[2] = 2000 Hz
type = 'b', pch = 5, lwd = 2, lty = 2, col = 'blue'))

Plot a spectrogram-like matrix paired with an osc
ms = modulationSpectrum(s, 16000, msType = '1D', amRes = 10)
spectrogram(s, 16000, specManual = ms$modulation_spectrogram,

colorTheme = 'matlab', ylab = 'Modulation frequency, kHz',
contrast = .25, blur = c(10, 10))

End(Not run)

ssm Self-similarity matrix

Description

Calculates the self-similarity matrix and novelty vector of a sound.

Usage

ssm(
x,
samplingRate = NULL,
from = NULL,
to = NULL,
windowLength = 25,
step = 5,
overlap = NULL,
ssmWin = NULL,
sparse = FALSE,
maxFreq = NULL,
nBands = NULL,
MFCC = 2:13,
input = c("mfcc", "melspec", "spectrum")[2],
norm = FALSE,
simil = c("cosine", "cor")[1],
kernelLen = 100,
kernelSD = 0.5,
padWith = 0,
summaryFun = c("mean", "sd"),
reportEvery = NULL,
cores = 1,
plot = TRUE,
savePlots = NULL,
main = NULL,
heights = c(2, 1),

ssm 179

width = 900,
height = 500,
units = "px",
res = NA,
specPars = list(levels = seq(0, 1, length = 30), colorTheme = c("bw", "seewave",

"heat.colors", "...")[2], xlab = "Time, s", ylab = "kHz"),
ssmPars = list(levels = seq(0, 1, length = 30), colorTheme = c("bw", "seewave",

"heat.colors", "...")[2], xlab = "Time, s", ylab = "Time, s"),
noveltyPars = list(type = "b", pch = 16, col = "black", lwd = 3)

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector)

from, to if NULL (default), analyzes the whole sound, otherwise from...to (s)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

ssmWin window for averaging SSM, ms (has a smoothing effect and speeds up the pro-
cessing)

sparse if TRUE, the entire SSM is not calculated, but only the central region needed to
extract the novelty contour (speeds up the processing)

maxFreq highest band edge of mel filters, Hz. Defaults to samplingRate / 2. See melfcc

nBands number of warped spectral bands to use. Defaults to 100 * windowLength / 20.
See melfcc

MFCC which mel-frequency cepstral coefficients to use; defaults to 2:13

input the spectral representation used to calculate the SSM

norm if TRUE, the spectrum of each STFT frame is normalized

simil method for comparing frames: "cosine" = cosine similarity, "cor" = Pearson’s
correlation

kernelLen length of checkerboard kernel for calculating novelty, ms (larger values favor
global, slow vs. local, fast novelty)

kernelSD SD of checkerboard kernel for calculating novelty

padWith how to treat edges when calculating novelty: NA = treat sound before and after
the recording as unknown, 0 = treat it as silence

summaryFun functions used to summarize each acoustic characteristic, eg "c(’mean’, ’sd’)";
user-defined functions are fine (see examples); NAs are omitted automatically
for mean/median/sd/min/max/range/sum, otherwise take care of NAs yourself

180 ssm

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

plot if TRUE, plots the SSM

savePlots full path to the folder in which to save the plots (NULL = don’t save, ” = same
folder as audio)

main plot title

heights relative sizes of the SSM and spectrogram/novelty plot
width, height, units, res

graphical parameters for saving plots passed to png

specPars graphical parameters passed to filled.contour.mod and affecting the spectrogram

ssmPars graphical parameters passed to filled.contour.mod and affecting the plot of
SSM

noveltyPars graphical parameters passed to lines and affecting the novelty contour

Value

Returns a list of two components: $ssm contains the self-similarity matrix, and $novelty contains
the novelty vector.

References

• El Badawy, D., Marmaroli, P., & Lissek, H. (2013). Audio Novelty-Based Segmentation of
Music Concerts. In Acoustics 2013 (No. EPFL-CONF-190844)

• Foote, J. (1999, October). Visualizing music and audio using self-similarity. In Proceedings
of the seventh ACM international conference on Multimedia (Part 1) (pp. 77-80). ACM.

• Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In Mul-
timedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on (Vol. 1, pp.
452-455). IEEE.

See Also

spectrogram modulationSpectrum segment

Examples

sound = c(soundgen(),
soundgen(nSyl = 4, sylLen = 50, pauseLen = 70,
formants = NA, pitch = c(500, 330)))

playme(sound)
detailed, local features (captures each syllable)
s1 = ssm(sound, samplingRate = 16000, kernelLen = 100,

sparse = TRUE) # much faster with 'sparse'
more global features (captures the transition b/w the two sounds)
s2 = ssm(sound, samplingRate = 16000, kernelLen = 400, sparse = TRUE)

s2$summary

timeStretch 181

s2$novelty # novelty contour
Not run:
ssm(sound, samplingRate = 16000,

input = 'mfcc', simil = 'cor', norm = TRUE,
ssmWin = 25, # speed up the processing
kernelLen = 300, # global features
specPars = list(colorTheme = 'seewave'),
ssmPars = list(col = rainbow(100)),
noveltyPars = list(type = 'l', lty = 3, lwd = 2))

End(Not run)

timeStretch Time stretch

Description

Dynamically time-stretches a sound without preserving its pitch or formants, as if gradually chang-
ing playback speed. Algorithm: the audio is resampled at time-varying steps. This is about 100
times faster than time-stretching with a phase vocoder in shiftPitch, but pitch and formants can-
not be preserved, and large stretch factors may cause artifacts due to aliasing.

Usage

timeStretch(
x,
stretch = 1,
samplingRate = NULL,
precision = 1000,
play = FALSE,
saveAudio = NULL,
reportEvery = NULL,
cores = 1

)

Arguments

x path to a folder, one or more wav or mp3 files c(’file1.wav’, ’file2.mp3’), Wave
object, numeric vector, or a list of Wave objects or numeric vectors

stretch 1 = no change, >1 = longer, <1 = shorter. Single value, vector, or anchor format
(see soundgen)

samplingRate sampling rate of x (only needed if x is a numeric vector)

precision the number of points used for estimating the duration of output (more = better,
but slower)

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

182 transplantEnv

saveAudio full path to the folder in which to save audio files (one per detected syllable)

reportEvery when processing multiple inputs, report estimated time left every ... iterations
(NULL = default, NA = don’t report)

cores number of cores for parallel processing

See Also

shiftPitch

Examples

data(sheep, package = 'seewave') # import a recording from seewave
playme(sheep)
spectrogram(sheep)
s1 = timeStretch(sheep, stretch = c(1, 3))
playme(s1, sheep@samp.rate)
spectrogram(s1, sheep@samp.rate)

compare to a similar effect achieved with a phase vocoder in pitchShift():
s2 = shiftPitch(

sheep,
timeStretch = c(1, 3), # from 1 (original) to mult
multPitch = c(1, 1/3), # also drop pitch
multFormants = c(1, 1/3) # also drop formants (by the same proportion)

)
playme(s2, sheep@samp.rate)
spectrogram(s2, sheep@samp.rate)
NB: because the two algorithms calculate transitions between stretch
factors in different ways, the duration is not identical, even though the
range of pitch change is the same

transplantEnv Transplant envelope

Description

Extracts a smoothed amplitude envelope of the donor sound and applies it to the recipient sound.
Both sounds are provided as numeric vectors; they can differ in length and sampling rate. Note
that the result depends on the amount of smoothing (controlled by windowLength) and the cho-
sen method of calculating the envelope. Very similar to setenv, but with a different smoothing
algorithm and with a choice of several types of envelope: hil, rms, or peak.

Usage

transplantEnv(
donor,
samplingRateD = NULL,
recipient,

transplantEnv 183

samplingRateR = samplingRateD,
windowLength = 50,
method = c("hil", "rms", "peak")[3],
killDC = FALSE,
dynamicRange = 80,
plot = FALSE

)

Arguments

donor the sound that "donates" the amplitude envelope

samplingRateD, samplingRateR
sampling rate of the donor and recipient, respectively (only needed for vectors,
not files)

recipient the sound that needs to have its amplitude envelope adjusted

windowLength the length of smoothing window, ms

method hil = Hilbert envelope, rms = root mean square amplitude, peak = peak amplitude
per window

killDC if TRUE, dynamically removes DC offset or similar deviations of average wave-
form from zero (see examples)

dynamicRange parts of sound quieter than -dynamicRange dB will not be amplified

plot if TRUE, plots the original sound, the smoothed envelope, and the compressed
sound

Value

Returns the recipient sound with the donor’s amplitude envelope - a numeric vector with the same
sampling rate as the recipient

See Also

flatEnv setenv

Examples

donor = rnorm(500) * seq(1, 0, length.out = 500)
recipient = soundgen(sylLen = 600, addSilence = 50)
transplantEnv(donor, samplingRateD = 200,

recipient, samplingRateR = 16000,
windowLength = 50, method = 'hil', plot = TRUE)

transplantEnv(donor, samplingRateD = 200,
recipient, samplingRateR = 16000,
windowLength = 10, method = 'peak', plot = TRUE)

184 transplantFormants

transplantFormants Transplant formants

Description

Takes the general spectral envelope of one sound (donor) and "transplants" it onto another sound
(recipient). For biological sounds like speech or animal vocalizations, this has the effect of
replacing the formants in the recipient sound while preserving the original intonation and (to some
extent) voice quality. Note that the amount of spectral smoothing (specified with freqWindow or
blur) is a crucial parameter: too little smoothing, and noise between harmonics will be amplified,
creasing artifacts; too much, and formants may be missed. The default is to set freqWindow to the
estimated median pitch, but this is time-consuming and error-prone, so set it to a reasonable value
manually if possible. Also ensure that both sounds have the same sampling rate.

Usage

transplantFormants(
donor,
recipient,
samplingRate = NULL,
freqWindow = NULL,
blur = NULL,
dynamicRange = 80,
windowLength = 50,
step = NULL,
overlap = 90,
wn = "gaussian",
zp = 0

)

Arguments

donor the sound that provides the formants (vector, Wave, or file) or the desired spec-
tral filter (matrix) as returned by getSpectralEnvelope

recipient the sound that receives the formants (vector, Wave, or file)

samplingRate sampling rate of x (only needed if x is a numeric vector)

freqWindow the width of smoothing window used to flatten the recipient’s spectrum per
frame. Defaults to median pitch of the donor (or of the recipient if donor is
a filter matrix). If blur is NULL, freqWindow also controls the amount of
smoothing applied to the donor’s spectrogram

blur the amount of Gaussian blur applied to the donor’s spectrogram as a faster and
more flexible alternative to smoothing it per bin with freqWindow. Provide two
numbers: frequency (Hz, normally approximately equal to freqWindow), time
(ms) (NA / NULL / 0 means no blurring in that dimension). See examples and
spectrogram

transplantFormants 185

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms (NB: because digital au-
dio is sampled at discrete time intervals of 1/samplingRate, the actual step and
thus the time stamps of STFT frames may be slightly different, eg 24.98866
instead of 25.0 ms)

overlap overlap between successive FFT frames, %

wn window type accepted by ftwindow, currently gaussian, hanning, hamming,
bartlett, blackman, flattop, rectangle

zp window length after zero padding, points

Details

Algorithm: makes spectrograms of both sounds, interpolates and smooths or blurs the donor spec-
trogram, flattens the recipient spectrogram, multiplies the spectrograms, and transforms back into
time domain with inverse STFT.

See Also

transplantEnv getSpectralEnvelope addFormants spectrogram soundgen

Examples

Not run:
Objective: take formants from the bleating of a sheep and apply them to a
synthetic sound with any arbitrary duration, intonation, nonlinearities etc
data(sheep, package = 'seewave') # import a recording from seewave
playme(sheep)
spectrogram(sheep, osc = TRUE)

recipient = soundgen(
sylLen = 1200,
pitch = c(100, 300, 250, 200),
vibratoFreq = 9, vibratoDep = 1,
addSilence = 180,
samplingRate = sheep@samp.rate, # same as donor
invalidArgAction = 'ignore') # force to keep the low samplingRate

playme(recipient, sheep@samp.rate)
spectrogram(recipient, sheep@samp.rate, osc = TRUE)

s1 = transplantFormants(
donor = sheep,
recipient = recipient,
samplingRate = sheep@samp.rate)

playme(s1, sheep@samp.rate)
spectrogram(s1, sheep@samp.rate, osc = TRUE)

The spectral envelope of s1 will be similar to sheep's on a frequency scale
determined by freqWindow. Compare the spectra:

186 transplantFormants

par(mfrow = c(1, 2))
seewave::meanspec(sheep, dB = 'max0', alim = c(-50, 20), main = 'Donor')
seewave::meanspec(s1, f = sheep@samp.rate, dB = 'max0',

alim = c(-50, 20), main = 'Processed recipient')
par(mfrow = c(1, 1))

if needed, transplant amplitude envelopes as well:
s2 = transplantEnv(donor = sheep, samplingRateD = sheep@samp.rate,

recipient = s1, windowLength = 10)
playme(s2, sheep@samp.rate)
spectrogram(s2, sheep@samp.rate, osc = TRUE)

using "blur" to apply Gaussian blur to the donor's spectrogram instead of
smoothing per frame with "freqWindow" (~2.5 times faster)
spectrogram(sheep, blur = c(150, 0)) # preview to select the amount of blur
s1b = transplantFormants(

donor = sheep,
recipient = recipient,
samplingRate = sheep@samp.rate,
freqWindow = 150,
blur = c(150, 0))
blur: 150 = SD of 150 Hz along the frequency axis,
0 = no smoothing along the time axis

playme(s1b, sheep@samp.rate)
spectrogram(s1b, sheep@samp.rate, osc = TRUE)

Now we use human formants on sheep source: the sheep asks "why?"
s3 = transplantFormants(

donor = getSpectralEnvelope(
nr = 512, nc = 100, # fairly arbitrary dimensions
formants = 'uaaai',
samplingRate = sheep@samp.rate),

recipient = sheep,
samplingRate = sheep@samp.rate)

playme(s3, sheep@samp.rate)
spectrogram(s3, sheep@samp.rate, osc = TRUE)

End(Not run)

Index

∗ datasets
defaults, 36
defaults_analyze, 37
defaults_analyze_pitchCand, 37
detectNLP_training_nonv, 41
detectNLP_training_synth, 41
hillenbrand, 96
notesDict, 122
permittedValues, 128
pitchContour, 132
pitchManual, 135
presets, 141
segmentManual, 156

addAM, 4
addFormants, 6, 60, 61, 117, 118, 185
addPitchJumps, 10
addVectors, 11
analyze, 12, 38, 39, 60, 67, 68, 71, 75–79, 82,

83, 95, 107, 122, 123, 133, 136, 142,
154, 155, 175

annotation_app, 22
approx, 87
audspec, 75
audSpectrogram, 23, 94, 95, 103, 105, 107

bandpass, 27
beat, 30, 48, 64, 65, 168
butter, 24

compareSounds, 31, 102
compressor (flatEnv), 57
contour, 107, 140
corrDim, 130
crossFade, 34, 46

defaults, 36
defaults_analyze, 12, 37
defaults_analyze_pitchCand, 37
density, 130

detectNLP, 38, 41, 55
detectNLP_training_nonv, 41
detectNLP_training_synth, 41
dtw, 32

ERBToHz, 42, 97
estimateEmbeddingDim, 120, 130
estimateVTL, 43, 150, 151

fade, 35, 45
fart, 31, 47, 64, 65, 168
ffilter, 27
filterMS, 48, 50, 51
filterSoundByMS, 50, 101
findformants, 15
findInflections, 54, 57
findJumps, 55
findPeaks, 54, 56
flatEnv, 57, 82, 121, 183
flatSpectrum, 60
formant_app, 22, 62, 137
ftwindow, 14, 61, 100, 158, 161, 174, 185

gammatone, 23–25
gaussianSmooth2D, 63
generateNoise, 31, 48, 64, 168
getDuration, 67
getEntropy, 69
getEnv, 70
getFeatureFlux, 16
getHNR, 71
getIntegerRandomWalk, 72
getLoudness, 12, 15, 19, 68, 73, 83, 95, 122
getPitchZc, 16, 76
getPrior, 78
getRandomWalk, 72, 80
getRMS, 19, 67, 68, 75, 81, 122
getRolloff, 84, 84, 166
getSmoothContour, 8, 65, 86, 91, 167

187

188 INDEX

getSpectralEnvelope, 6–8, 89, 166, 184,
185

getSurprisal, 93

hillenbrand, 96
hz2bark, 175
hz2mel, 175
HzToERB, 42, 97, 175
HzToNotes, 42, 97, 98, 99, 123
HzToSemitones, 42, 97, 98, 99, 123, 157

invertSpectrogram, 50, 51, 99
istft, 8, 65, 167

lines, 180
loess, 87

matchPars, 102
maxLyapunov, 130
meanspec, 28, 171
melfcc, 31, 32, 179
modulationSpectrum, 12, 15, 18, 49, 50, 63,

103, 139, 140, 176, 180
morph, 110
msToSpec, 50, 113

naiveBayes, 38, 39, 114, 116
naiveBayes_train, 39, 41, 114, 116
noiseRemoval, 117
nonLinearPrediction, 119, 120
nonlinPred, 94, 119
normalizeFolder, 121
notesDict, 122
notesToHz, 98, 123

optim, 16, 123, 124
optimizePars, 123, 155
osc, 126, 176
oscillo, 126

palette, 25, 94, 106, 131, 140, 175
permittedValues, 128
phasegram, 38, 39, 129
pitch_app, 12, 15, 19, 39, 62, 79, 133, 136,

142
pitchContour, 132
pitchDescriptives, 133
pitchManual, 135
pitchSmoothPraat, 27, 133, 135

play, 8, 30, 48, 65, 118, 138, 139, 158, 161,
168, 181

playme, 138
plotMS, 106, 107, 139
png, 17, 26, 28, 40, 46, 51, 59, 74, 82, 95, 107,

118, 127, 131, 142, 146, 154, 175,
180

poincareMap, 131
powspec, 31, 32, 75
presets, 141
prosody, 141

reportTime, 143
resample, 86, 145
reverb, 147, 154

schwa, 43, 44, 97, 149
segment, 19, 123, 152, 180
segmentManual, 156
semitonesToHz, 99, 157
setenv, 182, 183
shiftFormants, 157, 160–162
shiftPitch, 141, 142, 159, 160, 181, 182
soundgen, 6, 8, 12, 30, 31, 43, 47, 48, 64, 65,

85, 86, 102, 110, 111, 158, 160, 162,
170, 175, 181, 185

soundgen_app, 170
spec, 171
specToMS, 170, 171
specToMS_1D, 171
spectro, 172
spectrogram, 8, 17, 40, 51, 74, 101, 105, 107,

118, 140, 168, 172, 180, 184, 185
spline, 87
ssm, 12, 15, 19, 155, 176, 178
surrogateTest, 130

timeLag, 120, 130
timeStretch, 181
transplantEnv, 161, 182, 185
transplantFormants, 8, 60, 61, 159, 161,

162, 184

	addAM
	addFormants
	addPitchJumps
	addVectors
	analyze
	annotation_app
	audSpectrogram
	bandpass
	beat
	compareSounds
	crossFade
	defaults
	defaults_analyze
	defaults_analyze_pitchCand
	detectNLP
	detectNLP_training_nonv
	detectNLP_training_synth
	ERBToHz
	estimateVTL
	fade
	fart
	filterMS
	filterSoundByMS
	findInflections
	findJumps
	findPeaks
	flatEnv
	flatSpectrum
	formant_app
	gaussianSmooth2D
	generateNoise
	getDuration
	getEntropy
	getEnv
	getHNR
	getIntegerRandomWalk
	getLoudness
	getPitchZc
	getPrior
	getRandomWalk
	getRMS
	getRolloff
	getSmoothContour
	getSpectralEnvelope
	getSurprisal
	hillenbrand
	HzToERB
	HzToNotes
	HzToSemitones
	invertSpectrogram
	matchPars
	modulationSpectrum
	morph
	msToSpec
	naiveBayes
	naiveBayes_train
	noiseRemoval
	nonlinPred
	normalizeFolder
	notesDict
	notesToHz
	optimizePars
	osc
	permittedValues
	phasegram
	pitchContour
	pitchDescriptives
	pitchManual
	pitchSmoothPraat
	pitch_app
	playme
	plotMS
	presets
	prosody
	reportTime
	resample
	reverb
	schwa
	segment
	segmentManual
	semitonesToHz
	shiftFormants
	shiftPitch
	soundgen
	soundgen_app
	specToMS
	specToMS_1D
	spectrogram
	ssm
	timeStretch
	transplantEnv
	transplantFormants
	Index

