
Package ‘spdl’
June 18, 2023

Type Package

Title Easier Use of 'RcppSpdlog' Functions via Wrapper

Description Logging functions in 'RcppSpdlog' provide access to the logging
functionality from the 'spdlog' 'C++' library. This package offers shorter convenience
wrappers for the 'R' functions which match the 'C++' functions, namely via, say,
'spdl::debug()' at the debug level. The actual formatting is done by the
'fmt::format()' function from the 'fmtlib' library (that is also 'std::format()'
in 'C++20' or later).

Version 0.0.5

Date 2023-06-18

License GPL (>= 2)

Imports RcppSpdlog (>= 0.0.13)

URL https://github.com/eddelbuettel/spdl

BugReports https://github.com/eddelbuettel/spdl/issues

RoxygenNote 6.0.1

NeedsCompilation no

Author Dirk Eddelbuettel [aut, cre]

Maintainer Dirk Eddelbuettel <edd@debian.org>

Repository CRAN

Date/Publication 2023-06-18 12:40:02 UTC

R topics documented:

setup . 2

Index 4

1

https://github.com/eddelbuettel/spdl
https://github.com/eddelbuettel/spdl/issues

2 setup

setup Convenience Wrappers for ’RcppSpdlog’ Logging From ’spdlog’

Description

Several short wrappers for functions from ’RcppSpdlog’ package are provided as a convenience.
Given the potential for clashing names of common and popular functions names we do not recom-
mend the import the whole package but rather do importFrom(RcppSpdlog, set_pattern) (or
maybe importFrom(RcppSpdlog,set_pattern)). After that, functionality can be accessed via
a convenient shorter form such as for example spdl::info() to log at the ‘info’ level. Format
strings suitable for the C++ library ‘fmtlib::fmt’ and its fmt::format() (which as of C++20 be-
comes ‘std::fmt’) are supported so the {} is the placeholder for simple (scalar) arguments (for which
the default R formatter is called before passing on a character representation).

Usage

setup(name = "default", level = "warn")

init(level = "warn")

log(level = "warn")

filesetup(s, name = "default", level = "warn")

drop(s)

set_pattern(s)

set_level(s)

trace(s, ...)

debug(s, ...)

info(s, ...)

warn(s, ...)

error(s, ...)

critical(s, ...)

fmt(s, ...)

cat(...)

stopwatch()

setup 3

elapsed(w)

Arguments

name Character value for the name of the logger instance

level Character value for the logging level

s Character value for filename, pattern, level, or logging message

... Supplementary arguments for the logging string

w Stopwatch object

Value

Nothing is returned from these functions as they are invoked for their side-effects.

Examples

spdl::setup("exampleDemo", "warn")
and spdl::init("warn") and spdl::log("warn") are shortcuts
spdl::info("Not seen as level 'info' below 'warn'")
spdl::warn("This warning message is seen")
spdl::set_level("info")
spdl::info("Now this informational message is seen too")
spdl::info("Calls use fmtlib::fmt {} as we can see {}", "under the hood", 42L)

Index

cat (setup), 2
critical (setup), 2

debug (setup), 2
drop (setup), 2

elapsed (setup), 2
error (setup), 2

filesetup (setup), 2
fmt (setup), 2

info (setup), 2
init (setup), 2

log (setup), 2

set_level (setup), 2
set_pattern (setup), 2
setup, 2
stopwatch (setup), 2

trace (setup), 2

warn (setup), 2

4

	setup
	Index

