stlTDNN: STL Decomposition and TDNN Hybrid Time Series Forecasting
Implementation of hybrid STL decomposition based time delay neural network model for univariate time series forecasting. For method details see Jha G K, Sinha, K (2014). <doi:10.1007/s00521-012-1264-z>, Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>. 
| Version: | 0.1.0 | 
| Depends: | R (≥ 2.10) | 
| Imports: | forecast, nnfor | 
| Published: | 2021-02-24 | 
| DOI: | 10.32614/CRAN.package.stlTDNN | 
| Author: | Girish Kumar Jha [aut, cre],
  Ronit Jaiswal [aut, ctb],
  Kapil Choudhary [ctb],
  Rajeev Ranjan Kumar [ctb] | 
| Maintainer: | Girish Kumar Jha  <girish.stat at gmail.com> | 
| License: | GPL-3 | 
| NeedsCompilation: | no | 
| CRAN checks: | stlTDNN results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=stlTDNN
to link to this page.