Package ‘tergmlLite’

October 14, 2022

Version 2.6.1
Date 2022-07-20

Title Fast Simulation of Simple Temporal Exponential Random Graph
Models

Description Provides functions for the computationally efficient simulation of
dynamic networks estimated with the statistical framework of temporal
exponential random graph models, implemented in the 'tergm' package.

Depends R (>=3.5), ergm (>=4.0), tergm (>= 4.0)
License GPL-3

Imports statnet.common (>= 4.4.0), network (>= 1.17.0), networkDynamic
(>=0.11.0), Repp, tibble, methods

Suggests testthat, EpiModel (>= 2.0.5)
LinkingTo Rcpp, ergm
RoxygenNote 7.2.0

Encoding UTF-8

NeedsCompilation yes

Author Samuel M. Jenness [aut, cre],
Chad Klumb [aut]

Maintainer Samuel M. Jenness <samuel.m. jenness@emory.edu>
Repository CRAN
Date/Publication 2022-07-20 15:20:02 UTC

R topics documented:

tergmLite-package L
add_vertices e
delete_VErtiCes e e
get_vertex_attribute L e
init_tergmlite oL e
networkLite e
networkLitemethods

2 tergmLite-package

network_initialize e e e 11
set_vertex_attribute e e e 12
Index 13
tergmLite-package Fast Simulation of Simple Temporal Exponential Random Graph Mod-
els
Description
Package: tergmLite
Type: Package
Version: 2.6.1
Date: 2022-07-20

License: GPL-3
LazyLoad: yes

Details

The statistical framework of temporal exponential random graph models (TERGMs) provides a
rigorous, flexible approach to estimating generative models for dynamic networks and simulating
from them for the purposes of modeling infectious disease transmission dynamics. TERGMs are
used within the EpiModel software package to do just that. While estimation of these models is
relatively fast, the resimulation of them using the tools of the tergm package is computationally
burdensome, requiring hours to days to iteratively resimulate networks with co-evolving demo-
graphic and epidemiological dynamics. The primary reason for the computational burden is the use
of the network class of object (designed within the package of the same name); these objects have
tremendous flexibility in the types of networks they represent but at the expense of object size. Con-
tinually reading and writing larger-than-necessary data objects has the effect of slowing the iterative
dynamic simulations.

The tergmLite package reduces that computational burden by representing networks less flexi-
bly, but much more efficiently. For epidemic models, the only types of networks that we typically
estimate and simulate from are undirected, binary edge networks with no missing data (as it is
simulated). Furthermore, the network history (edges or node attributes) does not need to be stored
for research-level applications in which summary epidemiological statistics (e.g., disease preva-
lence, incidence, and variations on those) at the population-level are the standard output metrics for
epidemic models. Therefore, the network may be stored as a cross-sectional edgelist, which is a
two-column matrix of current edges between one node (in column one) and another node (in col-
umn two). Attributes of the edges that are called within ERGMs may be stored separately in vector
format, as they are in EpiModel. With this approach, the simulation time is sped up by a factor of
25-50 fold, depending on the specific research application.

add_vertices 3

add_vertices Fast Version of network::add.vertices for Edgelist-formated Network

Description

This function performs a simple operation of updating the edgelist attribute n that tracks the total
network size implicit in an edgelist representation of the network.

Usage

add_vertices(el, nv)

Arguments
el A two-column matrix of current edges (edgelist) with an attribute variable n
containing the total current network size.
nv A integer equal to the number of nodes to add to the network size at the given
time step.
Details

This function is used in EpiModel modules to add vertices (nodes) to the edgelist object to account
for entries into the population (e.g., births and in-migration).

Value

Returns the updated the attribute containing the population size on the edgelist, el, based on the
number of new vertices specified to be added in nv.

Examples

Not run:

library("EpiModel™)

nw <- network_initialize(100)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 9.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

networkLite representation after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)

Check current network size
attributes(dat$el[[1]1)$n

4 delete_vertices

Add 10 vertices
dat$el[[1]1] <- add_vertices(dat$el[[1]1]1, 10)

Check new network size
attributes(dat$el[[1]1)$n

End(Not run)

delete_vertices Fast Version of network::delete.vertices for Edgelist-formated Net-
work

Description

Given a current two-column matrix of edges and a vector of IDs to delete from the matrix, this

function first removes any rows of the edgelist in which the IDs are present and then permutes

downward the index of IDs on the edgelist that were numerically larger than the IDs deleted.
Usage

delete_vertices(el, vid)

Arguments
el A two-column matrix of current edges (edgelist) with an attribute variable n
containing the total current network size.
vid A vector of IDs to delete from the edgelist.
Details

This function is used in EpiModel modules to remove vertices (nodes) from the edgelist object to
account for exits from the population (e.g., deaths and out-migration)

Value

Returns a updated edgelist object, el, with the edges of deleted vertices removed from the edgelist
and the ID numbers of the remaining edges permuted downward.

Examples

Not run:

library("EpiModel™)

set.seed(12345)

nw <- network_initialize(100)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

get_vertex_attribute 5

x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

Set seed for reproducibility
set.seed(123456)

networkLite representation structure after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)

Current edges
head(dat$el[[11], 20)

Remove nodes 1 and 2
nodes.to.delete <- 1:2

dat$el[[1]] <- delete_vertices(dat$el[[1]], nodes.to.delete)

Newly permuted edges
head(dat$el[[1]]1, 20)

End(Not run)

get_vertex_attribute Get Vertex Attribute on Network Object

Description

Gets a vertex attribute from an object of class network, wrapping the related function in the
network package.

Usage

get_vertex_attribute(x, attrname)

Arguments
X An object of class network.
attrname The name of the attribute to get.
Details

This function is used in EpiModel workflow to query vertex attributes on an initialized empty net-
work object (with network_initialize.

6 init_tergmLite

Value

Returns an object of class network.

Examples

Not run:

nw <- network_initialize(100)

nw <- set_vertex_attribute(nw, "age"”, runif(100, 15, 65))
get_vertex_attribute(nw, "age")

End(Not run)

init_tergmLite Initializes EpiModel netsim Object for tergmLite Simulation

Description

Initializes EpiModel netsim Object for tergmLite Simulation

Usage

init_tergmLite(dat)

Arguments
dat A list object containing a networkDynamic object and other initialization infor-
mation passed from netsim.
Details

This function is typically used within the initialization modules of EpiModel to establish the neces-
sary infrastructure needed for tergmLite network resimulation. The example below demonstrates
the specific information returned.

Value

Returns the list object dat and adds the element el which is an edgelist representation of the net-
work. Also converts the nw element to a networkLite representation.

Examples

Not run:

library("EpiModel™)

nw <- network_initialize(100)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

networkLite

param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

networkLite representation after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)
str(dat, max.level = 1)

Element added is el (edgelist representation of network)...
dat$el

... and nw is now a networkLite
dat$nw[[1]]

End(Not run)

networkLite networkLite Constructor Utilities

Description

Constructor methods for networkLite objects.

Usage

networkLite(x, ...)

S3 method for class 'numeric'
networkLite(

X,

directed = FALSE,

bipartite = FALSE,

loops = FALSE,

hyper = FALSE,

multiple = FALSE,

S3 method for class 'edgelist'
networkLite(x, attr = list(), ...)

S3 method for class 'matrix'
networkLite(x, attr = list(), ...)

8 networkL ite

Arguments

X either an edgelist class network representation (including network attributes
in its attributes list), or a number specifying the network size.

e additional arguments used by other methods.

directed, bipartite, loops, hyper, multiple
common network attributes that may be set via arguments to the networkLite.numeric
method.

attr a named list of vertex attributes for the network represented by x.

Details

Currently there are two distinct networkLite constructor methods available.

The edgelist method takes an edgelist class object x with network attributes attached in its
attributes list, and a named list of vertex attributes attr, and returns a networkLite object,
which is a named list with fields el, attr, and gal; the fields el and attr match the argu-
ments x and attr respectively, and the field gal is the list of network attributes (copied from
attributes(x)). Missing attributes directed, bipartite, loops, hyper, and multiple are de-
faulted to FALSE; the network size attribute n must not be missing. Attributes class, dim, and
vnames (if present) are not copied from x to the networkLite. (For convenience, a matrix method,
identical to the edgelist method, is also defined, to handle cases where the edgelist is, for whatever
reason, not classed as an edgelist.)

The numeric method takes a number x as well as the network attributes directed, bipartite,
loops, hyper, and multiple (defaulting to FALSE), and returns an empty networkLite with these
network attributes and number of nodes x.

Within tergmLite, the networkLite data structure is used in the calls to ergm and tergm simulate
functions.

Value

A networkLite object with edge list el, vertex attributes attr, and network attributes gal.

Examples

Not run:

library("EpiModel™)

nw <- network_initialize(100)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 9.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

networkLite representation after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)

networkLitemethods

Conversion to networkLite class format
nwl <- networkLite(dat$el[[1]], dat$attr)
nwl

End(Not run)

networkLitemethods networkLite Methods

Description

S3 methods for networkLite class, for generics defined in network package.

Usage

S3 method for class 'networkLite'
get.vertex.attribute(x, attrname, ...)

S3 method for class 'networkLite'
set.vertex.attribute(x, attrname, value, v = seq_len(network.size(x)),

S3 method for class 'networkLite'
list.vertex.attributes(x, ...)

S3 method for class 'networkLite'
get.network.attribute(x, attrname, ...)

S3 method for class 'networkLite'
set.network.attribute(x, attrname, value, ...)

S3 method for class 'networkLite'
list.network.attributes(x, ...)

S3 method for class 'networkLite'
network.edgecount(x, ...)

S3 method for class 'networkLite'
as.edgelist(x, output = c("matrix”, "tibble"), ...)

S3 method for class 'networkLite'
mixingmatrix(object, attr, ...)

S3 replacement method for class 'networkLite'
x[i, j1 <- value

S3 method for class 'networkLite'

10

print(x,

S3 method for class 'networkLite'
network.naedgecount(x, ...)

S3 method for class 'networkLite'

add. edges(
X,
tail,
head,

names.eval =

NULL,

vals.eval = NULL,

L

check.unique

= FALSE

as.networkLite(x, ...)

S3 method for class 'network'
as.networkLite(x, ...)

S3 method for class 'networkLite'
as.networkLite(x, ...)

Arguments

X

attrname

value

v

output
object
attr

i,

tail

head
names.eval
vals.eval

check.unique

Details

Allows use of networkLite objects in ergm_model.

a networkLite object.

the name of an attribute in x.

any additional arguments.

networkLitemethods

Value to set edges to (must be FALSE for networkLite method)

indices at which to set vertex attribute values.

Type of edgelist to output.

a networkLite object

specification of a vertex attribute in object as described in nodal_attributes

Nodal indices (must be missing for networkLite method)
vector of tails of edges to add to the networkLite

vector of heads of edges to add to the networkLite
currently unsupported by add.edges.networkLite
currently unsupported by add.edges.networkLite

should a check to ensure uniqueness of edges in the final edgelist be performed?

network_initialize 11
network_initialize Initialize Network Object
Description
Initialize an undirected network object for use in EpiModel workflows.
Usage
network_initialize(
n ’
directed = FALSE,
hyper = FALSE,
loops = FALSE,
multiple = FALSE,
bipartite = FALSE
)
Arguments
n Network size.
directed logical; should edges be interpreted as directed?
hyper logical; are hyperedges allowed?
loops logical; should loops be allowed?
multiple logical; are multiplex edges allowed?
bipartite count; should the network be interpreted as bipartite? If present (i.e., non-
NULL) it is the count of the number of actors in the first mode of the bipartite
network. In this case, the overall number of vertices is equal to the number of
“actors’ (first mode) plus the number of ‘events’ (second mode), with the ver-
tex.ids of all actors preceeding all events. The edges are then interpreted as
nondirected.
Details

This function is used in EpiModel workflows to initialize an empty network object with the directed

network attribute hard set to FALSE.

Value

Returns an object of class network.

12 set_vertex_attribute

Examples

Not run:
nw <- network_initialize(100)
nw

End(Not run)

set_vertex_attribute Set Vertex Attribute on Network Object

Description

Set a vertex attribute on an object of class network, wrapping the related function in the network
package.

Usage

set_vertex_attribute(x, attrname, value, v)

Arguments

X An object of class network.

attrname The name of the attribute to set.

value A vector of values of the attribute to be set.

v IDs for the vertices whose attributes are to be altered.
Details

This function is used in EpiModel workflows to set vertex attributes on an initialized empty network
object (with network_initialize.
Value

Returns an object of class network.

Examples

Not run:

nw <- network_initialize(100)

nw <- set_vertex_attribute(nw, "age"”, runif(100, 15, 65))
nw

End(Not run)

Index

* package
tergmLite-package, 2
[<-.networkLite (networkLitemethods), 9

add.edges.networkLite
(networkLitemethods), 9
add_vertices, 3
as.edgelist.networkLite
(networkLitemethods), 9
as.networkLite (networkLitemethods), 9

delete_vertices, 4

get.network.attribute.networkLite
(networkLitemethods), 9

get.vertex.attribute.networkLite
(networkLitemethods), 9

get_vertex_attribute, 5

init_tergmLite, 6

list.network.attributes.networkLite
(networkLitemethods), 9

list.vertex.attributes.networkLite
(networkLitemethods), 9

mixingmatrix.networkLite
(networkLitemethods), 9

network.edgecount.networkLite
(networkLitemethods), 9
network.naedgecount.networkLite
(networkLitemethods), 9
network_initialize, 5,11, 12
networkLite, 7
networkLitemethods, 9
nodal_attributes, /0

print.networkLite (networkLitemethods),
9

13

set.network.attribute.networkLite
(networkLitemethods), 9

set.vertex.attribute.networkLite
(networkLitemethods), 9

set_vertex_attribute, 12

tergmLite (tergmLite-package), 2
tergmLite-package, 2

	tergmLite-package
	add_vertices
	delete_vertices
	get_vertex_attribute
	init_tergmLite
	networkLite
	networkLitemethods
	network_initialize
	set_vertex_attribute
	Index

