The goal of urlexplorer is to assist you with structural analysis and pattern discovery within datasets of URLs. It provides tools for parsing URLs into their constituent components and analyzing these components to uncover insights into web site architecture and search engine optimizations (SEO).
You can install the development version of urlexplorer from GitHub with:
# install.packages("devtools")
devtools::install_github("MarekProkop/urlexplorer")urlexplorer provides a toolkit for URL analysis
structured around three verbs: split,
extract, and count.
These functions decompose a URL into its constituent components. Input is a character vector, and each function returns a tibble with a number of rows equal to the length of the input vector. Each column corresponds to a component of the input.
split_url(url): Splits a URL into scheme, host, path,
query, and fragment.split_host(host): Separates the host into subdomains,
domain, and top-level domain.split_path(path): Divides the path into its individual
segments.split_query(query): Splits the query string into its
parameters, with each parameter as a column.These functions are designed to retrieve specific components from a
URL. Input is always a character vector, and the output is a character
vector of the extracted component, matching the length of the input
vector. If any component is missing, the function returns
NA.
extract_scheme(url): Extracts the URL scheme.extract_userinfo(url): Retrieves userinfo component of
the URL.extract_host(url): Pulls the host component from the
URL.extract_port(url): Gets the port number from the
URL.extract_path(url): Extracts the path component.extract_query(url): Retrieves the entire query
string.extract_fragment(url): Extracts the fragment portion of
the URL.extract_path_segment(path, segment_index): Extracts a
specific segment of the path.extract_param_value(query, param_name): Retrieves the
value of a specified query parameter.extract_file_extension(url): Extracts the file
extension from the URL path.These functions count occurrences of various URL components or attributes, useful for quantitative analysis. Input is a character vector, and the output is a tibble listing each component or attribute with its count.
count_schemes(url): Counts the different schemes used
in URLs.count_userinfos(url): Tally of userinfo
components.count_hosts(url): Quantifies frequency of different
hosts.count_ports(url): Counts different port numbers
used.count_paths(url): Measures the occurrence of various
paths.count_queries(url): Counts the queries across
URLs.count_fragments(url): Tallies the fragments used in
URLs.count_path_segments(path, segment_index): Counts
specific path segments.count_param_names(query): Counts different parameter
names in query strings.count_param_values(query, param_name): Counts
occurrences of values for a specific parameter.This is a basic examples which shows you how to solve a common problem.
library(urlexplorer)
library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#> ✔ dplyr     1.1.4     ✔ readr     2.1.5
#> ✔ forcats   1.0.0     ✔ stringr   1.5.1
#> ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
#> ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
#> ✔ purrr     1.0.2     
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors# Sample dataset included in the package
data(websitepages)
websitepages |> 
  slice_head(n = 10)
#> # A tibble: 10 × 1
#>    page                                                              
#>    <chr>                                                             
#>  1 https://www.example.com/blog?id=V6BsL494#section5                 
#>  2 https://shop.example.com/blog/specs?category=THXwLX1b             
#>  3 https://www.example.com/about?type=KP1bDjel#section4              
#>  4 https://shop.example.com/about/specs?id=Hu7DmR4e                  
#>  5 https://blog.example.com/services?type=9ndM1kiI#section1          
#>  6 https://www.example.com/services?category=cMlqq15a#section3       
#>  7 https://www.example.com/blog/detail/8jg4m?type=Rp1MrjwE           
#>  8 https://shop.example.com/products?category=uZUVQUO6#sectionNA     
#>  9 https://www.example.com/products/detail?id=qQGCCMfq#section7      
#> 10 https://www.example.com/services/data/2e0vz?type=CHQUkXxQ#section3websitepages$page |> 
  split_url() |> 
  slice_head(n = 10)
#> # A tibble: 10 × 7
#>    scheme host              port userinfo path                 query    fragment
#>    <chr>  <chr>            <int> <chr>    <chr>                <chr>    <chr>   
#>  1 https  www.example.com     NA <NA>     /blog                id=V6Bs… section5
#>  2 https  shop.example.com    NA <NA>     /blog/specs          categor… <NA>    
#>  3 https  www.example.com     NA <NA>     /about               type=KP… section4
#>  4 https  shop.example.com    NA <NA>     /about/specs         id=Hu7D… <NA>    
#>  5 https  blog.example.com    NA <NA>     /services            type=9n… section1
#>  6 https  www.example.com     NA <NA>     /services            categor… section3
#>  7 https  www.example.com     NA <NA>     /blog/detail/8jg4m   type=Rp… <NA>    
#>  8 https  shop.example.com    NA <NA>     /products            categor… section…
#>  9 https  www.example.com     NA <NA>     /products/detail     id=qQGC… section7
#> 10 https  www.example.com     NA <NA>     /services/data/2e0vz type=CH… section3websitepages$page |> 
  extract_host() |>
  split_host() |> 
  slice_head(n = 10)
#> # A tibble: 10 × 3
#>    tld   domain  subdomain_1
#>    <chr> <chr>   <chr>      
#>  1 com   example www        
#>  2 com   example shop       
#>  3 com   example www        
#>  4 com   example shop       
#>  5 com   example blog       
#>  6 com   example www        
#>  7 com   example www        
#>  8 com   example shop       
#>  9 com   example www        
#> 10 com   example wwwwebsitepages$page |> 
  extract_path() |>
  split_path() |> 
  slice_head(n = 10)
#> # A tibble: 10 × 3
#>    path_1   path_2 path_3
#>    <chr>    <chr>  <chr> 
#>  1 blog     <NA>   <NA>  
#>  2 blog     specs  <NA>  
#>  3 about    <NA>   <NA>  
#>  4 about    specs  <NA>  
#>  5 services <NA>   <NA>  
#>  6 services <NA>   <NA>  
#>  7 blog     detail 8jg4m 
#>  8 products <NA>   <NA>  
#>  9 products detail <NA>  
#> 10 services data   2e0vzwebsitepages$page |> 
  count_hosts(sort = TRUE)
#> # A tibble: 3 × 2
#>   host                 n
#>   <chr>            <int>
#> 1 www.example.com    607
#> 2 shop.example.com   301
#> 3 blog.example.com    92Identify the most common path 1st segments for a specific host.
websitepages |>
  filter(extract_host(page) == "www.example.com") |>
  pull(page) |>
  extract_path() |>
  count_path_segments(segment_index = 1) |> 
  slice_max(order_by = n, n = 5)
#> # A tibble: 5 × 2
#>   path_segment     n
#>   <chr>        <int>
#> 1 products       124
#> 2 help           108
#> 3 blog           100
#> 4 about           95
#> 5 user            91websitepages$page |>
  extract_query() |>
  count_param_names(sort = TRUE)
#> # A tibble: 4 × 2
#>   param_name     n
#>   <chr>      <int>
#> 1 category     235
#> 2 type         228
#> 3 session      219
#> 4 id           218A little bit more complex example: extract query parameters, count the frequency of each parameter name, and provide a sample of values for each parameter.
websitepages$page |>
  extract_query() |>
  split_query() |>
  pivot_longer(dplyr::everything()) |>
  drop_na(value) |>
  summarise(
    n = n(),
    values = unique(value) |>
      paste(collapse = ", ") |>
      str_trunc(40),
    .by = name
  ) |>
  arrange(desc(n))
#> # A tibble: 4 × 3
#>   name         n values                                  
#>   <chr>    <int> <chr>                                   
#> 1 category   235 THXwLX1b, cMlqq15a, uZUVQUO6, xS4RSMP...
#> 2 type       228 KP1bDjel, 9ndM1kiI, Rp1MrjwE, CHQUkXx...
#> 3 session    219 V3jghEMV, 1vzBsZqs, N1m1YcOd, Zm3vTmU...
#> 4 id         218 V6BsL494, Hu7DmR4e, qQGCCMfq, jLeGCg5...