Package ‘vegawidget’

January 13, 2024

Version 0.5.0
Title 'Htmlwidget' for 'Vega' and "Vega-Lite'

Description 'Vega' and "Vega-Lite' parse text in 'JSON' notation to render
chart-specifications into 'HTML'. This package is used to facilitate the
rendering. It also provides a means to interact with signals, events,
and datasets in a 'Vega' chart using 'JavaScript' or 'Shiny'.

SystemRequirements To use image functions for MacOS: X11
License MIT + file LICENSE

Encoding UTF-8

LazyData true

ByteCompile true

URL https://vegawidget.github.io/vegawidget/,
https://github.com/vegawidget/vegawidget

BugReports https://github.com/vegawidget/vegawidget/issues
RoxygenNote 7.3.0

VignetteBuilder knitr

Depends R (>=2.10)

Imports jsonlite, htmlwidgets, assertthat, rlang, glue, magrittr,
htmltools, digest, utils

Suggests spelling, knitr, rmarkdown, listviewer, testthat (>= 3.0.0),
yaml, fs, usethis (>= 1.5.0), readr, tibble, lubridate, V8 (>=
4.0), withr, learnr, rsvg, dplyr, png, conflicted, here, shiny,
purrr, rsconnect

Language en-US

Config/testthat/edition 3

NeedsCompilation no

Author Ian Lyttle [aut, cre] (<https://orcid.org/0000-0001-9962-4849>),
Vega/Vega-Lite Developers [aut],
Alicia Schep [ctb] (<https://orcid.org/0000-0002-3915-0618>),

1

https://vegawidget.github.io/vegawidget/
https://github.com/vegawidget/vegawidget
https://github.com/vegawidget/vegawidget/issues
https://orcid.org/0000-0001-9962-4849
https://orcid.org/0000-0002-3915-0618

R topics documented:

Stuart Lee [ctb],

Kanit Wongsuphasawat [ctb] (Vega/Vega-Lite library),
Dominik Moritz [ctb] (Vega/Vega-Lite library),
Arvind Satyanarayan [ctb] (Vega/Vega-Lite library),
Jeffrey Heer [ctb] (Vega/Vega-Lite library),

Mike Bostock [ctb] (D3 library)

Maintainer Ian Lyttle <ijlyttle@me.com>
Repository CRAN
Date/Publication 2024-01-13 17:20:02 UTC

R topics documented:

Index

add-listeners L. e 3
AS_VEZASPEC « « v v v e e e e e e e e e e e e e e e e 4
data_category e e e e e e e e e 5
data_seattle_daily L 6
data_seattle_hourly 7
glue_jS e 7
IMAZE . . . o o e e 8
Knit_print.vegaspec o v i i e e e e e e e e e e e e e e 10
renderVegawidget L. e e e 11
shiny-getters L e e e e e 11
Shiny-setters e 13
SPEC_IMMCAIS . . « « . v v v v e e e e e e e e e e e e e e e e 14
use_vegawidget L e 14
vegawidget e e e e 16
vegawidgetOutput 18
vega_embed L e 18
vega_schema L L 20
VEZA_VEISION v v o e e e e e e e e e 21
VW_AS_JSOM & v v v v e 22
VW_AULOSIZE . . o v v v o o o e e e e e e e e e e e 23
VW_EXAMINE v v o o e e e e e e e e e e e e e s 24
vw_handler_add_effect 25
vw_handler_signal oo 26
vw_rename_datasets L e e e e e e e e e e e e 28
vw_serialize_data e 28
vw_set_base url L e 30
vw_shiny_demo 31
VW_SPEC_VEISION . . . v v v vt vt vt e e e e e e e e e e e 32
VW_LO_VEZA © v v o v v e i e 32

34

add-listeners 3

add-listeners Add JavaScript listeners

Description

Listeners are how we get information out of a Vega chart and into the JavaScript environment. To
do this, we specify handler-functions to run whenever a certain signal changes or an event fires.

Usage
vw_add_signal_listener(x, name, handler_body)
vw_add_data_listener(x, name, handler_body)

vw_add_event_listener(x, event, handler_body)

Arguments
X vegawidget object to be monitored
name character, name of the signal or dataset to be monitored

handler_body character or JS_EVAL, text of the body of the JavaScript handler-function to
be called when the signal or dataset changes, or the event fires

event character, name of the type of event to be monitored, e.g. "click”

Details

The handler_body can be the text of the body of a JavaScript function; the arguments to this
function will vary according to the type of listener you are adding:

* signal-handler and data-handler arguments: name, value

 event-handler arguments: event, item

This package offers some functions to make it easier to build JavaScript handler functions from
R: vw_handler_signal(), vw_handler_data(), and vw_handler_event (). You can pipe one of
these functions to vw_handler_add_effect() to perform side-effects on the result.

Value

modified copy of vegawidget object x

See Also

vw_handler_signal (), vw_handler_data(), vw_handler_event (), vw_handler_add_effect(),
vega-view

https://vega.github.io/vega/docs/api/view/

4 as_vegaspec

as_vegaspec Coerce to vegaspec

Description

Vega and Vega-Lite use JSON as their specification-format. Within R, it seems natural to work with
these specifications as lists. Accordingly, a vegaspec is also a list. This family of functions is used
to coerce lists, JSON, and character strings to vegaspec.

Usage

as_vegaspec(spec, ...)

Default S3 method:
as_vegaspec(spec, ...)

S3 method for class 'vegaspec'
as_vegaspec(spec, ...)

S3 method for class 'list'
as_vegaspec(spec, ...)

S3 method for class 'json'
as_vegaspec(spec, ...)

S3 method for class 'character'
as_vegaspec(spec, encoding = "UTF-8", ...)

S3 method for class 'vegawidget'

as_vegaspec(spec, ...)
Arguments
spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification

Other arguments (attempt to future-proof)

encoding character, if spec is a file or a URL, specifies the encoding.

Details
The character method for this function will take:
* JSON string.

* A path to a local JSON file.
e A URL that returns a JSON file.

data_category 5

For Vega and Vega-Lite, the translation between lists and JSON is a little bit particular. This func-
tion, as_vegaspec(), can be used to translate from JSON; vw_as_json() can be used to translate
to JSON.

You can use the function vw_spec_version() to determine if a vegaspec is built for Vega-Lite or
Vega. You can use vw_to_vega() to translate a Vega-Lite spec to Vega.

Value

An object with S3 class vegaspec

See Also

Vega, Vega-Lite, vw_as_json(), vw_spec_version(), vw_to_vega()

Examples

spec <- list(
*$schema‘ = vega_schema(),
data = list(values = mtcars),
mark = "point”,
encoding = list(
x = list(field = "wt", type = "quantitative"),
y = list(field = "mpg"”, type = "quantitative"”),
color = list(field = "cyl”, type = "nominal”)
)
)

as_vegaspec(spec)

Not run:
requires network-access
as_vegaspec("https://vega.github.io/vega-lite/examples/specs/bar.vl. json")

End(Not run)

data_category Example dataset: Categorical data

Description

This is a toy dataset; the numbers are generated randomly.

Usage

data_category

https://vega.github.io/vega/
https://vega.github.io/vega-lite/

6 data_seattle_daily

Format

A data frame with ten observations of two variables

category character, representative of a nominal variable

number double, representative of a quantitative variable

data_seattle_daily Example dataset: Seattle daily weather

Description

This dataset contains daily weather-observations from Seattle for the years 2012-2015, inclusive.

Usage

data_seattle_daily

Format

A data frame with 1461 observations of six variables

date Date, date of the observation

precipitation double, amount of precipitation (mm)
temp_max double, maximum temperature (°C)
temp_min double, minimum temperature (°C)
wind double, average wind-speed (m/s)

weather character, description of weather

Source

https://vega.github.io/vega-datasets/data/seattle-weather.csv

https://vega.github.io/vega-datasets/data/seattle-weather.csv

data_seattle_hourly 7

data_seattle_hourly Example dataset: Seattle hourly temperatures

Description

This dataset contains hourly temperature observations from Seattle for the year 2010.

Usage

data_seattle_hourly

Format

A data frame with 8759 observations of two variables

date POSIXct, instant of the observation, uses "America/Los_Angeles”

temp double, temperature (°C)

Source

https://vega.github.io/vega-datasets/data/seattle-weather-hourly-normals.csv

glue_js Interpolate into a JavaScript string

Description

Uses JavaScript notation to interpolate R variables into a string intended to be interpreted as JS.

Usage
glue_js(..., .open = "${", .envir = parent.frame())
Arguments
character vectors as the JavaScript source code (all arguments will be pasted into
one character string)
.open character, opening delimiter used by glue: :glue()
.envir environment, tells glue: : glue () where to find the variables to be interpolated
Details

This is a wrapper to glue: :glue(), but it uses the notation used by JavaScript’s template-literals,

${3.

https://vega.github.io/vega-datasets/data/seattle-weather-hourly-normals.csv
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

8 image

Value

glue::glue() object

Examples

x <- 123
glue_js("function(){return(${x3});3}") %>% print()

image Create or write image

Description

If you have V8, withr, and fs installed, you can use these functions can to create or write images as
PNG or SVG, using a vegaspec or vegawidget. To convert to a bitmap, or write a PNG file, you
will additionally need the rsvg and png packages.

Usage

vw_to_svg(spec, width = NULL, height = NULL, base_url = NULL, seed = NULL)

vw_to_bitmap(spec, scale = 1, width = NULL, height = NULL, ...)

vw_write_svg(spec, path, width = NULL, height = NULL, ...)

vw_write_png(spec, path, scale = 1, width = NULL, height = NULL, ...)
Arguments

spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification

width integer, if specified, the total rendered width (in pixels) of the chart - valid

only for single-view charts and layered charts; the default is to use the width in
the chart specification

height integer, if specified, the total rendered height (in pixels) of the chart - valid
only for single-view charts and layered charts; the default is to use the height in
the chart specification

base_url character, the base URL for a data file, useful for specifying a local directory;
defaults to an empty string

seed integer, the random seed for a Vega specification, defaults to a "random" inte-
ger

scale numeric, useful for specifying larger images supporting the increased-resolution

of retina displays
additional arguments passed to vw_to_svg()

path character, local path to which to write the file

https://CRAN.R-project.org/package=V8
https://withr.r-lib.org/
https://fs.r-lib.org/
https://CRAN.R-project.org/package=rsvg
https://CRAN.R-project.org/package=png

image

Details

These functions can be called using (an object that can be coerced to) a vegaspec.

The scripts used are adapted from the Vega command line utilities.

Value

vw_to_svg() character, SVG string
vw_to_bitmap() array, bitmap array
vw_write_svg() invisible vegaspec or vegawidget, called for side-effects

vw_write_png() invisible vegaspec or vegawidget, called for side-effects

See Also

vega-view library

Examples

call any of these functions using either a vegaspec or a vegawidget
svg <- vw_to_svg(vegawidget(spec_mtcars))

bmp <- vw_to_bitmap(spec_mtcars)

vw_write_png(spec_mtcars, file.path(tempdir(), "temp.png"))
vw_write_svg(spec_mtcars, file.path(tempdir(), "temp.svg"))

To specify the path to a local file, use base_url
spec_precip <-

list(
*$schema® = vega_schema(),
data = list(url = "seattle-weather.csv"),
mark = "tick",

encoding = list(
x = list(field = "precipitation”, type = "quantitative")
)
) %%
as_vegaspec()

data_dir <- system.file("example-data/", package = "vegawidget")
vw_write_png(

spec_precip,

file.path(tempdir(), "temp-local.png”),

base_url = data_dir

https://vega.github.io/vega/usage/#cli
https://github.com/vega/vega-view#image-export

10 knit_print.vegaspec

knit_print.vegaspec Knit-print method

Description

If you are knitting to an HTML-based format, the only supported options are vega.width, vega.height
(as pixels) and vega.embed (as a list). If you are knitting to a non-HTML-based format, you addi-
tionally have the options dev, out.width and out.height available.

Usage
knit_print.vegaspec(spec, ..., options = NULL)
Arguments
spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification
other arguments
options list, knitr options
Details

The biggest thing to keep in mind about a Vega visualization is that very often, the chart tells you
how much space it needs, rather than than you tell it how much space it has available. In the future,
it may reveal itself how to manage better this "conversation".

HTML-based

When knitting to an HTML-based format, the spec is rendered as normal, it calls vegawidget ()
using the options vega.width, vega.height and vega.embed:

* vega.width and vega.height are passed to vegawidget() as width and height, respec-
tively. These values are coerced to numeric, so it is ineffective to specify a percentage. They
are passed to vw_autosize() to resize the chart, if possible.

* vega.embed is passed to vegawidget () as embed. The function vega_embed() can be useful
to set vega.embed.

Non-HTML-based

When knitting to an non-HTML-based format, e.g. github_document or pdf_document, this func-
tion will convert the chart to an image, then knitr will incorporate the image into your document.
You have the additional knitr options dev, out.width, and out.height:

non

» The supported values of dev are "png”, "svg"”, and "pdf”. If you are knitting to a LaTeX
format (e.g. pdf_document) and you specify dev as "svg”, it will be implemented as "pdf".

* To scale the image within your document, you can use out.width or out.height. Because
the image will already have an aspect ratio, it is recommended to specify no more than one of
these.

https://vega.github.io/vega-lite/docs/size.html#limitations

render Vegawidget 11

See Also

vw_autosize(), vega_embed()

renderVegawidget Render shiny-output for vegawidget

Description

Use this function in the server part of your Shiny app.

Usage

renderVegawidget (expr, env = parent.frame(), quoted = FALSE)

Arguments
expr expression that generates a vegawidget. This can be a vegawidget or a vegaspec.
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.
shiny-getters Get information from a Vega chart into Shiny
Description

There are three types of information you can get from a Vega chart, a signal, data (i.e. a dataset),
and information associated with an event. A dataset or a signal must first be defined and named in
the vegaspec.

Usage

vw_shiny_get_signal (outputId, name, body_value = "value")

vw_shiny_get_data(outputId, name, body_value = "value")

vw_shiny_get_event(outputld, event, body_value = "datum”)

Arguments
outputId character, shiny outputId for the vegawidget
name character, name of the signal (defined in Vega specification) being monitored
body_value character or JS_EVAL, the body of a JavaScript function that Vega will use to
handle the signal or event; this function must return a value
event character, type of the event being monitored, e.g. "click"”, for list of sup-

ported events, please see Vega Event-Stream reference

https://vega.github.io/vega/docs/event-streams/

12 shiny-getters

Details
These getter-functions are called from within a Shiny server() function, where they act like
shiny::reactive(), returning a reactive expression.

To see these functions in action, you can run a shiny-demo:

e vw_shiny_get_signal(): call vw_shiny_demo("signal-set-get")
e vw_shiny_get_data(): call vw_shiny_demo("data-set-get")

e vw_shiny_get_event(): call vw_shiny_demo("event-get")
In addition to the chart outputId, you will need to provide:

e vw_shiny_get_signal(): the name of the signal, as defined in the Vega specification
* vw_shiny_get_data(): the name of the dataset, as defined in the Vega specification

* vw_shiny_get_event(): the event type, as defined in the Vega Event-Stream reference

When the signal or data changes, or when the event fires, Vega needs to know which information
you want returned to Shiny. To do this, you provide a JavaScript handler-function:

e vw_shiny_get_signal(): the default handler, vw_handler_signal("value"), specifies that
the value of the signal be returned.

e vw_shiny_get_data(): the default handler, vw_handler_data("value"), specifies that the
entire dataset be returned.

e vw_shiny_get_event(): the default handler, vw_handler_event("datum"), specifies that
the single row of data associated with graphical mark be returned. For example, if you are
monitoring a "click” event, Vega would return the row of data that backs any mark (like a
point) that you click.

If you need to specify a different behavior for the handler, there are a couple of options. This
package provides a library of handler-functions; call vw_handler_signal(), vw_handler_data(),
or vw_handler_event () without arguments to list the available handlers.

If the library does not contain the handler you need, the body_value argument will also accept a
character string which will be used as the body of the handler function.

For example, these calls are equivalent:

e vw_shiny_get_signal(..., body_value = "value")
e vw_shiny_get_signal(..., body_value = vw_handler_signal("value"))
e vw_shiny_get_signal(..., body_value = "return value;")

If you use a custom-handler that you think may be useful for the handler-function library, please
file an issue.

Value

shiny::reactive() function that returns the value returned by body_value

See Also

vw_handler_signal(), vw_handler_event(), vega-view: addSignalListener(), addEventListener()

https://vega.github.io/vega/docs/event-streams/
https://github.com/vegawidget/vegawidget/issues
https://github.com/vega/vega/tree/master/packages/vega-view#view_addSignalListener
https://github.com/vega/vega/tree/master/packages/vega-view#view_addEventListener

shiny-setters 13

shiny-setters Set information in a Vega chart from Shiny

Description

There are two ways to change a Vega chart: by setting a signal or by setting a dataset; you can also
direct a Vega chart to re-run itself. Any signal or dataset you set must first be defined and named
in the vegaspec. These functions are called from within a Shiny server () function, where they act
like shiny: :observe() or shiny: :observeEvent().

Usage
vw_shiny_set_signal (outputId, name, value, run = TRUE, ...)
vw_shiny_set_data(outputId, name, value, run = TRUE, ...)
vw_shiny_run(outputId, value, ...)
Arguments
outputId character, shiny outputId for the vegawidget
name character, name of the signal or dataset being set, as defined in the vegaspec
value reactive expression, e.g. input$slider or dataset(), that returns the value to
which to set the signal or dataset
run logical indicates if the chart is to be run immediately
other arguments passed on to shiny: :observeEvent()
Details

To see these functions in action, you can run a shiny-demo:

e vw_shiny_set_signal(): call vw_shiny_demo("signal-set-get")
e vw_shiny_set_data(): call vw_shiny_demo("data-set-get")

e vw_shiny_run(): call vw_shiny_demo("data-set-swap-run”)
For the signal and data setters, in addition to the chart outputId, you will need to provide:

* the name of the signal or dataset you wish to keep updated

* the value to which you want to set the signal or dataset; this should be a reactive expression
like input$slider or rct_dataset()

* whether or not you want to run the Vega view again immediately after setting this value
If you do not set run = TRUE in the setter-function, you can use the vw_shiny_run() function to

control when the chart re-runs. One possibility is to set its value to a reactive expression that refers
to, for example, a shiny: :actionButton().

14 use_vegawidget

Value

shiny: :observeEvent () function that responds to changes in the reactive-expression value

spec_mtcars Example vegaspec: mtcars scatterplot

Description

A Vega-Lite specification to create a scatterplot for mtcars.

Usage

spec_mtcars

Format

S3 object of class vegaspec

See Also

as_vegaspec()

use_vegawidget Add vegawidget functions to your package

Description

These functions are offered to help you import and re-export vegawidget functions in your package.
For more detail, please see this article.

Usage

use_vegawidget(s3_class_name = NULL)

use_vegawidget_interactive()

Arguments

s3_class_name character, name of an S3 class for object to be coerced to a vegaspec; default
(NULL) implies no additional class

https://vegawidget.github.io/vegawidget/articles/articles/import.html

use_vegawidget 15

Details

use_vegawidget():

Adds vegawidget functions:

e as_vegaspec(), vw_as_json()

e format(), print(), knit_print()

* vegawidget(), vega_embed(), vw_set_base_url()
* vw_to_svg() and other image functions

* vegawidgetOutput(), renderVegawidget ()
In practical terms:

* adds vegawidget to Imports in your package’s DESCRIPTION file.

* adds V8, withr, fs, rsvg, and png to Suggests in your package’s DESCRIPTION file.
e creates R/utils-vegawidget.R

* you can delete references to functions you do not want to re-export.

If you have your own S3 class for a spec, specify the s3_class_name argument. You will have to
edit R/utils-vegawidget-<s3_class_name>.R:

* add the code within your class’s method for to coerce your object to a vegaspec.
To permit knit-printing of your custom class, you will have to add some code to your package’s
.onLoad() function.
use_vegawidget_interactive():
If you want to add the JavaScript and Shiny functions, use this after running use_vegawidget(). It
adds:

e vw_add_data_listener() and other listener-functions.

¢ vw_handler_data() and other handler functions.

e vw_shiny_get_data() and other Shiny getters.

* vw_shiny_set_data() and other Shiny setters.
In practical terms:

¢ adds shiny, dplyr, to Suggests.
* creates R/utils-vegawidget-interactive.R.

* at your discretion, delete references to functions you do not want to re-export.

Value

invisible NULL, called for side effects

16

vegawidget

vegawidget

Create a Vega/Vega-Lite htmlwidget

Description

The main use of this package is to render a vegawidget, which is also an htmlwidget. This
function builds a vegawidget using a vegaspec.

Usage
vegawidget (
spec,
embed = NULL,
width = NULL,

height = NULL,
elementId = NULL,
base_url = NULL,

Arguments

spec
embed
width

height

elementId

base_url

Details

An object to be coerced to vegaspec, a Vega/Vega-Lite specification
list to specify vega-embed options, see Details on how this is set if NULL.

integer, if specified, the total rendered width (in pixels) of the chart - valid
only for single-view charts and layered charts; the default is to use the width in
the chart specification

integer, if specified, the total rendered height (in pixels) of the chart - valid
only for single-view charts and layered charts; the default is to use the height in
the chart specification

character, explicit element ID for the vegawidget, useful if you have other
JavaScript that needs to explicitly discover and interact with a specific vegawid-
get

character, the base URL to prepend to data-URL elements in the vegaspec.
This could be the path to a local directory that contains a local file referenced
in the spec. It could be the base for a remote URL. Please note that by speci-
fying the base_url here, you will override any loader that you specify using
vega_embed(). Please note that this does not work with knitr. See examples.

other arguments passed to htmlwidgets: :createWidget()

If embed is NULL, vegawidget () uses:

e getOption("vega.embed"), if that is NULL.:

https://github.com/vega/vega-embed#options

vegawidget 17

* an empty call to vega_embed()
The most-important arguments to vega_embed() are:

* renderer, to specify "canvas” (default) or "svg"

* actions, to specify action-links for export, source, compiled, and editor

If either width or height is specified, the autosize() function is used to override the width and
height of the spec. There are some important provisions:

* Specifying width and height is effective only for single-view charts and layered charts. It
will not work for concatenated, faceted, or repeated charts.

* In the spec, the default interpretation of width and height is to describe the dimensions of the
plotting rectangle, not including the space used by the axes, labels, etc. Here, width and
height describe the dimensions of the entire rendered chart, including axes, labels, etc.

Please note that if you are using a remote URL to refer to a dataset in your vegaspec, it may not
render properly in the RStudio IDE, due to a security policy set by RStudio. If you open the chart
in a browser, it should render properly.

Value

S3 object of class vegawidget and htmlwidget

See Also

vega-embed options, vega_embed (), vw_autosize()
Examples
vegawidget(spec_mtcars, width = 350, height = 350)

vegaspec with a data URL
spec_precip <-

list(
‘$schema* = vega_schema(),
data = list(url = "seattle-weather.csv"),
mark = "tick",

encoding = list(
x = list(field = "precipitation”, type = "quantitative")
)
) %%
as_vegaspec()

define local path to file
path_local <- system.file("example-data”, package = "vegawidget")

render using local path (does not work with knitr)
vegawidget (spec_precip, base_url = path_local)

Not run:
requires network-access

https://vega.github.io/vega-lite/docs/size.html#limitations
https://github.com/vega/vega-embed#options

18 vega_embed

define remote path to file
url_remote <- "https://vega.github.io/vega-datasets/data”

render using remote path
note: does not render in RStudio IDE; open using browser

vegawidget (spec_precip, base_url = url_remote)

End(Not run)

vegawidgetOutput Shiny-output for vegawidget

Description

Use this function in the UI part of your Shiny app.

Usage

vegawidgetOutput (outputld, width = "auto”, height = "auto”, widget = NULL)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like "100%", "400px", "auto") or a number, which
will be coerced to a string and have "px" appended. For vegawidgets, "auto”
is useful because, as of now, the spec determines the size of the widget, then the
widget determines the size of the container.

widget character, indicating which version of libraries to use, e.g. "v15". Normally,
you should not need to set this. See vega_version_all() for more information.

vega_embed Vega embed options

Description

Helper-function to specify the embed argument to vegawidget(). These arguments reflect the
options to the vega-embed library, which ultimately renders the chart specification as HTML.

https://github.com/vega/vega-embed/#options

vega_embed

Usage

vega_embed(

19

renderer = c("canvas”, "svg"),

actions = NULL,
defaultStyle = TRUE,
config = NULL,

patch = NULL,

bind = NULL,

Arguments

renderer

actions

defaultStyle

config

patch

bind

Details

character the renderer to use for the view. One of "canvas” (default) or "svg".
See Vega docs for details.

logical or named vector of logicals, determines if action links ("Export as
PNG/SVG", "View Source", "Open in Vega Editor") are included with the em-
bedded view. If the value is TRUE (default), all action links will be shown and
none if the value is FALSE. This property can be a named vector of logicals
that maps keys (export, source, compiled, editor) to logical values for de-
termining if each action link should be shown. By default, export, source,
and editor are TRUE and compiled is FALSE, but these defaults can be overrid-
den. For example, if actions is list(export = FALSE, source = TRUE), the
embedded visualization will have two links — "View Source" and "Open in Vega
Editor".

logical or character default stylesheet for embed actions. If set to TRUE (de-
fault), the embed actions are shown in a menu. Set to FALSE to use simple links.
Provide a character string to set the style sheet.

character or 1ist, a URL string from which to load a Vega/Vega-Lite or Vega-
Lite configuration file, or a list of Vega/Vega-Lite configurations to override
the default configuration options. If config is a URL, it will be subject to stan-
dard browser security restrictions. Typically this URL will point to a file on the
same host and port number as the web page itself.

JS function, list or character, A function to modify the Vega specification
before it is parsed. Alternatively, an 1ist that, when compiled to JSON, will
meet JSON-Patch RFC6902. If you use Vega-Lite, the compiled Vega will be
patched. Alternatively to the function or the 1ist, a URL string from which to
load the patch can be provided. This URL will be subject to standard browser
security restrictions. Typically this URL will point to a file on the same host and
port number as the web page itself.

character

other named items, outlined in vega-embed options.

The most important arguments are renderer, actions, and defaultStyle:

https://vega.github.io/vega/docs/api/view/#view_renderer
https://www.rfc-editor.org/rfc/rfc6902
https://github.com/vega/vega-embed

20 vega_schema

¢ The default renderer is "canvas”.

¢ The default for actions is NULL, which means that the export, source, and editor links are
shown, but the compiled link is not shown.

— To suppress all action links, call with actions = FALSE.

— To change from the default for a given action link, call with alist: actions = list(editor
= FALSE).

* The default for defaultStyle is TRUE, which means that action-links are rendered in a widget
at the upper-right corner of the rendered chart.

The vega-embed library has a lot more options, you can supply these as names arguments using

For example, it is ineffective to set the width and height parameters here when embedding a Vega-
Lite specification, as they will be overridden by the value in the chart specification.

Value

list to to be used with vega-embed JavaScript library

See Also

vega-embed library, vegawidget ()

Examples
vega_embed(renderer = "svg")
vega_schema Create string for schema-URL
Description

Useful if you are creating a vegaspec manually.

Usage

vega_schema(
library = c("vega_lite", "vega"),
version = NULL,
major = is.null(version)

)
Arguments
library character, either "vega" or "vega_lite"
version character, version of library, e.g. "5.2.0"; if version is provided, major
defaults to FALSE.
major logical return major version-tags rather than the tags for the specific versions

supported by this package

https://github.com/vega/vega-embed/#options
https://github.com/vega/vega-embed

vega_version 21

Value

character URL for schema

Examples

vega_schema()
vega_schema("vega"”, major = FALSE)
vega_schema("vega_lite"”, version = "5.2.0")

creating a spec by hand

spec <-
list(
*$schema’ = vega_schema(),
width = 300,
height = 300
and so on
) %>%

as_vegaspec()

vega_version Get Vega JavaScript versions

Description

Use these functions to get which versions of Vega JavaScript libraries are available. vega_version_all()
returns a data frame showing all versions included in this package, vega_version_available()
returns all versions available - subject to locking, vega_version() shows the default version.

Usage

vega_version(major = FALSE)
vega_version_all(major = FALSE)

vega_version_available(major = FALSE)

Arguments
major logical return major version-tags rather than the tags for the specific versions
supported by this package
Details

This package offers multiple widgets, each corresponding to a major version of Vega-Lite. Only
one of these widgets can be used for a given loading of this package. When vegawidget() is first
called, the widget is "locked" according to the $schema in the vegaspec used, or the default - the
most-recent version.

22 vWw_as_json

is_locked indicates if vegawidget () is has locked the version.

widget indicates which version of the widget would be used.

Value

vega_version() list with elements: is_locked, widget, vega_lite, vega, vega_embed.
vega_version_all() data.frame with elements: widget, vega_lite, vega, vega_embed.

vega_version_available() data.frame with elements: widget, vega_lite, vega, vega_embed.

Examples

vega_version()
vega_version(major = TRUE)
vega_version_all()
vega_version_available()

vw_as_json Coerce vegaspec to JSON

Description

For Vega and Vega-Lite, the translation between lists and JSON is a little bit particular. This func-
tion, vw_as_json(), can be used to translate to JSON; as_vegaspec() can be used to translate
from JSON.

Usage

vw_as_json(spec, pretty = TRUE)

Arguments
spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification
pretty logical indicates to use pretty (vs. minified) formatting

Value

jsonlite: : json object

See Also

as_vegaspec()

Examples

vw_as_json(spec_mtcars)

vw_autosize 23

vw_autosize Autosize vegaspec

Description

The arguments width and height are used to override the width and height of the provided spec,
if the spec does not have multiple views. The dimensions you provide describe the overall width
and height of the rendered chart, including axes, labels, legends, etc.

Usage

vw_autosize(spec, width = NULL, height = NULL)

Arguments
spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification
width integer, if specified, the total rendered width (in pixels) of the chart - valid
only for single-view charts and layered charts; the default is to use the width in
the chart specification
height integer, if specified, the total rendered height (in pixels) of the chart - valid
only for single-view charts and layered charts; the default is to use the height in
the chart specification
Details

In a Vega or Vega-Lite specification, the default interpretation of width and height is to describe the
dimensions of the data rectangle, not including the space used by the axes, labels, legends, etc.
When width and height are specified using autosize, the meanings of width and height change
to describe the dimensions of the entire chart, including axes, labels, legends, etc.

There is an important limitation: specifying width and height is effective only for single-view
and layered specifications. It will not work for specifications with multiple views (e.g. hconcat,
vconcat, facet, repeat); this will issue a warning that there will be no effect on the specification
when rendered.

Value

S3 object with class vegaspec

See Also

Article on vegaspec (sizing), Vega documentation on sizing

Examples

vw_autosize(spec_mtcars, width = 350, height = 350)

https://vega.github.io/vega-lite/docs/size.html#autosize
https://vega.github.io/vega-lite/docs/size.html#limitations
https://vega.github.io/vega-lite/docs/size.html#limitations
https://vegawidget.github.io/vegawidget/articles/articles/vegaspec.html#sizing
https://vega.github.io/vega-lite/docs/size.html#autosize

24 VW_examine

vw_examine Examine vegaspec

Description

This is a thin wrapper to listviewer:: jsonedit(), use to interactively examine a Vega or Vega-
Lite specification.

Usage
vw_examine(
spec,
mode = "view",
modes = c("view", "code", "form"”, "text", "tree"),
e,
width = NULL,

height = NULL,
elementId = NULL

)
Arguments
spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification
mode string for the initial view from modes. 'view' is the default.
modes string c('view', 'code', 'form', 'text', 'tree') will be the default, since
these are all the modes currently supported by jsoneditor.
list of other options for jsoneditor. This is a temporary way of trying other
options in jsoneditor. In the future, this will be eliminated in favor of specific,
more self-documenting and helpful arguments.
width integer in pixels defining the width of the div container.
height integer in pixels defining the height of the div container.
elementId character to specify valid CSS id of the htmlwidget for special situations in which
you want a non-random identifier.
Value

S3 object of class jsonedit and htmlwidget
Examples
vw_examine(spec_mtcars)
spec_mtcars_autosize <-
spec_mtcars %>%

vw_autosize(width = 300, height = 300)

vw_examine(spec_mtcars_autosize)

vw_handler_add_effect 25

vw_handler_add_effect Add a side-effect to a JavaScript handler

Description

With a JavaScript handler, once you have calculated a value based on the handler’s arguments (e.g.
name, value) you will likely want to produce a side-effect based on that calculated value. This
function helps you do that.

Usage
vw_handler_add_effect(vw_handler, body_effect, ...)
Arguments
vw_handler vw_handler created using vw_handler_signal() or vw_handler_event()

body_effect character, the name of a defined handler-body, or the text of the body of a
handler-function

additional named parameters to be interpolated into the text of the handler_body

Details

The calculation of a value is meant to be separate from the production of a side-effect. This way,
the code for a side-effect can be used for any type of handler.

You are supplying the body_effect to an effect-handler. This takes a single argument, x, repre-
senting the calculated value. Doing this allows us to chain side-effects together; be careful not to
modify x in any of the code you provide.

To see what side-effects are available in this package’s handler-library, call vw_handler_add_effect()
without any arguments. You may notice that some of the effects, like "element_text"”, require ad-
ditional parameters, in this case, selector.

Those parameters with a default value of NULL require you to supply a value; those with sensible
defaults are optional.

To provide the parameters, call vw_handler_add_effect() with named arguments corresponding
to the names of the parameters. See the examples for details.

Value

modified copy of vw_handler

See Also

vw_handler_signal ()

26 vw_handler_signal

Examples

list all the available effect-handlers
vw_handler_add_effect()

build a signal handler that prints some text,
then the value, to the console
vw_handler_signal ("value") %>%

vw_handler_add_effect("console”, label = "signal value:")
vw_handler_signal Construct a JavaScript handler
Description

A Vega listener needs a JavaScript handler-function to call when the object-being-listened-to changes.
For instance, shiny-getters and add-listeners functions each have an argument called body_value,
which these functions help you build.

Usage

vw_handler_signal (body_value)
vw_handler_data(body_value)

vw_handler_event (body_value)

Arguments
body_value character, the name of a defined handler-body, or the text of the body of a
handler-function
Details

There are two types of handlers defined in this package’s handler-library. To see the handlers that
are defined for each, call the function without any arguments:

e vw_handler_signal ()
e vw_handler_data()

e vw_handler_event()
With a JavaScript handler, you are trying to do two types of things:

e calculate a value based on the handler’s arguments

* produce a side-effect based on that calculated value

Let’s look at a concrete example. A signal handler will take arguments name and value. Let’s say
that we want to return the value. We could do this two ways:

https://vega.github.io/vega/docs/api/view/

vw_handler_signal 27

e vw_handler_signal(”value"”): use this package’s handler library

* vw_handler_signal("return value;"): supply the body of the handler-function yourself
In the list above, the two calls do exactly the same thing, they build a JavaScript function that returns
the value provided by whatever is calling the signal-handler. This will be a valid signal-handler,

however, we will likely want a signal-handler to do something with that value, which is why we
may wish to add a side-effect.

Let’s say we want the handler to print the value to the JavaScript console. We would create the
signal-handler, then add an effect to print the result to the console.

vw_handler_signal ("value") %>% vw_handler_add_effect("console")

We can add as many effects as we like; for more information, please see the documentation for
vw_handler_add_effect().

Please be aware that these functions do not check for the correctness of JavaScript code you supply
- any errors you make will not be apparent until your visualization is rendered in a browser.

One last note, if body_value is already a vw_handler, these functions are no-ops; they will return
the body_value unchanged.

Value

object with S3 class vw_handler

See Also

vw_handler_add_effect(), vega-view

Examples

list all the available signal-handlers
vw_handler_signal()

list all the available data-handlers
vw_handler_data()

list all the available event-handlers
vw_handler_event ()

use a defined signal-handler
vw_handler_signal("value")

define your own signal-handler
vw_handler_signal("return value;")

https://vega.github.io/vega/docs/api/view/

28 vw_serialize_data

vw_rename_datasets Rename datasets in a vegaspec

Description

If a vegaspec has named datasets, it may be useful to rename them. This function will return a
vegaspec with datasets named data_001, data_002, and so on. It will go through the spec and
replace the references to the names. A future version of this function may give you the more control
over the names used.

Usage

vw_rename_datasets(spec)

Arguments

spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification

Value

S3 object of class vegaspec

vw_serialize_data Serialize data-frame time-columns

Description

Please think of this as an experimental function

Usage

vw_serialize_data(data, iso_dttm = FALSE, iso_date = TRUE)

Arguments
data data. frame, data to be serialized
iso_dttm logical, indicates if datetimes (POSIXct) are to be formatted using ISO-8601

iso_date logical, indicates if dates (Date) are to be formatted using ISO-8601

vw_serialize_data 29

Details

In Vega, for now, there are only two time-zones available: the local time-zone of the browser where
the spec is rendered, and UTC. This differs from R, where a time-zone attribute is available to
POSIXct vectors. Accordingly, when designing a vegaspec that uses time, you have to make some
some compromises. This function helps you to implement your compromise in a principled way, as
explained in the opinions below.

Let’s assume that your POSIXct data has a time-zone attached. There are three different scenarios
for rendering this data:

* using the time-zone of the browser
* using UTC

* using the time-zone of the data

If you intend to display the data using the time-zone of the browser, or using UTC, you should
serialize datetimes using ISO-8601, i.e. iso_dttm = TRUE. In the rest of your vegaspec, you should
choose local or UTC time-scales accordingly. However, in either case, you should use local time-
units. No compromise is necessary.

If you intend to display the data using the time-zone of the browser, this is where you will have
to compromise. In this case, you should serialize using iso_dttm = FALSE. By doing this, your
datetimes will be serialized using a non-ISO-8601 format, and notably, using the time-zone of the
datetime. When you design your vegaspec, you should treat this as if it were a UTC time. You
should direct Vega to parse this data as UTC, i.e. {"foo": "utc:'%Y-%m-%d %H:%M:%S"'"}. In
other words, Vega should interpret your local timestamp as if it were a UTC timestamp. As in the
first UTC case, you should use UTC time-scales and local time-units.

The compromise you are making is this: the internal representation of the instants in time will be
different in Vega than it will be in R. You are losing information because you are converting from
a POSIXct object with a time-zone to a timestamp without a time-zone. It is also worth noting that
the time information in your Vega plot should not be used anywhere else - this should be the last
place this serialized data should be used because it is no longer trustworthy. For this, you will gain
the ability to show the data in the context of its time-zone.

Dates can be different creatures than datetimes. I think that can be "common currency" for dates.
I think this is because it is more common to compare across different locations using dates as a
common index. For example, you might compare daily stock-market data from NYSE, CAC-40,
and Hang Seng. To maintain a common time-index, you might choose UTC to represent the dates
in all three locations, despite the time-zone differences.

This is why the default for iso_date is TRUE. In this scenario, you need not specify to Vega how to
parse the date; because of its ISO-8601 format, it will parse to UTC. As with the other UTC cases,
you should use UTC time-scales and local time-units.

Value

object with the same type as data

See Also
Vega-Lite Time Unit (UTC)

https://vega.github.io/vega-lite/docs/timeunit.html#utc

30 vw_set_base url

Examples

datetimes

data_seattle_hourly %>% head()

data_seattle_hourly %>% head() %>% vw_serialize_data(iso_dttm = TRUE)
data_seattle_hourly %>% head() %>% vw_serialize_data(iso_dttm = FALSE)

dates

data_seattle_daily %>% head()

data_seattle_daily %>% head() %>% vw_serialize_data(iso_date = TRUE)
data_seattle_daily %>% head() %>% vw_serialize_data(iso_date = FALSE)

vw_set_base_url Set base URL

Description

This is useful for specs where data is specified using a URL. Using this function to set the base
URL, you can specify the data URL in specs using the relative path from the base.

For example, this Vega-Lite example uses the base URL https://cdn. jsdelivr.net/npm/vega-datasets@2.
In a spec, instead of specifying:

data = "https://cdn.jsdelivr.net/npm/vega-datasets@2/data/cars.json”

You can call:

vw_set_base_url("https://cdn. jsdelivr.net/npm/vega-datasets@2")

Then specify:

data = "data/cars. json”

This function sets the value of getOption("vega-embed")$loader$baseURL. You need set it only
once in a session or RMarkdown file.

Usage

vw_set_base_url(url)

Arguments

url character URL to use as the base URL.

Value

character called for side effects, it returns the previous value invisibly.

https://vega.github.io/vega-lite/examples/point_2d.html

vw_shiny_demo 31

Examples

this is the URL used for Vega datasets
previous <- vw_set_base_url("https://cdn.jsdelivr.net/npm/vega-datasets@2")

reset to previous value
vw_set_base_url(previous)

vw_shiny_demo Run Shiny demonstration-apps

Description

Run Shiny demonstration-apps

Usage
vw_shiny_demo(example = NULL, ...)
Arguments
example character, name of the example to run; if NULL (default), prints out a list of
available examples
additional arguments passed to shiny: : runApp()
Value

invisible NULL, called for side-effects

Examples

vw_shiny_demo() # returns available examples

Run only in interactive R sessions
if (interactive()) {
vw_shiny_demo("data-set-get")

}

32 VW_to_vega

vw_spec_version Determine vegaspec version

Description

Use this function to determine the 1library and version of a vegaspec.

Usage

vw_spec_version(spec)

Arguments

spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification

Details
Returns a list with two elements:

library character, either "vega" or "vega_lite"

version character, version tag

Value

list with elements library, version

Examples

vw_spec_version(spec_mtcars)
vw_to_vega() requires the V8 package
vw_spec_version(vw_to_vega(spec_mtcars))

vw_to_vega Convert to Vega specification

Description
If you have V8 installed, you can use this function to compile a Vega-Lite specification into a Vega
specification.

Usage

vw_to_vega(spec)

Arguments

spec An object to be coerced to vegaspec, a Vega/Vega-Lite specification

https://CRAN.R-project.org/package=V8

VW_to_vega

Value

S3 object of class vegaspec_vega and vegaspec

Examples

vw_spec_version(spec_mtcars)
vw_spec_version(vw_to_vega(spec_mtcars))

33

Index

+ datasets
data_category, 5
data_seattle_daily, 6
data_seattle_hourly, 7
spec_mtcars, 14

add-listeners, 3, 26
as_vegaspec, 4
as_vegaspec(), 5, 14, 15,22

data_category, 5
data_seattle_daily, 6
data_seattle_hourly, 7

glue::glue(), 7
glue_js, 7

htmlwidgets: :createWidget(), 16

image, 8
knit_print.vegaspec, 10
listviewer: :jsonedit(), 24

renderVegawidget, 11
renderVegawidget(), 15

shiny-getters, 11, 26
shiny-setters, 13

shiny: :actionButton(), I3
shiny: :observe(), I3

shiny: :observeEvent(), 13, 14
shiny: :reactive(), 12

shiny: :runApp(), 31
spec_mtcars, 14

use_vegawidget, 14
use_vegawidget_interactive
(use_vegawidget), 14

vega_embed, 18

34

vega_embed(), 10, 11,15, 17
vega_schema, 20
vega_version, 21
vega_version_all (vega_version), 21
vega_version_available (vega_version),
21
vegawidget, 16
vegawidget (), 10, 15, 20
vegawidgetOutput, 18
vegawidgetOutput(), 15
vw_add_data_listener (add-listeners), 3
vw_add_data_listener(), 15
vw_add_event_listener (add-listeners), 3
vw_add_signal_listener (add-listeners),
3
vw_as_json, 22
vw_as_json(), 5, 15, 22
vw_autosize, 23
vw_autosize(), 10, 11, 17
vw_examine, 24
vw_handler_add_effect, 25
vw_handler_add_effect(), 3, 27
vw_handler_data (vw_handler_signal), 26
vw_handler_data(), 3, 12, 15
vw_handler_event (vw_handler_signal), 26
vw_handler_event(), 3, 12, 25
vw_handler_signal, 26
vw_handler_signal (), 3, 12, 25
vw_rename_datasets, 28
vw_serialize_data, 28
vw_set_base_url, 30
vw_set_base_url(), 15
vw_shiny_demo, 31
vw_shiny_get_data (shiny-getters), 11
vw_shiny_get_data(), 15
vw_shiny_get_event (shiny-getters), 11
vw_shiny_get_signal (shiny-getters), 11
vw_shiny_run (shiny-setters), 13
vw_shiny_set_data (shiny-setters), 13

INDEX

vw_shiny_set_data(), 15
vw_shiny_set_signal (shiny-setters), 13
vw_spec_version, 32
vw_spec_version(), 5
vw_to_bitmap (image), 8
vw_to_svg (image), 8
vw_to_svg(), 15
vw_to_vega, 32
vw_to_vega(), 5
vw_write_png (image), 8
vw_write_svg (image), 8

35

	add-listeners
	as_vegaspec
	data_category
	data_seattle_daily
	data_seattle_hourly
	glue_js
	image
	knit_print.vegaspec
	renderVegawidget
	shiny-getters
	shiny-setters
	spec_mtcars
	use_vegawidget
	vegawidget
	vegawidgetOutput
	vega_embed
	vega_schema
	vega_version
	vw_as_json
	vw_autosize
	vw_examine
	vw_handler_add_effect
	vw_handler_signal
	vw_rename_datasets
	vw_serialize_data
	vw_set_base_url
	vw_shiny_demo
	vw_spec_version
	vw_to_vega
	Index

